Revision 1:

Transformation of halloysite and kaolinite into beidellite under hydrothermal condition

Hongping He¹*, Shichao Ji¹, Qi Tao¹, Jianxi Zhu¹, Tianhu Chen², Xiaoliang Liang¹, Zhaohui Li³ and Hailiang Dong⁴

¹ Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
² School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
³ Geosciences Department, University of Wisconsin - Parkside, Kenosha, WI 53141, U.S.A.
⁴ Department of Geology, Miami University, Oxford, OH 45056, U.S.A.

* E-mail: hehp@gig.ac.cn
ABSTRACT

Understanding clay mineral transformation is of fundamental importance to unraveling geological and environmental processes, and to better understanding unique structure and property of phyllosilicates. To date, two pathways have been identified, i.e., the transformation among 2:1 type clay minerals (e.g., illitization of smectite) and from 2:1 type to 1:1 type (e.g., kaolinization of smectite). However, the transformation of 1:1 to 2:1 type is less commonly observed. In this study, hydrothermal experiments were conducted to investigate the possibility of the transformation of 1:1 type clay minerals (i.e., halloysite and kaolinite) into 2:1 ones (i.e., beidellite). The obtained products were characterized by XRD, TG, FTIR, 27Al and 29Si MAS NMR, and HRTEM. XRD patterns of the hydrothermal products display characteristic basal spacing of smectite group minerals at 1.2 - 1.3 nm with dramatic decrease/disappearance of the (001) reflection of halloysite and kaolinite. This is consistent with HRTEM observations, in which clay layers with a thickness of 1.2 - 1.4 nm are observed in all hydrothermal products and the Si/Al ratio determined by EDS analysis is close to that of beidellite. The basal spacing increases to approximately 1.70 nm upon ethylene glycolation, displaying swelling ability of the resultant minerals. The consumption of surface OH in precursor minerals during the transformation leads to a dramatic decrease of mass loss of dehydroxylation and merging of the well resolved OH stretching vibrations in precursor minerals into one at ca. 3667 cm$^{-1}$, which is indicative of beidellite. These results demonstrate that both halloysite and kaolinite can be converted to 2:1 beidellite under hydrothermal
condition, and the transformation of halloysite is easier than that of kaolinite. Such transformation of 1:1 clay minerals to 2:1 ones could be a new pathway for the transformation of clay minerals in nature. Meanwhile, the substitution of Al$^{3+}$ for Si$^{4+}$ is found in all newly formed beidellite, suggesting the chemical composition of the newly formed Si-O tetrahedral sheet is different from the one inherited from the precursor clay minerals. This can well explain the formation of “polar layer” in mixed-layer phyllosilicates. These findings are of high importance for better understanding the transformation among clay minerals and unique structure of mixed-layer phyllosilicates.

Keywords: Clay transformation, hydrothermal condition, halloysite, kaolinite, beidellite
INTRODUCTION

Clay minerals are ubiquitous in the Earth’s crust and clay transformations play critical roles in many geologic and environmental processes (e.g., soil formation, diagenesis, clay deposit formation, climate change) (Singer 1980; Christidis and Dunham 1993; Aoudjit et al. 1995; Stern et al. 1997; Wilson 1999). Meanwhile, clay minerals are a family of natural nano-materials with unique structure and chemophysical nature (Bergaya et al. 2006). Therefore, understanding clay transformation is of fundamental importance to unraveling these processes and to utilizing clay mineral resources.

To date, two pathways have been identified, i.e., the transformation among 2:1 type clay minerals (e.g., illitization of smectite, glauconitization of smectite) (Odin 1988; Stixrude and Peacor 2002) and from 2:1 type to 1:1 type (e.g., kaolinization of smectite) (Altschuler et al. 1963; Ryan and Huertas 2009). Correspondingly, two mechanisms have been proposed to explain these clay transformations: (1) solid-state transformation: conversion from one 2:1 type clay mineral to another in the solid-state by rearrangement of ions within the interlayer as the main route for atom diffusion in and out of the structure (Cuadros and Altaner 1998; Środoń 1999) or stripping off one of the tetrahedral sheets from a 2:1 structure for the transformation from 2:1 to 1:1 type clay minerals (Stixrude and Peacor 2002; Dudek et al. 2006); (2) dissolution-crystallization: dissolution of the original mineral and crystallization of a new mineral (Środoń et al. 2000). The importance of either solid-state or dissolution-crystallization mechanism appears largely controlled by the fluid/rock
ratio (Rozalén et al. 2008).

In comparison to the two above-mentioned transformation pathways, the transformation of 1:1 type clay minerals to 2:1 type ones is less commonly observed. The illitization of kaolinite is mostly reported for the transformation of 1:1 to 2:1 type ones, mainly occurring in diagenesis and low-grade metamorphism (Dunoyer de Segonzac 1970; Sommer 1978; Dutta and Suttner 1986; Lanson et al. 1996, 2002), and under hydrothermal conditions (Šucha et al. 1998; Bentabol et al. 2003, 2003b, 2006). Such transformation strongly depends on temperature, pressure, pH, and K⁺/H⁺ activity ratio (Huang 1993; Bauer et al. 1998; Mantovani and Becerro 2010; Mantovani et al. 2010), and dissolution-crystallization was proposed to be the main transformation mechanism involved (Chermak and Rimstidt 1990; Bauer et al. 1998; Lanson et al. 2002; Bentabol et al. 2003a, 2006).

As is well known, the basal surface of 1:1 clay minerals is composed of a neutral siloxane surface on the tetrahedral side and a hydroxyl surface on the octahedral side. The siloxane surface is the least reactive on clay minerals while the hydroxyl surface displays high reactivity towards water molecules and other matter in various media (Schoonheydt and Johnston 2013). For example, the surface hydroxyls (e.g., Al-octahedral surface in kaolinite) play a critical role in silylation of clay minerals, in which the surface hydroxyls can condensate with alkoxyl group and/or the hydroxyls in the hydrolyzed silane (Tunney and Detellier 1996; He et al. 2013). Meanwhile, successful syntheses of clay minerals under hydrothermal conditions suggest that chemical bonding of Si-O tetrahedra in solution and octahedral sheet in solid phase is
feasible, in which a size match between tetrahedral and octahedral sheets may be a key factor in controlling the formation of clay minerals (He et al. 2014).

Accordingly, we hypothesize that a transformation of 1:1 type clay minerals to 2:1 type ones can take place in a solid state under hydrothermal conditions. If confirmed, such transformation could be a new pathway for the transformation of clay minerals in nature. Also, such transformation can well explain the formation of the “polar layer” structure in mixed-layer phyllosilicates, in which the two tetrahedral sheets in a TOT unit have different layer charges (McAtee 1958; Dudek et al. 2006). This fundamental work may open up an entirely new avenue for utilizing abundant 1:1 clay minerals to synthesize swelling smectite group minerals (e.g., saponite and beidellite), which are less abundant in nature but of higher economic value (Galán and Ferrell 2013).

In this study, we conducted hydrothermal experiments to investigate the transformation from 1:1 clay minerals to 2:1 ones, using halloysite and kaolinite as the starting minerals and Na$_2$SiO$_3$$\cdot$9H$_2$O as the source of Si. Our experimental results demonstrate that both halloysite and kaolinite can be transformed into 2:1 type beidellite, in which the morphology of the precursor mineral has a significant effect on the transformation rate. This study provides novel insights for understanding the clay mineral transformation as well as a possible formation mechanism of the “polar layer” structure in mixed-layer phyllosilicates.

EXPERIMENTAL METHODS
Hydrothermal experiments

Two kinds of 1:1 type dioctahedral clay minerals, kaolinite and halloysite, were used as the starting minerals in the transformation experiments. The kaolinite sample of high purity was collected from Maoming, Guangdong Province, China, and was used as collected. The halloysite sample, obtained from Linfen, Shanxi Province, China, was purified by sedimentation and then dried at 120 °C. Their chemical compositions, determined by X-ray fluorescence spectroscopy (XRF), are shown in Table 1. Sodium metasilicate (Na$_2$SiO$_3$·9H$_2$O) of analytical grade was used as the source of Si.

The hydrothermal experiments were conducted in a stainless steel autoclave at 300 °C under an autogenous water pressure. A general procedure is as follows: 24 g Na$_2$SiO$_3$·9H$_2$O were added to 100 mL of deionized water under vigorous stirring. Then, 13.5 mL of hydrochloric acid (wt%≈36–38%, analytical grade) was slowly added to the obtained solution with continuous stirring, which was used to adjust the pH of the solution to 8. After that, the obtained colloid was transferred to an autoclave, and mixed with 4.4 g halloysite and kaolinite, respectively. The Si/Al ratio in the reaction system was 2:1, close to the stoichiometric ratio for ideal beidellite. The mixture was hydrothermally treated in the autoclave at 300 °C and autogenous water pressure for one to two weeks. In order to exclude the excess electrolytes in the resultant products, the obtained products were washed 6 times with deionized water, then dried at 80 °C, and ground before characterizations. The obtained products were denoted as M-xw, where M = H and K, standing for halloysite and kaolinite,
respectively, and xw stands for the duration of the treatment time, i.e., 1w = 1 week
and 2w = 2 weeks.

Analytical techniques

X-ray fluorescence spectroscopy (XRF). Elemental analysis was conducted on a
Rigaku RIX 2000 X-ray fluorescence spectrometer (XRF). Kaolinite and halloysite
samples were ground using an agate mortar to 200 mesh. Loss-on-ignition was
obtained by weight loss of the sample ignited in a furnace at 900 °C for 2 h and
allowed to cool in a desiccator to minimize moisture absorption. About 500 mg
calcined samples and 4 g Li$_2$B$_4$O$_7$ were mixed homogeneously, and the mixture was
digested in a Pt-Au alloy crucible at 1150 °C in a high-frequency furnace. The
quenched bead was used for XRF measurements. The calibration line for Si/Al ratio
used in quantification was produced by bivariate regression of the Si/Al data
measured for 36 reference materials encompassing a wide range of silicate
compositions, and analytical uncertainties are mostly between 1% and 5%.

X-ray diffraction (XRD). XRD patterns were collected between 1° and 65° (2θ)
at a scanning rate of 1° (2θ) min$^{-1}$ on a Bruker D8 Advance diffractometer with
Ni-filtered CuKα radiation (λ=0.154 nm, 40 kV and 40 mA). The oriented samples
were prepared by carefully pipetting the clay suspension onto a glass slide and
allowing it to dry at ambient temperature. Glycolated samples were prepared by
treating the oriented samples in a glass desiccator with ethylene glycol at 30 °C for 24
h.
Thermogravimetric analysis (TG). TG analyses were performed on a Netzsch STA 409PC instrument. Approximately 15 mg ground sample was heated in a corundum crucible from 30 to 1000 °C at a heating rate of 10 °C/min under a pure N₂ atmosphere (60 cm³/min). The differential thermogravimetric (DTG) curve was derived from the TG curve.

Fourier transform infrared spectroscopy (FTIR). The FTIR spectra were obtained on Bruker Vertex-70 Fourier transform infrared spectro meter by using the KBr pressed disk technique. To obtain well-proportioned mixture, each sample was prepared with a clay/KBr ratio of approximate 1:100, and ground in an agate mortar for 10 min. Then the mixture was heated under a lamp for 3 min to minimize water adsorption before FTIR measurements. The spectra were collected over the range of 4000 - 400 cm⁻¹ with 64 scans and a resolution of 4 cm⁻¹.

High resolution transmission electron microscopy (HRTEM). HRTEM images were collected on a JEOL 2010 high resolution transmission electron microscope operated at an accelerating voltage of 200 kV. Specimens were prepared by dispersing the samples in ethanol and ultrasonically treating them for 5 minutes. A drop of the resultant suspension was placed on a porous carbon film supported by a copper grid, after which the ethanol was evaporated.

Magic-angle-spinning nuclear magnetic resonance spectroscopy (MAS NMR). ²⁷Al and ²⁹Si MAS NMR experiments were performed on Bruker AVANCE III 600 spectrometer at resonance frequencies of 156.4 and 119.2 MHz, respectively. ²⁹Si MAS NMR spectra with high-power proton decoupling were recorded on a 4 mm
probe with a spinning rate of 12 kHz, a \(\pi/4 \) pulse length of 2.6 \(\mu \)s, and a recycle delay of 80 s. The chemical shifts of \(^{29}\text{Si}\) were referenced to tetramethylsilane (TMS). A 4 mm HX double-resonance MAS probe was used to measure \(^{27}\text{Al}\) MAS NMR at a sample spinning rate of 14 kHz. The spectra were recorded by a small-flip angle technique with a pulse length of 0.5 \(\mu \)s (< \(\pi/12 \)) and a 1 s recycle delay. The chemical shift of \(^{27}\text{Al}\) was referenced to 1 M aqueous \(\text{Al(NO}_3\text{)_3} \).

RESULTS AND DISCUSSION

Mineralogical characteristics of hydrothermal products

XRD patterns

Both the precursor halloysite and kaolinite display characteristic (001) reflection at 0.72 and 0.71 nm, respectively (Fig. 1). After one week of hydrothermal treatment, the characteristic reflection of halloysite at 0.72 nm disappears; while a broad reflection occurs at approximately 1.24 nm (Fig. 1a). Its intensity increases significantly in the XRD patterns of oriented samples (Fig. 1b). This basal reflection increases to 1.70 nm upon ethylene glycolation (Fig. 1c), suggesting the formation of swelling clay minerals with a 2:1 structure (Suquet et al. 1975). After two weeks of treatment, the intensity of the reflection at ca.1.24 nm is further enhanced (Fig. 1a), reflecting an increase of crystallinity as well as the layer stacking order of the newly formed smectite (He et al. 2014). As one of the starting materials is \(\text{Na}_2\text{SiO}_3\cdot9\text{H}_2\text{O} \), the resultant smectite may have \(\text{Na}^+ \) as its interlayer cation, consistent with the \(d_{001} \) of 1.24 nm. To reveal the layer thickness of the dehydrated smectite in the products, the
resultant clay mineral was heated at 450 °C for 1.5 h. A collapse of the interlayer space was observed after heating with a decrease of the basal spacing from 1.24 (H-2w) to 0.97 nm (Fig. 2a). This basal spacing of 0.97 nm is identical to that of dehydrated Na-smectite reported in literature (Brindley and Sempels 1977; Ferrage et al. 2007).

Similar mineral transformation also takes place for kaolinite during hydrothermal treatment. A new reflection occurs at 1.26 nm, accompanied by a dramatic decrease of the basal reflection intensity of kaolinite at 0.71 nm (Figs. 1d-1f). This reflection increases to 1.68 nm upon ethylene glycolation, corresponding to the swelling ability of the resultant smectite. After heating the hydrothermal products at 450 °C for 1.5 h, the basal spacing decreases from 1.26 (K-2w) to 0.97 nm (Fig. 2b), identical to that of dehydrated Na-smectite (Brindley and Sempels 1977; Ferrage et al. 2007). However, a weak basal reflection of kaolinite at 0.71 nm is still present in the XRD patterns of the hydrothermal products after one and two weeks. This suggests that kaolinite is more difficult to be transformed into 2:1 type clay minerals than halloysite and the morphology of the precursor clay minerals may have an important effect on the transformation rate.

HRTEM observation

HRTEM observation can provide direct evidences, including changes of layer height and morphology, to reveal the conversion of halloysite and kaolinite to 2:1 type clay minerals. The original halloysite and kaolinite display typical tubular (Fig. 3a) and hexagonal sheet morphology (Fig. 3e) (Alexander et al 1943; Bates et al. 1950),
respectively. However, after hydrothermal treatment, clay layers with a thickness of 1.2 - 1.4 nm were observed in all hydrothermal products, and the Si/Al ratio determined by EDS analysis is approximately 2:1, close to that of beidellite. In the case of halloysite, HRTEM images revealed that the straight tubes of the original halloysite disappeared after hydrothermal treatment. Clay layers with a thickness of 1.2 - 1.3 nm formed along the edges of halloysite tubes where the original halloysite tubes were split apart (Figs. 3b and 3c). Figure 3c clearly shows that the newly formed beidellite can roughly keep its original tubular morphology in the upper part of the tube but is obviously curved, whereas the lower part of the tube was split into two parts. Our measurements show that all these neoformed clay layers have an approximately layer thickness of 1.2 nm, demonstrating that halloysite has been successfully transformed into beidellite.

In order to reveal the transformation process of halloysite, HRTEM observation was also conducted on the product of halloysite after 3 days of hydrothermal treatment. The images clearly display mixed layer halloysite-smectite, in which halloysite and the neoformed smectite have a layer thickness of 0.7 and 1.3 nm (Figs. 4a and 4c), respectively. However, the halloysite-smectite layer sequences are disordered. More importantly, in a certain layer, the thickness of various parts are obviously different. That is to say, the layer thickness of parts increases to approximately 1.3 nm, attributed to the neoformed smectite, whereas the thickness of other parts remains at 0.7 nm, corresponding to the precursor halloysite (Figs. 4a and 4c). These observations strongly suggest that the transformation takes place via a
solid-state conversion.

HRTEM images of kaolinite and its hydrothermal products (Figs. 3e-3g) clearly display the transformation process from kaolinite to beidellite. After hydrothermal treatment, the edges of kaolinite particles become curved, which are composed of layers with a height of approximately 1.2 nm, whereas the central part of kaolinite particle remains unchanged with a flat morphology (Fig. 3f). With an increase of the transformation extent, the whole kaolinite particle was transformed into beidellite accompanied with exfoliation (Fig. 3g). The Si/Al ratio determined by EDS analysis (e.g., the atomic Si/Al ratio for Area A in Fig. 3g is 2.3:1.) is close to that of ideal beidellite. Here, HRTEM images show convincible evidences for the successful transformation from halloysite and kaolinite to beidellite, in which the transformation starts from the edges of precursor minerals.

Thermal Analysis

In 1:1 type clay minerals, the primitive unit cell contains three inner-surface hydroxyls and one inner hydroxyl inside the layer. If the 1:1 type clay minerals can be converted to 2:1 type ones, two-thirds of inner-surface hydroxyls should be replaced by tetrahedral apical oxygen atoms. This may lead to a dramatic decrease of mass loss, corresponding to dehydroxylation. Theoretically, the mass loss of dehydroxylation for kaolinite and halloysite without interlayer water is approximately 14% while that for beidellite is 5% (Malek et al. 1997).

TG curves of halloysite and kaolinite used show that the mass loss of dehydroxylation is 14.4 and 14.1% (Table 2), respectively, which takes place at
around 510 and 528 °C (Fig. 5). Meanwhile, a small amount of mass loss, attributed to adsorbed water in halloysite and kaolinite, was also recorded by TG analyses (Table 2). After hydrothermal treatment with Na$_2$SiO$_3$$\cdot$9H$_2$O, the mass loss of dehydroxylation prominently decreases to 3.4% for H-1w, 3.7% for H-2w, 5.5% for K-1w and 5.3% for K-2w, respectively. However, our contrast experiments demonstrate that hydrothermal treatment under identical conditions but without Na$_2$SiO$_3$$\cdot$9H$_2$O could lead to a slight decrease of the mass loss of dehydroxylation (Figs. 5b and 5f), but it is much less than the prominent decrease as observed in the hydrothermal products treated with Na$_2$SiO$_3$$\cdot$9H$_2$O (Table 2). This implies a successful transformation of 1:1 type clay minerals to 2:1 type ones, in which inner-surface hydroxyls in precursor minerals were consumed and resulted in a dramatic mass loss decrease of dehydroxylation for the resultant beidellite. Due to the poor crystallinity, the dehydroxylation temperature of the newly formed beidellite occurs at approximately 480 and 510 °C (Fig. 5), respectively, obviously lower than that of the precursor halloysite and kaolinite. Meanwhile, a prominent mass loss at low temperature range (room temperature to ca. 300 °C) (Table 2), corresponding to the losses of the adsorbed water and coordinated water associated with the interlayer cations in neoformed beidellite, was recorded in TG curves of the hydrothermal products (Figs. 5c, 5d, 5g and 5h). It is noteworthy that, since 7Å-halloysite was used in the hydrothermal experiments, the loss of interlayer water of halloysite does not contribute at this temperature range. The prominent increase of mass loss at this low temperature range should be attributed to the coordinated water associated with the
interlayer Na\(^+\) in the newly formed beidellite, reflecting the successful transformation of halloysite and kaolinite into beidellite.

FTIR spectra

Provided that 1:1 type clay minerals can transform into 2:1 type ones in the solid state, a critical step is the attachment of a Si-O tetrahedral sheet to the 1:1 layer of precursor mineral. In this procedure, condensation between the surface OH of the precursor mineral and the silanols in Si source (e.g., individual or polymers of Si-O tetrahedra with OH resulted from hydrolysis of sodium metasilicate in this study) will take place. This will lead to consumption of surface hydroxyls in precursor minerals, and subsequently, significant changes of hydroxyl stretching vibration modes. In this study, FTIR spectra show a prominent decrease of both the intensity and resolution of the structural hydroxyl stretching vibrations at 3600 - 3700 cm\(^{-1}\) with an extension of hydrothermal reaction duration (Fig. 6), indicating consumption of surface hydroxyls during the transformation. For instance, the original halloysite displays two well-resolved stretching vibration bands at 3622 and 3697 cm\(^{-1}\) (Fig. 6a), corresponding to inner OH and inner-surface OH (Kloprogge and Frost 2000; Madejova and Komadel 2001), respectively. After hydrothermal treatment, the two vibrations merge to one at ca. 3667 cm\(^{-1}\), which is indicative of the structural OH stretching vibration in beidellite (Russell 1987).

Similar FTIR spectral evolution was also found for kaolinite (Figs. 6d-6f) before and after hydrothermal treatments. Four well resolved OH stretching vibrations at 3695 (strong), 3668 (weak), 3654 (weak) and 3621 (strong) cm\(^{-1}\), were recorded, of
which the former three vibrations correspond to inner-surface OH and the one at 3621 cm$^{-1}$ is attributed to inner OH (Madejova and Komadel 2001). After one week’s treatment, the FTIR spectrum of K-1w displays only three OH stretching vibrations at 3696, 3650 and 3621 cm$^{-1}$, respectively, with dramatic decreases in intensity and resolution. Simultaneously, the vibration at 914 cm$^{-1}$, due to the bending vibration of inner hydroxyl of kaolinite (Madejova and Komadel 2001), is still visible. This reflects the presence of kaolinite remnant in the hydrothermal product as revealed by both XRD patterns and HRTEM images, i.e., the products are composed of kaolinite remnant and newly formed beidellite. With an extension of hydrothermal treatment duration, the three stretching vibrations of inner surface OH merge to one at approximately 3650 cm$^{-1}$, indicative of the hydroxyl stretching vibration in beidellite (Russell 1987), and the intensity of inner OH stretching vibration at 3620 cm$^{-1}$ significantly decreases but is still distinguishable. This strongly suggests that the transformation of kaolinite into beidellite is more difficult than halloysite, consistent with the conclusion made from the XRD patterns and HRTEM images. Here, all the characterization results suggested the successful transformation of halloysite and kaolinite into beidellite under hydrothermal condition.

MAS NMR spectra

In 27Al MAS NMR spectra of halloysite (Fig. 7a) and kaolinite (Fig. 7b), only one signal at ca. 6.8 ppm was recorded, corresponding to 6-coordinated Al (Al(VI)) in the octahedral sheets (He et al. 2003). However, two 4-coordinated Al (Al(IV)) signals at ca. 71 and 55 ppm were recorded in 27Al MAS NMR spectra of the
hydrothermal products, in addition to the dominant signal of Al(VI) at ca. 6 ppm. The
Al(IV) signal at ca. 71 ppm is due to the substitution of Al\(^{3+}\) for Si\(^{4+}\) in tetrahedral
sheets while the one at ca. 55 ppm corresponds to Al in the three-dimensional silica
framework (Breen et al. 1995), where the latter was formed by polymerization of
metasilicate. The assignments of the Al(IV) signals were further evidenced by \(^{29}\)Si
NMR spectra. Both \(^{29}\)Si MAS NMR spectra of the precursor halloysite and kaolinite
display a single signal at approximately -91 ppm (Figs. 7c and 7d), corresponding to
Q\(^3\)(0Al) (Rocha and Klinowski 1990; He et al. 2003). However, in \(^{29}\)Si spectra of the
hydrothermal products, two poorly resolved Q\(^3\)(0Al) and Q\(^3\)(1Al) signals occur at -90
~ -92 and ca. -87 ppm, respectively, corresponding to the newly formed beidellite,
while a broad Q\(^4\) signal was recorded at ca. -106 ppm (Figs. 7c and 7d), attributed to
three-dimensional silica (Altaner et al. 1988; Stucki 1996). The occurrence of two
different Al(IV) signals, Q\(^3\)(0Al) and Q\(^3\)(1Al), suggests that the chemical composition
of the newly formed Si-O tetrahedral sheet is different from the one inherited from the
precursor clay minerals. In other words, the inherited Si-O tetrahedral sheet is
identical to that in halloysite and kaolinite without isomorphous substitution,
 corresponding to Q\(^3\)(0Al); while the newly formed Si-O tetrahedral sheet contains the
substitution of Al\(^{3+}\) for Si\(^{4+}\), corresponding to Q\(^3\)(1Al). This leads to coexistence of
the two tetrahedral sheets with different charge and chemical composition in a TOT
unit. Our study demonstrates that the substitution of Al\(^{3+}\) for Si\(^{4+}\) in the tetrahedral
sheets is not only beneficial for the formation of smectite minerals, which can
improve the size matching between octahedral and tetrahedral sheets (He et al. 2014),
but also develops the layer charge required to form smectite minerals under hydrothermal conditions. More importantly, such transformation from 1:1 to 2:1 layer type by the mechanism described above may explain the origin of polar layer structure in phyllosilicates. The newly formed tetrahedral sheet is rich in the substitution of Al$^{3+}$ for Si$^{4+}$, resulting in higher layer charge than the original one which is inherited from the precursor mineral and poor in isomorphous substitution. Thus, layer charge for the two tetrahedral sheets in the same TOT unit is different. Consequently, polar layer is formed in phyllosilicates (Sudo et al. 1962; Cuadros and Linares 1995).

Transformation mechanism

To elucidate the transformation mechanism, dissolution experiments of halloysite and kaolinite were conducted under identical conditions as hydrothermal transformation experiments but without adding Na$_2$SiO$_3$·9H$_2$O. The identical XRD patterns and FTIR spectra of halloysite and kaolinite before and after hydrothermal treatment without Na$_2$SiO$_3$·9H$_2$O (not shown) suggest that these precursor minerals are relatively stable in the absence of Si and Na. It is noteworthy that TG analyses of halloysite and kaolinite samples after dissolution experiment display a slight decrease of mass loss corresponding to dehydroxylation (Figs. 5b and 5f, and Table 2), in comparison to that of the precursor halloysite and kaolinite. This should be attributed to the consumption of surface hydroxyls, resulted from the reaction between surface hydroxyls and OH$^-$ in the mildly alkaline solution. Such surface hydroxyl consumption can well explain the decreased mass loss of dehydroxylation for the newly formed beidellite from halloysite (Table 2), in comparison to the theoretical
value of beidellite (approximately 5%). That is to say, more than two-thirds of surface hydroxyls in halloysite are consumed during the transformation, through the condensation between inner-surface hydroxyls and hydrolyzed metasilicate, and the reaction between surface hydroxyls and OH\(^-\) in the mildly alkaline solution.

Meanwhile, HRTEM observations show that the surfaces of both hydrothermally treated halloysite and kaolinite (without Na\(_2\)SiO\(_3\)·9H\(_2\)O) are slightly obscure (Figs. 3d and 3h) when compared with that before hydrothermal treatment (Figs. 3a and 3e). This implies the occurrence of limited dissolution, mainly on outer surfaces and broken edge sites (Ramos et al. 2014), despite our measurements show that the concentration of the dissolved Al in the supernatant solution is as low as 1-2 ppb. This was also evidenced by \(^{27}\)Al MAS NMR spectra of the hydrothermal products. In the reaction systems, halloysite or kaolinite is the only phase containing Al, which occupy the octahedral sites in mineral structure. The occurrence of Al in the tetrahedral sheet of the newly formed smectite and amorphous silica in the hydrothermal products strongly suggests limited dissolution in the transformation process. However, such limited dissolution is beneficial for the transformation and development of the layer charge in the resultant smectite. Our recent study (He et al. 2014) demonstrates that the substitution of Al\(^{3+}\) for Si\(^{4+}\) in the tetrahedral sheets is beneficial for the formation of smectite minerals under hydrothermal condition, which may improve the size matching between octahedral and tetrahedral sheets.

In this study, the HRTEM images of kaolinite, halloysite and their hydrothermal products provide clear evidences for the transformation procedure. The precursor
kaolinite displays typically hexagonal sheet morphology (Fig. 3e). After hydrothermal
treatment, part of kaolinite particle edges obviously becomes curved (Fig. 3f), which
is composed of layers with a thickness of approximately 1.2 nm and an atomic ratio of
Si/Al close to that of beidellite. However, other parts of the kaolinite particle remain a
flat morphology as that of the precursor kaolinite. This implies no transformation in
these corresponding parts. EDS analyses of these unreacted parts show a higher Si/Al
ratio (not shown) in comparison to the theoretical value of kaolinite. This should be
attributed to the precipitation of amorphous SiO$_2$ (polymerized metasilicate) on the
mineral surface as indicated by XRD patterns and 29Si MAS NMR spectra of the
hydrothermal products. With an extension of reaction time, very few precursor
kaolinite particles can be found in the hydrothermal products. Instead, curved and
exfoliated layers with a thickness of 1.1 - 1.4 nm and similar chemical composition as
that of beidellite can be observed extensively. The ethylene glycolation experiments
demonstrate that these resulting minerals have excellent swelling ability.

In the case of halloysite, the HRTEM images of the products of halloysite after 3
days of hydrothermal treatment clearly display mixed-layer structure with disordered
stacking of halloysite and smectite layers (Figs. 4a and 4c). Our observation is very
similar to that for kaolinite of smectite reported by Amouric and Olives (1996),
but in reverse order. This implies that the transformation between kaolinite and
smectite is reversible and controlled by physicochemical conditions of the reaction
system.

The obtained results illuminate the successful transformation of kaolinite and
halloysite into beidellite, which starts from the edges of precursor minerals (Fig. 8). In the transformation process, individual or polymers of Si-O tetrahedra may act as ‘wedges’ to intercalate into the interlayer space. Then they could attach to the octahedral sheet of 1:1 clay minerals via condensation between the intercalated Si-O tetrahedra and inner-surface hydroxyls of precursor clay minerals (He et al. 2014). This condensation reaction was evidenced by both the dramatic mass loss decrease of dehydroxylation in the resultant products (Fig. 5) and the evolution of the OH stretching vibrations at 3600 - 3700 cm\(^{-1}\) (Fig. 6). Due to the intercalation of Si-O tetrahedra, exfoliation may take place during the transformation as revealed by HRTEM images. Depending on the orientation of the re-assembly of individual 2:1 layers, different structures may form (Fig. 8).

IMPLICATIONS

Our results demonstrate a transformation mechanism from 1:1 type clay minerals to 2:1 type ones in solid state under hydrothermal condition, which might be a new pathway for the transformation of clay minerals in nature.

Both \(^{27}\text{Al}\) and \(^{29}\text{Si}\) MAS NMR spectra of the hydrothermal treatment products can reveal the occurrence of the substitution of Al\(^{3+}\) for Si\(^{4+}\) in the newly formed Si-O tetrahedral sheets of the resultant beidellite. These results imply that the substitution of Al\(^{3+}\) for Si\(^{4+}\) is critical for the transformation reaction, and may improve the size matching between the octahedral sheet of the precursor mineral and the newly formed tetrahedral sheet (He et al. 2014). But such substitution results in chemical
composition and layer charge differences between the original and the newly formed tetrahedral sheets. Such a transformation mechanism can well explain the “polar layer” structure in mixed-layer phyllosilicates, i.e., the two tetrahedral sheets across the octahedral sheet have different chemical compositions and layer charges.

Our results also illuminate that a transformation of 1:1 type clay minerals to 2:1 type ones is feasible under hydrothermal condition with mildly alkaline pH and enrichment of Si. From the point of energy, breaking a chemical bond (e.g., Si-O-Si in tetrahedral sheet and Si-O-Al at the crystal edge) (Dudek et al. 2006; Rozalén et al. 2008) needs high energy, while condensation between Si-O tetrahedra and surface hydroxyls of precursor clay minerals can decrease the energy of reaction system. That is to say, a transformation of 1:1 to 2:1 type clay minerals (we call it “smectization of 1:1 type clay minerals”) is more feasible than that of 2:1 to 1:1 type clay (e.g., kaolinization of smectite). Hence, our findings provide new-sight to understand the formation mechanism of 2:1 type clay minerals and the genesis of clay deposits such as bentonite.

ACKNOWLEDGEMENTS

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 41530313, 41372048), CAS Key Research Program of Frontier Sciences (Grant No. QYZDJ-SSW-DQC023-1) and the CAS/SAFEA International Partnership Program for Creative Research Teams (Grant No. 20140491534).
REFERENCES CITES

FIGURE CAPTIONS

Figure 1. XRD patterns of halloysite, kaolinite and their hydrothermal products with Na$_2$SiO$_3$∙9H$_2$O. (a) Randomly oriented halloysite (H) and its hydrothermal products (H-1w and H-2w). (b) Oriented halloysite (H-O) and its hydrothermal products (H-1w-O and H-2w-O). (c) Glycolated halloysite (H-G) and its hydrothermal products (H-1w-G and H-2w-G). (d-f) Randomly oriented, oriented, and glycolated samples of kaolinite (K) and its hydrothermal products. (O = oriented sample, G = glycolated sample)

Figure 2. XRD patterns of the hydrothermal products of halloysite (a) and kaolinite (b) and the corresponding samples heated at 450 °C for 1.5 h.

Figure 3. HRTEM images of halloysite, kaolinite and their hydrothermally treated products. (a) The original halloysite. (b,c) Hydrothermally treated products of halloysite with Na$_2$SiO$_3$∙9H$_2$O after one and two weeks. (d) Halloysite after two weeks’ dissolution experiment without Na$_2$SiO$_3$∙9H$_2$O (H-D-2w). (e) The original kaolinite. (f) Hydrothermally treated product of kaolinite with Na$_2$SiO$_3$∙9H$_2$O after one week. The parts marked with square became curved, which are composed of beidellite layers. (g) Hydrothermally treated product of kaolinite with Na$_2$SiO$_3$∙9H$_2$O after two weeks, beidellite layers with a thickness of 1.2-1.4 nm were extensively formed accompanied with exfoliation. (h) Kaolinite after two weeks’ dissolution experiment without Na$_2$SiO$_3$∙9H$_2$O (K-D-2w).
Figure 4. HRTEM images of the products of halloysite after 3 days of hydrothermal treatment. H = halloysite layer (0.7 nm thick); S = smectite layer (1.3 nm thick). The lateral transition H → S is indicated by arrows.

Figure 5. TG and DTG curves of halloysite, kaolinite, and their hydrothermally treated products. (a,c,d) Halloysite (H) and its hydrothermal products with Na₂SiO₃·9H₂O after one week (H-1w) and two weeks (H-2w). (b) Halloysite after two weeks’ dissolution experiment without Na₂SiO₃·9H₂O (H-D-2w). (e,g,h) Kaolinite (K) and its hydrothermal products with Na₂SiO₃·9H₂O after one week (K-1w) and two weeks (K-2w). (f) Kaolinite after two weeks’ dissolution experiment without Na₂SiO₃·9H₂O (K-D-2w).

Figure 6. FTIR spectra of halloysite, kaolinite and their hydrothermal products. (a-c) Halloysite (H), and its products after one week (H-1w) and two weeks (H-2w) of hydrothermal treatment. (d-f) Kaolinite (K), and its products after one week (K-1w) and two weeks (K-2w) of hydrothermal treatment.

Figure 7. ²⁷Al (left) and ²⁹Si (right) MAS NMR spectra of halloysite, kaolinite, and their hydrothermal products. (a,c) Halloysite (H) and the products after one week (H-1w) and two weeks (H-2w) of hydrothermal treatment. (b,d) Kaolinite (K) and the products after one week (K-1w) and two weeks (K-2w) of hydrothermal treatment.
Figure 8. Schematic representation of the transformation from 1:1 type clay minerals to 2:1 ones. (a) The newly formed tetrahedral sheet is attached to the pre-existing 1:1 unit from the same direction. (b) The two newly formed tetrahedral sheets are attached from two opposite direction, forming a symmetry across the interlayer, which is a typical mixed layer structure with “polar layers”.
Table 1. The chemical compositions of kaolinite and halloysite

<table>
<thead>
<tr>
<th></th>
<th>Al₂O₃</th>
<th>CaO</th>
<th>Fe₂O₃</th>
<th>K₂O</th>
<th>MgO</th>
<th>Na₂O</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>H₂O</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaolinite</td>
<td>36.95</td>
<td>0.10</td>
<td>0.73</td>
<td>0.58</td>
<td>0.15</td>
<td>0.04</td>
<td>46.59</td>
<td>0.32</td>
<td>13.39</td>
<td>98.95</td>
</tr>
<tr>
<td>Halloysite</td>
<td>38.21</td>
<td>0.47</td>
<td>0.06</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>44.92</td>
<td>-</td>
<td>14.95</td>
<td>98.61</td>
</tr>
</tbody>
</table>
Table 2. The mass losses of samples at different temperature ranges (wt%).

<table>
<thead>
<tr>
<th></th>
<th>dehydration (30 - 300 °C)</th>
<th>dehydroxylation (300 - 800 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halloysite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>1.5</td>
<td>14.4</td>
</tr>
<tr>
<td>H-1w</td>
<td>7.0</td>
<td>3.4</td>
</tr>
<tr>
<td>H-2w</td>
<td>6.7</td>
<td>3.7</td>
</tr>
<tr>
<td>H-D-1w</td>
<td>0.9</td>
<td>12.1</td>
</tr>
<tr>
<td>H-D-2w</td>
<td>0.8</td>
<td>12.5</td>
</tr>
<tr>
<td>Kaolinite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>2.0</td>
<td>14.1</td>
</tr>
<tr>
<td>K-1w</td>
<td>4.4</td>
<td>5.5</td>
</tr>
<tr>
<td>K-2w</td>
<td>3.2</td>
<td>5.3</td>
</tr>
<tr>
<td>K-D-1w</td>
<td>1.8</td>
<td>13.7</td>
</tr>
<tr>
<td>K-D-2w</td>
<td>0.7</td>
<td>12.2</td>
</tr>
</tbody>
</table>

Note: H-D-1w and H-D-2w mean that halloysite was hydrothermally treated for one week and two weeks, respectively, under identical conditions as the transformation experiment but without Na$_2$SiO$_3$:9H$_2$O. K-D-1w and K-D-2w were denoted as the same way.
Figure 2

heated (450 °C, 1.5 h)
d(001)=0.97 nm

hydrothermal products
(300 °C, 2 weeks)
d(001)=1.24 nm

H-2w-450

a

b

heated (450 °C, 1.5 h)
d(001)=0.98 nm

hydrothermal products
(300 °C, 2 weeks)
d(001)=1.26 nm

K-2w-450

H-2w
Figure 3
Figure 4
Figure 5

Graphs showing weight loss and derivative mass loss as a function of temperature for different samples.

- a) H 510: TG and DTG curves for sample H at 510°C.
- b) H-D-2w 518: Same for H-D-2w at 518°C.
- c) H-1w 481 648: TG and DTG curves for H-1w at 481°C.
- d) H-2w 478 631: Same for H-2w at 478°C.
- e) K 528: TG and DTG curves for sample K at 528°C.
- f) K-D-2w 524: Same for K-D-2w at 524°C.
- g) K-1w 507: TG and DTG curves for K-1w at 507°C.
- h) K-2w 511: Same for K-2w at 511°C.

Temperatures and labels indicate the specific points of interest for each sample.
Figure 6

(a) 3697 3622 912 938
(b) 3665 3626 942 946
(c) 3650 3646
(d) 3629 3654 914
(e) 3695 3654 3623
(f) 3654 3629 914

H-1w H-2w K-1w K-2w

Wavenumber (cm⁻¹)
Figure 7
Figure 8