1 Revision 1:

2	Transformation of halloysite and kaolinite into beidellite under hydrothermal
3	condition
4	
5	Hongping He ¹ *, Shichao Ji ¹ , Qi Tao ¹ , Jianxi Zhu ¹ , Tianhu Chen ² , Xiaoliang
6	Liang ¹ , Zhaohui Li ³ and Hailiang Dong ⁴
7	
8	¹ Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences &
9	Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou
10	Institute of Geochemistry, Guangzhou 510640, China
11	² School of Resources and Environmental Engineering, Hefei University of
12	Technology, Hefei 230009, China
13	³ Geosciences Department, University of Wisconsin - Parkside, Kenosha, WI 53141,
14	U.S.A.
15	⁴ Department of Geology, Miami University, Oxford, OH 45056, U.S.A.
16	
17	* E-mail: hehp@gig.ac.cn
18	

19

ABSTRACT

20	Understanding clay mineral transformation is of fundamental importance to
21	unraveling geological and environmental processes, and to better understanding
22	unique structure and property of phyllosilicates. To date, two pathways have been
23	identified, i.e., the transformation among 2:1 type clay minerals (e.g., illitization of
24	smectite) and from 2:1 type to 1:1 type (e.g., kaolinization of smectite). However, the
25	transformation of 1:1 to 2:1 type is less commonly observed. In this study,
26	hydrothermal experiments were conducted to investigate the possibility of the
27	transformation of 1:1 type clay minerals (i.e., halloysite and kaolinite) into 2:1 ones
28	(i.e., beidellite). The obtained products were characterized by XRD, TG, FTIR, ²⁷ Al
29	and ²⁹ Si MAS NMR, and HRTEM. XRD patterns of the hydrothermal products
30	display characteristic basal spacing of smectite group minerals at 1.2 - 1.3 nm with
31	dramatic decrease/disappearance of the (001) reflection of halloysite and kaolinite.
32	This is consistent with HRTEM observations, in which clay layers with a thickness of
33	1.2 - 1.4 nm are observed in all hydrothermal products and the Si/Al ratio determined
34	by EDS analysis is close to that of beidellite. The basal spacing increases to
35	approximately 1.70 nm upon ethylene glycolation, displaying swelling ability of the
36	resultant minerals. The consumption of surface OH in precursor minerals during the
37	transformation leads to a dramatic decrease of mass loss of dehydroxylation and
38	merging of the well resolved OH stretching vibrations in precursor minerals into one
39	at ca. 3667 cm ⁻¹ , which is indicative of beidellite. These results demonstrate that both
40	halloysite and kaolinite can be converted to 2:1 beidellite under hydrothermal

41	condition, and the transformation of halloysite is easier than that of kaolinite. Such
42	transformation of 1:1 clay minerals to 2:1 ones could be a new pathway for the
43	transformation of clay minerals in nature. Meanwhile, the substitution of Al ³⁺ for Si ⁴⁺
44	is found in all newly formed beidellite, suggesting the chemical composition of the
45	newly formed Si-O tetrahedral sheet is different from the one inherited from the
46	precursor clay minerals. This can well explain the formation of "polar layer" in
47	mixed-layer phyllosilicates. These findings are of high importance for better
48	understanding the transformation among clay minerals and unique structure of
49	mixed-layer phyllosilicates.

50 **Keywords**: Clay transformation, hydrothermal condition, halloysite, kaolinite,

- 51 beidellite
- 52

53

INTRODUCTION

Clay minerals are ubiquitous in the Earth's crust and clay transformations play 54 critical roles in many geologic and environmental processes (e.g., soil formation, 55 diagenesis, clay deposit formation, climate change) (Singer 1980; Christidis and 56 57 Dunham 1993; Aoudjit et al. 1995; Stern et al. 1997; Wilson 1999). Meanwhile, clay minerals are a family of natural nano-materials with unique structure and 58 chemicophysical nature (Bergaya et al. 2006). Therefore, understanding clay 59 transformation is of fundamental importance to unraveling these processes and to 60 utilizing clay mineral resources. 61

62 To date, two pathways have been identified, i.e., the transformation among 2:1 type clay minerals (e.g., illitization of smectite, glauconitization of smectite) (Odin 63 1988; Stixrude and Peacor 2002) and from 2:1 type to 1:1 type (e.g., kaolinization of 64 smectite) (Altschuler et al. 1963; Ryan and Huertas 2009). Correspondingly, two 65 mechanisms have been proposed to explain these clay transformations: (1) solid-state 66 67 transformation: conversion from one 2:1 type clay mineral to another in the solid-state 68 by rearrangement of ions within the interlayer as the main route for atom diffusion in and out of the structure (Cuadros and Altaner 1998; Srodoń 1999) or stripping off one 69 70 of the tetrahedral sheets from a 2:1 structure for the transformation from 2:1 to 1:1 71 type clay minerals (Stixrude and Peacor 2002; Dudek et al. 2006); (2) dissolution-crystallization: dissolution of the original mineral and crystallization of a 72 73 new mineral (Środoń et al. 2000). The importance of either solid-state or 74 dissolution-crystallization mechanism appears largely controlled by the fluid/rock

ratio (Rozalén et al. 2008).

76	In comparison to the two above-mentioned transformation pathways, the
77	transformation of 1:1 type clay minerals to 2:1 type ones is less commonly observed.
78	The illitization of kaolinite is mostly reported for the transformation of 1:1 to 2:1 type
79	ones, mainly occurring in diagenesis and low-grade metamorphism (Dunoyer de
80	Segonzac 1970; Sommer 1978; Dutta and Suttner 1986; Lanson et al. 1996, 2002),
81	and under hydrothermal conditions (Šucha et al. 1998; Bentabol et al. 2003, 2003b,
82	2006). Such transformation strongly depends on temperature, pressure, pH, and K^+/H^+
83	activity ratio (Huang 1993; Bauer et al. 1998; Mantovani and Becerro 2010;
84	Mantovani et al. 2010), and dissolution-crystallization was proposed to be the main
85	transformation mechanism involved (Chermak and Rimstidt 1990; Bauer et al. 1998;
86	Lanson et al. 2002; Bentabol et al. 2003a, 2006).

As is well known, the basal surface of 1:1 clay minerals is composed of a neutral 87 siloxane surface on the tetrahedral side and a hydroxyl surface on the octahedral side. 88 89 The siloxane surface is the least reactive on clay minerals while the hydroxyl surface displays high reactivity towards water molecules and other matter in various media 90 (Schoonheydt and Johnston 2013). For example, the surface hydroxyls (e.g., 91 Al-octahedral surface in kaolinite) play a critical role in silvlation of clay minerals, in 92 93 which the surface hydroxyls can condensate with alkoxyl group and/or the hydroxyls in the hydrolyzed silane (Tunney and Detellier 1996; He et al. 2013). Meanwhile, 94 95 successful syntheses of clay minerals under hydrothermal conditions suggest that 96 chemical bonding of Si-O tetrahedra in solution and octahedral sheet in solid phase is

97	feasible,	in	which	a size	match	between	tetrahedral	and	octahedral	sheets	may	be	а
----	-----------	----	-------	--------	-------	---------	-------------	-----	------------	--------	-----	----	---

98 key factor in controlling the formation of clay minerals (He et al. 2014).

99 Accordingly, we hypothesize that a transformation of 1:1 type clay minerals to 100 2:1 type ones can take place in a solid state under hydrothermal conditions. If 101 confirmed, such transformation could be a new pathway for the transformation of clay minerals in nature. Also, such transformation can well explain the formation of the 102 "polar layer" structure in mixed-layer phyllosilicates, in which the two tetrahedral 103 104 sheets in a TOT unit have different layer charges (McAtee 1958; Dudek et al. 2006). 105 This fundamental work may open up an entirely new avenue for utilizing abundant 1:1 clay minerals to synthesize swelling smectite group minerals (e.g., saponite and 106 beidellite), which are less abundant in nature but of higher economic value (Galán and 107 108 Ferrell 2013).

109 In this study, we conducted hydrothermal experiments to investigate the transformation from 1:1 clay minerals to 2:1 ones, using halloysite and kaolinite as 110 111 the starting minerals and $Na_2SiO_3 \cdot 9H_2O$ as the source of Si. Our experimental results 112 demonstrate that both halloysite and kaolinite can be transformed into 2:1 type beidellite, in which the morphology of the precursor mineral has a significant effect 113 on the transformation rate. This study provides novel insights for understanding the 114 115 clay mineral transformation as well as a possible formation mechanism of the "polar layer" structure in mixed-layer phyllosilicates. 116

117

118 EXPERIMENTAL METHODS

119 Hydrothermal experiments

Two kinds of 1:1 type dioctahedral clay minerals, kaolinite and halloysite, were 120 121 used as the starting minerals in the transformation experiments. The kaolinite sample 122 of high purity was collected from Maoming, Guangdong Province, China, and was 123 used as collected. The halloysite sample, obtained from Linfen, Shanxi Province, China, was purified by sedimentation and then dried at 120 °C. Their chemical 124 125 compositions, determined by X-ray fluorescence spectroscopy (XRF), are shown in 126 Table 1. Sodium metasilicate ($Na_2SiO_3 \cdot 9H_2O$) of analytical grade was used as the 127 source of Si.

128 The hydrothermal experiments were conducted in a stainless steel autoclave at 129 300 °C under an autogenous water pressure. A general procedure is as follows: 24 g 130 Na₂SiO₃ 9H₂O were added to 100 mL of deionized water under vigorous stirring. Then, 13.5 mL of hydrochloric acid ($wt\%=36\sim38\%$, analytical grade) was slowly 131 132 added to the obtained solution with continuous stirring, which was used to adjust the 133 pH of the solution to 8. After that, the obtained colloid was transferred to an autoclave, 134 and mixed with 4.4 g halloysite and kaolinite, respectively. The Si/Al ratio in the 135 reaction system was 2:1, close to the stoichiometric ratio for ideal beidellite. The 136 mixture was hydrothermally treated in the autoclave at 300 °C and autogenous water 137 pressure for one to two weeks. In order to exclude the excess electrolytes in the resultant products, the obtained products were washed 6 times with deionized water, 138 139 then dried at 80 °C, and ground before characterizations. The obtained products were 140 denoted as M-xw, where M = H and K, standing for halloysite and kaolinite,

141 respectively, and xw stands for the duration of the treatment time, i.e., 1w = 1 week

- 142 and 2w = 2 weeks.
- 143 Analytical techniques

144 X-ray fluorescence spectroscopy (XRF). Elemental analysis was conducted on a 145 Rigaku RIX 2000 X-ray fluorescence spectrometer (XRF). Kaolinite and halloysite samples were ground using an agate mortar to 200 mesh. Loss-on-ignition was 146 obtained by weight loss of the sample ignited in a furnace at 900 °C for 2 h and 147 148 allowed to cool in a desiccator to minimize moisture absorption. About 500 mg 149 calcined samples and 4 g Li₂B₄O₇ were mixed homogeneously, and the mixture was digested in a Pt-Au alloy crucible at 1150 °C in a high-frequency furnace. The 150 quenched bead was used for XRF measurements. The calibration line for Si/Al ratio 151 152 used in quantification was produced by bivariate regression of the Si/Al data 153 measured for 36 reference materials encompassing a wide range of silicate compositions, and analytical uncertainties are mostly between 1% and 5%. 154

155 **X-ray diffraction (XRD).** XRD patterns were collected between 1° and 65° (20) 156 at a scanning rate of 1° (20) min⁻¹ on a Bruker D8 Advance diffractometer with 157 Ni-filtered CuK α radiation (λ =0.154 nm, 40 kV and 40 mA). The oriented samples 158 were prepared by carefully pipetting the clay suspension onto a glass slide and 159 allowing it to dry at ambient temperature. Glycolated samples were prepared by 160 treating the oriented samples in a glass desiccator with ethylene glycol at 30 °C for 24 161 h.

162 Thermogravimetric analysis (TG). TG analyses were performed on a Netzsch 163 STA 409PC instrument. Approximately 15 mg ground sample was heated in a 164 corundum crucible from 30 to 1000 °C at a heating rate of 10 °C/min under a pure N_2 165 atmosphere (60 cm³/min). The differential thermogravimetric (DTG) curve was 166 derived from the TG curve.

Fourier transform infrared spectroscopy (FTIR). The FTIR spectra were obtained on Bruker Vertex-70 Fourier transform infrared spectrometer by using the KBr pressed disk technique. To obtain well-proportioned mixture, each sample was prepared with a clay/KBr ratio of approximate 1:100, and ground in an agate mortar for 10 min. Then the mixture was heated under a lamp for 3 min to minimize water adsorption before FTIR measurements. The spectra were collected over the range of 4000 - 400 cm⁻¹ with 64 scans and a resolution of 4 cm⁻¹.

High resolution transmission electron microscopy (HRTEM). HRTEM images were collected on a JEOL 2010 high resolution transmission electron microscope operated at an accelerating voltage of 200 kV. Specimens were prepared by dispersing the samples in ethanol and ultrasonically treating them for 5 minutes. A drop of the resultant suspension was placed on a porous carbon film supported by a copper grid, after which the ethanol was evaporated.

Magic-angle-spinning nuclear magnetic resonance spectroscopy (MAS
 NMR). ²⁷Al and ²⁹Si MAS NMR experiments were performed on Bruker AVANCE
 III 600 spectrometer at resonance frequencies of 156.4 and 119.2 MHz, respectively.
 ²⁹Si MAS NMR spectra with high-power proton decoupling were recorded on a 4 mm

184	probe with a spinning rate of 12 kHz, a $\pi/4$ pulse length of 2.6 μ s, and a recycle delay
185	of 80 s. The chemical shifts of ²⁹ Si were referenced to tetramethylsilane (TMS). A 4
186	mm HX double-resonance MAS probe was used to measure ²⁷ Al MAS NMR at a
187	sample spinning rate of 14 kHz. The spectra were recorded by a small-flip angle
188	technique with a pulse length of 0.5 μ s (< $\pi/12$) and a 1s recycle delay. The chemical
189	shift of ²⁷ Al was referenced to 1 M aqueous Al(NO ₃) ₃ .

- 190
- 191 **RESULTS AND DISCUSSION**

192 Mineralogical characteristics of hydrothermal products

193 **XRD patterns**

194 Both the precursor halloysite and kaolinite display characteristic (001) reflection 195 at 0.72 and 0.71 nm, respectively (Fig. 1). After one week of hydrothermal treatment, the characteristic reflection of halloysite at 0.72 nm disappears; while a broad 196 reflection occurs at approximately 1.24 nm (Fig. 1a). Its intensity increases 197 198 significantly in the XRD patterns of oriented samples (Fig. 1b). This basal reflection increases to 1.70 nm upon ethylene glycolation (Fig. 1c), suggesting the formation of 199 swelling clay minerals with a 2:1 structure (Suquet et al 1975). After two weeks of 200 treatment, the intensity of the reflection at ca.1.24 nm is further enhanced (Fig. 1a), 201 202 reflecting an increase of crystallinity as well as the layer stacking order of the newly formed smectite (He et al. 2014). As one of the starting materials is Na₂SiO₃ · 9H₂O, 203 the resultant smectite may have Na^+ as its interlayer cation, consistent with the d_{001} of 204 1.24 nm. To reveal the layer thickness of the dehydrated smectite in the products, the 205

206	resultant clay mineral was heated at 450 °C for 1.5 h. A collapse of the interlayer
207	space was observed after heating with a decrease of the basal spacing from 1.24
208	(H-2w) to 0.97 nm (Fig. 2a). This basal spacing of 0.97 nm is identical to that of
209	dehydrated Na-smectite reported in literature (Brindley and Sempels 1977; Ferrage et
210	al. 2007).

Similar mineral transformation also takes place for kaolinite during hydrothermal 211 treatment. A new reflection occurs at 1.26 nm, accompanied by a dramatic decrease of 212 the basal reflection intensity of kaolinite at 0.71 nm (Figs. 1d-1f). This reflection 213 214 increases to 1.68 nm upon ethylene glycolation, corresponding to the swelling ability 215 of the resultant smectite. After heating the hydrothermal products at 450 °C for 1.5 h, the basal spacing decreases from 1.26 (K-2w) to 0.97 nm (Fig. 2b), identical to that of 216 dehydrated Na-smectite (Brindley and Sempels 1977; Ferrage et al. 2007). However, 217 a weak basal reflection of kaolinite at 0.71 nm is still present in the XRD patterns of 218 the hydrothermal products after one and two weeks. This suggests that kaolinite is 219 220 more difficult to be transformed into 2:1 type clay minerals than halloysite and the 221 morphology of the precursor clay minerals may have an important effect on the transformation rate. 222

223 HRTEM observation

HRTEM observation can provide direct evidences, including changes of layer height and morphology, to reveal the conversion of halloysite and kaolinite to 2:1 type clay minerals. The original halloysite and kaolinite display typical tubular (Fig. 3a) and hexagonal sheet morphology (Fig. 3e) (Alexander et al 1943; Bates et al. 1950),

respectively. However, after hydrothermal treatment, clay layers with a thickness of 228 1.2 - 1.4 nm were observed in all hydrothermal products, and the Si/Al ratio 229 230 determined by EDS analysis is approximately 2:1, close to that of beidellite. In the 231 case of halloysite, HRTEM images revealed that the straight tubes of the original 232 halloysite disappeared after hydrothermal treatment. Clay layers with a thickness of 1.2 - 1.3 nm formed along the edges of halloysite tubes where the original halloysite 233 234 tubes were split apart (Figs. 3b and 3c). Figure 3c clearly shows that the newly formed beidellite can roughly keep its original tubular morphology in the upper part of the 235 236 tube but is obviously curved, whereas the lower part of the tube was split into two 237 parts. Our measurements show that all these neoformed clay layers have an approximately layer thickness of 1.2 nm, demonstrating that halloysite has been 238 239 successfully transformed into beidellite.

In order to reveal the transformation process of halloysite, HRTEM observation 240 was also conducted on the product of halloysite after 3 days of hydrothermal 241 242 treatment. The images clearly display mixed layer halloysite-smectite, in which 243 halloysite and the neoformed smectite have a layer thickness of 0.7 and 1.3 nm (Figs. 4a and 4c), respectively. However, the halloysite-smectite layer sequences are 244 245 disordered. More importantly, in a certain layer, the thickness of various parts are obviously different. That is to say, the layer thickness of parts increases to 246 approximately 1.3 nm, attributed to the neoformed smectite, whereas the thickness of 247 other parts remains at 0.7 nm, corresponding to the precursor halloysite (Figs. 4a and 248 249 4c). These observations strongly suggest that the transformation takes place via a

solid-state conversion.

HRTEM images of kaolinite and its hydrothermal products (Figs. 3e-3g) clearly 251 252 display the transformation process from kaolinite to beidellite. After hydrothermal 253 treatment, the edges of kaolinite particles become curved, which are composed of 254 layers with a height of approximately 1.2 nm, whereas the central part of kaolinite 255 particle remains unchanged with a flat morphology (Fig. 3f). With an increase of the 256 transformation extent, the whole kaolinite particle was transformed into beidellite accompanied with exfoliation (Fig. 3g). The Si/Al ratio determined by EDS analysis 257 258 (e.g., the atomic Si/Al ratio for Area A in Fig. 3g is 2.3:1.) is close to that of ideal 259 beidellite. Here, HRTEM images show convincible evidences for the successful 260 transformation from halloysite and kaolinite to beidellite, in which the transformation 261 starts from the edges of precursor minerals.

262 Thermal Analysis

In 1:1 type clay minerals, the primitive unit cell contains three inner-surface hydroxyls and one inner hydroxyl inside the layer. If the 1:1 type clay minerals can be converted to 2:1 type ones, two-thirds of inner-surface hydroxyls should be replaced by tetrahedral apical oxygen atoms. This may lead to a dramatic decrease of mass loss, corresponding to dehydroxylation. Theoretically, the mass loss of dehydroxylation for kaolinite and halloysite without interlayer water is approximately 14% while that for beidellite is 5% (Malek et al. 1997).

TG curves of halloysite and kaolinite used show that the mass loss of dehydroxylation is 14.4 and 14.1% (Table 2), respectively, which takes place at

272 around 510 and 528 °C (Fig. 5). Meanwhile, a small amount of mass loss, attributed to 273 adsorbed water in halloysite and kaolinite, was also recorded by TG analyses (Table 2). After hydrothermal treatment with Na₂SiO₃·9H₂O, the mass loss of 274 dehydroxylation prominently decreases to 3.4% for H-1w, 3.7% for H-2w, 5.5% for 275 276 K-1w and 5.3% for K-2w, respectively. However, our contrast experiments 277 demonstrate that hydrothermal treatment under identical conditions but without Na₂SiO₃ 9H₂O could lead to a slight decrease of the mass loss of dehydroxylation 278 (Figs. 5b and 5f), but it is much less than the prominent decrease as observed in the 279 hydrothermal products treated with Na₂SiO₃ 9H₂O (Table 2). This implies a 280 281 successful transformation of 1:1 type clay minerals to 2:1 type ones, in which 282 inner-surface hydroxyls in precursor minerals were consumed and resulted in a 283 dramatic mass loss decrease of dehydroxylation for the resultant beidellite. Due to the poor crystallinity, the dehydroxylation temperature of the newly formed beidellite 284 occurs at approximately 480 and 510 °C (Fig. 5), respectively, obviously lower than 285 that of the precursor halloysite and kaolinite. Meanwhile, a prominent mass loss at 286 287 low temperature range (room temperature to ca. 300 °C) (Table 2), corresponding to 288 the losses of the adsorbed water and coordinated water associated with the interlayer cations in neoformed beidellite, was recorded in TG curves of the hydrothermal 289 products (Figs. 5c, 5d, 5g and 5h). It is noteworthy that, since 7Å-halloysite was used 290 in the hydrothermal experiments, the loss of interlayer water of halloysite does not 291 292 contribute at this temperature range. The prominent increase of mass loss at this low 293 temperature range should be attributed to the coordinated water associated with the

interlayer Na⁺ in the newly formed beidellite, reflecting the successful transformation
of halloysite and kaolinite into beidellite.

296 FTIR spectra

Provided that 1:1 type clay minerals can transform into 2:1 type ones in the solid 297 298 state, a critical step is the attachment of a Si-O tetrahedral sheet to the 1:1 layer of precursor mineral. In this procedure, condensation between the surface OH of the 299 precursor mineral and the silanols in Si source (e.g., individual or polymers of Si-O 300 tetrahedra with OH resulted from hydrolysis of sodium metasilicate in this study) will 301 302 take place. This will lead to consumption of surface hydroxyls in precursor minerals, 303 and subsequently, significant changes of hydroxyl stretching vibration modes. In this 304 study, FTIR spectra show a prominent decrease of both the intensity and resolution of the structural hydroxyl stretching vibrations at 3600 - 3700 cm⁻¹ with an extension of 305 hydrothermal reaction duration (Fig. 6), indicating consumption of surface hydroxyls 306 during the transformation. For instance, the original halloysite displays two 307 308 well-resolved stretching vibration bands at 3622 and 3697 cm⁻¹ (Fig. 6a), 309 corresponding to inner OH and inner-surface OH (Kloprogge and Frost 2000; Madejova and Komadel 2001), respectively. After hydrothermal treatment, the two 310 vibrations merge to one at ca. 3667 cm⁻¹, which is indicative of the structural OH 311 stretching vibration in beidellite (Russell 1987). 312

313 Similar FTIR spectral evolution was also found for kaolinite (Figs. 6d-6f) before 314 and after hydrothermal treatments. Four well resolved OH stretching vibrations at 315 3695 (strong), 3668 (weak), 3654 (weak) and 3621 (strong) cm⁻¹, were recorded, of

316	which the former three vibrations correspond to inner-surface OH and the one at 3621
317	cm ⁻¹ is attributed to inner OH (Madejova and Komadel 2001). After one week's
318	treatment, the FTIR spectrum of K-1w displays only three OH stretching vibrations at
319	3696, 3650 and 3621 cm ⁻¹ , respectively, with dramatic decreases in intensity and
320	resolution. Simultaneously, the vibration at 914 cm ⁻¹ , due to the bending vibration of
321	inner hydroxyl of kaolinite (Madejova and Komadel 2001), is still visible. This
322	reflects the presence of kaolinite remnant in the hydrothermal product as revealed by
323	both XRD patterns and HRTEM images, i.e., the products are composed of kaolinite
324	remnant and newly formed beidellite. With an extension of hydrothermal treatment
325	duration, the three stretching vibrations of inner surface OH merge to one at
326	approximately 3650 cm ⁻¹ , indicative of the hydroxyl stretching vibration in beidellite
327	(Russell 1987), and the intensity of inner OH stretching vibration at 3620 cm ⁻¹
328	significantly decreases but is still distinguishable. This strongly suggests that the
329	transformation of kaolinite into beidellite is more difficult than halloysite, consistent
330	with the conclusion made from the XRD patterns and HRTEM images. Here, all the
331	characterization results suggested the successful transformation of halloysite and
332	kaolinite into beidellite under hydrothermal condition.

333 MAS NMR spectra

In ²⁷Al MAS NMR spectra of halloysite (Fig. 7a) and kaolinite (Fig. 7b), only one signal at ca. 6.8 ppm was recorded, corresponding to 6-coordinated Al (Al(VI)) in the octahedral sheets (He et al. 2003). However, two 4-coordinated Al (Al(IV)) signals at ca. 71 and 55 ppm were recorded in ²⁷Al MAS NMR spectra of the

338	hydrothermal products, in addition to the dominant signal of Al(VI) at ca. 6 ppm. The
339	Al(IV) signal at ca. 71 ppm is due to the substitution of Al^{3+} for Si^{4+} in tetrahedral
340	sheets while the one at ca. 55 ppm corresponds to Al in the three-dimensional silica
341	framework (Breen et al. 1995), where the latter was formed by polymerization of
342	metasilicate. The assignments of the Al(IV) signals were further evidenced by ²⁹ Si
343	NMR spectra. Both ²⁹ Si MAS NMR spectra of the precursor halloysite and kaolinite
344	display a single signal at approximately -91 ppm (Figs. 7c and 7d), corresponding to
345	Q ³ (0Al) (Rocha and Klinowski 1990; He et al. 2003). However, in ²⁹ Si spectra of the
346	hydrothermal products, two poorly resolved $Q^3(0Al)$ and $Q^3(1Al)$ signals occur at -90
347	\sim -92 and ca87 ppm, respectively, corresponding to the newly formed beidellite,
348	while a broad Q^4 signal was recorded at ca106 ppm (Figs. 7c and 7d), attributed to
349	three-dimensional silica (Altaner et al. 1988; Stucki 1996). The occurrence of two
350	different Al(IV) signals, $Q^{3}(0Al)$ and $Q^{3}(1Al)$, suggests that the chemical composition
351	of the newly formed Si-O tetrahedral sheet is different from the one inherited from the
352	precursor clay minerals. In other words, the inherited Si-O tetrahedral sheet is
353	identical to that in halloysite and kaolinite without isomorphous substitution,
354	corresponding to $Q^{3}(0AI)$; while the newly formed Si-O tetrahedral sheet contains the
355	substitution of Al^{3+} for Si^{4+} , corresponding to $Q^{3}(1Al)$. This leads to coexistence of
356	the two tetrahedral sheets with different charge and chemical composition in a TOT
357	unit. Our study demonstrates that the substitution of Al^{3+} for Si^{4+} in the tetrahedral
358	sheets is not only beneficial for the formation of smectite minerals, which can
359	improve the size matching between octahedral and tetrahedral sheets (He et al. 2014),

360	but also develops the layer charge required to form smectite minerals under
361	hydrothermal conditions. More importantly, such transformation from 1:1 to 2: 1 layer
362	type by the mechanism described above may explain the origin of polar layer structure
363	in phyllosilicates. The newly formed tetrahedral sheet is rich in the substitution of
364	Al ³⁺ for Si ⁴⁺ , resulting in higher layer charge than the original one which is inherited
365	from the precursor mineral and poor in isomorphous substitution. Thus, layer charge
366	for the two tetrahedral sheets in the same TOT unit is different. Consequently, polar
367	layer is formed in phyllosilicates (Sudo et al. 1962; Cuadros and Linares 1995).

368 Transformation mechanism

369 To elucidate the transformation mechanism, dissolution experiments of halloysite and kaolinite were conducted under identical conditions as hydrothermal 370 transformation experiments but without adding Na2SiO3.9H2O. The identical XRD 371 372 patterns and FTIR spectra of halloysite and kaolinite before and after hydrothermal treatment without Na₂SiO₃·9H₂O (not shown) suggest that these precursor minerals 373 374 are relatively stable in the absence of Si and Na. It is noteworthy that TG analyses of halloysite and kaolinite samples after dissolution experiment display a slight decrease 375 of mass loss corresponding to dehydroxylation (Figs. 5b and 5f, and Table 2), in 376 comparison to that of the precursor halloysite and kaolinite. This should be attributed 377 378 to the consumption of surface hydroxyls, resulted from the reaction between surface hydroxyls and OH⁻ in the mildly alkaline solution. Such surface hydroxyl 379 380 consumption can well explain the decreased mass loss of dehydroxylation for the newly formed beidellite from halloysite (Table 2), in comparison to the theoretical 381

value of beidellite (approximately 5%). That is to say, more than two-thirds of surface 382 hydroxyls in halloysite are consumed during the transformation, through the 383 384 condensation between inner-surface hydroxyls and hydrolyzed metasilicate, and the 385 reaction between surface hydroxyls and OH⁻ in the mildly alkaline solution. 386 Meanwhile, HRTEM observations show that the surfaces of both hydrothermally treated halloysite and kaolinite (without Na₂SiO₃·9H₂O) are slightly obscure (Figs. 3d 387 and 3h) when compared with that before hydrothermal treatment (Figs. 3a and 3e). 388 This implies the occurrence of limited dissolution, mainly on outer surfaces and 389 390 broken edge sites (Ramos et al. 2014), despite our measurements show that the 391 concentration of the dissolved Al in the supernatant solution is as low as 1-2 ppb. This was also evidenced by ²⁷Al MAS NMR spectra of the hydrothermal products. In the 392 393 reaction systems, halloysite or kaolinite is the only phase containing Al, which occupy 394 the octahedral sites in mineral structure. The occurrence of Al in the tetrahedral sheet of the newly formed smectite and amorphous silica in the hydrothermal products 395 396 strongly suggests limited dissolution in the transformation process. However, such 397 limited dissolution is beneficial for the transformation and development of the layer charge in the resultant smectite. Our recent study (He et al. 2014) demonstrates that 398 the substitution of Al^{3+} for Si^{4+} in the tetrahedral sheets is beneficial for the formation 399 of smectite minerals under hydrothermal condition, which may improve the size 400 matching between octahedral and tetrahedral sheets. 401

In this study, the HRTEM images of kaolinite, halloysite and their hydrothermalproducts provide clear evidences for the transformation procedure. The precursor

404	kaolinite displays typically hexagonal sheet morphology (Fig. 3e). After hydrothermal
405	treatment, part of kaolinite particle edges obviously becomes curved (Fig. 3f), which
406	is composed of layers with a thickness of approximately 1.2 nm and an atomic ratio of
407	Si/Al close to that of beidellite. However, other parts of the kaolinite particle remain a
408	flat morphology as that of the precursor kaolinite. This implies no transformation in
409	these corresponding parts. EDS analyses of these unreacted parts show a higher Si/Al
410	ratio (not shown) in comparison to the theoretical value of kaolinite. This should be
411	attributed to the precipitation of amorphous SiO ₂ (polymerized metasilicate) on the
412	mineral surface as indicated by XRD patterns and ²⁹ Si MAS NMR spectra of the
413	hydrothermal products. With an extension of reaction time, very few precursor
414	kaolinite particles can be found in the hydrothermal products. Instead, curved and
415	exfoliated layers with a thickness of 1.1 - 1.4 nm and similar chemical composition as
416	that of beidellite can be observed extensively. The ethylene glycolation experiments
417	demonstrate that these resulting minerals have excellent swelling ability.
418	In the case of halloysite, the HRTEM images of the products of halloysite after 3
419	days of hydrothermal treatment clearly display mixed-layer structure with disordered
420	stacking of halloysite and smectite layers (Figs. 4a and 4c). Our observation is very

similar to that for kaolinization of smectite reported by Amouric and Olives (1996),
but in reverse order. This implies that the transformation between kaolinite and
smectite is reversible and controlled by physicochemical conditions of the reaction

424 system.

425

The obtained results illuminate the successful transformation of kaolinite and

426	halloysite into beidellite, which starts from the edges of precursor minerals (Fig. 8). In
427	the transformation process, individual or polymers of Si-O tetrahedra may act as
428	'wedges' to intercalate into the interlayer space. Then they could attach to the
429	octahedral sheet of 1:1 clay minerals via condensation between the intercalated Si-O
430	tetrahedra and inner-surface hydroxyls of precursor clay minerals (He et al. 2014).
431	This condensation reaction was evidenced by both the dramatic mass loss decrease of
432	dehydroxylation in the resultant products (Fig. 5) and the evolution of the OH
433	stretching vibrations at 3600 - 3700 cm ⁻¹ (Fig. 6). Due to the intercalation of Si-O
434	tetrahedra, exfoliation may take place during the transformation as revealed by
435	HRTEM images. Depending on the orientation of the re-assembly of individual 2:1
436	layers, different structures may form (Fig. 8).

- 437
- 438

IMPLICATIONS

439 Our results demonstrate a transformation mechanism from 1:1 type clay minerals
440 to 2:1 type ones in solid state under hydrothermal condition, which might be a new
441 pathway for the transformation of clay minerals in nature.

Both ²⁷Al and ²⁹Si MAS NMR spectra of the hydrothermal treatment products can reveal the occurrence of the substitution of Al^{3+} for Si⁴⁺ in the newly formed Si-O tetrahedral sheets of the resultant beidellite. These results imply that the substitution of Al^{3+} for Si⁴⁺ is critical for the transformation reaction, and may improve the size matching between the octahedral sheet of the precursor mineral and the newly formed tetrahedral sheet (He et al. 2014). But such substitution results in chemical

composition and layer charge differences between the original and the newly formed 448 tetrahedral sheets. Such a transformation mechanism can well explain the "polar layer" 449 450 structure in mixed-layer phyllosilicates, i.e., the two tetrahedral sheets across the octahedral sheet have different chemical compositions and layer charges. 451 452 Our results also illuminate that a transformation of 1:1 type clay minerals to 2:1 453 type ones is feasible under hydrothermal condition with mildly alkaline pH and enrichment of Si. From the point of energy, breaking a chemical bond (e.g., Si-O-Si in 454 tetrahedral sheet and Si-O-Al at the crystal edge) (Dudek et al. 2006; Rozalén et al. 455 456 2008) needs high energy, while condensation between Si-O tetrahedra and surface 457 hydroxyls of precursor clay minerals can decrease the energy of reaction system. That is to say, a transformation of 1:1 to 2:1 type clay minerals (we call it "smectization of 458 459 1:1 type clay minerals".) is more feasible than that of 2:1 to 1:1 type clay (e.g., kaolinization of smectite). Hence, our findings provide new-sight to understand the 460 formation mechanism of 2:1 type clay minerals and the genesis of clay deposits such 461 462 as bentonite. 463

- 464

ACKNOWLEDGEMENTS

This work was financially supported by National Natural Science Foundation of 465 China (Grant Nos. 41530313, 41372048), CAS Key Research Program of Frontier 466 Sciences (Grant No. QYZDJ-SSW-DQC023-1) and the CAS/SAFEA International 467 468 Partnership Program for Creative Research Teams (Grant No. 20140491534). 469

470 **REFERENCES CITES** Alexander, L.T., Faust, G.T., and Hendricks, S.B. (1943) Relationship of the clay 471 minerals halloysite and endellite. American Mineralogist, 28, 1-18. 472 Altaner, S.P., Weiss, C.A., and Kirkpatrick, R.J. (1988) Evidence from ²⁹Si NMR for 473 the structure of mixed-layer illite/smectite clay minerals. Nature, 331, 474 699-702. 475 Altschuler, Z.S., Dwornik, E.J., and Kramer, H. (1963) Transformation of 476 montmorillonite to kaolinite during weathering. Science, 141, 148-152. 477 Aoudjit, H., Robert, M., Elsass, F., and Curmi, P. (1995) Detailed study of smectite 478 479 genesis in granitic saprolites by analytical electron microscopy. Clay Minerals, 30, 135-148. 480 Bates, T.F., Hildebrand, F.A., and Swineford, A. (1950) Morphology and structure of 481 endellite and halloysite. American Mineralogist, 35, 463-484. 482 Bauer, A., Velde, B., and Berger, G. (1998) Kaolinite transformation in high molar 483 484 KOH solutions. Applied Geochemistry, 13, 619-629. 485 Bentabol, M., Cruz, M.D.R., Huertas, F.J., and Linares, J. (2003) Hydrothermal transformation of kaolinite to illite at 200 and 300 °C. Clay Minerals, 38, 486 161-172. 487 (2003) Characterization of the expandable clays formed from kaolinite at 200 488 ^oC. Clay minerals, 38, 445-458. 489 - (2006) Chemical and structural variability of illitic phases formed from 490 kaolinite in hydrothermal conditions. Applied Clay Science, 32, 111-124. 491

- 492 Bergaya, F., Theng, B.K.G., and Lagaly, G. (2006) Clays in industry. In F. Bergaya,
- 493 B.K.G. Theng and G. Lagaly, Eds., Handbook of Clay Science, p. 499-622.
- 494 Elsevier, Kidlington, Oxford.
- Breen, C., Madejová, J., and Komadel, P. (1995) Correlation of catalytic activity with
- infra-red, ²⁹Si MAS NMR and acidity data for HCl-treated fine fractions of
 montmorillonites. Applied Clay Science, 10, 219-230.
- 498 Chermak, J.A., and Rimstidt, J.D. (1990) The hydrothermal transformation rate of
- 499 kaolinite to muscovite/illite. Geochimica et Cosmochimica Acta, 54,
 500 2979-2990.
- 501 Christidis, G., and Dunham, A.C. (1993) Compositional variation in smectites: Part I.
- Alteration of intermediate volcanic rocks. Acase study from Milos Island,
 Greece. Clay Minerals, 28, 255-274.
- 504 Cuadros, J., and Linares, J. (1995) Some evidence supporting the existence of polar
- 505 layers in mixed-layer illite/smectite. Clays and Clay minerals, 43, 467-473.
- 506 Cuadros, J., and Altaner, S.P. (1998) Characterization of mixed-layer illite-smectite
- 507from bentonites using microscopic, chemical, and X-ray methods: Constraints508on the smectite-to-illite transformation mechanism. American Mineralogist, 83,
- 509 762-774.
- 510 Dudek, T., Cuadros, J., and Fiore, S. (2006) Interstratified kaolinite-smectite: Nature
- 511 of the layers and mechanism of smectite kaolinization. American Mineralogist,
- 512 91, 159-170.
- 513 Dunoyer de Segonzac, G. (1970) The transformation of clay minerals during

514 diagenesis and low-grade metamorphism: a review. Sedimentology, 15,
515 281-346.

Dutta, P.K., and Suttner, L.J. (1986) Alluvial sandstone composition and paleoclimate, 516 517 II. Authigenic mineralogy. Journal of Sedimentary Petrology, 56, 346-358. 518 Ferrage, E., Lanson, B., Sakharov, B.A., Geoffroy, N. Jacquot, E., and Drits, V.A. (2007) Investigation of dioctahedral smectitie hydration properties by 519 modeling of X-ray diffracion profiles: Influence of layer charge and charge 520 521 location. American mineralogist, 92, 1731-1743. 522 Galán, E., and Ferrell, R.E. (2013) Genesis of clay minerals. In F. Bergaya and G. 523 Lagaly, Eds., Handbook of Clay Science, p. 83-126. Elsevier, Kidlington, Oxford. 524 He, H.P., Guo, J.G., Zhu, J.X., and Hu, C. (2003) ²⁹Si and ²⁷Al MAS NMR study of 525 the thermal transformations of kaolinite from North China. Clay Minerals, 38, 526 551-559. 527 528 He, H.P., Tao, Q., Zhu, J.X., Yuan, P., Shen, W., and Yang, S.Q. (2013) Silylation of clay mineral surfaces. Applied Clay Science, 71, 15-20. 529 He, H.P., Li, T., Tao, Q., Chen, T.H., Zhang, D., Zhu, J.X., Yuan, P., and Zhu, R.L. 530 531 (2014) Aluminum ion occupancy in the structure of synthetic saponites: Effect on crystallinity. American Mineralogist, 99, 109-116. 532 Huang, W.-L. (1993) The formation of illitic clays from kaolinite in KOH solution 533 534 from 225 °C to 350 °C. Clays and Clay minerals, 41, 645-654. 535 Kloprogge, J.T., and Frost, R.L. (2000) The effect of synthesis temperature on the

536 FT-Raman and FT-IR spectra of saponites. Vibrational Spectroscopy, 23,
537 119-127.

Lanson, B., Beaufort, D., Berger, G., Baradat, J., and Lacharpagen, J.-C. (1996) 538 539 Illitization of diagenetic kaolinite-to-dickite conversion series: Late-stage diagenesis of the Lower Permian Potliegend sandstone reservoir, offshore of 540 the Netherlands. Journal of Sedimentary Researh, Section A: Sedimentary 541 Petrology and Processes, 66, 501-518. 542 Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabère, A., and Meunier, A. 543 544 (2002) Authigenic kaolin and illitic minerals during burial diagenesis of 545 sandstones: a review. Clay Minerals, 37, 1-22. Madejova, J., and Komadel, P. (2001) Baseline studies of the clay minerals society 546 source clays: infrared methods. Clays and clay minerals, 49, 410-432. 547 Malek, Z., Balek, V., Garfinke-Shweky, D., and Yariv, S. (1997) The study of the 548 dehydration and dehydroxylation of smectites by emanation thermal analysis. 549 Journal of Thermal Analysis, 48, 83-92. 550 Mantovani, M., Escudero, A., and Becerro, A.I. (2010) Effect of pressure on kaolinite 551 illitization. Applied Clay Science, 50, 342-347. 552 Mantovani, M., and Becerro, A.I. (2010) Illitization of kaolinite: The effect of 553 554 pressure on the reaction rate. Clays and Clay Minerals, 58, 766-771. McAtee, J.L. (1958) Heterogeneity in montmorillonite. Clays and Clay Minerals, 5, 555 279-288. 556 Odin, G.S. (1988) Glaucony from the Gulf of Guinea. In G.S. Odin, Ed., Green 557

558	Marine Clays: Oolitic Ironstone Facies, Verdine Facies, Glaucony Facies and
559	Celadonite-Bearing Facies - A Comparative Study, p. 225-248, Elsevier,
560	Amsterdam.
561	Ramos, M.E., Garcia-Palma, S., Rozalen, M., Johnston, C.T., and Huertas, F.J. (2014)
562	Kinetics of montmorillonite dissolution: An experimental study of the effect of
563	oxalate. Chemical Geology, 363, 283-292.
564	Rocha, J., and Klinowski, J. (1990) ²⁹ Si and ²⁷ Al magic-angle-spinning NMR studies
565	of the thermal transformation of kaolinite. Physics and Chemistry of Minerals,
566	17, 179-186.
567	Rozalén, M.L., Huertas, F.J., Brady, P.V., Cama, J., García-Palma, S., and Linares, J.
568	(2008) Experimental study of the effect of pH on the kinetics of
569	montmorillonite dissolution at 25 °C. Geochimica et Cosmochimica Acta, 72,
570	4224-4253.
571	Russell, J.D. (1987) Infrared methods. In M.J. Wilson, Ed., A Hand book of
572	Determinative Methods in Clay Mineralogy, p. 133-173. Blackie, Glasgow
573	and London.
574	Ryan, P.C, and Huertas, F.J. (2009) The temporal evolution of pedogenic Fe-smectite
575	to Fe-kaolin via interstratified kaolin-smectite in a moist tropical soil
576	chronosequence. Geoderma, 151, 1-15.
577	Schoonheydt, R.A., and Johnston, C.T. (2013) Surface and interface chemistry of clay
578	minerals. In F. Bergaya and G. Lagaly, Eds., Handbook of Clay Science, p.
579	142-148. Elsevier, Kidlington, Oxford.

- 580 Singer, A. (1980) The paleoclimatic interpretation of clay minerals in soils and
- 581 weathering profiles. Earth-Science Reviews, 15, 303-326.
- 582 Sommer, F. (1978) Diagenesis of Jurassic sandstones in the Viking Graben. Journal of
- the Geological Society, 135, 63-67.
- 584 Środoń, J. (1999) Nature of mixed-layer clays and mechanisms of their formation and

alteration. Annual Review of Earth and Planetary Sciences, 27, 19-53.

- 586 Środoń, J., Eberl, D.D., and Drits, V.A. (2000) Evolution of fundamental-particle size
- during illitization of smectite and implications for reaction mechanism. Claysand Clay Minerals, 48, 446-458.
- 589 Stern, L.A., Chamberlain, C.P., Reynolds, R.C., and Johnson, D.G. (1997) Oxygen
- isotope evidence of climate change from pedogenic clay minerals in theHimalayan molasse. Geochimica et Cosmochimica Acta, 61, 731-744.
- 592 Stixrude, L., and Peacor, D.R. (2002) First-principles study of illite-smectite and 593 implications for clay mineral systems. Nature, 420, 165-168.
- Stucki, J.W. (1996) Dissolution of hectorite in inorganic acids. Clays and Clay
 Minerals, 44, 228-236.
- Šucha, V., Elsass, F., Eberl, D.D., Kuchta, L., Madejová, J., Gates, W.P., and
 Komadel, P. (1998) Hydrothermal synthesis of ammonium illite. American
 Mineralogist, 83, 58-67.
- 599 Suquet, H., de la Calle, C., and Pezerat, H. (1975) Swelling and structural 600 organization of saponite. Clays and Clay Minerals, 23, 1-9.
- 601 Tunney, J.J., and Detellier, C. (1996) Chemically modified kaolinite. Grafting of

- 602 methoxy groups on the interlamellar aluminol surface of kaolinite. Journal of
- 603 Materials Chemistry, 6, 1679-1685.
- 604 Wilson, M.J. (1999) The origin and formation of clay minerals in soils: past, present
- and future perspectives. Clay Minerals, 34, 7-25.

607 FIGURE CAPTIONS

608	Figure 1. XRD patterns of halloysite, kaolinite and their hydrothermal products with
609	Na ₂ SiO ₃ ·9H ₂ O. (a) Randomly oriented halloysite (H) and its hydrothermal products
610	(H-1w and H-2w). (b) Oriented halloysite (H-O) and its hydrothermal products
611	(H-1w-O and H-2w-O). (c) Glycolated halloysite (H-G) and its hydrothermal products
612	(H-1w-G and H-2w-G). (d-f) Randomly oriented, oriented, and glycolated samples of
613	kaolinite (K) and its hydrothermal products. (O = oriented sample, G = glycolated
614	sample)
615	

616 **Figure 2.** XRD patterns of the hydrothermal products of halloysite (a) and kaolinite (b)

and the corresponding samples heated at 450 $^{\circ}$ C for 1.5 h.

618

619 Figure 3. HRTEM images of halloysite, kaolinite and their hydrothermally treated products. (a) The original halloysite. (b,c) Hydrothermally treated products of 620 621 halloysite with Na₂SiO₃·9H₂O after one and two weeks. (d) Halloysite after two 622 weeks' dissolution experiment without $Na_2SiO_3 \cdot 9H_2O$ (H-D-2w). (e) The original kaolinite. (f) Hydrothermally treated product of kaolinite with $Na_2SiO_3 \cdot 9H_2O$ after 623 624 one week. The parts marked with square became curved, which are composed of 625 beidellite layers. (g) Hydrothermally treated product of kaolinite with $Na_2SiO_3 \cdot 9H_2O$ after two weeks, beidellite layers with a thickness of 1.2-1.4 nm were extensively 626 627 formed accompanied with exfoliation. (h) Kaolinite after two weeks' dissolution 628 experiment without Na₂SiO₃·9H₂O (K-D-2w).

629	Figure 4. HRTEM images of the products of halloysite after 3 days of hydrothermal
630	treatment. H = halloysite layer (0.7 nm thick); $S =$ smectite layer (1.3 nm thick). The
631	lateral transition $H \rightarrow S$ is indicated by arrows.
632	

Figure 5. TG and DTG curves of halloysite, kaolinite, and their hydrothermally treated products. (a,c,d) Halloysite (H) and its hydrothermal products with Na₂SiO₃·9H₂O after one week (H-1w) and two weeks (H-2w). (b) Halloysite after two weeks' dissolution experiment without Na₂SiO₃·9H₂O (H-D-2w). (e,g,h) Kaolinite (K) and its hydrothermal products with Na₂SiO₃·9H₂O after one week (K-1w) and two weeks (K-2w). (f) Kaolinite after two weeks' dissolution experiment without Na₂SiO₃·9H₂O (K-D-2w).

640

Figure 6. FTIR spectra of halloysite, kaolinite and their hydrothermal products. (a-c)
Halloysite (H), and its products after one week (H-1w) and two weeks (H-2w) of
hydrothermal treatment. (d-f) Kaolinite (K), and its products after one week (K-1w)
and two weeks (K-2w) of hydrothermal treatment.

645

Figure 7. ²⁷Al (left) and ²⁹Si (right) MAS NMR spectra of halloysite, kaolinite, and their hydrothermal products. (a,c) Halloysite (H) and the products after one week (H-1w) and two weeks (H-2w) of hydrothermal treatment. (b,d) Kaolinite (K) and the products after one week (K-1w) and two weeks (K-2w) of hydrothermal treatment.

- **Figure 8.** Schematic representation of the transformation from 1:1 type clay minerals
- to 2:1 ones. (a) The newly formed tetrahedral sheet is attached to the pre-existing 1:1
- 653 unit from the same direction. (b) The two newly formed tetrahedral sheets are
- attached from two opposite direction, forming a symmetry across the interlayer, which
- 655 is a typical mixed layer structure with "polar layers".
- 656

657

Table 1. The chemical compositions of kaolinite and halloysite

659

	Al ₂ O ₃	CaO	Fe ₂ O ₃	K ₂ O	MgO	Na ₂ O	SiO ₂	TiO ₂	H ₂ O	Total (%)
Kaolinite	36.95	0.10	0.73	0.58	0.15	0.04	46.59	0.32	13.39	98.95
Halloysite	38.21	0.47	0.06	-	-	-	44.92	-	14.95	98.61

660

662

663 **Table 2**. The mass losses of samples at different temperature ranges (wt%).

664

		dehydration	dehydroxylation		
	samples	(30 - 300 °C)	(300 - 800 °C)		
	Н	1.5	14.4		
TT . II ' 4 .	H-1w	7.0	3.4		
Halloysite	H-2w	6.7	3.7		
(H)	H-D-1w	0.9	12.1		
	H-D-2w	0.8	12.5		
	K	2.0	14.1		
T 7 1 • •/	K-1w	4.4	5.5		
Kaolinite	K-2w	3.2	5.3		
(K)	K-D-1w	1.8	13.7		
	K-D-2w	0.7	12.2		

Note: H-D-1w and H-D-2w mean that halloysite was hydrothermally treated for one week and two weeks, respectively, under identical conditions as the transformation experiment but without $Na_2SiO_3\cdot 9H_2O$. K-D-1w and K-D-2w were denoted as the same way.

Figure 1

Figure 3

Figure 4

Figure 5

Figure 8

