1	Revision 2
2	
3	Using mineral geochemistry to decipher slab, mantle, and crustal input in the
4	generation of high-Mg andesites and basaltic andesites from the northern Cascade Arc
5	
6	MAY SAS ^{1, 2,} *, SUSAN M. DEBARI ² , MICHAEL A. CLYNNE ³ , BRIAN G. RUSK ²
7	
8	¹ University of Auckland School of Environment, Private Bag 92019, Auckland 1142, New
9	Zealand
10	² Western Washington University Geology Department, 516 High Street MS 9080,
11	Bellingham, Washington 98225, U.S.A.
12	² U.S. Geological Survey Volcano Science Center, 345 Middlefield Road MS 910, Menlo
13	Park, California 94025, U.S.A.
14	
15	*E-mail: msas481@aucklanduni.ac.nz

16

ABSTRACT

17	To better understand the role of slab melt in the petrogenesis of North Cascades
18	magmas, this study focuses on petrogenesis of high-Mg lavas from the two northernmost
19	active volcanoes in Washington. High-Mg andesites (HMA) and basaltic andesites (HMBA)
20	in the Cascade Arc have high Mg# (molar Mg/(Mg+ Fe^{2+})) relative to their SiO ₂ contents,
21	elevated Nd/Yb, and are Ni- and Cr-enriched. The rock units examined here include the Tarn
22	Plateau HMBA (51.8–54.0 wt% SiO ₂ , Mg# 68–70) and Glacier Creek HMA (58.3–58.7 wt%
23	SiO ₂ , Mg# 63–64) from the Mount Baker Volcanic Field, and the Lightning Creek HMBA
24	(54.8–54.6 SiO ₂ , Mg# 69–73) from Glacier Peak. This study combines major and trace
25	element compositions of minerals and whole rocks to test several petrogenetic hypotheses,
26	and determine which, if any, are applicable to North Cascades HMA and HMBA. In the Tarn
27	Plateau HMBA, rare earth element (REE) equilibrium liquids calculated from clinopyroxene
28	compositions have high Nd/Yb that positively correlate with Mg#. This correlation suggests
29	an origin similar to that proposed for Aleutian adakites, where intermediate, high Nd/Yb
30	slab-derived melts interact with the overlying mantle to become Mg-rich, and subsequently
31	mix with low Nd/Yb, mantle-derived mafic magmas with lower Mg#. In the Glacier Creek
32	HMA, elevated whole rock MgO and SiO ₂ contents resulted from accumulation of
33	xenocrystic olivine and differentiation processes, respectively, but the cause of high Nd/Yb is
34	less clear. However, high whole rock Sr/P (fluid mobile/fluid immobile) values indicate a
35	mantle source that was fluxed by an enriched, hydrous slab component, likely producing the
36	observed high Nd/Yb REE signature. The Lightning Creek HMBA is a hybridized rock unit
37	with at least three identifiable magmatic components, but only one of which has HMA

38	characteristics. Cr and Mg contents in Cr-spinel and olivine pairs in this HMA component
39	suggest that its source is a strongly depleted mantle, and high whole rock Sr/P values indicate
40	mantle melting that was induced through hydration, likely adding the component responsible
41	for the observed high Nd/Yb REE pattern. The elevated SiO_2 contents (54.6 wt%) of the
42	HMA component resulted from differentiation or high degrees of partial melting of
43	ultramafic material through the addition of H ₂ O. Therefore the Lightning Creek HMBA is
44	interpreted to have originated from a refractory mantle source that underwent melting
45	through interaction with an enriched slab component. Our results indicate that in addition to
46	slab-derived fluids, slab-derived melts also have an important role in the production of HMA
47	and HMBA in the north Cascade Arc.
48	Keywords: High-Mg andesites, slab melt, clinopyroxene REE, Mount Baker, Glacier
49	Peak
50	

51

52

INTRODUCTION

53	Mount Baker and Glacier Peak are the northernmost active volcanoes in the western
54	United States. They are part of the Cascade volcanic arc that extends from northern
55	California to southern British Columbia (Figure 1). Because the subducting oceanic plate
56	below North America is young (approximately 10 Ma at the trench; Green and Harry 1999),
57	the Cascade Arc is considered a "hot" subduction zone (905 \pm 50°C beneath the North
58	Cascades; Syracuse et al. 2010). Consequently, slab melting is feasible in the Cascade Arc
59	(Leeman et al. 2004, 2005; Grove et al. 2005; Ruscitto et al. 2011), and studies involving
60	magnesium-rich andesites from southern Cascade Arc volcanoes (e.g. Lassen region and
61	Mount Shasta) have shown that slab fluids and melts clearly influence magma compositions
62	(Borg et al. 2002; Grove et al. 2002; Walowski et al. 2015, 2016). Overview studies
63	examining magma origin and processes in the northernmost part of the arc, the Garibaldi
64	Volcanic Belt, suggest a decreased contribution from the subducting slab northward along
65	strike with nominal inputs at Mount Meager (Green 2006; Mullen and Weis 2013, 2015). Of
66	the five major the Garibaldi Volcanic Belt volcanic centers only the Mount Baker Volcanic
67	Field, herein referred to as Mount Baker, received detailed attention on multiple lava types
68	erupted through time. Studies involving Mount Baker magnesium-rich lavas conclude mafic
69	magma generation occurs through partial mantle melting and fractionation (Baggerman and
70	DeBari 2011; Moore and DeBari 2012), and a recent study advocates for slab (metabasalt +
71	sediment) melt involvement (Mullen and McCallum 2014).

Magnesian andesites or high-Mg andesites (HMA) are characterized by high Mg#
 (molar Mg/(Mg+Fe²⁺)) relative to their SiO₂ concentrations, and are often used as inclusive

74	terms for the few types of magnesium-rich basalts through dacites, most notably adakites and
75	boninites (Kay 1978; Crawford et al. 1989; Defant and Drummond 1990; Yogodzinski et al.
76	1995; Stern and Kilian 1996; Calmus et al. 2003; Cooper et al. 2010). Adakites have a steep
77	rare earth element (REE) pattern, due to heavy REE (HREE) depletion, light REE (LREE)
78	enrichment, or both. Adakites are also Sr-enriched (>1000 ppm is common; Yogodzinski and
79	Kelemen 1998; Martin et al. 2005), and their origin is often attributed to partial melting of
80	subducted oceanic crust (Kay 1978; Defant and Drummond 1990; Yogodzinski et al. 2001;
81	Kelemen et al. 2003; Tatsumi and Hanyu 2003; Tatsumi et al. 2003). Boninites are
82	characterized by low TiO ₂ contents ($< 0.5 \text{ wt\%}$) and high field strength elements (HFSE)
83	depletion, and are associated with shallow (< 50 km) hydrous melting of depleted mantle in
84	supra-subduction or rift settings (Crawford et al. 1989; Kim and Jacobi 2002; Falloon et al.
85	2008). In this study we use HMA to reference high-Mg andesites and basaltic andesites
86	(HMBA) from the Cascade Arc that have affinities to primitive adakites. These HMA and
87	HMBA are rich in Cr and Ni and contain mafic minerals in equilibrium with mantle rocks
88	(Clynne and Borg 1997; Yogodzinski et al. 2001; Taylor 2001; Grove et al. 2002;
89	Baggerman and DeBari 2011; Moore and DeBari 2012; Mullen and McCallum 2014).
90	Though volumetrically sparse, HMA are found in arc setting worldwide and studies
91	examining their origin are essential to understanding magma-generating processes (Defant
92	and Drummond 1990; Stern and Kilian 1996; Calmus et al. 2003; Tatsumi et al. 2003).
93	Proposed HMA origins include (1) mixing between Mg-rich, high Sr and high Nd/Yb slab
94	melts and mantle-derived basalt (Yogodzinski and Kelemen 1998, 2007; Yogodzinski et al.
95	2001; Kelemen et al. 2003); (2) mixing between silicic melts of strongly metasomatized

96	mantle and mafic melts of moderately metasomatized to unmetasomatized mantle (Straub et
97	al. 2008, 2011); (3) melting of a strongly depleted mantle fluxed by a hydrous (\pm melt) slab
98	component (Kushiro 1969; Clynne 1993; Borg et al. 1997; Clynne and Borg 1997; Grove et
99	al. 2002, 2005); (4) fractionation of garnet from mantle-derived basaltic melts, without
100	significant slab input (Macpherson et al. 2006); (5) crustal processes including mixing
101	between dacitic crustal melts and a high-Mg basaltic liquid, melting-assimilation-storage-
102	homogenization (MASH), and assimilation-fractional-crystallization (AFC; Streck et al.
103	2007; Stern and Kilian 1996; Richards and Kerrich 2007; Chiaradia et al. 2009).
104	Here we investigate rare HMA and HMBA from Mount Baker and Glacier Peak in
105	the northern Cascade Arc, and constrain the influence of the subducting slab on their origin
106	through analyses of new mineral geochemical data combined with existing whole rock data.
107	In particular, clinopyroxene REE compositions and their associated calculated equilibrium
108	liquids provide a powerful tool to constrain mantle versus slab or crustal inputs to magma
109	generation. From Mount Baker, the Tarn Plateau HMBA and the Glacier Creek HMA were
110	investigated. Mullen and McCallum (2014) also discuss Cathedral Crag as a Mount Baker
111	HMBA, but in a previous study by Moore and DeBari (2012) only a single Cathedral Crag
112	sample exhibits high Mg# relative to SiO ₂ , which the authors attribute to olivine
113	accumulation. Samples from this rock unit also contained heterogeneous mineral
114	assemblages indicative of extensive crustal involvement. Therefore this rock unit was not
115	investigated here. From Glacier Peak, the Lightning Creek HMBA was investigated. Though
116	this rock unit also contains andesitic samples (>57 SiO ₂ wt%), DeBari et al. (in review) show
117	that the Lightning Creek HMA is a mixing product between the Lightning Creek HMBA and

crustally-derived Glacier Peak dacitic magma. Therefore this study focuses on the origin of
the more primitive (~55–57 wt% SiO₂) Lightning Creek samples.

120

GEOLOGIC SETTING

121 The Cascade Arc extends over 1,200 km from Lassen Peak in California to Mount 122 Meager in Canada, and volcanism is associated with subduction of the Juan de Fuca Plate 123 beneath the North American Plate at a rate of 45 mm/year in the northern segment (Wilson 124 1993; McCrory et al. 2006, 2012; Figure 1). Subduction conditions in the northern Cascade 125 Arc include a slab dip of 22°, overlying crustal thickness of 35 km, subduction of an 126 approximately 0.4 km thick sediment package (Syracuse et al. 2010), and thrust temperatures upwards of 200°C at the trench (Oleskevich et al. 1999). The age of the Juan de Fuca Plate 127 128 beneath Mount Baker and Glacier Peak is interpreted to be roughly 20 Ma (Green and Harry 1999). 129

130 Mount Baker (3,286 m) is an active, primarily andesitic stratovolcano that is part of a 131 1.3 million year old volcanic field (Hildreth et al. 2003). The Tarn Plateau HMBA is a 132 clinopyroxene-rich flow with lesser plagioclase, olivine, and orthopyroxene (Table 1). The 133 Tarn Plateau HMBA outcrop is an erosional remnant of a flow that is ~170 m thick, ~500 m 134 long and located on the southern flanks of Mount Baker (Supplementary Materials Figure 1). 135 The Tarn Plateau HMBA has a K-Ar age of 203 ± 25 ka (Hildreth et al. 2003). The Glacier 136 Creek HMA is plagioclase-rich with lesser clinopyroxene, orthopyroxene, and olivine (Table 137 1). Several discontinuous outcrops of this rock unit are present along the northwestern slope 138 of Mount Baker in Glacier Creek canyon (Supplementary Materials Figure 1). This rock unit 139 has a K-Ar age of 14 ± 9 ka (Hildreth et al. 2003).

1 477	
146	Pleistocene in age, but the absolute age remains unknown (Tabor and Crowder 1969).
145	interaction during emplacement, the Lightning Creek unit has been interpreted to be
144	Materials Figure 2). Based on known Glacier Peak eruptive activity and evidence for glacial
143	\sim 400 m in length and is located 10 km southeast of Glacier Peak's summit (Supplementary
142	lesser clinopyroxene, olivine, and orthopyroxene (Table 1). The columnar jointed outcrop is
141	southeast of Mount Baker (Figure 1). The Lightning Creek HMBA is plagioclase-rich with
140	Glacier Peak (3,213 m) is a dominantly dacitic stratovolcano located roughly 90 km

148 A total of 11 samples, out of 23 previously analyzed for whole rock composition 149 (Taylor 2001; Baggerman and DeBari 2011; Moore and DeBari 2012), were selected for this 150 study based on their SiO₂ content and Mg# (with FeO = 0.80*FeO_T for Mount Baker and 0.85*FeO_T for Glacier Peak; Shaw 2011; Moore and DeBari 2012). Major and minor element 151 152 concentrations were determined for olivine, clinopyroxene, plagioclase, Cr-spinels, and Fe-Ti 153 oxides (Supplementary Materials Tables 1-4) at the University of Washington using a JEOL 154 733 Superprobe electron microprobe (EMP) with four wavelength dispersive spectrometers 155 (WDS) and one energy dispersive spectrometer (EDS). Standards were an array of natural and synthetic minerals and glasses. A 15 kV accelerating voltage was used for all minerals. 156 157 Beam conditions were 15 nA current and < 1 µm diameter spot size for olivine, pyroxene, and oxides, and 10 nA current and 3 µm diameter spot size for plagioclase. Element peak 158 159 counts were 20–40 s, or the length of time required to obtain a statistical error of 0.4%. 160 Analytical error is < 3% for major elements and < 17% for minor elements. The CITZAF 161 correction method of Armstrong (1988a, 1988b) was applied to the data. Qualitative energy

162	dispersive X-ray spectroscopy (EDS) analyses of additional Tarn Plateau plagioclase and
163	Lightning Creek clinopyroxene and olivine were done using an EDAX Genesis 2000
164	attached to a Tescan Vega 5136MM SEM at Western Washington University
165	(Supplementary Materials Table 5). Accelerating voltage was 15 kV and current was 50-55
166	μ A. For EDS data to be compared to EMP data, EMP analyses were used as calibration
167	standards. This was done by reanalyzing EMP spots using EDS and calculating the difference
168	between the two analyses. The differences were averaged and used to correct EDS analyses.
169	Reanalysis and data corrections were done for every sample to obtain the best results.
170	Qualitative EDS data were not used in models or to calculate any crystallization parameters.
171	Trace element concentrations in clinopyroxene (Table 2) were obtained at Western
172	Washington University using an Agilent 7500ce Quadrupole inductively-coupled plasma-
173	mass spectrometer (ICP-MS) coupled with a NewWave UP213nm laser ablation (LA)
174	system. Clinopyroxene grains were 0.5–2.0 mm in length and ablation spots were dominantly
175	55 μ m in diameter, with a few 40 μ m diameter rim analyses. All analyses were done with a
176	repetition rate of 10 Hz and fluence of approximately 15 J/cm ³ . Helium was used as the
177	carrier gas to transport ablated material and was mixed with Ar prior to entering the ICP-MS
178	torch. Ablation sites were chosen using transmitted light microscopy to avoid accidental
179	analysis of inclusions, and backscattered electron (BSE) imaging and EDS analyses were
180	used to identify specific growth zones. NIST 610 glass was the external standard used, with
181	element concentrations from Jochum et al. (2011). Data reduction was carried out using
182	SILLS (Guillong et al. 2008) with equations from Longerich et al. (1996). Analyzed trace
183	isotopes and their respective typical detection limits at 55 μ m include ⁸⁸ Sr (0.035 ppm), ¹³⁹ La

184	(0.025 ppm), ¹⁴⁰ Ce (0.027 ppm), ¹⁴¹ Pr (0.022 ppm), ¹⁴⁶ Nd (0.128 ppm), ¹⁴⁷ Sm (0.150 ppm),
185	¹⁵³ Eu (0.041 ppm), ¹⁵⁷ Gd (0.138 ppm), ¹⁵⁹ Tb (0.022 ppm), ¹⁶³ Dy (0.091 ppm), ¹⁶⁵ Ho (0.024
186	ppm), ¹⁶⁶ Er (0.067 ppm), ¹⁶⁹ Tm (0.022 ppm), ¹⁷² Yb (0.105 ppm), ¹⁷⁵ Lu (0.022 ppm).
187	Additional elements, such as P, Zr, Sn, Pb, and U, were also analyzed to monitor for the
188	accidental analysis of inclusions. All LA-ICP-MS spots were located on previously acquired
189	microprobe spots, and SiO ₂ contents acquired via EMP were used as an internal standard
190	(specific per spot with 0.39 wt% average LA-ICP-MS detection limits).
191	Three new whole rock samples were analyzed for major and trace element chemistry
192	(Table 3) at the Washington State University GeoAnalytical Laboratory. These samples
193	represent three distinct mingled magmas observed in a single Lightning Creek sample
194	(Supplementary Materials Figure 3). Major element oxides and trace element concentrations
195	were determined by X-ray fluorescence (XRF) analyses using a ThermoARL Advant'XP +
196	sequential XRF spectrometer. Additional trace element concentrations were determined using
197	an Agilent 7700 ICP-MS. Analytical error is < 3% for major elements and < 9% for trace
198	elements. XRF and ICP-MS sample preparation followed the methods described in Knaack et
199	al. (1994) and Johnson et al. (1999).
200	One Glacier Creek sample was analyzed for Sr, Nd, and Pb isotopes using a VG
201	Sector 54 thermal ionization mass spectrometer (TIMS) and a Nu plasma multi-collector
202	(MC) ICP-MS at the University of Washington (Table 4). Sr and Nd separations were done
203	in accordance with Nelson (1995), and analytical procedures are fully described in Gaffney et

al. (2007), Harkins et al. (2008), and Brach-Papa et al. (2009). The following values were

used to normalize measured isotopic ratios, NBS 987 for ⁸⁷Sr/⁸⁶Sr (0.710240), La Jolla for

206	143 Nd/ 144 Nd (0 511843)	and NIST-981	for ${}^{208}\text{Ph}/{}^{204}\text{Ph}$	(36721)	207 Ph/ 204 Ph ((15 491) and
200	110/11010.0110701	and more relation - 201		130.1411.	10/ 10	1 J J J J J J J J allu

207 206 Pb/²⁰⁴Pb (16.937). Long term reproducibility (at 2σ) is ± 0.000040 for Sr, ± 0.000030 for

208 Nd, ± 0.000125 for ^{206/204}Pb, ± 0.000150 for ^{207/204}Pb, and ± 0.000200 for ^{208/204}Pb.

209

RESULTS

210 Petrography and Mineral Compositions

assemblages are clinopyroxene and plagioclase dominant with variable amounts of olivine

and orthopyroxene. Mineral populations were determined using textures, zoning trends, core

214 compositions (Mg#, Fo, An), and, for clinopyroxene, trace element abundances.

215 Compositional and textural mineral population variations are summarized in Table 1.

216 Olivine, pyroxene, and plagioclase major and minor element analyses are presented in

217 Figures 2–4 and Supplementary Materials Tables 1–3, respectively. Photomicrographs of

218 textural features are shown in Supplementary Materials Figure 4.

219 Tarn Plateau. The Tarn Plateau basaltic andesite contains 30-35% phenocrysts in hypocrystalline groundmass (Table 1). Clinopyroxene (40–65% of phenocrysts) is euhedral 220 221 to subhedral and 0.25–3.0 mm in size. Compositions are divisible into two Mg# populations, 222 high Mg# (88–94) cores with normal and reverse zoning in the rims, and low Mg# (73–79) cores with reversely zoned rims. Clinopyroxene Cr contents (140-4500 ppm) are positively 223 correlated with Mg#. Plagioclase (25–45%) is euhedral to anhedral and 0.25–5.0 mm in size. 224 Plagioclase core compositions consist of a coarsely sieved, high An (83–88) group and a 225 finely sieved, mid An (54–58) group. Olivine (10–20%) is euhedral to anhedral, up to 3.0 226

227	mm in size, and comprises a mid Fo (84–85) cores group and a low Fo (78–81) cores group.
228	Core Fo contents do not correlate with whole rock Mg# or olivine core Ni contents (800-
229	1600 ppm; Figure 5). Olivine with mid Fo contains Cr-spinel inclusions with Cr# $47-57$
230	(molar Cr/(Cr+Al)) and Mg# 31–35, and olivine with low Fo contains Cr-spinel inclusions
231	with Cr# 50–66 and Mg# 21–38. Mullen and McCallum (2014) conclude a single Tarn
232	Plateau olivine population despite compositional variations. Orthopyroxene (< 3%) is sparse,
233	subhedral, 0.5–1.0 mm in size, and has Mg# 68–70 cores. Mullen and McCallum (2014) also
234	identified a remnant, mantle-equilibrium orthopyroxene xenocryst ($Wo_2En_{92}Fs_6$) with high
235	Al contents that is present as an inclusion in clinopyroxene. The groundmass consists of
236	glass, ilmenite, titanomagnetite, microlitic plagioclase, pyroxene granules, and iddingsite.
237	Glacier Creek. The andesite of Glacier Creek contains 20–25% phenocrysts in a
238	hypocrystalline groundmass (Table 1). Plagioclase (50-70% of phenocrysts) is euhedral to
239	anhedral and 0.5–4.0 mm in size with an unsieved to coarsely sieved population and a finely
240	sieved population. There is no apparent correlation between textures and core An contents,
241	which overlap between the two populations (43–58 and 43–54, respectively). Clinopyroxene
242	(10–23%) is euhedral to anhedral, 0.25–2.0 mm in size, with Mg# 76–80 and 70–490 ppm Cr
243	cores, and reversely zoned rims. Mg# and Cr contents in clinopyroxene show no correlation
244	in analyzed cores and a positive correlation in analyzed rims. Orthopyroxene (10-20%) is
245	euhedral to subhedral, up to 1.5 mm in size, and has Mg# 70–73 cores. Olivine (3–7%) is
246	subhedral to anhedral and 0.5–2.0 mm in size. Olivine cores are Fo ₇₂₋₈₆ with high Ni contents
247	(1700–4100 ppm; Figure 5) and represent a single population (see Discussion). Cr-spinel

248	inclusions are abundant in olivine and have Cr#s 55-77 and Mg#s 12-36. Glass, pyroxene
249	granules, microlitic plagioclase, ilmenite, and titanomagnetite comprise the groundmass.
250	Lightning Creek. The Lightning Creek basaltic andesite, also referred to as
251	hybridized magmatic component or hybrid Lightning Creek unit, has 20-30% phenocrysts in
252	a hypocrystalline groundmass (Table 1). Plagioclase (40-60% of phenocrysts) is euhedral to
253	subhedral, up to 4.3 mm in length, and has three populations, (1) finely sieved cores with mid
254	An (65–66 with An ₄₈ outlier), (2) finely sieved rims with low An cores (42–44), and (3)
255	coarsely sieved with variable An (47–89). Clinopyroxene (20–30%) is euhedral to anhedral
256	and 0.3–1.5 mm in size. Clinopyroxene cores are divisible into a high Mg# (86–89)
257	population with variable Cr (550–2700 ppm, positively correlated) and a mid Mg# (80–84)
258	population with low Cr (100-460 ppm, no correlation). Both clinopyroxene populations
259	exhibit normal and reverse zoning. Olivine (15–20%) is mostly euhedral, 0.25–3.5 mm in
260	size, and has high core Fo (89–90) that is positively correlated with Ni (1800–3900 ppm;
261	Figure 5). Rare, heavily embayed, Fo ₈₀ olivine grains are also present. Cr-spinel inclusions in
262	olivine have Cr# 48–65 and Mg# 35–55. Orthopyroxene (5–10%) is subhedral to anhedral,
263	has Mg# 77–82 cores, and consists of small (\leq 1.0 mm) crystals, though some larger,
264	elongate crystals are present. The groundmass contains titanomagnetite, glass, and
265	plagioclase that varies from microlitic to tabular.

Lightning Creek Inclusions. Two types of volcanic inclusions, one mafic and one intermediate, are sparsely present in the Lightning Creek unit. Both inclusions are small (roughly 3 by 5 cm), and while disaggregated inclusion material is observed in all samples they are only present as individual, distinct inclusions in a single sample (Supplementary

270	Materials Figure 3). The mafic inclusion contains 5–7% phenocrysts of olivine and
271	clinopyroxene (Table 1). Olivine (75-85% of phenocrysts) is euhedral to subhedral, 0.25-1.1
272	mm in diameter, and is compositionally similar (Fo 88-89; Figure 2) to the olivine found in
273	the hybridized magmatic component. Clinopyroxene (15–25%) is subhedral, small (≤ 0.5
274	mm), and is compositionally comparable to the high Mg# clinopyroxene found in the
275	hybridized magmatic component (Mg# 87; Figure 3). The groundmass is nearly
276	holocrystalline and contains zoned microlitic plagioclase, clinopyroxene granules, acicular
277	ilmenite, and some glass. The intermediate inclusion is porphyritic with $40-50\%$
278	phenocrysts, which occur in clots (Table 1). Plagioclase (70-80% of phenocrysts) is euhedral
279	to anhedral, variable in size (0.4–3.6 mm), and is An ₄₇ . Orthopyroxene (10–15%) is
280	subhedral to anhedral, 0.5–2.0 mm in size, and has Mg# 65–70 cores. Clinopyroxene (5–
281	10%) is subhedral to anhedral, 0.25–1.0 mm in size, has Mg# 75–80 cores, and exhibits
282	reverse zoning. Both pyroxenes contain abundant oxide inclusions. Olivine (5%) is anhedral,
283	up to 0.5 mm in size, and has Fo 78-82 cores. The groundmass is hypocrystalline with
284	acicular to bladed ilmenite and titanomagnetite, tabular to microlitic plagioclase, and glass.

285 Whole Rock Geochemical Data

286 Whole rock analyses were reported by Moore and DeBari (2012) and Mullen and

- 287 McCallum (2014) for the Tarn Plateau HMBA, Baggerman and DeBari (2011) for the
- 288 Glacier Creek HMA, and Taylor (2001) for the hybrid Lightning Creek HMBA. The rock
- units are subalkaline and calcalkaline per Irvine and Baragar (1971) and fall in the medium-K
- 290 range of Gill (1981). New Lightning Creek analyses of a basaltic andesite mafic inclusion, an

291	andesitic intermediate inclusion, and a hybridized magmatic component are presented in
292	Table 3. These three samples are also calcalkaline and fall in the medium-K range.
293	Select major elements are shown in Figure 6. Tarn Plateau HMBA has 51.8–54.0
294	wt% SiO ₂ and Mg# 68–70, and the Glacier Creek HMA has $58.3-58.7$ wt% SiO ₂ and Mg#
295	63–64. Hybrid Lightning Creek HMBA has 54.8–56.4 SiO ₂ and Mg# 70–73, the mafic
296	inclusion has 54.6 wt% SiO ₂ and Mg# 72, and the intermediate inclusion has 57.3 wt% SiO ₂
297	and Mg# 61. Except for the most mafic Tarn Plateau sample, all three rock units display
298	typical major element behavior observed in calcalkaline lavas, wherein Na2O increases and
299	MgO and CaO decrease with SiO ₂ . Notable trace element contents and ratios include high Sr
300	(\geq 770 ppm) and moderate Y (15–19 ppm) and Ba/Zr (2–4) in all three units, high Ni (\geq 67
301	ppm) in the Glacier Creek and Lightning Creek units, and high Cr (≥ 200 ppm) in the Tarn
302	Plateau and Lightning Creek units. The Lightning Creek mafic inclusion is compositionally
303	similar to hybrid Lightning Creek samples but has higher Sr (930 ppm) and Cr (290 ppm)
304	contents. In contrast, the intermediate inclusion has higher Y (22 ppm) and lower Ni (64
305	ppm), Sr (600 ppm), and Cr (110 ppm) contents. Both inclusions have lower Ba/Zr (2) than
306	hybrid Lightning Creek samples. Though hybrid Lightning Creek samples often plot between
307	the mafic and intermediate inclusions, a clear mixing trend is not observed (Figures 6–7).
308	However, evidence for mixing between primitive Lightning Creek HMBA samples and a
309	crustally-derived dacitic endmember, and the production of the Lightning Creek HMA (57.3-
310	58.0 wt% SiO ₂ , not shown here), are discussed in DeBari et al. (in review).

A primitive mantle-normalized diagram (Figure 8a) shows the characteristic
enrichments in large ion lithophile elements (LILE: Cs, Rb, Ba, Th, U, K, and Sr) that are

323	Isotopic compositions. Sr, Nd, and Pb isotopic compositions of the Tarn Plateau and
322	result of LREE enrichment compared to non-HMA rather than HREE depletion.
321	HREE compared to non-HMA units. In the Glacier Peak unit, the relative steepness is more a
320	patterns (Figure 8c-d). In the Mount Baker units this steepness is due to relative depletions in
319	dacites from their respective volcanic field, the North Cascades units exhibit steeper REE
318	(~800 ppm) are similar (Figure 7a). Compared to non-HMA calcalkaline basalts (CAB) and
317	HREE contents than the North Cascades units, but its Nd/Yb ratio (~12) and Sr contents
316	in LREE (Figure 8b). Mount Shasta primitive HMA (PMA; Grove et al. 2002) has lower
315	than depletions in Aleutian adakites (Nd/Yb \geq 55; Figure 7a), which are also more enriched
314	Figure 7a) are observed in the North Cascades HMA and HMBA, but are less pronounced
313	typical of subduction-related magmatism. HREE depletions resulting in high Nd/Yb (\geq 10;

Lightning Creek HMBA have been previously analyzed by DeBari et al. (in review), Moore and DeBari (2012), and Mullen and McCallum (2014), and a new Glacier Creek HMA analysis is presented in Table 4. Isotopic compositions of the three rock units are comparable

327 to those of non-HMA primitive lavas from Mount Baker and Glacier Peak (Figure 9).

328 Clinopyroxene Trace Element Data

Trace element (REE and Sr) concentrations in clinopyroxene are presented in Table 2. REE abundances in analyzed clinopyroxene correlate with their respective whole rock SiO₂ contents; the most SiO₂-poor rock unit, Tarn Plateau, has the lowest clinopyroxene REE abundances, and the most SiO₂-rich rock unit, Glacier Creek, has the highest clinopyroxene REE abundances (Figure 10). Clinopyroxene cores from both Mount Baker units show a

334	negative correlation between Mg# and Yb contents (Figure 11a), and cores from all three
335	units show a positive correlation between Mg# and Sr contents (Figure 11c).
336	Measured clinopyroxene REE ratios were compared to calculated equilibrium
337	clinopyroxene REE ratios (Nd/Yb) that were derived using clinopyroxene/liquid partition
338	coefficients (Kds) and whole rock trace element data. We call the calculated ratios REE
339	Equilibrium Clinopyroxene (REC). We present REC as Chondrite-normalized Nd/Yb,
340	$(Nd/Yb)_{REC} = [(Nd_{Kd}/Yb_{Kd}) * average (Nd/Yb)_{N whole rock}]$. Kds were selected based on whole
341	rock SiO ₂ and H ₂ O contents, mineral assemblages, pressure conditions, and number of Kds
342	available. Kds were taken from Gaetani et al. (2003; hydrous spinel peridotite) for the Tarn
343	Plateau and Lightning Creek HMBA and Fujimaki et al. (1984; semi-hydrous calcalkaline
344	andesite) for the Glacier Creek HMA (Table 5). (Nd/Yb) _N was also used to determine if steep
345	clinopyroxene REE signatures are associated with high or low Mg# in the same
346	clinopyroxene (Figures 11b and 12). In addition, we calculated REE Equilibrium Liquid
347	(REL) compositions using the same Kds, and compared individual clinopyroxene REE
348	patterns to whole rock REE patterns (Figure 13).
349	Tarn Plateau clinopyroxene exhibit a positive correlation between clinopyroxene Mg#
350	and $(Nd/Yb)_N$ (Figures 11b and 12), and clinopyroxene REE patterns are more variable than
351	expected for crystals equilibrated with a single parent melt. Distinct trends are identified
352	when grains are separated into their Mg# groups (Figures 11 and 13a). REL of high Mg#

353 clinopyroxene have steeper REE patterns than the whole rock, and differences between core

- and rim REL are generally minimal. High Mg# clinopyroxene also has the highest Sr
- 355 contents (Figure 11c), indicating that the higher Nd/Yb and Mg# component is Sr-enriched.

REL of low Mg# clinopyroxene generally have similar REE trends as the host rock, and
lower Sr contents.

358 Glacier Creek clinopyroxene has a narrow range of (Nd/Yb)_N values, and does not 359 exhibit a correlation between Mg# and (Nd/Yb)_N (Figure 11b). In most cases, REL calculated 360 from clinopyroxene cores and rims are higher and slightly steeper than the host rock, and 361 show no variation despite pronounced Mg# increase in rims (Figure 13b). Though there is a 362 slight increase in Sr with Mg# (up to Mg# 81; Figure 11c), the highest Mg# rims have 363 comparable Sr contents relative to their lower Mg# cores, demonstrating no clear correlation between Mg# and Sr. This clinopyroxene has Eu depletion in both cores and rims, indicating 364 365 co-crystallization with plagioclase throughout its crystallization history (Figures 10 and 13b).

366 Due to abundant mineral and glass inclusions in Lightning Creek clinopyroxene, core 367 and rim analysis pairs were only successfully obtained for the high Mg# clinopyroxene in the 368 hybridized magmatic component. Measured (Nd/Yb)_N values of high Mg# clinopyroxene 369 cores plot at higher (Nd/Yb)_N than calculated REC of the hybrid Lightning Creek unit and 370 mafic inclusion (Figure 11b). There is also no clear correlation between Mg# and (Nd/Yb)_N 371 in this clinopyroxene. Core and rim REL of this population show similar HREE abundances relative to the host rock, but are consistently more LREE-enriched (Figure 13c). As a result, 372 373 REL of the high Mg# clinopyroxene population have steeper REE signatures compared to the whole rock. Sr contents in the high Mg# clinopyroxene show a moderately positive 374 correlation with Mg# (Figure 11c). This indicates that Sr contents are correlated with Mg# 375 376 and steeper Nd/Yb in the Lightning Creek hybridized magmatic component.

377

DISCUSSION

378 Crystallization Conditions

379	Temperature and Pressure. We use olivine and pyroxene thermobarometers to
380	determine crystallization conditions of primitive components. Whole rock data were used for
381	liquid compositions, and only phenocrysts in equilibrium with the whole rock were used for
382	thermobarometry. Results, equilibrium Kds, and number of minerals used in calculations are
383	listed in Table 6, and minimum values are listed below. A two-pyroxene thermobarometer
384	(Putirka 2008) was used for the Glacier Creek ($1,009 \pm 56^{\circ}$ C, 3.1 ± 2.8 kbar) and hybridized
385	Lightning Creek units (999 \pm 56°C, 1.6 \pm 2.8 kbar). A clinopyroxene-liquid thermobarometer
386	(Putirka 2008) was used for the Tarn Plateau unit because of the paucity of orthopyroxene.
387	Tarn Plateau high Mg# clinopyroxene yielded a temperature of $1,087 \pm 42^{\circ}$ C and pressure of
388	8.3 ± 3.6 kbar, but low Mg# clinopyroxene is not in equilibrium with the whole rock and was
389	therefore not used for thermobarometry (Figure 3b). Calculations are within range of
390	previously reported conditions by Baggerman and DeBari (2011), Moore and DeBari (2012),
391	and Mullen and McCallum (2014). The Lightning Creek mafic inclusion has no analyzed
392	clinopyroxene, thus the olivine-liquid thermometer of Putirka (2008) was used, and yielded a
393	temperature of $1,192 \pm 43^{\circ}$ C. The whole rock silica activity geobarometer of Putirka (2008)
394	yielded an equilibrium pressure of 5.9 ± 2.9 kbar for the mafic inclusion. These results
395	suggest similar equilibration temperatures for all units, except for the higher temperature of
396	the Lightning Creek mafic inclusion. Depth differences between the units cannot be
397	distinguished due to the high error associated with calculated equilibrium pressures.

398 H_2O Contents. We use the Mitchell and Grove (2015) primitive andesites model to 399 obtain H_2O contents (Table 7). This model uses whole rock data and a fixed pressure to

400	calculate temperature and H ₂ O contents with mean average errors of \pm 23°C and \pm 1.4 wt%,
401	respectively. Only some samples from the Tarn Plateau and Lightning Creek HMBA had
402	suitable compositional characteristics for this model (Mg# \ge 70, SiO ₂ \ge 51 wt%, MgO \ge 7
403	wt%, $K_2O \le 3$ wt%, TiO ₂ ≥ 0.4 wt%). Temperatures yielded by the model were consistently
404	lower than those calculated using mafic minerals (Table 6). Tarn Plateau samples yielded
405	minimum H ₂ O contents of 5.8 wt%. Hybridized Lightning Creek samples yielded minimum
406	$\rm H_2O$ contents of 2.3 wt%, and the Lightning Creek mafic inclusion sample yielded 4.3 wt%
407	H ₂ O. These H ₂ O contents are within range of other Cascades and global primitive andesites
408	presented in Mitchell and Grove (2015), but are higher than previous results for Tarn Plateau
409	HMBA from Moore and DeBari (2012; 4.0 wt% H ₂ O) and Mullen and McCallum (2014; 3.4
410	wt% H ₂ O), and for Lightning Creek HMBA from Taylor (2001; 2.2 wt% H ₂ O). These earlier
411	studies used plagioclase and whole rock compositions to calculate H_2O contents (Sisson and
412	Grove 1993; Lange et al. 2009). Calculations done for this study using the Lange et al.
413	(2009) plagioclase hygrometer also yielded lower values for the Tarn Plateau and Lightning
414	Creek HMBA (2.6–3.1 and 1.5–2.2 \pm 0.32 wt% H ₂ O, respectively) and yielded 1.6–2.4 wt%
415	\pm 0.32 H ₂ O for the Glacier Creek HMA, all of which are similar to Sisson and Grove (1993)
416	model estimates (Table 7). However, since both of these methods yield H_2O contents during
417	plagioclase crystallization they may not reflect the H ₂ O content of the primitive magmas.
418	Normalized whole rock Sr/P ratios of the HMA and HMBA were also examined
419	because $(Sr/P)_N$ has been shown to correlate with H ₂ O contents (Figure 14; Borg et al. 1997).
420	Since Sr is fluid-mobile and P is fluid-immobile, high $(Sr/P)_N$ contents (\geq 3.3; Clynne and
421	Borg 1997) indicate a hydrous source. $(Sr/P)_N$ values in all three rock units are higher than

those of non-HMA from their respective volcanic fields (> 3.3 in the Mount Baker units and
the Lightning Creek mafic inclusion compared to < 2.5 in the non-HMA units).

424 Role for Garnet Fractionation

425 Most hypotheses for HMA origin include an important role for the involvement of 426 residual garnet as the driver for steep REE patterns (Stern and Kilian 1996; Yogodzinski and 427 Kelemen 1998, 2007; Kelemen et al. 2003; Martin et al. 2005; Macpherson et al. 2006). 428 There is no textural evidence (i.e. remnant garnet phenocrysts) for the presence of 429 fractionating garnet in the HMA and HMBA studied here, nor is there preserved mineral 430 geochemical evidence as even the most primitive clinopyroxene indicates crystallization 431 from a parental magma that already had a steep REE pattern. Specifically, there is no 432 progressive change from flat to steep REE patterns in clinopyroxene phenocrysts that would 433 indicate garnet co-crystallization. If garnet crystallized early, that mineral, and any other co-434 crystallizing phases, would have to have been completely removed via fractionation. Nonetheless, the feasibility of this hypothesis was examined using simple mass-balance 435 436 fractionation modeling. The modeling tests whether the HMA and HMBA can be produced 437 from a typical Cascades CAB through high pressure fractional crystallization of a pyroxene, garnet, and amphibole assemblage, as hypothesized by Macpherson et al. (2006). This 438 439 mineral assemblage (±olivine) is predicted in a hydrous, high pressure arc setting (> 3 wt% H₂O and 1.2 GPa; Müntener et al. 2001) such as that in the northern Cascade Arc, where the 440 441 arc crust is ~35 km thick (Syracuse et al. 2010). North Cascades CAB from Mount Baker and 442 Glacier Peak were selected as parents for modeling based on their primitive compositions.

443	Modeling results show that major element compositions of the HMA and HMBA are
444	not reproducible via fractionation of a pyroxene, olivine, and garnet \pm amphibole assemblage
445	using regional primitive CAB compositions as parents (Figure 15e-f). Though HMA and
446	HMBA Sr/Y, Y, and LREE contents can be reproduced using the Mount Baker CAB (Lake
447	Shannon, 50.7 wt% SiO ₂ , Mg# 62; Moore and DeBari 2012), high garnet contents (≥ 38%)
448	and a high percentage of fractionation (~60%) are required, and even higher percentages of
449	fractionation (\geq 80%) are needed to reproduce similar HREE contents (Figure 15a and c).
450	These high fractionation percentages are not realistic given the high Mg# of clinopyroxene
451	phenocrysts. We thus discount using garnet fractionation in any model for the formation of
452	the three North Cascades units studied here. This is in agreement with Mullen and McCallum
453	(2014), who determined that Dy/Yb values are too low to be indicative of garnet
454	fractionation in Mount Baker primitive magmas.

455 Isotopic Constraints on Mantle and Crustal Contributions

Tarn Plateau and Lightning Creek HMBA compositions are among the more 456 457 isotopically depleted Cascade calcalkaline magmas, and though the Glacier Creek HMA is more enriched than the two HMBA, it is on par with other Mount Baker primitive lavas 458 (Figure 9). The three rock units are not as isotopically depleted as most Juan de Fuca mid-459 460 ocean ridge basalt (MORB) isotopic compositions (White et al. 1987; Cousens et al. 1995), and are not as isotopically enriched as Cascadia sediment (Plank and Langmuir 1998). They 461 do, however, fall on a possible mixing trend between Juan de Fuca MORB and Cascadia 462 463 sediment compositions, as noted by Mullen and McCallum (2014). Some samples from the hybrid Lightning Creek unit show isotopic enrichment (Figure 9), but that enrichment 464

465	directly correlates with SiO ₂ contents that DeBari et al. (in review) interpret to be evidence
466	for progressive mixing with the more isotopically enriched Glacier Peak dacite. The most
467	isotopically depleted Lightning Creek sample is the most primitive, and is representative of
468	the mantle component.

For the three rock units, isotopic compositions of the most primitive samples denote a 469 470 mantle origin with no substantial involvement of the overriding crust. This result has 471 important petrogenetic implications for the primitive arc andesites and basaltic andesites in 472 this study. Specifically, the mineral assemblages in the primitive samples indicate 473 contributions from multiple magmas, and the primitive nature of their isotopic character 474 suggests that multiple mantle-generated melts and their derivatives are the source for this 475 diversity rather than the crust (see petrogenesis section below and Figure 16). However, the more differentiated the sample, the more influential the crustal component may be, as is 476 477 reflected in their more isotopically enriched characteristics (Figure 9).

478 Petrogenesis of North Cascades High-Mg Andesites

479 Tarn Plateau. Two clinopyroxene populations, two plagioclase populations, one 480 olivine population, and one orthopyroxene population in the Tarn Plateau HMBA imply that two magmas contributed crystals \pm liquids to create a semi-homogenized hybrid (Table 1; 481 482 Figures 2–4). The steepest (Nd/Yb)_N ratios and highest Sr contents are observed in the 483 highest Mg# clinopyroxene (Figure 12), and sector zoning in this clinopyroxene implies high 484 pressure crystallization conditions (e.g. 5–10 kbar; Skulski et al. 1994), which are confirmed 485 by the calculated pressure estimates $(8.3 \pm 3.6 \text{ kbar}; \text{ Table 6})$. Therefore the REE steepness in 486 this clinopyroxene population is a characteristic of a primitive, Sr-enriched, mantle-derived

487	mafic liquid. In addition to this primitive mantle-derived liquid, we propose the existence of
488	a second, differentiated magma type (i.e., fractionated melt of mantle-derived basalt). This is
489	based on the additional clinopyroxene population with lower Mg#, $(Nd/Yb)_N$, and Sr, and Eu
490	depletions that signify co-crystallization with plagioclase. The hypothesis for this second,
491	differentiated magma type is also supported by low olivine Fo values (which are too Fe-rich
492	to be in equilibrium with peridotite), low olivine Ni contents, and the scarcity of Cr-spinel,
493	all of which are suggestive of olivine fractionation. The overall low Na ₂ O, K ₂ O, TiO ₂ , and
494	Al_2O_3 of the whole rock suggests a depleted mantle source for both magma types. Low
495	olivine Ni contents also refute the Straub et al. (2008) pyroxenite melting model plausibility
496	for this unit (see Glacier Creek discussion below and Figure 5).
497	Clinopyroxene populations from the Tarn Plateau unit exhibit similar geochemical
498	characteristics to those reported in clinopyroxene of Aleutian adakites (Figure 11;
499	Yogodzinski and Kelemen 1998). High Mg# clinopyroxene has the highest Sr and Nd/Yb
500	core concentrations, which generally decrease, along with Mg#, in the rim. Low Mg#
501	clinopyroxene has the lowest Sr and Nd/Yb core concentrations, which increase with Mg# in
502	the rim. Yogodzinski and Kelemen (1998) describe these relationships as being due to
503	mixing between (1) and esitic or dacitic melts derived from a garnet-bearing subducting slab,
504	which became Mg-rich as they rose through and interacted with the overlying mantle wedge,
505	and (2) basaltic melt derived from the asthenospheric mantle. Based on these Mg#, Nd/Yb,
506	and Sr relationships in high Mg# clinopyroxene, the simultaneous increase in whole rock
507	Mg# and SiO ₂ contents (Figure 6a), high H ₂ O contents (2.6–6.0 wt%, Table 7; Moore and
508	DeBari 2012; Mullen and McCallum 2014), and high whole rock (Sr/P) _N (Figure 14), we

509	interpret the primitive, Sr-enriched, mantle-derived mafic component of Tarn Plateau to be a
510	hydrous slab melt that interacted with the overlying mantle. The slab melt component mixed
511	with the differentiated mafic component near the Moho to produce the Tarn Plateau HMBA
512	(Figure 16). Slab melt and fluid involvement in the generation of the Tarn Plateau HMBA is
513	supported by Mullen and McCallum (2014), who used whole rock geochemistry, isotopic
514	data, and modeling to conclude that a hydrated, down-dragged mantle peridotite interacts
515	with slab and sediment melt to produce primitive magmas beneath Mount Baker.
516	Glacier Creek. The Glacier Creek HMA has a limited whole-rock composition
517	(Figures 6-8), with at least two sources of input to the crystal cargo. Evidence for this comes
518	from the two plagioclase populations, one clinopyroxene population, one orthopyroxene
519	population, and one olivine population (Table 1; Figures 2-4). We interpret the olivine to be
520	a single xenocrystic population because of monomineralic crystal clots, pronounced
521	orthopyroxene reaction rims, lack of equilibrium with the host rock, and consistent Fo and Ni
522	contents. The olivine addition hypothesis was first suggested for Glacier Creek by
523	Baggerman and DeBari (2011), where the authors used petrographic observations and Fe/Mg
524	equilibrium to calculate ~4% addition of xenocrystic olivine.
525	We thus interpret the Glacier Creek HMA to be comprised of a host magma that
526	mixed with an olivine-bearing mafic component. Based on the abundance of plagioclase

527 phenocrysts, low-Mg# pyroxenes, and extensive reaction rims observed on xenocrystic

olivine, the host magma is interpreted to be intermediate (i.e. andesitic) in composition.

- 529 Addition of the mafic component and concomitant resorption of the xenocrystic olivine
- 530 would raise MgO contents in the host magma, leading to the observed Mg# increase in

531	clinopyroxene rims. Because Glacier Creek clinopyroxene REL and $(Nd/Yb)_N$ do not change
532	from core to rim despite this significant change in Mg# (Figure 11), the steep REE pattern of
533	the Glacier Creek host magma must have been acquired prior to clinopyroxene crystallization
534	and incorporation of the mafic component. Consequently, the high Mg# and steep REE
535	characteristics were obtained from different sources. The mafic component may have been
536	added through incorporation of an olivine cumulate or an olivine-bearing magma with Nd/Yb
537	similar to that of the Glacier Creek host magma. In either scenario, a high Mg# mafic
538	component is added to a more silicic host magma with pre-existing elevated Nd/Yb.
539	Since the high Mg# and Nd/Yb characteristics of the Glacier Creek HMA were
540	acquired from different components that mixed within the crust (3.1 ± 2.8 kbar; Table 6), we
541	reject the slab melt hypothesis for this unit. The steep REE pattern cannot be a product of
542	crustal melt incorporation as proposed by some workers (Stern and Kilian 1996; Richards
543	and Kerrich 2007; Streck et al. 2007) because isotopic compositions do not support
544	significant crustal involvement (Figure 9). Furthermore, HREE abundances in this rock unit
545	are lower than HREE abundances in crustally-derived dacitic lavas from Mount Baker
546	(Figure 8; Gross 2012), suggesting that the REE signature is not a result of mixing with
547	crustal melts. Therefore we interpret the Glacier Creek HMA to be a differentiated mantle-
548	derived melt with a long trajectory through the crust, but with minimal crustal incorporation.
549	Additional evidence for this interpretation include the high abundance and diverse
550	populations of plagioclase phenocrysts that indicate fractionation, and mid-crust pyroxene
551	crystallization pressures (Table 6). This HMA does have significantly higher Sr contents and
552	(Sr/P) _N compared to other non-HMA lavas from Mount Baker (Figure 14), as well as

moderate H₂O contents (1.6–2.4 wt% H₂O, Table 7), suggesting that the mantle source for the Glacier Creek unit was ultimately fluxed by a hydrous slab component that was enriched in incompatible elements and had moderate Nd/Yb (Borg et al. 1997; Clynne and Borg 1997; Grove et al. 2002, 2005). This moderate Nd/Yb mantle melt underwent differentiation within the crust, incorporated the xenocrystic high-Ni olivine and potentially minor crustal components, and was erupted as a hybrid HMA (Figure 16).

559 The cause for high Ni relative to Fo in the xenocrystic (Figure 5) olivine is debatable, 560 and its source prior to incorporation in the Glacier Creek HMA remains unconstrained. 561 Straub et al. (2008, 2011) contend that high Ni contents in phenocrystic olivine originate 562 from melts of secondary mantle pyroxenite lithologies that formed by infiltration of silicic 563 slab components. This reaction pyroxenite is Ni-rich, but has less capacity to retain Ni in the source than peridotite, consequently producing Ni-rich melts capable of crystallizing high-Ni 564 565 olivine. Alternatively, high-Ni olivine may crystallize from a mixture of high-MgO mantle 566 partial melts and low-MgO crustal or eclogite partial melts (e.g. Wang and Gaetani 2008) that yields hybrid melts with an increased Ni compatibility in olivine (Hart and Davis 1978). 567

Lightning Creek. The Lightning Creek HMBA is a hybrid magma with four plagioclase populations, three clinopyroxene populations, two olivine populations, and two orthopyroxene populations (including mafic and intermediate inclusions mineral populations; Table 1; Figures 2–4). A major component of the Lightning Creek magma is the liquid represented by the mafic inclusion, which is a viable mafic mixing endmember to the hybrid Lightning Creek unit (Figures 6–8). Therefore the hybrid Lightning Creek high Mg# clinopyroxene and high Fo olivine populations are interpreted to be derived directly from the

575	mafic inclusion magma over time. A second component is Glacier Peak dacite, which DeBari
576	et al. (in review) show to be the silicic mixing endmember of the hybrid Lightning Creek
577	unit. DeBari et al. (in review) used isotopic data and major and trace element mixing models
578	to reproduce whole rock trends observed in the hybrid Lightning Creek unit, and concluded
579	that this felsic Glacier Peak endmember is crustal in origin and is not the source for the steep
580	REE, which agrees with data from this study. The intermediate inclusion represents a
581	compositionally distinct magmatic component with low Nd/Yb and $(Sr/P)_N$ (Figure 14). Only
582	the low Fo olivine, low Mg# pyroxenes, and An47 plagioclase populations are found in the
583	intermediate inclusion and are interpreted to be cognate to the inclusion. Compositionally,
584	this inclusion does not appear to be a major contributor to this unit.
585	The mafic Lightning Creek inclusion is the magmatic component with the steepest
586	REE pattern and highest MgO and Sr contents. Fo and Ni contents of high Fo olivine are not
587	high enough to fit the Straub et al. (2008, 2011) HMA hypothesis for melts of a
588	pyroxenitized mantle source (Figure 5). Instead, a combination of high Cr-spinel Cr# and
589	high host olivine Fo contents suggest magma derivation from a depleted, olivine-rich mantle
590	source (Supplementary Materials Figure 5). Arai (1987) shows that Cr# in mantle Cr-spinel
591	increases as the mantle becomes more depleted, and that Cr# in Cr-spinel and Fo contents in
592	olivine are positively correlated. We observe this correlation of high Cr# and Fo contents in
593	the mafic Lightning Creek inclusion, as did Clynne and Borg (1997) in southern Cascade Arc
594	CAB. High whole rock H_2O (4.3 wt%) and Sr contents, and elevated whole rock and
595	clinopyroxene $(Nd/Yb)_N$, indicate that the refractory mantle source of the mafic inclusion
596	was hydrated by a LILE-enriched slab component (Borg et al. 1997; Clynne and Borg 1997;

597	Grove et al. 2002). Hydrous melting of a depleted mantle likely resulted in the elevated SiO_2
598	(~55 wt%) contents of the mafic inclusion (Grove et al. 2002, 2005). Consequently, the
599	hybrid Lightning Creek unit acquired its HMBA characteristics, high Mg#, steep REE, high
600	Ni and Cr, and elevated SiO ₂ , from the mafic inclusion through its mantle source and
601	associated hydrous slab component (Figure 16). Lack of isotopic enrichment in primitive
602	Lightning Creek samples containing crystal cargo from the intermediate inclusion (Figure 9)
603	suggests that the intermediate inclusion must itself be a fractionated mantle-derived
604	component, not a crustally-derived component. The mafic inclusion magma mixed with the
605	intermediate inclusion and Glacier Peak dacite magmas in the crust to produce the hybrid
606	Lightning Creek unit.
607	Conclusions
608	Petrography and mineral geochemistry of multiple phenocryst populations,
609	interpreted in conjunction with whole rock chemistry, demonstrate that three high-Mg lavas
610	from the Mount Baker Volcanic Field and Glacier Peak in the northern Cascade Arc have
611	complex origins involving mixing of a variety of magmatic components. A single process
612	cannot explain the Mg# and REE characteristics of the HMA and HMBA studied here, and
613	multiple mantle sources are indicated. Furthermore, in no case is the crust interpreted to be
614	the source for the steep REE patterns of these rock units.
615	The high Mg# and Nd/Yb characteristics of all three rock units were diluted and
616	partially obscured by interaction with non-HMA components. The Tarn Plateau HMBA from
617	Mount Baker has an origin similar to Aleutian adakites and is a hybrid of two magmatic

619 for being a high Nd/Yb slab melt, presumably with elevated SiO₂ contents, that interacted 620 with the mantle. This component underwent mixing near the base of the crust with a mantle-621 derived basaltic component to produce the Tarn Plateau HMBA. Mount Baker's Glacier Creek unit has two identifiable components, an andesitic host melt with elevated Nd/Yb and 622 623 Sr and an olivine-bearing mafic component. The andesitic host melt differentiated from 624 partial melts of the mantle and equilibrated at shallow levels where it incorporated the mafic component, which increased whole rock MgO and Ni contents and resulted in reversely 625 626 zoned clinopyroxene rims. The characteristic steep whole rock REE pattern is a melt 627 characteristic that resulted from mantle melting through hydration by a LILE-enriched slab component. Glacier Peak's Lightning Creek HMBA is a hybrid product that has at least three 628 629 magmatic components, only one of which exhibits HMA characteristics and is interpreted to 630 have originated from depleted mantle by fluxing with a LILE-enriched, hydrous slab component. Differentiation or a high degree of melting resulted in the elevated SiO₂ contents. 631 632 Subsequently, the HMA component mixed with more evolved (but lower La/Yb) melts in Glacier Peak's shallow magmatic system in the middle-to-upper crust. 633

The complexity of mineral populations indicate that there were small pockets of magma in the plumbing systems of Mount Baker and Glacier Peak. The preservation of these different mineral populations, including minerals that represent HMA components with high Mg# and elevated Nd/Yb, suggests that at the time these units erupted there was no large standing magma body capable of absorbing and obscuring individual mineral compositions beneath the volcanoes, or that mixing occurred shortly before eruption. This is especially pertinent for the Tarn Plateau and Lightning Creek HMBA, whose HMA components were

641	identifiable despite being complex hybridized products. This is not always typical for large
642	composite volcanoes, which often erupt the small or very similar homogeneous lithologies
643	for long periods of their history. Furthermore, most components that contributed to
644	phenocryst diversity originated in the mantle, indicating that mantle, not crustal, processes
645	are dominantly responsible for the heterogeneity of these arc lavas.

646

IMPLICATIONS

647 Work over the last few decades has increasingly shown that magmas erupted from 648 composite volcanoes in volcanic arcs are typically products of open system processes at all 649 stages of their origin, and that crustal processes are not necessarily the main drivers for 650 compositional diversity observed in arc magmas. Moreover, generalized whole rock studies 651 and simple fractionation modeling are often inadequate to explain magma origin and evolution. We emphasize the necessity of careful petrography and the power of mineral 652 653 chemical analyses to identify populations of phenocrysts and relate them to often cryptic components in arc magmas identified by geochemical techniques. In particular, analysis of 654 655 clinopyroxene REE compositions is useful for recognizing contributions from the subducting slab, such as the Tarn Plateau slab melt component identified in this study. Employment of 656 this type of study in the future will continue to improve our understanding of the complexity 657 658 of arc magma generation and evolution processes.

659

ACKNOWLEDGMENTS

660 This study was possible thanks to financial support to M. Sas from the Evolving Earth
661 Foundation, Geological Society of America, Mount Baker Volcano Research Center, and

662	Western Washington University. We acknowledge the Western Washington University
663	AMSEC for access to the LA-ICP-MS and Sci-Tech for access to the SEM. We also thank S.
664	Straub, M. Stelten, G. Yogodzinski, and E. Mullen for their reviews and improvement of this
665	manuscript. Any use of trade, firm, or product names is for descriptive purposes only and
666	does not imply endorsement by the U.S. Government.
667	References
668	Arai, S. (1987) An estimation of the least depleted spinel peridotite on the basis of olivine-
669	spinel mantle array. Neues Jahrbuch fur Mineralogie-Monatshefte, 1987, 347–354.
670	Armstrong, J.T. (1988a) Bence-Albee after 20 years: review of the accuracy of α -factor
671	correction procedures for oxide and silicate minerals. In D.E. Newbury, Ed.,
672	Microbeam Analysis, p. 469–476. San Francisco Press.
673	——— (1988b) Quantitative analysis of silicate and oxide minerals: comparison of Monte
674	Carlo, ZAF and phi-rho-z procedures In D E. Newbury, Ed., Microbeam Analysis, p.
675	239–246. San Francisco Press.
676	Bacon, C.R., Gunn, S.H., Lanphere, M.A., and Wooden, J.L. (1994) Multiple isotopic
677	components in Quaternary volcanic rocks of the Cascade Arc near Crater lake,
678	Oregon. Journal of Petrology, 35, 1521–1556.
679	Bacon, C.R., Bruggman, P.E., Christiansen, R.L., Clynne, M.A., Donnelly-Nolan, J.M., and
680	Hildreth, W. (1997) Primitive magmas at five Cascades volcanic fields: melts from
681	hot, heterogeneous sub-arc mantle. Canadian Mineralogist, 35, 397-424.

682	Baggerman, T.D., and DeBari, S.M. (2011) The generation of a diverse suite of Late
683	Pleistocene and Holocene basalt through dacite lavas from the northern Cascade arc
684	at Mount Baker, Washington. Contributions to Mineralogy and Petrology, 161, 75-
685	99.
686	Baker, M.B., Grove, T.L., Kinzler, R.J., Donnelly-Nolan, J.M., and Wandless, G.A. (1991)
687	Origin of compositional zonation (high-alumina basalt to basaltic andesite) in the
688	Giant Crater Lava Field, Medicine Lake volcano, Northern California. Journal of
689	Geophysical Research, 96, 21819–21842.
690	Borg, L.E., and Clynne, M.A. (1998) The petrogenesis of felsic calc-alkaline magmas from
691	the southernmost Cascades, California: origin by partial melting of basaltic lower
692	crust. Journal of Petrology, 39, 1197–1222.
693	Borg, L.E., Clynne, M.A., and Bullen, T.D. (1997) The variable role of slab-derived fluids in
694	the generation of a suite of primitive calc-alkaline lavas from the southernmost
695	Cascades, California. Canadian Mineralogist, 35, 425–452.
696	Borg, L.E., Blichert-Toft, J., and Clynne, M.A. (2002) Ancient and modern subduction zone
697	contributions to the mantle sources of lavas from the Lassen region of California
698	inferred from Lu-Hf isotopic systematics. Journal of Petrology, 43, 705-723.
699	Brach-Papa, C., Van Bocxstaele, M., Ponzevera, E., and Quétel, C.R. (2009) Fit for purpose
700	validated method for the determination of the strontium isotopic signature in mineral
701	water samples by multi-collector inductively coupled plasma mass spectrometry.
702	Spectrochimica Acta Part B: Atomic Spectroscopy, 64, 229–234. 33

703	Braunmiller, J., and Nábělek, J. (2002) Seismotectonics of the Explorer region. Journal of
704	Geophysical Research, 107, 2208.
705	Bullen, T.D., and Clynne, M.A. (1990) Trace element and isotopic constraints on magmatic
706	evolution at Lassen Volcanic Center. Journal of Geophysical Research, 95, 19671-
707	19691.
708	Calmus, T., Aguillón-Robles, A., Maury, R.C., Bellon, H., Benoit, M., Cotten, J., Bourgois,
709	J., and Michaud, F. (2003) Spatial and temporal evolution of basalts and magnesian
710	andesites ("bajaites") from Baja California, Mexico: the role of slab melts. Lithos, 66,
711	77–105.
712	Chiaradia, M., Merino, D., and Spikings, R. (2009) Rapid transition to long-lived deep
713	crustal magmatic maturation and the formation of giant porphyry-related
714	mineralization (Yanacocha, Peru). Earth and Planetary Science Letters, 288, 505–515.
715	Church, S.E. (1976) The Cascade Mountains revisited: A re-evaluation in light of new lead
716	isotopic data. Earth and Planetary Science Letters, 29, 175–188.
717	Clynne, M.A. (1993) Geologic studies of the Lassen Volcanic Center, Cascade Range,
718	California, 404 p. Ph.D. dissertation, University of California Santa Cruz.
719	Clynne, M.A., and Borg, L.E. (1997) Olivine and chromian spinel in primitive calc-alkaline
720	and tholeiitic lavas from the southernmost Cascade Range, California: a reflection of
721	relative fertility of the source. Canadian Mineralogist, 35, 453-472.

722	Conrey, R.M., Hooper, P.R., Larson, P.B., Chesley, J., and Ruiz, J. (2001) Trace element and
723	isotopic evidence for two types of crustal melting beneath a High Cascade volcanic
724	center, Mt. Jefferson, Oregon. Contributions to Mineralogy and Petrology, 141, 710-
725	732.
726	Cooper, L.B., Plank, T., Arculus, R.J., Hauri, E.H., Hall, P.S., and Parman, S.W. (2010)
727	High-Ca boninites from the active Tonga Arc. Journal of Geophysical Research, 115,
728	B10206.
729	Cousens, B.L., Allan, J.F., Leybourne, M.I., Chase, R.L., and Van Wagoner, N. (1995)
730	Mixing of magmas from enriched and depleted mantle sources in the northeast
731	Pacific: West Valley segment, Juan de Fuca Ridge. Contributions to Mineralogy and
732	Petrology, 120, 337–357.
733	Crawford, A.J., Falloon, T.J., and Green, D.H. (1989) Classification, petrogenesis and
734	tectonic setting of boninites. In A.J. Crawford, Ed., Boninites, p. 1-49. Unwin
735	Hyman, London.
736	Defant, M.J., and Drummond, M.S. (1990) Derivation of some modern arc magmas by
737	melting of young subducted lithosphere. Nature, 347, 662-665.
738	Falloon, T.J., Danyushevsky, L.V., Crawford, A.J., Meffre, S., Woodhead, J.D., and
739	Bloomer, S.H. (2008) Boninites and Adakites from the Northern Termination of the
740	Tonga Trench: Implications for Adakite Petrogenesis. Journal of Petrology, 49, 697-
741	715.

742	Fujimaki, H., Tatsumoto, M., and Aoki, K. (1984) Partition coefficients of Hf, Zr, and REE
743	between phenocrysts and groundmasses. Journal of Geophysical Research, 89, B662-
744	B672.
745	Gaetani, G.A., Kent, A.J.R., Grove, T.L., Hutcheon, I.D., and Stolper, E.M. (2003)
746	Mineral/melt partitioning of trace elements during hydrous peridotite partial melting.
747	Contributions to Mineralogy and Petrology, 145, 391-405.
748	Gaffney, A.M., Blichert-Toft, J., Nelson, B.K., Bizzarro, M., Rosing, M., and Albarède, F.
749	(2007) Constraints on source-forming processes of West Greenland kimberlites
750	inferred from Hf-Nd isotope systematics. Geochimica et Cosmochimica Acta, 71,
751	2820–2836.
752	Gill, J.B. (1981) Orogenic andesites and plate tectonics, 390 p. Springer-Verlag, Berlin.
753	Green, N.L. (2006) Influence of slab thermal structure on basalt source regions and melting
754	conditions: REE and HFSE constraints from the Garibaldi volcanic belt, northern
755	Cascadia subduction system. Lithos, 87, 23–49.
756	Green, N.L., and Harry, D.L. (1999) On the relationship between subducted slab age and arc
757	basalt petrogenesis, Cascadia subduction system, North America. Earth and planetary
758	science letters, 171, 367–381.
759	Green, N.L., and Sinha, A.K. (2005) Consequences of varied slab age and thermal structure
760	on enrichment processes in the sub-arc mantle of the northern Cascadia subduction
761	system. Journal of Volcanology and Geothermal Research, 140, 107–132.
	36
762	Gross, J.A. (2012) Felsic magmas from Mt. Baker in the northern Cascade arc: origin and
-----	--
763	role in andesite production, 111 p. M.S. thesis, Western Washington University,
764	Bellingham.
765	Grove, T., Parman, S., Bowring, S., Price, R., and Baker, M. (2002) The role of an H ₂ O-rich
766	fluid component in the generation of primitive basaltic andesites and andesites from
767	the Mt. Shasta region, N California. Contributions to Mineralogy and Petrology, 142,
768	375–396.
769	Grove, T.L., Kinzler, R.J., Baker, M.B., Donnelly-Nolan, J.M., and Lesher, C.E. (1988)
770	Assimilation of granite by basaltic magma at Burnt Lava flow, Medicine Lake
771	volcano, northern California: decoupling of heat and mass transfer. Contributions to
772	Mineralogy and Petrology, 99, 320–343.
773	Grove, T.L., Baker, M.B., Price, R.C., Parman, S.W., Elkins-Tanton, L.T., Chatterjee, N.,
774	and Müntener, O. (2005) Magnesian andesite and dacite lavas from Mt. Shasta,
775	northern California: products of fractional crystallization of H ₂ O-rich mantle melts.
776	Contributions to Mineralogy and Petrology, 148, 542-565.
777	Guffanti, M., and Weaver, C.S. (1988) Distribution of late Cenozoic volcanic vents in the
778	Cascade Range: Volcanic arc segmentation and regional tectonic considerations.
779	Journal of Geophysical Research, 93, 6513-6529.
780	Guillong, M., Meier, D.L., Allan, M.M., Heinrich, C.A., and Yardley, B.W.D. (2008) SILLS:
781	A MATLAB-based program for the reduction of laser ablation ICP-MS data of
782	homogeneous materials and inclusions. In P.J. Sylvester, Ed., Laser Ablation-ICP-MS 37

783	in the Earth Sciences: Current practices and outstanding issues, 40, p. 328-333.
784	Mineralogical Association of Canada, Vancouver.
785	Harkins, S.A., Appold, M.S., Nelson, B.K., Brewer, A.M., and Groves, I.M. (2008) Lead
786	isotope constraints on the origin of nonsulfide zinc and sulfide zinc-lead deposits in
787	the Flinders Ranges, South Australia. Economic Geology, 103, 353-364.
788	Hart, S.R. (1984) A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature,
789	309, 753–757.
790	Hart, S.R., and Davis, K.E. (1978) Nickel partitioning between olivine and silicate melt.
791	Earth and Planetary Science Letters, 40, 203–219.
792	Hildreth, W., Fierstein, J., and Lanphere, M. (2003) Eruptive history and geochronology of
793	the Mount Baker volcanic field, Washington. Geological Society of America Bulletin,
794	115, 729–764.
795	Irvine, Tn., and Baragar, Wra. (1971) A guide to the chemical classification of the common
796	volcanic rocks. Canadian Journal of Earth Sciences, 8, 523–548.
797	Jicha, B.R., Hart, G.L., Johnson, C.M., Hildreth, W., Beard, B.L., Shirey, S.B., and Valley,
798	J.W. (2009) Isotopic and trace element constraints on the petrogenesis of lavas from
799	the Mount Adams volcanic field, Washington. Contributions to Mineralogy and
800	Petrology, 157, 189–207.
801	Jochum, K.P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D.E., Stracke, A.,
802	Birbaum, K., Frick, D.A., and others (2011) Determination of reference values for

803	NIST SRM 610-617 glasses following ISO guidelines. Geostandards and
804	Geoanalytical Research, 35, 397–429.
805	Johnson, D.M., Hooper, P.R., and Conrey, R.M. (1999) XRF analysis of rocks and minerals
806	for major and trace elements on a single low dilution Li-tetraborate fused bead.
807	Advances in X-ray Analysis, 41, 843–867.
808	Kay, R.W. (1978) Aleutian magnesian andesites: melts from subducted Pacific Ocean crust.
809	Journal of Volcanology and Geothermal Research, 4, 117–132.
810	Kelemen, P.B., Yogodzinski, G.M., and Scholl, D.W. (2003) Along-strike variation in the
811	Aleutian island arc: Genesis of high Mg# andesite and implications for continental
812	crust. Geophysical Monograph Series, 138, 223–276.
813	Kim, J., and Jacobi, R.D. (2002) Boninites: characteristics and tectonic constraints,
814	northeastern Appalachians. Physics and Chemistry of the Earth, 27, 109–147.
815	Knaack, C., Cornelius, S.B., and Hooper, P.R. (1994) Trace Element Analyses of Rocks and
816	Minerals by ICP-MS. GeoAnalytical Lab, Washington State University.
817	Kushiro, I. (1969) The system forsterite-diopside-silica with and without water at high
818	pressures. American Journal of Science, 267, 269–294.
819	Lange, R.A., Frey, H.M., and Hector, J. (2009) A thermodynamic model for the plagioclase-
820	liquid hygrometer/thermometer. American Mineralogist, 94, 494–506.

821	Leeman, W.P., Smith, D.R., Hildreth, W., Palacz, Z., and Rogers, N. (1990) Compositional
822	diversity of late Cenozoic basalts in a transect across the southern Washington
823	Cascades: implications for subduction zone magmatism. Journal of Geophysical
824	Research, 95, 19561–19582.
825	Leeman, W.P., Tonarini, S., Chan, L.H., and Borg, L.E. (2004) Boron and lithium isotopic
826	variations in a hot subduction zone-the southern Washington Cascades. Chemical
827	Geology, 212, 101–124.
828	Leeman, W.P., Lewis, J.F., Evarts, R.C., Conrey, R.M., and Streck, M.J. (2005) Petrologic
829	constraints on the thermal structure of the Cascades arc. Journal of Volcanology and
830	Geothermal Research, 140, 67–105.
831	Longerich, H.P., Jackson, S.E., and Günther, D. (1996) Laser ablation inductively coupled
832	plasma mass spectrometric transient signal data acquisition and analyte concentration
833	calculation. Journal of Analytical Atomic Spectrometry, 11, 899–904.
834	Macpherson, C.G., Dreher, S.T., and Thirlwall, M.F. (2006) Adakites without slab melting:
835	High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth
836	and Planetary Science Letters, 243, 581–593.
837	Martin, H., Smithies, R.H., Rapp, R., Moyen, JF., and Champion, D. (2005) An overview of
838	adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and
839	some implications for crustal evolution. Lithos, 79, 1–24.

840	Magna, T., Wiechert, U., Grove, T.L., and Halliday, A.N. (2006) Lithium isotope
841	fractionation in the southern Cascadia subduction zone. Earth and Planetary Science
842	Letters, 250, 428–443.
843	McCrory, P.A., Blair, J.L., Oppenheimer, D.H., and Walter, S.R. (2006) Depth to the Juan de
844	Fuca slab beneath the Cascadia subduction margin: A 3-D model for sorting
845	earthquakes. U.S. Geological Survey Data Series 91, p. 13.
846	http://pubs.usgs.gov/ds/91/
847	McCrory, P.A., Blair, J.L., Waldhauser, F., and Oppenheimer, D.H. (2012) Juan de Fuca slab
848	geometry and its relation to Wadati-Benioff zone seismicity. Journal of Geophysical
849	Research, 117, B09306.
850	Mitchell, A.L., and Grove, T.L. (2015) Melting the hydrous, subarc mantle: the origin of
851	primitive andesites. Contributions to Mineralogy and Petrology, 170, 13.
852	Mitchell, E.C., and Asmerom, Y. (2011) U-series isotope systematics of mafic magmas from
853	central Oregon: Implications for fluid involvement and melting processes in the
854	Cascade arc. Earth and Planetary Science Letters, 312, 378–389.
855	Moore, N.E., and DeBari, S.M. (2012) Mafic magmas from Mount Baker in the northern
856	Cascade arc, Washington: probes into mantle and crustal processes. Contributions to
857	Mineralogy and Petrology, 163, 521–546.

858	Mullen, E.K., and McCallum, I.S. (2014) Origin of Basalts in a Hot Subduction Setting:
859	Petrological and Geochemical Insights from Mt. Baker, Northern Cascade Arc.
860	Journal of Petrology, 55, 241–281.
861	Mullen, E.K., and Weis, D. (2013) Sr-Nd-Hf-Pb isotope and trace element evidence for the
862	origin of alkalic basalts in the Garibaldi Belt, northern Cascade arc: Alkalic Basalts,
863	Northern Cascade Arc. Geochemistry, Geophysics, Geosystems, 14, 3126-3155.
864	(2015) Evidence for trench-parallel mantle flow in the northern Cascade Arc from
865	basalt geochemistry. Earth and Planetary Science Letters, 414, 100–107.
866	Müntener, O., Kelemen, P.B., and Grove, T.L. (2001) The role of H ₂ O during crystallization
867	of primitive arc magmas under uppermost mantle conditions and genesis of igneous
868	pyroxenites: an experimental study. Contributions to Mineralogy and Petrology, 141,
869	643–658.
870	Nelson, B.K. (1995) Fluid flow in subduction zones: evidence from Nd-and Sr-isotope
871	variations in metabasalts of the Franciscan complex, California. Contributions to
872	Mineralogy and Petrology, 119, 247–262.
873	Oleskevich, D.A., Hyndman, R.D., and Wang, K. (1999) The updip and downdip limits to
874	great subduction earthquakes: Thermal and structural models of Cascadia, south
875	Alaska, SW Japan, and Chile. Journal of Geophysical Research, 104, 14965–14991.
876	Plank, T., and Langmuir, C.H. (1998) The chemical composition of subducting sediment and
877	its consequences for the crust and mantle. Chemical Geology, 145, 325-394.

878	Putirka, K.D. (2008) Thermometers and barometers for volcanic systems. Reviews in
879	Mineralogy and Geochemistry, 69, 61–120.

- Richards, J.P., and Kerrich, R. (2007) Adakite-like rocks: their diverse origins and
 questionable role in metallogenesis. Economic Geology, 102, 537–576.
- 882 Ruscitto, D.M., Wallace, P.J., and Kent, A.J.R. (2011) Revisiting the compositions and
- volatile contents of olivine-hosted melt inclusions from the Mount Shasta region:
- 884 implications for the formation of high-Mg andesites. Contributions to Mineralogy and
- 885 Petrology, 162, 109–132.
- 886 Schmidt, M.E., and Grunder, A.L. (2011) Deep Mafic Roots to Arc Volcanoes: Mafic
- Recharge and Differentiation of Basaltic Andesite at North Sister Volcano, Oregon
 Cascades. Journal of Petrology, 52, 603–641.
- 889 Schmidt, M.E., Grunder, A.L., and Rowe, M.C. (2008) Segmentation of the Cascade Arc as
- indicated by Sr and Nd isotopic variation among diverse primitive basalts. Earth and
 Planetary Science Letters, 266, 166–181.
- Shaw, S. (2011) H₂O contents in olivine-hosted melt inclusions from primitive magmas in
 the northern Cascade Arc, 76 p. M.S. thesis, Western Washington University,
 Bellingham.
- Sisson, T.W., and Grove, T.L. (1993) Experimental investigations of the role of H₂O in calcalkaline differentiation and subduction zone magmatism. Contributions to Mineralogy
 and Petrology, 113, 143–166.

898	Sisson, T.W., Salters, V.J.M., and Larson, P.B. (2014) Petrogenesis of Mount Rainier
899	andesite: Magma flux and geologic controls on the contrasting differentiation styles at
900	stratovolcanoes of the southern Washington Cascades. Geological Society of America
901	Bulletin, 126, 122–144.
902	Skulski, T., Minarik, W., and Watson, E.B. (1994) High-pressure experimental trace-element
903	partitioning between clinopyroxene and basaltic melts. Chemical Geology, 117, 127-
904	147.
905	Stern, C.R., and Kilian, R. (1996) Role of the subducted slab, mantle wedge and continental
906	crust in the generation of adakites from the Andean Austral Volcanic Zone.
907	Contributions to mineralogy and petrology, 123, 263-281.
908	Straub, S.M., LaGatta, A.B., Martin-Del Pozzo, A.L., and Langmuir, C.H. (2008) Evidence
909	from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic
910	andesites from the central Mexican Volcanic Belt: andesite petrogenesis in Central
911	MVB. Geochemistry, Geophysics, Geosystems, 9, Q030007.
912	Straub, S.M., Gomez-Tuena, A., Stuart, F.M., Zellmer, G.F., Espinasa-Perena, R., Cai, Y.,
913	and Iizuka, Y. (2011) Formation of hybrid arc andesites beneath thick continental
914	crust. Earth and Planetary Science Letters, 303, 337-347.
915	Streck, M.J., Leeman, W.P., and Chesley, J. (2007) High-magnesian andesite from Mount
916	Shasta: A product of magma mixing and contamination, not a primitive mantle melt.
917	Geology, 35, 351–354.

918	Sun, S., and McDonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts:
919	implications for mantle composition and processes. Geological Society Special
920	Publications, 42, 313–345.
921	Syracuse, E.M., van Keken, P.E., and Abers, G.A. (2010) The global range of subduction
922	zone thermal models. Physics of the Earth and Planetary Interiors, 183, 73–90.
923	Tabor, R.W., and Crowder, D.F. (1969) On batholiths and volcanoes: Intrusion and eruption
924	of late Cenozoic magmas in the Glacier Peak area, North Cascades, Washington. U.S.
925	Geological Survey Professional Paper 604, 67 p.
926	Tatsumi, Y., and Hanyu, T. (2003) Geochemical modeling of dehydration and partial melting
927	of subducting lithosphere: Toward a comprehensive understanding of high-Mg
928	andesite formation in the Setouchi volcanic belt, SW Japan. Geochemistry,
929	Geophysics, Geosystems, 4, 1081.
930	Tatsumi, Y., Shukuno, H., Sato, K., Shibata, T., and Yoshikawa, M. (2003) The petrology
931	and geochemistry of high-magnesium andesites at the western tip of the Setouchi
932	Volcanic Belt, SW Japan. Journal of Petrology, 44, 1561–1578.
933	Taylor, D.D. (2001) Petrology and geochemistry of mafic lavas near Glacier Peak, North
934	Cascades, Washington, M.S. thesis, Western Washington University, Bellingham.
935	Walowski, K.J., Wallace, P.J., Hauri, E.H., Wada, I., and Clynne, M.A. (2015) Slab melting
936	beneath the Cascade Arc driven by dehydration of altered oceanic peridotite. Nature
937	Geoscience, 8, 404–408.

938	Walowski, K.J., Wallace, P.J., Clynne, M.A., Rasmussen, D.J., and Weis, D. (2016) Slab
939	melting and magma formation beneath the southern Cascade arc. Earth and Planetary
940	Science Letters, 446, 100–112.
941	Wang, Z., and Gaetani, G.A. (2008) Partitioning of Ni between olivine and siliceous eclogite
942	partial melt: experimental constraints on the mantle source of Hawaiian basalts.
943	Contributions to Mineralogy and Petrology, 156, 661–678.
944	White, W.M., Hofmann, A.W., and Puchelt, H. (1987) Isotope geochemistry of Pacific mid-
945	ocean ridge basalt. Journal of Geophysical Research, 92, 4881–4893.
946	Wilson, D.S. (1993) Confidence intervals for motion and deformation of the Juan de Fuca
947	plate. Journal of Geophysical Research, 98, 16053-16071.
948	Yogodzinski, G.M., and Kelemen, P.B. (1998) Slab melting in the Aleutians: implications of
949	an ion probe study of clinopyroxene in primitive adakite and basalt. Earth and
950	Planetary Science Letters, 158, 53–65.
951	Yogodzinski, G.M., and Kelemen, P.B. (2007) Trace elements in clinopyroxenes from
952	Aleutian xenoliths: Implications for primitive subduction magmatism in an island arc.
953	Earth and Planetary Science Letters, 256, 617–632.
954	Yogodzinski, G.M., Kay, R.W., Volynets, O.N., Koloskov, A.V., and Kay, S.M. (1995)
955	Magnesian andesite in the western Aleutian Komandorsky region: implications for
956	slab melting and processes in the mantle wedge. Geological Society of America
957	Bulletin, 107, 505–519.

- 958 Yogodzinski, G.M., Lees, J.M., Churikova, T.G., Dorendorf, F., Wöerner, G., and Volynets,
- 959 O.N. (2001) Geochemical evidence for the melting of subducting oceanic lithosphere
- 960 at plate edges. Nature, 409, 500–504.

962	Figure 1. Map of the Cascade Arc and associated subduction zone. Black and white triangles
963	represent volcanic centers of interest and solid black triangles represent major volcanic
964	centers. Dashed line shows the Guffanti and Weaver (1988) Garibaldi Volcanic Belt
965	segment. Subduction rates are from McCrory et al. (2012) and Braunmiller and Nábělek
966	(2002). Modified from Borg and Clynne (1998).
967	Figure 2. Graphical representation of olivine Fo contents; Fo = molar $(Mg/(Mg+Fe))*100$.
968	TP: Tarn Plateau, GC: Glacier Creek, LC: Lightning Creek, M: mafic inclusion, I:
969	intermediate inclusion. Asterisk (*) indicates EDS data. a Fo of analyzed olivine. b Fo of
970	analyzed olivine relative to host rock Mg# with calculated equilibrium line. Olivine/liquid
971	Fe-Mg partition coefficient uses estimated Fe^{2+}_{liq} (Sisson and Grove 1993). Additional data
972	from Taylor (2001), Baggerman and DeBari (2011), and Moore and DeBari (2012).
973	Figure 3. Graphical representation of Mg contents in clinopyroxene; Mg# = molar
974	$(Mg/(Mg+Fe^{2+}))*100$. a Mg# of analyzed clinopyroxene. b Mg# of analyzed clinopyroxene
975	relative to host rock Mg# with calculated equilibrium line. Clinopyroxene/liquid Fe-Mg
976	partition coefficient uses calculated $Fe^{2+}_{liq}=0.86$ total Fe_{liq} (Sisson and Grove 1993).
977	Abbreviations, asterisk, and additional data are the same as Figure 2.
978	Figure 4. Graphical representation of An in plagioclase; An = (Ca/(Ca+Na+K))*100.
979	Abbreviations, asterisk, and additional data are the same as Figure 2.
980	Figure 5. Olivine core Fo versus Ni contents (ppm). Pyroxenite and peridotite mantle source
981	fields are from Straub et al. (2011). Tarn Plateau olivine is not in equilibrium with a mantle
982	source, and low Ni contents in olivine are not consistent with fractionation from partial melts
983	of a pyroxenite mantle. Glacier Creek olivine shows a trend (dashed line) that is similar to

984	olivine found in HMA and HMBA from the Mexican Volcanic Belt (Straub et al. 2008,	

- 2011), but no mantle-equilibrium olivine has been preserved. Lightning Creek olivine is in
 equilibrium with a peridotite mantle.
- 987 Figure 6. Whole rock major element variation diagrams, with additional Cascade Arc data
- 988 for comparison. CAB: calcalkaline basalt, HMA: high-Mg andesite, PMA: primitive
- magnesian andesite. Mount Baker CAB compositions are from Moore and DeBari (2012;
- 990 Lake Shannon), Glacier Peak CAB compositions from Taylor (2001; Indian Pass), Mount
- 991 Shasta data include Shastina, Sargents, and PMA compositions from Grove et al. (2002,
- 992 2005), Aleutian adakites compositions are from Yogodzinski and Kelemen (1998), Tonga
- boninites compositions are from Falloon et al. (2008). $Mg\# = (Mg/(Mg+Fe^{2+}))*100$, with
- 994 Fe²⁺ calculated as 0.85 for Mount Baker rock units (Moore and DeBari 2012) and 0.80 for
- 995 Glacier Peak rock units (Shaw 2011).
- **Figure 7.** Whole rock trace element variation diagrams, with additional Cascade Arc data for
- 997 comparison. Abbreviations and data are the same as Figure 6.
- 998 Figure 8. a Primitive mantle normalized whole rock trace element concentrations. b d
- 999 Chondrite normalized whole rock REE concentrations. Primitive mantle, chondrite, and N-
- 1000 MORB (normal mid-ocean ridge basalt) data from Sun and McDonough (1989). Mount
- 1001 Baker dacite composition is from Gross (2012) and Glacier Peak dacite composition is from
- 1002 DeBari et al. (in review). All other data are the same as Figure 6.
- 1003 **Figure 9.** Whole rock isotopic compositions. **a** ε_{Nd} versus ${}^{87}Sr/{}^{86}Sr$. **b** ${}^{207}Pb/{}^{204}Pb$ versus
- ²⁰⁶Pb/²⁰⁴Pb. Tarn Plateau data are from Moore and DeBari (2012) and Mullen and McCallum

(2014). Lightning Creek data are from DeBari et al. (in review), and circles with dark
outlines represent samples with gradual isotopic enrichment. Cascade CAB consist of
calcalkaline basalts through andesites and is compiled from Tabor and Crowder (1969),
Grove et al. (1988, 2002), Bullen and Clynne (1990), Leeman et al. (1990, 2004, 2005),
Baker et al. (1991), Bacon et al. (1994, 1997), Borg et al. (1997), Green and Harry (1999),
Conrey et al. (2001), Green and Sinha (2005), Magna et al. (2006), Schmidt et al. (2008),
Jicha et al. (2009), Mitchell and Asmerom (2011), Schmidt and Grunder (2011), Moore and
DeBari (2012), Mullen and Weis (2013), Mullen and McCallum (2014), and Sisson et al.
(2014). Northern Hemisphere Reference Line (NHRL) is from Hart (1984), Juan de Fuca
MORB compositions are from White et al. (1987). Compositional ranges for NE Pacific open
ocean sediments and Cascadia continental derived sediments are from Church (1976).
Cascadia bulk subducted sediment composition is from Plank and Langmuir (1998).
Figure 10. Chondrite normalized clinopyroxene REE abundances and variations in whole
rock SiO ₂ . a Tarn Plateau clinopyroxene. b Glacier Creek clinopyroxene. c Lightning Creek
clinopyroxene.
Figure 11. Clinopyroxene trace element contents and ratios versus Mg#. a Yb contents. b
Chondrite normalized Nd/Yb contents. Lines represent $(Nd/Yb)_N$ of REE equilibrium
clinopyroxene (REC) calculated using partition coefficients of Gaetani et al. (2003) for Tarn
Plateau and Lightning Creek HMBA and Fujimaki et al. (1984) for Glacier Creek HMA. c Sr
contents. Aleutian adakites data from Yogodzinski and Kelemen (1998). See text for

1025 explanation of REC.

Figure 12. BSE photomicrograph of a Tarn Plateau clinopyroxene grain from the high Mg#
population, with an accompanying digitized image to highlight the positive relationship
between Mg# and (Nd/Yb)_N in different chemical zones. Circles represent EMP and LA-ICPMS analysis location.

1030 Figure 13. Chondrite-normalized REE patterns for clinopyroxene cores and rims, whole

1031 rock, and equilibrium liquid (REL) compositions calculated using clinopyroxene REE

1032 concentrations and partition coefficients described in Figure 11. See text for explanation of

1033 REL. White scale bars in images are 500 µm. Spots represent EMP and LA-ICP-MS analysis

1034 locations and their corresponding Mg#, with dark tones showing core analyses and light

1035 tones showing rim analyses. a Tarn Plateau clinopyroxene. b Glacier Creek clinopyroxene. c

1036 Lightning Creek clinopyroxene.

1037 Figure 14. Whole rock primitive mantle-normalized Sr/P versus SiO₂ wt%. Dashed line

1038 represented $(Sr/P)_N$ boundary (3.3) between calcalkaline non-magnesian lavas and magnesian

1039 andesites from the Lassen Volcanic Center (Clynne and Borg 1997). Abbreviations and data

1040 are the same as Figure 5.

1041 Figure 15. Fractional crystallization (a - d) and mass balance (e - f) models using primitive

1042 Mount Baker and Glacier Peak CAB as parental melts with a mineral assemblage of garnet

1043 (gnt), clinopyroxene (cpx), orthopyroxene (opx), and olivine (olv) \pm hornblende (hbl). **a**, **c**,

and **e** have a pyroxenite mineral assemblage (+hbl) and **b**, **d**, and **f** have a harzburgite mineral

- assemblage. Partition coefficients are listed in Table 5. Mineral compositions are from
- 1046 Müntener et al. (2001) and the adakites field is from Macpherson et al. (2006). Mount Baker

- 1047 data are from Moore and DeBari (2012; Lake Shannon) and Glacier Peak data are from
- 1048 Taylor (2001; Indian Pass).
- 1049 **Figure 16.** Simplified schematic showing petrogenetic interpretations for the three rock
- 1050 units. a Tarn Plateau HMBA: mixing between (1) a hydrous, LILE-rich, intermediate slab
- 1051 melt that interacted with the overlying mantle to become Mg-rich and (2) a differentiate of
- 1052 depleted mantle-derived basalt. **b** Glacier Creek HMA: (1) partial melt of the mantle that was
- 1053 hydrated by a LILE-rich slab component and underwent fractionation, mixing, and
- 1054 homogenization with (2) late-stage addition of a high-Ni olivine-bearing mantle-derived
- 1055 mafic component. c Lightning Creek HMBA: mixing between (1) partial melt of a depleted
- 1056 mantle that was hydrated by a LILE-rich slab component (mafic inclusion liquid), (2) a
- 1057 crustally-derived dacite (DeBari et al. in review), and (3) andesite that fractionated from
- 1058 mantle partial melts (intermediate inclusion liquid).

Table 1	le 1 Petrographic summary								
Rock	Phenocryst	Phenocryst	Mg# or An	Zoning	Size Range	Shape	Twinning	Disequilibrium Textures	Additional Observations
Unit	(%)	Modes	(cores)		(mm)				
MBVF							18.3		1*7
Tarn	30-35	Cpx (40-65%)	88-94	sec ¹ , rev ^{1&2} ,	0.25-2.8	eu-sub	poly ¹⁶²	Rounded cores (uncommon), patchy to	Composite crystals (common) ¹⁶² , in clots
Plateau			73-792	norm	0.25-2.02		sim ¹⁶² , osc ²	blebby cores (common), emb (rare)	(common) ¹⁴² , Fe-rich cores ²
HBMA		Plag (25-45%)	54-58 ^{1 EDS}	norm ^{1&2} , osc ² ,	0.5-4.9	eu-an	poly	Fine siev ¹ , coarse siev ² , thin ovg rims ¹⁸² ,	In clots with cpx (common)& olv
			83-8827	patiez	0.25-3.72			glass & pyroxene inclusions	(uncommon)
		Olv (10-20%)	78-85	norm	0.25-2.9	eu-an		Emb, thin rxr	Fe & S inclusions (rare), Cr-ox (uncommon)
		Opx (<3%)	68-70 ⁴	rev	0.5-1.0	sub		Ratty rxr (weak, uncommon)	
		Groundmass: hypo	crystalline (pyro	oxene granules, m	icrolitic plag, I	Fe-Ti ox, a	bundant iddin	igsite	187
Glacier	20-25	Plag (50-70%)	43-58	osc ¹ , norm ¹⁰²² ,	0.25-4	eu-an	poly	Unsiev-coarse siev', ovg rims (thick', thin')	In clots with cpx & opx ⁴⁶²
Creek			43-542	rev ¹⁸²²	0.3-1.32			glass & pyroxene inclusions1, fine siev2	
HMA		Cpx (10-23%)	76-80	rev, pat	0.25-2.0	eu-an	sim, poly	Blebby, rxr (rare)	Composite crystals (rare)
		Opx (10-20%)	70-73 ¹¹	rev	0.25-1.5	eu-sub		Emb, blebby inclusions	Tabular
		Olv (3-7%)	81-86 ¹	norm ^{1&2}	0.5-2.0	sub-an		Emb ^{1&2} , opx rxr (thin ¹ , thick ²), ox inclusions ^{1&2}	Sparse Cr-ox1&2, other ox1&2, in
			71-77 ²						monomineralic clots1&2
		Groundmass: hype	crystalline (cpx	granules, microli	tic plag, abund	ant Fe-Ti o	ox, rare large ((0.2-0.5 mm) and res xenocrystic Cr-ox	
Glacier Pea	k		1.4	167	,		1.7	1 7	7
Lightning	20-30	Plag (40-60%)	48, 65-66	oscias	0.5-3.0	eu-sub	poly 15	Fine siev (core', rim ²), coarse siev with solid	Distinct osc zoning', some in clots
Creek			42-442		0.25-2.42			core ³ , pyroxene & glass inclusions ¹⁻³ , calcic	with twinned clinopyroxené, often
HMBA			47-89 ³		0.4-4.33			ovg rims ²⁴⁰⁵	elongate and tabular ²
Hybridize	d	Cpx (20-30%)	86-89 ¹	sec ^{1&2} ,	0.3-1.51&2	eu-sub	sim ^{1&2}	Thin rxr ^{1&2} , patchy cores (slight) ^{1&2}	Some composite ^{1&2} , in clots with plag ² ,
magmatic			80-84 ²	norm ^{1&2} , rev ^{1&2}			poly ^{1&2}		grown around opx cores (uncommon)
componen	ıt	Olv (15-20%)	80, 89-91	norm	0.25-3.5	eu-an		Emb, thin opx rxr, ox inclusions	Cr-ox, other ox
		Opx (5-10%)	77-82 ^{1V}	pat (weak)	0.5-2	eu-an		Blebby (slight), res rims, glass inclusions	Some elongate, rare ox inclusions
		Groundmass: hype	crystalline (don	inantly microlition	plag up to 0.2	5 mm, Fe-	Ti ox		
Mafic	5-7	Olv (75-85%)	88-89	norm	0.25-1.1	eu-sub		Emb (weak), ox inclusions	Abundant Cr-ox
inclusion		Cpx (15-25%)	87 ^{EDS}		≤0.5	sub-an		Ratty rims, ox inclusions (uncommon)	
		Groundmass: holo	crystalline (stror	igly zoned and ab	undant plag, c	linopyrox	ene granules, s	some acicular ilm, rare apt	
Intermedi	ate	Plag (70-80%)	47	osc	0.4-3.6	eu-sub	poly	Unsiev, patchy cores, cpx ox glass & apt	In clots with all other modes (common),
inclusion	40-50			pat			sim	inclusions, ratty rims (weak) and/or	tabular
								fine siev near rim (uncommon)	
		Opx (10-15%)	65-70 ^{1V}	rev	0.5-2.0	eu-an		Emb, large ox inclusions, cpx jackets (rare)	Some very elongate, in clots
		Cpx (5-10%)	75-80	rev, pat (rare)	0.25-1.0	sub-an	sim (rare)	Emb, abundant ox inclusions	Large ox inc (≤180 µm), in clots
		Olv (≤5%)	78-82 ^{EDS}	norm	≤0.5	an		Opx rxr, ox inclusions	In clots with opx
		Groundmass: hype	crystalline (abu	ndant glass, micro	olitic plag, pyro	oxene grar	ules, Fe-Ti o	x, and bladed ilm	
In cpx, Mg#	= (Mg/(Mg+Fe	⁺))*100; in olivine,	Fo is the same a	s Mg# for cpx exe	$ept Fe = Fe^{Tota}$	¹ ; in plag, <i>1</i>	An = (Ca/(Ca-	+Na+K))*100.	none observed
1,2,3 each num	ber represents a	different population	ns (A: more abu	ndant). If no num	ber is given on	ly one pop	ulation was o	bserved.	EDS qualitative analyses
Modes: Olv:	olivine, cpx: c	linopyroxene, opx:	orthopyroxene, p	olag: plagioclase,	ox : oxide, ilm	: ilmenite	, apt : apatite		
Zoning:norm	n: normal, rev:	reverse, osc: oscill	atory, sec: secto	r, pat: patchy		Twinning	g:poly: polysy	nthetic, sim: simple	
Textures: en	ib: embayed, ra	r: reaction rims, re	s: resorbed, sien	: seived, ovg: o	vergrowth	Shape: et	1: euhedral, su	ib: subhedral, an: andehral	
ⁱ Data from N	Data from Moore & DeBari (2012), ¹¹ Partial data from Baggerman & DeBari (2011), ¹¹ Partial data from Taylor (2001)								

Table 2	T T	c	arve enno	Syloxen	N -	G	- E	c :	pin) ucu	D	using L/	-ICI -N		3.71	<u> </u>
Label	L	Sr	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Tarn Plateau	u HMI	BA			<i>c</i> -				<i></i>						
2_2_2	m	44	0.4	2.0	3.2	1.1	0.4	1.4	0.2	1.5	0.3	0.9	0.1	0.6	0.1
2_2_3	m	40 51	1.0	5.1	6.2 5.0	2.4	0.7	2.6	0.4	2.9	0.6	1.5	0.2	1.4	0.2
2_2_4	I C	63	0.8	23	3.0	1.0	0.3	2.1	0.5	2.0	0.4	0.4	0.1	0.9	0.2
2_{3}^{2}	m	74	0.4	2.0	2.9	0.7	0.3	0.9	0.1	0.8	0.1	0.4	0.0	0.3	0.1
$\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$	m	69	0.3	1.7	2.4	0.6	0.3	0.9	0.1	0.8	0.1	0.5	0.0	0.4	0.0
2_3_4	r	63	0.4	1.8	2.6	0.9	0.4	1.1	0.2	1.1	0.2	0.5	0.0	0.4	0.1
3_2_1	с	36	2.1	9.7	12.1	4.9	1.1	6.1	1.0	6.2	1.3	3.7	0.5	3.0	0.4
3_2_2	c	39	1.5	7.0	9.4	3.0	0.9	4.3	0.7	4.7	1.0	2.1	0.4	2.2	0.3
3_2_3	m	34	1.7	7.5	9.5	3.5	1.0	4.5	0.7	5.0	0.9	2.8	0.3	2.1	0.3
3_2_4 3_2_5	r	36	1.2	3.2 83	10.9	2.3	0.7	2.9	0.5	5.2 5.3	0.7	2.0	0.5	1.9	0.5
$3_{2_{3}}$	c	45	0.8	4.0	5.0	2.0	0.6	2.5	0.4	2.4	0.5	1.5	0.2	1.0	0.2
3^{-5}_{-2}	m	49	0.9	4.1	5.3	1.9	0.6	2.3	0.4	2.4	0.5	1.3	0.2	1.1	0.2
3 5 3	m	57	0.9	4.0	5.1	1.9	0.6	1.9	0.3	2.2	0.4	1.2	0.2	0.9	0.1
3_5_4	r	63	0.9	4.6	6.1	1.9	0.7	2.3	0.4	2.2	0.4	1.1	0.1	1.1	0.1
4_3_1	с	68	0.8	4.2	5.4	1.8	0.6	2.0	0.3	2.2	0.4	1.2	0.2	0.8	0.1
4_3_2	m	70	0.4	2.2	2.5	1.0	0.3	1.2	0.1	1.1	0.2	0.6	0.1	0.3	0.0
$4_{3_{4}}$	m	87	0.7	3.0	3.6	1.4	0.3	1.0	0.2	1.0	0.2	0.6	0.1	0.3	0.1
4_3_4	r	00 88	1.0	4./	0.0	2.2	0.7	2.7	0.4	2.4	0.0	1.5	0.2	1.2	0.2
$4_{3_{3_{1}}}$	nn C	00 36	23	10.6	13.7	1.1	0.5	7.1	1.0	6.7	1.3	0.4 4 4	0.1	0.4 4.0	0.1
4 4 3	m	57	1.6	7.1	9.3	3.2	0.8	3.4	0.5	3.0	0.6	2.0	0.3	1.7	0.2
4 4 4	r	57	0.9	4.3	5.3	1.9	0.6	2.7	0.4	2.1	0.4	1.1	0.2	0.8	0.1
4_4_5	с	35	2.5	10.9	13.4	4.9	1.2	6.1	1.0	6.6	1.3	3.8	0.6	3.1	0.5
6_3_2	m	68	1.1	4.6	5.7	2.1	0.8	2.4	0.4	2.5	0.5	1.4	0.2	1.1	0.1
6_3_3	r	65	1.2	5.4	6.7	2.9	0.8	2.9	0.4	3.2	0.5	1.6	0.2	1.4	0.2
Glacier Cree	ek HM	1A													
5_1_1	с	36	3.7	14.5	16.8	6.4	1.3	6.3	1.0	7.4	1.4	3.6	0.5	3.7	0.4
5_1_2	m	39	4.6	19.5	20.5	7.1	1.3	7.8	1.2	8.6	1.7	4.6	0.6	4.3	0.6
$5_{1_{3}}$	r	43	2.1	9.2	11.7	3.5	1.1	4.3	0.8	4.9	0.9	2.7	0.3	2.2	0.3
5_1_4 5_3_1	r	34 34	4.5	20.3	23.4	8.0 6.4	1.5	10.5	1.0	10.4	2.1	0./ 5.3	0.9	5.4 4.4	0.8
$5_{3_{2}}^{5_{3}}$	m	37	5.0 4.1	18.0	23.4	0.4 8 1	1.4	93	1.4	0.0	1.8	5.5	0.7	4.4	0.7
7_{12}^{-12}	r	51	2.1	10.0	12.1	4.1	1.2	5.1	0.8	5.0	0.8	2.8	0.4	2.3	0.3
7 1 3	m	35	4.3	19.2	23.9	7.6	1.4	9.0	1.5	10.2	2.3	5.7	0.8	5.3	0.8
7_3_1	с	33	2.9	13.1	16.5	5.6	1.2	6.7	1.2	7.0	1.4	4.0	0.6	3.9	0.6
7_3_2	c	28	3.4	16.0	19.7	6.7	1.3	8.7	1.5	9.2	1.9	5.4	0.7	4.4	0.6
7_3_3	r	33	2.4	12.0	15.0	5.4	1.2	6.4	1.0	7.0	1.4	4.0	0.5	3.6	0.5
7_3_4	r	35	1.6	6.9	8.5	3.2	0.8	4.2	0.6	3.5	0.7	2.0	0.3	1.9	0.2
12_5_1	c	39 12	2.9	12.3	15.8	4.9	1.2	6.6 7 7	1.1	6.4 7.0	1.5	5.5	0.5	3.6	0.5
$12_{5_{2}}$	c	45 36	3.9	10.9	173	6.5	1.4	67	1.2	7.9	1.0	5.0 4 3	0.6	4.1	0.5
$12_{5_{4}}$	r	33	4.0	17.2	20.6	6.9	1.7	8.2	1.2	8.6	1.7	5.0	0.6	4.3	0.8
Lightning C	rook L	IMRA		17.2	20.0	0.5		0.2	1.2	0.0	,	0.0	0.0		0.0
1 3 2	m m	52	24	12.0	14.8	49	14	5.6	0.7	5.0	0.8	23	03	1.8	03
$1_{3_{3}}^{1_{3}}$	r	48	2.0	9.9	10.8	2.7	1.4	4.3	0.6	3.8	0.8	2.2	0.3	1.7	0.2
2 ¹ 2I	m	35	2.8	12.2	15.2	4.6	1.1	6.0	0.8	5.2	0.9	2.9	0.4	2.0	0.3
2_1_3 I	r	60	1.8	9.0	10.8	3.4	1.2	3.4	0.6	3.2	0.6	2.1	0.3	1.5	0.2
2_5_1	c	58	2.4	11.0	12.6	4.3	1.1	4.6	0.6	3.8	0.8	2.1	0.3	1.4	0.2
2_5_2	m	54	2.6	12.2	16.2	5.2	1.3	5.5	0.8	4.5	1.0	2.7	0.3	2.1	0.3
2_{5_3}	r	63	1.7	7.7	9.9	3.3	0.9	3.1	0.5	3.5	0.6	1.7	0.2	1.3	0.2
$0_{12} 2_{12} 2_{12}$	m	20 50	5.3	24.6	29.3 14.4	10.1	1.5	12.2	1.9	13.0	2.6	/.5	1.0	0.4 1 4	0.9
12_2	m	35	2.1	8.6	14.4	4.1	1.1	4.1	0.0	3.2 3.7	0.0	2.0	0.2	1.4	0.2
12_2_3 12_2_4	r	56	2.0	11.0	13.7	5.0	1.1	5.9	0.0	3.7	0.8	2.0	0.3	2.2	0.2
12 4 2	m	57	2.0	9.2	11.0	3.6	1.0	3.6	0.5	3.2	0.6	1.6	0.2	1.2	0.2
12_4_3	m	44	1.8	8.8	11.2	3.6	1.1	3.5	0.6	3.6	0.6	1.8	0.2	1.6	0.2
L: locality of	f anal	ysis sp	ot (: core,	<i>m</i> : mid	, <i>r</i> : rim)	. Labels	are as fo	ollows: s	ample#_	clinopy	roxene#	_analysi	s#. For	example	;,

Table 2 Parresentative alignmentation trace element concentrations (npm) determined using LA ICP MS

2_1_1 represents sample 2, clinopyroxene #1, analysis #1.

I: pyroxene crystals from the Lightning Creek intermediate inclusion.

Analyses were done at Western Washington University.

 Table 3
 Lightning Creek whole rock major, minor and trace element compositions

Sample	LC-6H	LC-6M	LC-6I		LC-6H	LC-6M	LC-6I
Major el	ements (wt	. %)		Trace eler	nents by IC	P-MS (ppm)
SiO ₂	55.61	54.57	57.27	La	19.0	21.3	18.9
TiO ₂	0.94	1.15	1.22	Ce	43.3	50.4	42.7
Al_2O_3	16.36	16.40	17.06	Pr	5.66	6.66	5.56
FeO*	5.93	6.73	6.73	Nd	22.8	26.8	22.7
MnO	0.11	0.12	0.12	Sm	4.55	5.22	4.84
MgO	6.23	7.74	4.79	Eu	1.40	1.57	1.51
CaO	7.72	8.82	6.49	Gd	3.83	4.36	4.45
Na_2O	3.58	3.42	3.87	Tb	0.60	0.66	0.71
K_2O	1.13	0.81	1.28	Dy	3.42	3.79	4.22
P_2O_5	0.23	0.28	0.33	Ho	0.71	0.75	0.85
Total	97.85	100.03	99.15	Er	1.87	2.01	2.29
Mg#	69.8	71.7	61.0	Tm	0.26	0.28	0.34
				Yb	1.64	1.73	2.08
Trace ele	ements by 2	XRF (ppm)		Lu	0.26	0.27	0.33
Ni	101	135	64	Ba	375	323	383
Cr	205	292	109	Th	3.34	2.84	3.53
Sc	20	25	16	Nb	3.90	3.88	5.17
V	138	165	136	Y	17.4	18.8	21.4
Ba	384	331	381	Hf	3.78	4.19	4.29
Rb	20	15	23	Та	0.32	0.30	0.42
Sr	781	928	596	U	1.11	0.88	1.17
Zr	155	169	192	Pb	5.06	4.06	6.21
Y	18	19	22	Rb	18.3	12.3	21.0
Nb	5.2	4.4	5.9	Cs	0.67	0.38	0.81
Ga	17	17	16	Sr	776	934	609
Cu	39	35	61	Sc	20.9	24.0	16.0
Zn	64	64	70	Zr	147	163	188
Pb	4.2	4.2	6.7				
La	19	22	19				
Ce	42	52	45				
Th	3.7	3.8	4.0				
Nd	21	25	23				
U	1.6	2.9	2.9				
A 11 E	4 1	E OX M	11 01 10	$I = \Gamma^{2+} + \Gamma^{2+} + 100 = 1$	Γ^{2+}/Γ	0.00	

All Fe is reported as FeO*. Mg# = $(Mg/(Mg+Fe^+))*100$, where $Fe^{2+}/Fe^1 = 0.80$, based on Shaw (2011).

H: hybridized magmatic component, *M*: mafic inclusion, *I*: intermediate inclusion. Analyses were done at Washington State University GeoAnalytical Lab.

 Table 4
 Glacier Creek Sr, Nd, and Pb isotopic compositions

	GC-7	GC-7 (2nd)					
⁸⁷ Sr/ ⁸⁶ Sr	0.703267						
ϵ_{Sr}	-17.5						
¹⁴³ Nd/ ¹⁴⁴ Nd	0.512972						
$\epsilon_{\rm Nd}$	6.5						
²⁰⁶ Pb/ ²⁰⁴ Pb	18.801	18.799					
²⁰⁷ Pb/ ²⁰⁴ Pb	15.549	15.548					
²⁰⁸ Pb/ ²⁰⁴ Pb	38.279	38.276					
SiO ₂ *	58.51	58.51					
Analyses were done at the University of Washington.							
2σ errors for Sr and Nd are ±40 and ±30 ppm, or ±0.4 and							

 $\pm\,0.3$ epsilon units, respectively. 2σ errors for Pb are up to \pm 200 ppm, or \pm 0.02%.

(2nd): a repeat Pb analysis of the dissolved sample.

*Data from Baggerman & Debari (2011).

Table 5	Wineral/Inquid partition coefficients (Kds)							
	Garnet ¹	Clinopyroxene ¹	Orthopyroxene ²	Olivine ²	Hornblende ³			
La		0.09	0.0005	0.00005	0.2			
Ce	0.01	0.13	0.003	0.00006	0.3			
Pr	0.04	0.195	0.005	0.00013	0.5			
Nd	0.071	0.26	0.007	0.0002	0.8			
Sm	0.34	0.38	0.01	0.0006	1.1			
Eu	0.44	0.24	0.013	0.00015	1.3			
Gd	1	0.34	0.016	0.00099	1.8			
Tb	2.5	0.47	0.021	0.002	1.9			
Dy	3.2	0.57	0.025	0.004	2			
Но	3.8	0.58	0.029	0.002	2			
Er	5	0.59	0.041	0.0087	1.9			
Yb	7.4	0.61	0.047	0.017	1.7			
Lu	8.2	0.68	0.052	0.02	1.5			
Y	4.1	0.55	0.025	0.007	0.19			
Sr	0.006	0.15	0.009	0.008	0.36			

 Table 5
 Mineral/liquid partition coefficients (Kds)

¹Gaetani et al (2003) for hydrous peridotite.

²Donnelly et al (2004) for mid-ocean ridge basalt (MORB).

³Sen and Dunn (1994) for amphibolite.

Italics : interpolated

Table 6	Mafic minerals	pressure and tem	perature cr	ystallization	conditions
---------	----------------	------------------	-------------	---------------	------------

	Temperature (°C)	Pressure (kbar)						
Clinopyroxene & liquid thermobarometery (eql $Kd = 0.27 \pm 0.05$)								
Tarn Plateau HMBA								
High Mg# &	$1,191 - 1,213(87)^{32d}$	$8.3 - 10.0(3.6)^{31[3.4]}$						
high Nd/Yb mafic liquid	$1,119 - 1,135(42)^{33[3.4]}$	$9.4 - 10.7(5.0)^{32c[3.4]}$						
(4 eql clinopyroxene)	$1,087 - 1,102(42)^{33[5.8]}$	$9.3 - 11.0(3.6)^{31[5.8]}$						
		$11.0 - 12.4(5.0)^{32c[5.8]}$						
Orthopyroxene & clinopyroxene	e thermobarometry (eql Kd = 1.09	0 ± 0.14)						
Glacier Creek HMA								
Intermediate liquid	$1,014(56)^{36+38}$	$4.1 - 4.4(3.7)^{38}$						
(2 eql pairs)	$1,009 - 1,010(56)^{36+39}$	$3.1 - 3.4(2.8)^{39+36}$						
Lightning Creek HMBA								
Hybridized magmatic	$1,004 - 1,032(56)^{36+38}$	$2.4 - 3.1(3.7)^{38}$						
component	$999 - 1,034(56)^{36+39}$	$1.6 - 3.5(2.8)^{39+36}$						
(3 eql pairs)								
Olivine & liquid thermometry (e	eql Kd = 0.28 ± 0.03) and Silica ad	ctivity barometry						
Lightning Creek HMBA								

Mafic inclusion	1,207(51) ¹⁴	$5.9(2.9)^{42}$
(2 eql olivine)	$1,192 - 1,193(43)^{22+42}$	$6.0(2.9)^{42+22}$

eql : equilibrium

Parentheses by results indicate model error. For example, (1) reads as ± 1 °C or kbar. ^{number}indicates the equation(s) used from Putirka (2008).

 $^{[number]}H_2O$ contents used in calculations. 5.8 wt% was calculated using Mitchell and Grove (2015; Table 7), 3.4 wt% is from Mullen and McCallum (2014).

Any Tarn Plateau whole rock data used in calculations is from Moore and DeBari (2012).

	Temperature (°C) ¹	$H_2O(wt\%)^1$	$H_2O(wt\%)^2$	$H_2O(wt\%)^3$
Tarn Plateau HMBA				
$TP-3^{i}$	1046	5.9	3.1	~4
$TP-6^{i}$	1055	5.8	2.6	~2.5
02-MB-5 ⁱⁱ	1042	6.0		
Glacier Creek HMA				
GC-5 ⁱⁱⁱ			1.6	~1
GC-7 ⁱⁱⁱ			2.0	~1
GC-12 ⁱⁱⁱ			2.4	~2
Lightning Creek HMBA				
$LC-1^{iv}$	1016	2.9	2.2	~2
$LC-2^{iv}$	1029	2.7	2.1	~2
$LC-4^{iv*}$	1024	2.9		
$LC-6^{iv}$	1045	2.4	1.5	~1
$LC-12^{iv}$	1047	2.3	2.0	~1.5
LC-6M*	1068	4.3		

 Table 7
 Calculated whole rock H₂O contents and temperatures

Pressures used for all calculations are minimum values from Table 6.

¹Mitchell and Grove (2015) primitive andesites model (Glacier Creek samples not suitable); mean average error for this model is ± 1.4 wt% H₂O and $\pm 23^{\circ}$ C.

²Lange et al. (2009) plagioclase-liquid hygrometer; standard error of estimate for this model is ± 0.32 wt% H₂O.

³Sisson and Grove (1993) plagioclase-liquid Ca-Na exchange model. Outputs are graphical estimates.

*No plagioclase data available.

ⁱwhole rock data from Moore and DeBari (2012).

ⁱⁱwhole rock data from Mullen and McCallum (2014).

ⁱⁱⁱwhole rock data from Baggerman and DeBari (2011).

^{iv}whole rock data from Taylor (2001).

Figure 4

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5756

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 7

Figure 10

Figure 11

Figure 12

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5756

Figure 13

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5756

Figure 14

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5756

Figure 15

