Revision 1 1

2	
3	Fluorwavellite, Al ₃ (PO ₄) ₂ (OH) ₂ F·5H ₂ O, the fluorine analogue of wavellite.
4	
5	ANTHONY R. KAMPF ^{1*} , PAUL M. ADAMS ² , HENRY BARWOOD ^{3§} , AND BARBARA P. NASH ⁴
6	
7	¹ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition
8	Boulevard, Los Angeles, CA 90007, U.S.A.
9	
10	² 126 South Helberta Avenue, #2, Redondo Beach, California 90277, U.S.A.
11	
12	³ Department of Chemistry and Physics, Troy University, 501 University Ave., Troy, Alabama
13	36082, U.S.A.
14	
15	⁴ Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112, U.S.A.
16	
17	ABSTRACT
18	Fluorwavellite (IMA2015-077), $Al_3(PO_4)_2(OH)_2F \cdot 5H_2O$, the F analogue of wavellite, is a
19	new mineral from the Silver Coin mine, Valmy, Iron Point district, Humboldt County, Nevada,
20	and the Wood mine, 5 miles NE of Del Rio, Cocke County, Tennessee; at both occurrences it is
21	a low-temperature secondary mineral. Fluorwavellite is essentially identical to wavellite in
22	appearance and physical properties. Optically, fluorwavellite is biaxial positive, with $\alpha =$

^{*} <u>akampf@nhm.org</u> § Deceased

23	1.522(1), $\beta = 1.531(1)$, and $\gamma = 1.549(1)$ (white light). Electron microprobe analyses (average of 9
24	for each cotype locality) provided the empirical formulas $Al_{2.96}(PO_4)_2(OH)_{1.98}F_{1.02} \cdot 5H_2O$ (+0.12
25	H) for the Silver Coin mine and $Al_{2.98}(PO_4)_2(OH)_{2.11}F_{0.89}$ · 5H ₂ O (+0.06 H) for the Wood mine.
26	Fluorwavellite is orthorhombic, Pcmn, with the cell parameters determined on a Wood mine
27	crystal: $a = 9.6311(4)$, $b = 17.3731(12)$, $c = 6.9946(3)$ Å, $V = 1170.35(11)$ Å ³ , and $Z = 4$. The five
28	strongest lines in the X-ray powder diffraction pattern are $[d_{obs} \text{ in } Å(I)(hkl)]$: 8.53(100)(020,110);
29	5.65(26)(101); 3.430(28)(141,012); 3.223(41)(240); and 2.580(28)(331,161,232). The structure
30	of fluorwavellite ($R_1 = 3.42\%$ for 1248 $F_0 > 4\sigma F$ reflections) is the same as that of wavellite,
31	differing only in having one of the two independent hydroxyl sites replaced by F. A survey of F
32	contents in wavellite-fluorwavellite from the five most common genetic types of occurrence
33	(fluid expulsion, hydrothermal ore alteration, pegmatite phosphate alteration, residual carbonate
34	weathering, and sedimentary leached zone) shows that F content, and the occurrence of wavellite
35	vs fluorwavellite, does not correlate with the type of the occurrence. It is more likely related to
36	the fluid activity of Al, P, and F, with pH probably being an important factor. The role that
37	wavellite and fluorwavellite play in sequestering F in the environment may be significant.
38	
39	Keywords: fluorwavellite; new mineral; crystal structure; Raman spectroscopy; Infrared
40	spectroscopy; wavellite; Silver Coin mine, Nevada, USA; Wood mine, Tennessee, USA.
41	
42	INTRODUCTION
43	Wavellite is a relatively common secondary mineral found in a variety of deposits. Most
44	references (e.g. Palache et al. 1951) note that it occurs most often in aluminous, low-grade
45	metamorphic rocks, in limonite and phosphate-rock deposits, and more rarely in hydrothermal

46	veins. Green et al. (2007) provided a synopsis of early work on the mineral. It was first									
47	recognized in the early 1780s at the High Down quarry near Barnstaple, Devon (Devonshire),									
48	England, and was formally described by Sir Humphry Davy in 1805 under the name hydrargillite.									
49	The first reliable chemical analysis was by Jöns Jacob Berzelius and was reported by William									
50	Phillips in 1823. Since then, wavellite has been found in hundreds of deposits worldwide. The									
51	end-member formula is $Al_3(PO_4)_2(OH)_3 \cdot 5H_2O$ and this is the formula for the species officially									
52	accepted by the International Mineralogical Association; but many references (e.g. Anthony et al.									
53	2000) give the simplified formula as Al ₃ (PO ₄) ₂ (OH,F) ₃ ·5H ₂ O in recognition of the commonly									
54	observed substitution of F for OH up to about 1 atom per formula unit (apfu).									
55	Araki and Zoltai (1968) determined the structure of wavellite using a crystal from									
56	Montgomery County, Arkansas. They reported two OH sites, one of 4-fold (labeled O5 here) and									
57	one of 8-fold multiplicity (labeled O6 here), corresponding to one apfu and two apfu,									
58	respectively. They refined both sites as O atoms, but they did not locate H sites and they did not									
59	report a chemical analysis to confirm the absence of F. Capitelli et al. (2014) conducted a									
60	structure refinement on a crystal from Zbirov, Czech Republic, with an analyzed F content									
61	corresponding to 0.415 apfu. They located H sites related to the O5, O6, O7 and O8 sites and									
62	confirmed all F to be located at the 4-fold OH site (O5), with a refined occupancy of									
63	$F_{0.53(4)}O_{0.47(4)}.$									
64	One of the authors (HB) has been analyzing wavellite from numerous localities for many									
65	years and has confirmed F contents ranging from 0.10 to 1.02 apfu. Another author (PMA) noted									
66	F contents as high as 1.03 apfu for wavellite crystals from the Silver Coin mine, Humboldt									
67	County, Nevada, and 1.07 apfu for wavellite crystals from the nearby Willard mine in Pershing									
68	County. These and previously published analyses (Table 1), coupled with the findings of									

69	Capitelli et al. (2014), led us to surmise that F can fully occupy the four-fold OH site in the
70	wavellite structure and that very little, if any, F occupies the eight-fold OH site, or any other O
71	site in the structure. In the present study, this was confirmed by structure refinements conducted
72	on high-F crystals from the Silver Coin mine and from the Wood mine, Cocke County,
73	Tennessee.
74	In accord with the dominant-constituent rule (cf. Nickel and Grice 1998), we have
75	proposed that wavellites containing more than ½ F apfu qualify as a distinct mineral species, the
76	F analogue of wavellite, and that this mineral be named fluorwavellite. The new mineral and
77	name have been approved by the Commission on New Minerals, Nomenclature, and
78	Classification of the International Mineralogical Association (IMA2015-077). One cotype
79	specimen from each locality is housed in the collections of the Mineral Sciences Department,
80	Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles,
81	California 90007, USA, catalogue numbers 65600 (Wood mine) and 65601 (Silver Coin mine).
82	Note that the analysis reported in Dana (1892) for wavellite from Devon, England (Table
83	1), which contains 0.43 F apfu, presumably corresponds to material from the wavellite type
84	locality.
85	
86	O CCURRENCE AND PARAGENESIS
87	Fluorwavellite occurs at many localities worldwide (see Table 1); but the
88	complete characterization of the species is based upon material from two mines, which should be
89	regarded as cotype localities: the Silver Coin mine, Valmy, Iron Point district, Humboldt County,
90	Nevada (40°55'44"N 117°19'26"W) and the Wood mine, 5 miles NE of Del Rio, Cocke County,

91 Tennessee (35°57'52"N 82°57'36"W). At both occurrences, fluorwavellite is a low temperature,
92 secondary mineral.

93 The Silver Coin mine is a small base-metal deposit that was last worked in 1929. Since 94 the late 1980s, the mine has been a popular site for collectors in search of rare mineral species. 95 An extensive EDS survey of wavellites from the Silver Coin mine showed all to be the new 96 species fluorwavellite. It is found in the Phosphate Stope, Copper Stope, and Arsenate Drift. The 97 cotype specimen is from the Copper Stope. On this specimen, fluorwavellite is associated with 98 barite, fluorowardite, goethite, gypsum, kidwellite, quartz, and rockbridgeite. Other species 99 observed with fluorwavellite at the Silver Coin mine are chlorargyrite, crandallite, iangreyite, 100 jarosite, lipscombite, metavariscite, turquoise, and variscite. A comprehensive list of mineral 101 species occurring at the Silver Coin mine is given by Adams et al. (2015). The Silver Coin mine 102 is the type locality for zinclipscombite (Chukanov et al. 2006), meurigite-Na (Kampf et al. 2009), 103 iangreyite (Mills et al. 2011a), krasnoite (Mills et al. 2012), fluorowardite (Kampf et al. 2014), 104 ferribushmakinite (Kampf et al. 2015), and crimsonite (Kampf et al. 2016). 105 The Wood mine is a small manganese deposit that was last worked in 1906 (Stose and Schrader 1923). The ore, consisting of massive manganese oxides, mostly pyrolusite and 106 107 cryptomelane, was obtained from a small open pit, which has long been overgrown. Over the last 108 50 years, collectors have worked the mine dumps for specimens of wavellite and variscite 109 (Barwood 1997), which occur in veinlets in the manganese oxides. 110 While all of the samples from Silver Coin and Wood mines that we have analyzed qualify 111 as fluorwavellite, the analyses listed in Table 1 clearly indicate that both wavellite and 112 fluorwavellite occur at many deposits and that the genetic type of the deposit does not correlate

with the selective presence of either species. The occurrences of wavellite-fluorwavelite areexamined in greater detail below.

- 115
- 116

PHYSICAL AND OPTICAL PROPERTIES

Fluorwavellite occurs as colorless prisms up to 1 mm long from the Silver Coin mine and up to 3 mm long from the Wood mine (Figs. 1 and 2). Crystals exhibit the forms {010}, (110}, and {101} (Fig. 3). The prisms commonly grow in radial sprays at both localities. Crystals also form bow-tie-like crystal sprays at the Silver Coin mine and dense intergrowths of subparallel

121 prisms perpendicular to vein walls at the Wood mine. No twinning was observed.

122 The streak is white. Crystals are transparent with vitreous luster. The mineral does not 123 fluoresce in long or short wave ultraviolet light. The Mohs hardness is about $3\frac{1}{2}$, the tenacity is 124 brittle, the fracture is uneven to conchoidal, and crystals exhibit three cleavages: one perfect on 125 $\{110\}$ and two good on $\{101\}$ and $\{010\}$. The density of Wood mine crystals, measured by pycnometer, is 2.30(1) g·cm⁻³. The calculated density for Wood mine crystals based on the 126 127 empirical formula and the unit cell parameters from the single-crystal data is 2.345 g/cm³. 128 Trapped air in crystal intergrowths could account for the somewhat low value of the measured 129 density. Fluorwavellite is insoluble in concentrated HCl and concentrated H₂SO₄, observed over 130 the course of several hours.

131 Optically, fluorwavellite is biaxial positive, with $\alpha = 1.522(1)$, $\beta = 1.531(1)$, $\gamma = 1.549(1)$, 132 measured in white light. The 2*V* measured directly on a spindle stage is 71(1)°; the calculated 2*V* 133 is 71.2°. Weak r > v dispersion was observed. The optical orientation is $X = \mathbf{b}$; $Y = \mathbf{a}$; $Z = \mathbf{c}$. The 134 mineral is non-pleochroic.

135	The Gladstone-Dale compatibility index $1 - (K_P/K_C)$ as defined by Mandarino (1981)
136	provides a measure of the consistency among the average index of refraction, unit-cell parameters
137	(used to calculate the density) and chemical composition. For fluorowavellite, the compatibility
138	index is -0.001 based on the empirical formula, within the range of superior compatibility.
139	
140	RAMAN AND INFRARED SPECTROSCOPY
141	The Raman spectra of fluorwavellite from the Silver Coin and Wood mines were recorded
142	with a Renishaw inVia microprobe using a 785 nm diode laser in order to reduce fluorescence
143	observed with the 514 nm laser. The nominal analysis area was 5 μm x 50 μm . The Fourier
144	transform infrared (FTIR) spectra were recorded using a Thermo Nicolet model 6700
145	spectrometer equipped with a Continuµm microscope. The samples were analyzed in
146	transmission mode with a micro diamond compression cell using one diamond window as the
147	background.
148	Samples from both mines yielded essentially identical results, so only the Raman and
149	FTIR spectra for the Silver Coin samples are shown in Figures 4 and 5, respectively. Band
150	assignments were made according to Capitelli et al. (2014). The Raman spectrum shows peaks
151	(in cm ⁻¹) at 1147, 1022 (v_1 PO ₄ symmetric stretch), 636 and 550 (v_4 PO ₄ asymmetric bend), (v_2
152	PO ₄), 315 and 277 (Al-O lattice vibrations). The FTIR spectrum has a sharp peak at 3521 from
153	(OH) stretch and three broad bands at 3422, 3212, and 3092 from H_2O stretch. The H_2O bending
154	mode was observed at 1637 and 1586 and the v_3 (PO ₄) and v_1 (PO ₄) symmetric stretch modes at
155	1055 and 1022, respectively. There are no significant differences between the Raman and FTIR
156	spectra of fluorwavellite and those of F-rich wavellite reported by Capitelli et al. (2014).
157	

158	CHEMICAL COMPOSITION
159	Electron probe microanalyses (EPMA; 9 spots on 3 crystals for each cotype locality) were
160	carried out using a Cameca SX-50 electron microprobe in the Department of Geology and
161	Geophysics at the University of Utah (WDS mode, 15 kV, 10 nA, 10 µm beam diameter). Raw
162	X-ray intensities were corrected for matrix effects with a $\phi(\rho z)$ algorithm (Pouchou and Pichoir
163	1991). CHN analyses provided 22.84 wt% H_2O for material from the Wood mine; however,
164	impurities almost certainly contribute to the lower than expected value. There was insufficient
165	material for CHN analyses of Silver Coin material. Consequently, we have calculated H ₂ O for
166	both Wood mine and Silver Coin mine analyses on the basis of $P = 2 apfu$, charge balance, and
167	16 O+F apfu, as determined by the crystal structure analysis (see below). Analytical data are
168	given in Table 2.
169	The empirical formulas (based on 16 O+F) are Al _{2.96} (PO ₄) ₂ (OH) _{1.98} F _{1.02} ·5H ₂ O (+0.12 H
170	for charge balance) for the Silver Coin mine analyses and $Al_{2.98}(PO_4)_2(OH)_{2.11}F_{0.89}$ · 5H ₂ O (+0.06
171	H for charge balance) for the Wood mine analyses. The end-member formula is
172	Al ₃ (PO ₄) ₂ (OH) ₂ F·5H ₂ O, which requires Al ₂ O ₃ 36.94, P ₂ O ₅ 34.29, H ₂ O 26.11, F 4.59, F=O -1.93,
173	total 100 wt%.
174	The survey of F contents in wavellites in Table 1 includes the aforementioned analyses,
175	other new analyses by EPMA and by scanning electron microscope wavelength dispersive
176	spectrometry (SEM-WDS), as well as analyses reported by other investigators. The EPMA
177	analyses were conducted on a Cameca SX-40 (15kV and 10 nA) in the Geology Department at
178	Indiana University and the SEM-WDS analyses were conducted on a JEOL 7600F field emission
179	SEM equipped with an Oxford WAVE WDS (10kV, 5.5 nA, and a 12 μ m spot size).
180	

182 Both powder and single-crystal X-ray studies were carried out using a Rigaku R-Axis 183 Rapid II curved imaging plate microdiffractometer, with monochromatized MoKa radiation. For 184 the powder-diffraction study, a Gandolfi-like motion on the φ and ω axes was used to randomize 185 the sample and observed *d*-values and intensities were derived by profile fitting using JADE 2010 186 software (Materials Data, Inc.). The powder data are presented in Table 3. Unit-cell parameters 187 refined from the powder data using whole pattern fitting are: a = 9.6482(16), b = 17.362(3), c =188 6.9848(11) Å, and V = 1170.0(3) Å³. 189 Structure refinements were performed using data obtained from crystals from both the 190 Silver Coin mine and the Wood mine. The results were very similar; however, because the 191 refinement based on the data for the Wood mine crystal was better, it is the only one reported 192 here. The Rigaku CrystalClear software package was used for processing of structure data, 193 including the application of an empirical multi-scan absorption correction using ABSCOR 194 (Higashi 2001). SHELXL-2013 software (Sheldrick 2015) was used for the refinement of the 195 structure with neutral-atom scattering factors. The starting atom coordinates for the structure 196 refinement were taken from the structure determination of wavellite by Capitelli et al. (2014). 197 The O5 and O6 sites in the wavellite structure, each shared between two Al atoms, are clearly 198 either OH or F. The occupancy of the O5(F5) site refined to $F_{0.90}O_{0.10}$, while the O6 site refined 199 to full occupancy by O. The H atom site associated with the O6 site was located in a difference 200 Fourier map, as were H sites associated with the O7 and O8 sites, corresponding to H₂O groups. 201 The H sites were then refined with soft restraints of 0.82(3) Å on the O–H distances and 1.30(3)202 Å on the H–H distances and with the U_{eq} of each H tied to that of its O atom (×1.5 for OH and 203 $\times 1.2$ for H₂O). Details of data collection and structure refinement are provided in Table 4.

Fractional coordinates and atom displacement parameters are provided in Table 5, selectedinteratomic distances in Table 6, and bond valences in Table 7.

- 206
- 207

DESCRIPTION OF THE STRUCTURE

208 As for wavellite, the structure of fluorwavellite (Fig. 6) contains two different chains of 209 corner-sharing Al ϕ_6 ($\phi = F$, O, OH or H₂O) octahedra along [001]; one chain consists of all 210 All ϕ_6 octahedra and the other of Al2 ϕ_6 octahedra. These chains are linked to one another by 211 corner-sharing with PO₄ tetrahedra (Fig. 7). The result is a framework structure with channels 212 along [001]. Within these channels are disordered H₂O groups located at half-occupied O9 and 213 O10 sites, 0.895(9) Å apart. Note that the H sites associated with these disordered H_2O groups 214 cannot generally be located in refinements of the wavellite structure. 215 In the wavellite structure (and specifically in our refinement of the fluorwavellite 216 structure), the O5/F5 and O6 sites are similar in that each is a linking corner between two Al φ_6 217 octahedra; O5/F5 links Al1 φ_6 octahedra and the O6 site links Al2 φ_6 octahedra. The 218 environments of these sites differ in several important respects: (1) the Al1–O5/F5 distances are 219 much shorter than the Al2–O6 distances; (2) the chain of Al2 φ_6 octahedra is significantly more 220 kinked than the chain of All φ_0 octahedra (see Fig. 7) and (3) the O6 site is within reach of a 221 potential hydrogen bond acceptor (O3 at 2.859 Å), while the closest potential hydrogen bond 222 acceptor to O5/F5 is quite distant (O4 at 3.198 Å). (Note that the kinking of the Al2 φ_6 chain 223 facilitates the close approach of the O6 site to the O3 site.) The hydrogen bond between O6 and 224 O3 clearly contributes to the stability of the structure and this explains why OH preferentially 225 occupies the O6 site, and conversely why F is preferred at the O5/F5 site. In their report on the

structure refinement of an F-rich wavellite, Capitelli et al. (2014) also reported that all F isaccommodated at the O5 site.

228

229

GENETIC TYPES OF WAVELLITE OCCURRENCES

230 Our survey of F contents in wavellites (Table 1) indicates that nearly all wavellites 231 contain significant amounts of F and that many, if not most, are fluorwavellite. As of August 232 2016, there are 389 wavellite localities listed on Mindat (www.mindat.org/min-4250.html). It 233 appears that, taken together, wavellite and fluorwavellite are the most common F-bearing 234 phosphate minerals, outside of the apatite group, in near-surface environments. Along with 235 members of the crandallite group, wavellite is the most common product of weathering/alteration 236 of phosphorites and aluminous phosphatic rocks. Vast blanket deposits of both minerals exist 237 worldwide where meteoric water leaches clay-rich phosphorites. Concentrations of wavellite 238 have even been mined for phosphorus and aluminum salts in Pennsylvania at Moore's Mill, 239 Cumberland County (Stose 1907; Gordon 1922) and St. Clair County, Alabama (Schrader et al. 240 1917).

Wavellite (including fluorwavellite) is formed in a wide variety of environments. Most
reported occurrences of wavellite are of five general genetic types, which we refer to here as fluid
expulsion, hydrothermal ore alteration, pegmatite phosphate alteration, residual carbonate
weathering, and sedimentary leached zone. Rarer occurrences are carbonatites/syenites (four
listed on Mindat) and guano deposits (one listed on Mindat). There were also 37 localities listed
on Mindat that did not contain sufficient information to identify the type of occurrence. *Fluid expulsion* occurrences of wavellite form in veins derived from fluid expelled during

248 low grade metamorphism. These types of deposits are widespread and include many of the better

249 known locations for wavellite specimens, including the Devon, England type locality and the 250 noteworthy wavellite occurrences in Garland, Montgomery, and Saline counties, Arkansas 251 (Barwood and Delinde 1989). Most slate-hosted occurrences worldwide are of this type. Of the 252 389 localities on Mindat, 52 are of this type. 253 Hydrothermal ore alteration occurrences of wavellite derive from low-grade 254 hydrothermal alteration of phosphatic rocks and alteration of apatite in ore veins (e.g. Silver Coin 255 mine, Nevada; Llallagua, Bolivia), blanket deposits from rising volcanic solutions such as 256 epithermal gold deposits (e.g. Carlin trend, Nevada) and acid phosphosulfate deposits (Bajnoczi 257 et al. 2004) are common worldwide wherever they have been exposed by mining. Of the 389 258 localities listed on Mindat, 137 are of this type. 259 *Pegmatite phosphate alteration* occurrences of wavellite result from the alteration of 260 aluminous primary phosphates, usually amblygonite-montebrasite, in pegmatites. Noteworthy 261 occurrences are those at Montebras, France, and Hagendorf, Germany (Dill and Weber 2009). Of 262 the 389 localities listed on Mindat, 19 are of this type. 263 *Residual carbonate weathering* occurrences of wavellite result from the meteoric 264 weathering of phosphatic limestones and glauconitic sandstones and cherts, and lateritic 265 weathering of limestone-hosted karst deposits (Hall et al. 1997; Deady et al. 2014). Widespread 266 and numerous examples are found in old iron and manganese mines, and in bauxite deposits 267 throughout the eastern United States (e.g. Wood mine, Tennessee) and central Europe. Of 389 268 localities on Mindat, 74 are of this type. 269 Sedimentary leached zone occurrences of wavellite derive from the meteoric weathering

of phosphate-rich rocks (phosphorites) and carbonatites. Noteworthy examples of such deposits

271	are found in Florida and Senegal (Van Kauwenbergh et al. 1990; Flicoteaux and Lucas 1984). Of
272	the 389 occurrences listed on Mindat, 42 are of this type.
273	The genetic classification of all of the wavellite-fluorwavellite samples in our survey is
274	indicated in the last column of Table 1. It is clear from this survey that F content, and the
275	occurrence of wavellite vs fluorwavellite, does not correlate with the genetic type of the
276	occurrence. Rather, it is more likely related to the fluid activity of Al, P, and F (likely also
277	coupled with S and Fe). A noteworthy example is provided by the crystals from Slate Mountain,
278	California, examined in this study, which show zoning from F-rich cores (> 3.9% F) to F-poor
279	rims (< 0.5% F).
280	
281	THE ROLE OF PH IN THE FORMATION OF WAVELLITE AND FLUORWAVELLITE
282	Aluminum in soils and sediments is normally highly insoluble; however, under highly
283	acidic or alkaline conditions, it forms a variety of soluble complexes. In natural waters, aquo,
284	(OH) ⁻ , F ⁻ , and organic complexes are the most important (Driscoll and Schecher 1990; Driscoll
285	et al. 2001). Using fluorescence spectroscopy, one of the authors (HB) has detected traces of
286	organic phases in wavellite. It is also well known that pH controls Al polymerization in soils
287	(Huang and Keller 1972). It is reasonable to assume that pH also plays a significant role in the
288	formation of wavellite and fluorwavellite.
289	In soils, Al has two ranges of solubility, below pH 6 and above pH 8. Under very acid
290	conditions (< pH 3), monomeric Al^{3+} is the dominant ion in solution. As the pH rises, hydrolyzed
291	OH ⁻ complexes become more prominent. All forms of soluble Al reach a minimal solubility
292	around pH 6.5 (Driscol and Schecher 1990). Wavellite is generally insoluble in acid solutions

293 (allowing specimens to be routinely cleaned with oxalic acid and hydrochloric acid solutions). At

294	elevated pH (> 9), wavellite and fluorwavellite are readily soluble and could contribute to the
295	release of F into the environment. Such highly alkaline conditions are rare; consequently,
296	wavellite and fluorwavellite are more likely to act as sinks, rather than sources of F.
297	Fluorine in soils and sediments is invariably coupled to Al complexes. Studies have
298	shown that the maxima for soluble Al in soils also coincides with maximum absorption of F in
299	the range of pH 4.8 – 6.5 (Amesen and Krogstad 1998; Wenzel and Blum 1992). Aluminum in
300	soils and sediments is mostly associated with clay minerals and they have been shown to react
301	strongly with F. Replacement of OH in kaolinites by F has been demonstrated (Zhang et al.
302	2007), and this may have a bearing on the formation of fluorwavellite. In solution, F is entirely
303	bound by Al complexes below pH 5. As the pH rises, hydroxyl complexes of Al form, resulting
304	in more free F in solution (Skjelkvale 1994). The role of F released from apatite is not well
305	defined for any of the wavellite forming systems discussed in this paper.
306	Phosphorus in wavellite-forming systems is ultimately derived from apatite sources. The
307	phosphate anion in solution is entirely pH dependent (Tisdale et al. 1993). Reaction of phosphate
308	with Fe, Al, and Ca occurs over specific pH regions (Goldberg and Sposito 1984). Maximum
309	absorption of P by iron occurs around pH 3.5 and extends up to around pH 5.5. Phosphorus
310	sorption by aluminum begins around pH 4, peaks at around pH 5.5, and tapers off to nil around
311	pH 7. Calcium fixation begins around pH 6 and extends above pH 9. Studies of the mobility of P
312	and Al in lateritic deposits are consistent with these constraints (Huang and Keller 1972;
313	Vieillard et al. 1979). Practical observations of the sequence of mineralization in supergene Fe
314	deposits is also consistent with the sequence of pH and availability of Fe, Al, and P outlined here
315	(Dill et al. 2009).
216	

IMPLICATIONS
We have noted that wavellite and fluorwavellite are formed in a wide variety of
environments. Besides the reported occurrences, which mostly fall into five general genetic types
(fluid expulsion, hydrothermal ore alteration, pegmatite phosphate alteration, residual carbonate
weathering, and sedimentary leached zone), wavellite and fluorwavellite are widespread in soils
and saprolite. Our survey of F contents shows that the occurrence of wavellite vs fluorwavellite,
does not correlate with the genetic type of the occurrence. Coupled with our refinement of the
fluorwavellite structure, we have also shown that a complete solid solution exists between
wavellite and fluorwavellite and we have defined an apparent limit for the F content of wavellite-
fluorwavellite of about one F apfu. Considering that wavellite and fluorwavellite are the most
common F-bearing phosphate minerals, outside of the apatite group, in near-surface
environments, our findings have implications regarding the occurrence of fluorine in the
environment.
The genesis of wavellite-fluorwavellite is more complex than previously recognized. The
role of P and Al availability is only partially understood and the role that hydroxyl, sulfate,
organic, and fluoro Al complexes play is less well defined, but recognized. The specific fields of
soluble and complexed Al, Fe, F, and P that lead to the formation of wavellite-fluorwavellite
need much more study. What is well documented is that pH is clearly critical to the formation,
stability and solubility of wavellite-fluorwavellite. As noted above, at elevated pH (> 9),
wavellite-fluorwavellite is readily soluble and could contribute to the release of F into the
environment; however, because such highly alkaline conditions are rare, wavellite-fluorwavellite
is more likely to act as a sink, rather than a source of F. The role that wavellite-fluorwavellite
plays in sequestering F in the environment is likely to be significant and deserves further study.

340 341 **ACKNOWLEDGEMENTS** 342 Reviewers Ferdinando Bosi and Ian Grey are thanked for their constructive comments on 343 the manuscript. Anatoly Kasatkin is thanked for analyses of fluorwavellite samples in the 344 collection of the Fersman Museum. A portion of this study was funded by the John Jago 345 Trelawney Endowment to the Mineral Sciences Department of the Natural History Museum of 346 Los Angeles County. 347 348 REFERENCES 349 Adams, P. M., Wise, W., and Kampf, A. R. (2015) The Silver Coin mine, Iron Point district, 350 Humboldt County, Nevada, Mineralogical Record, 46, 701–728. 351 Araki, T., and Zoltai, T. (1968) The crystal structure of wavellite. Zeitschrift für Kristallographie 352 127, 21–33. 353 Arnesen, A.K.M., and Krogstad, T. (1998) Sorption and desorption of fluoride in soil polluted 354 from the aluminum smelter at Ardal (Western Norway). Water, Air, and Soil Pollution, 103, 355 357-373. 356 Bajnóczi, B, Seres-Hartai, E., and Nagy, G. (2004) Phosphate-bearing minerals in the advanced 357 argillic alteration zones of high-sulphidation type ore deposits in the Carpatho-Pannonian 358 Region. Acta Mineralogica-Petrographica, Szeged, 45, 81–92. 359 Barwood, H. (1997) Red and pink variscite from the Wood mine, Cocke County, Tennessee. 360 Rocks & Minerals, 72, 268–270. 361 Barwood, H., and Delinde, H. (1989) Arkansas phosphate minerals: a review and update. Rocks 362 and Minerals, 64, 294–299.

- 363 Bergendahl, M. H. (1955) Wavellite spherulites in the Bone Valley formation of central Florida.
- 364 American Mineralogist, 40, 497–504.
- 365 Brese, N.E., and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta
- Crystallographica, B47, 192–197.
- 367 Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of the
- 368 inorganic crystal structure database. Acta Crystallographica, B41, 244–247.
- 369 Capitelli, F., Della Ventura, G., Bellatreccia, F., Sodo, A., Saviano, M., Ghiara, M.R., and Rossi,
- 370 M. (2014) Crystal-chemical study of wavellite from Zbirov, Czech Republic. Mineralogical
- 371 Magazine, 78, 1057–1070.
- 372 Chukanov, N.V., Pekov, I.V., Möckel, S., Zadov, A.E., and V.T. Dubinchuk (2006)
- 373 Zinclipscombite $ZnFe^{3+}_{2}(PO_{4})_{2}(OH)_{2}$ a new mineral. Proceedings of the Russian
- 374 Mineralogical Society, 135, 13–18.
- Dana, E.S. (1892) The System of Mineralogy of James Dwight Dana 1837-1868, 6th edition.
- John Wiley and Sons, New York, pp. 842–843.
- 377 Deady, E., Mouchos, E., Goodenough, K., Williamson, B., and Wall, F. (2014) Rare earth
- 378 elements in karst-bauxites: a novel untapped European resource? In: ERES 2014: 1st
- European Rare Earth Resources Conference, Milos, 4-7, September, 2014. 364–375.
- 380 Dill, H.G., and Weber, B. (2009) Pleystein-City on Pegmatite. 4th International Symposium on
- 381 Granitic Pegmatites, Recife, Brazil.
- 382 Dill, H.G., Weber, B., and Kaufhold, S (2009) The origin of siderite-goethite-phosphate
- 383 mineralization in the karst-related fault bound iron ore deposit Auerbach, Germany, a clue to
- the timing of hypogene and supergene Fe-Al phosphates in NE Bavaria. Neues Jahrbuch für
- 385 Mineralogie Abhandlungen, 186, 283–307.

- 386 Driscoll, C.T., and Schecher, W.D. (1990) The chemistry of aluminum in the environment.
- 387 Environmental Geochemical Health, 12(1), 28–49.
- 388 Driscoll, C.T, Lawrence, G.B., Bulger, A.J., Butler, T.J., Cronan, C.S., Eager, C., Lambert, K.F.,
- 389 Likens, G.E., Stoddard, J.L., and Weathers, K.C. (2001) Acidic deposition in the
- 390 Northeastern United States: Sources and inputs, ecosystem effects and management
- 391 strategies. BioScience, 51, 180–193.
- 392 Flicoteaux, R., and Lucas, J. (1984) Weathering of phosphate minerals. In: Phosphate Minerals,
- J.O. Nriagu et al. (Eds). Springer-Verlag, Berlin. p. 290–317.
- 394 Goldberg, S., and Sposito G. (1984) A chemical model of phosphate adsorption by soils: II
- 395 Noncalcareous soils. Soil Science Society of America Journal, 48, 779–783.
- 396 Gordon, S.G. (1922) W.L. Newman mine, Pennsylvania. Mineralogy of Pennsylvania (Vol. 1). p.
- 397 136–138.
- 398 Green, D.I., Cotterell, T.F., Jones, I., Cox, D., and Cleevely, R. (2007) Wavellite: its discovery
- and occurrences in the British Isles. UK Journal of Mines & Minerals, 28, 11–30.
- 400 Hall, R.B., Foord, E.E., Keller, D.J., and Keller, W.D. (1997) Phosphates in some Missouri
- 401 refractory clays. Clays and Clay Minerals, 45, 353–364.
- 402 Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.
- 403 Huang, W.H., and Keller, W.D. (1972) Geological mechanics for the dissolution, transport and
- 404 deposition of aluminum in the zone of weathering. Clays and Clay Minerals, 20, 69–74.
- 405 Jacob, K.D., Hill, W.L., Marshall, H.L., and Reynolds, D.S. (1933) The composition and
- 406 distribution of phosphate rock with special reference to the United States. U.S. Department of
- 407 Agriculture Technical Bulletin, 364, p 40.

- 408 Kampf, A.R., Adams, P.M., Kolitsch, U. and Steele, I.M. (2009) Meurigite-Na, a new species,
- 409 and the relationship between phosphofibrite and meurigite. American Mineralogist, 94, 720–
- 410 727.
- 411 Kampf, A.R., Adams, P.M., Housley, R.M., and Rossman, G.R. (2014) Fluorowardite,
- 412 NaAl₃(PO₄)₂ F_2 (OH)₂(H₂O)₂, the fluorine analogue of wardite from the Silver Coin mine,
- 413 Valmy, Nevada. American Mineralogist, 98, 804–810.
- 414 Kampf, A.R., Adams, P.M., Nash, B.P., and Marty, J. (2015) Ferribushmakinite,
- 415 $Pb_2Fe^{3+}(PO_4)(VO_4)(OH)$, the Fe^{3+} analogue of bushmakinite from the Silver Coin mine,
- 416 Valmy, Nevada. Mineralogical Magazine 79, 661–669.
- 417 Kampf, A.R., Adams, P.A., Mills, S.J., and Nash, B.P. (2016) Crimsonite, PbFe³⁺₂(PO₄)₂(OH)₂,
- 418 the phosphate analogue of carminite from the Silver Coin mine, Valmy, Nevada, USA.
- 419 *Mineralogical Magazine* 80, (in press, Oct. 2016)
- 420 Mäkelä, K. (1969) Wavellite from Kittilä, Finnish Lapland. Bulletin of the Geological Society of
- 421 Finland, 41, 193–197.
- 422 Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and
- 423 its application. Canadian Mineralogist, 19, 441–450.
- 424 Matsubara, S., Aito, S., and Kato, A. (1988) Phosphate minerals in chert from Toyoda, Kochi,
- 425 City, Japan. Journal of Mineralogy Petrology and Economic Geology, 83, 141–149.
- 426 Mills, S.J., Kampf, A.R., Sejkora, J., Adams, P.M., Birch, W.D., and Plášil, J. (2011a) Iangreyite:
- 427 a new secondary phosphate mineral closely related to perhamite. Mineralogical Magazine, 75,
 428 329–338.
- 429 Mills, S.J., Ma, C., and Birch, W.D. (2011b) A contribution to understanding the complex nature
- 430 of peisleyite. Mineralogical Magazine, 75, 2733–2737.

431	Mills, S.J., Sejkora, J., Kampf, A.R., Grey, I. E., Bastow, T.J., Ball, N.A., Adams, P.M.,								
432	Raudsepp, M. and Cooper, M.A. (2012) Krásnoite, the fluorophosphate analogue of								
433	perhamite, from the Huber open pit, Czech Republic and the Silver Coin mine, Nevada.								
434	Mineralogical Magazine, 76, 625–634.								
435	Nickel, E.H., Grice, J.D. (1998) The IMA Commission on New Minerals and Mineral Names:								
436	Procedures and guidelines on mineral nomenclature, 1998. Canadian Mineralogist, 36, 913-								
437	26.								
438	Palache, C., Berman, H., and Frondel, C. (1951) Dana's System of Mineralogy, 7th edition. John								
439	Wiley and Sons, New York, Volume II, pp. 962–964.								
440	Pouchou, JL., and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified								
441	microvolumes applying the model "PAP." In: Heinrich, K.F.J. and Newbury, D.E. (eds)								
442	Electron Probe Quantitation. Plenum Press, New York, pp. 31–75.								
443	Schrader, F.C., Stone, R.W., and Sanford, S. (1917) Useful minerals of the United States.								
444	U.S.G.S. Bulletin 624. p. 15.								
445	Sheldrick, G.M. (2015) Crystal Structure refinement with SHELX. Acta Crystallographica, C71,								
446	3–8.								
447	Skjelkvale, B.L. (1994) Factors influencing fluoride in Norwegian lakes. Water Air Soil								

449 Stose, G.W. (1907) Phosphorus ore at Mt. Holly Springs, Pennsylvania. U.S.G.S. Bulletin 315,

450 474–483.

Pollution, 77, 151–167.

448

451 Stose, G.W., and Schrader, F.C. (1923) Manganese deposits of east Tennessee. U.S. Geological
452 Survey Bulletin 737, 154 p.

453	Tisdale, S.L.	Nelson	WI	Beaton	JD	and LL	Havlir	(1993)	Influence of	pH on the
тЈЈ	Tisuale, D.L.	, 11013011.	, ** .L	, Deaton,	, J.D.,	, and J.L.	. 11a v III	(1))	minucine or	pri on uic

- 454 distribution of orthophosphate species in solution. In: Soil Fertility and Fertilizers, 5th Ed.
- 455 MacMillan, New York, NY.
- 456 Van Kauwenbergh, S.J., Cathcart J.B., and McClellan, G.H. (1990) Mineralogy and alteration of
- 457 the phosphate deposits of Florida. U.S.G.S. Bulletin 1914, 46 pp.
- 458 Vieillard, P., Tardy, Y., and Nahon, D. (1979) Stability fields of clays and aluminum phosphates:
- 459 paragenesis in lateritic weathering of argillaceous phosphatic sediments. American
- 460 Mineralogist, 64, 626–634.
- 461 Wenzel, W.W., and Blum, W.E.H. (1992) Fluorine speciation and mobility in F-contaminated
- 462 soil. Soil Science, 153, 357–364.
- 463 Zhang, H., Baoyu, S., Penghua, L., and Wei ,Z. (2007) Experimental study of fluorine transport
- 464 rules in unsaturated stratified soil. Journal of China University of Mining and Technology,
- 465 17, 382–386.
- 466

467	FIGURE CAPTIONS
468	Figure 1. Fluorwavellite crystals with kidwellite from the Silver Coin mine. The FOV is 1 mm
469	across.
470	Figure 2. Fluorwavellite crystals from the Wood mine. The FOV is 3.5 mm across.
471	Figure 3. Crystal drawing of fluorwavellite (clinographic projection).
472	Figure 4. Raman spectra of fluorwavellite from the Silver Coin mine.
473	Figure 5. FTIR spectrum of fluorwavellite from the Silver Coin mine.
474	Figure 6. The structure of fluorwavellite viewed along [001]. O-H bonds are thick black lines;
475	H O (hydrogen) bonds are thin black lines. O/F sites are numbered.
476	Figure 7. Two different corner-linked chains of $Al\phi_6$ ($\phi = F$, O, OH or H ₂ O) octahedra in the
477	structure of fluorwavellite. O-H bonds are thick black lines; HO (hydrogen) bonds are
478	thin black lines. O/F sites are numbered.

479	Table 1. Fluorine contents of wavellite and fluorwavellite from worldwide localities.	

Locality	Species	F wt%	F apfu	Comments	Genesis*
Toms quarry, Kapunda, South Australia, Australia	fluorwavellite	3.34	0.73	Mills et al. 2011b (EPMA)	S
Llallagua, Bolivia	wavellite (F-rich)	2.05	0.45	Palache et al. 1951 (wet chemistry)	Н
Llallagua, Bolivia	fluorwavellite	3.34	0.73	This study (EPMA)	Н
Llallagua, Bolivia	fluorwavellite	3.67	0.80	This study (EPMA)	Н
Llallagua, Bolivia	fluorwavellite	4.18	0.91	This study (EPMA)	Н
Llallagua, Bolivia	fluorwavellite	4.27	0.93	This study (EPMA)	Н
Cerhovice, Czech Republic	wavellite	0.60	0.13	Palache et al. 1951 (wet chemistry)	Н
Cerhovice, Czech Republic	fluorwavellite	4.15	0.94	A. Kasatkin pers. comm. (EPMA)	Н
Svatá Dobrotivá, Czech Republic	fluorwavellite	4.34	0.98	A. Kasatkin pers. comm. (EPMA)	R
				Dana 1892 (wet chemistry; reported	F
Zbirov, Czech Republic	wavellite	1.69	0.37	as HF)	
Zbirov, Czech Republic	wavellite (F-rich)	1.90	0.41	Capitelli et al. 2014 (EPMA)	F
Devon, England	wavellite (F-rich)	1.96	0.43	Dana 1892 (wet chemistry)	F
Devon, England	fluorwavellite	3.18	0.69	This study (SEM/WDS)	F
Kitilla, Finland	fluorwavellite (F-poor)	2.70	0.59	Mäkelä 1969 (EPMA)	Н
Montebras, France	wavellite (F-rich)	2.27	0.49	Dana 1892 (wet chemistry)	Р
Ronneburg, Thuringen, Germany	fluorwavellite	3.74	0.81	This study (SEM/WDS)	Н
Clonmel, Ireland	fluorwavellite (F-poor)	2.79	0.61	Palache et al. 1951 (wet chemistry)	F
				Dana 1892 (wet chemistry; reported	F
Cork, Ireland	wavellite (F-rich)	2.09	0.46	as HF)	
				Matsubara et al. 1998 (wet	Н
Toyoda, Japan	fluorwavellite	4.30	0.94	chemistry)	
Baturovskii quarry, Svetlyi, Southern Urals, Russia	fluorwavellite	3.33	0.74	A. Kasatkin pers. comm. (EPMA)	F
Baturovskii quarry, Svetlyi, Southern Urals, Russia	fluorwavellite	4.49	1.01	A. Kasatkin pers. comm. (EPMA)	F
Macadam quarry, Nikolskoe, Southern Urals, Russia	fluorwavellite	2.89	0.65	A. Kasatkin pers. comm. (EPMA)	F
Macadam quarry, Ushtaganka, Southern Urals, Russia	fluorwavellite	2.92	0.66	A. Kasatkin pers. comm. (EPMA)	F
Wavellitovaya kop', Verkhnyaya Sysert', Middle Urals, Russia	fluorwavellite	4.10	0.92	A. Kasatkin pers. comm. (EPMA)	F
Zauralovskii quarry, Zauralovo, Southern Urals, Russia	fluorwavellite	3.99	0.89	A. Kasatkin pers. comm. (EPMA)	F
Tharsis mine, Hvelva Prov., Spain	fluorwavellite	4.17	0.91	This study (EPMA)	Н
Augusta Ridge, Cherokee Co., Alabama, USA	fluorwavellite	4.19	0.91	This study (EPMA)	R
SE of Weogufka, Coosa Co., Alabama, USA	wavellite	1.22	0.27	This study (EPMA)	F
SE of Weogufka, Coosa Co., Alabama, USA	wavellite	1.57	0.34	This study (EPMA)	F
SE of Weogufka, Coosa Co., Alabama, USA	wavellite (F-rich)	2.01	0.44	This study (EPMA)	F
SE of Weogufka, Coosa Co., Alabama, USA	fluorwavellite	3.23	0.70	This study (EPMA)	F
Erin, Clay Co., Alabama, USA	wavellite	0.61	0.13	This study (EPMA)	F

Erin, Clay Co., Alabama, USA	wavellite	0.78	0.17	This study (EPMA)	F
Erin, Clay Co., Alabama, USA	fluorwavellite (F-poor)	2.88	0.63	This study (EPMA)	F
Nesbit Lake, Calhoun Co., Alabama, USA	wavellite	1.34	0.29	This study (EPMA)	R
Sid Hart mine, Indian Mt., Cherokee Co., Alabama, USA	fluorwavellite	4.01	0.87	This study (EPMA)	R
East of Coal City, St. Clair Co., Alabama, USA	wavellite	0.45	0.10	This study (EPMA)	R
East of Coal City, St. Clair Co., Alabama, USA	wavellite	0.45	0.10	This study (EPMA)	R
East of Coal City, St. Clair Co., Alabama, USA	wavellite	0.48	0.10	This study (EPMA)	R
East of Coal City, St. Clair Co., Alabama, USA	wavellite (F-rich)	1.47	0.32	This study (EPMA)	R
East of Coal City, St. Clair Co., Alabama, USA	wavellite (F-rich)	1.60	0.35	This study (EPMA)	R
East of Coal City, St. Clair Co., Alabama, USA	fluorwavellite (F-poor)	2.52	0.55	This study (EPMA)	R
East of Coal City, St. Clair Co., Alabama, USA	fluorwavellite (F-poor)	2.95	0.64	This study (EPMA)	R
Dug Hill (roadcut), Garland Co., Arkansas, USA	fluorwavellite (F-poor)	2.53	0.55	This study (EPMA)	F
Dug Hill (roadcut), Garland Co., Arkansas, USA	fluorwavellite	3.60	0.78	This study (EPMA)	F
Dug Hill (roadcut), Garland Co., Arkansas, USA	fluorwavellite	3.83	0.83	This study (EPMA)	F
Dug Hill (roadcut), Garland Co., Arkansas, USA	fluorwavellite	4.07	0.89	This study (EPMA)	F
Mauldin Mt., Montgomery Co., Arkansas, USA	wavellite	0.97	0.21	This study (EPMA)	F
Mauldin Mt., Montgomery Co., Arkansas, USA	fluorwavellite (F-poor)	2.86	0.62	This study (EPMA)	F
Mauldin Mt., Montgomery Co., Arkansas, USA	fluorwavellite	3.42	0.75	This study (EPMA)	F
Polk Co., Arkansas, USA	fluorwavellite	4.08	0.89	This study (EPMA)	F
Saline Co., Arkansas, USA	wavellite	1.03	0.22	This study (EPMA)	F
Saline Co., Arkansas, USA	fluorwavellite	3.13	0.68	This study (EPMA)	F
Saline Co., Arkansas, USA	fluorwavellite	4.05	0.88	This study (EPMA)	F
Saline Co., Arkansas, USA	fluorwavellite	4.09	0.89	This study (EPMA)	F
Saline Co., Arkansas, USA	fluorwavellite	4.20	0.92	This study (EPMA)	F
Saline Co., Arkansas, USA	fluorwavellite	4.45	0.97	This study (EPMA)	F
Saline Co., Arkansas, USA	fluorwavellite	4.66	1.02	This study (EPMA)	F
Slate Mt., El Dorado Co., California, USA	wavellite	0.38	0.08	This study (EPMA; rim)	F
Slate Mt., El Dorado Co., California, USA	wavellite	0.49	0.11	This study (EPMA; rim)	F
Slate Mt., El Dorado Co., California, USA	fluorwavellite	3.89	0.85	This study (EPMA; core)	F
Clear Spring mine, Polk Co., Florida, USA	fluorwavellite	4.17	0.91	This study (EPMA)	S
Polk Co., Florida , USA	wavellite	0.93	0.20	Bergendahl 1955 (wet chemistry)	S
Brewer mine, Polk Co., Georgia, USA	fluorwavellite	3.42	0.75	This study (EPMA)	R
Kreamer, Snyder Co., Pennsylvania, USA	fluorwavellite	4.14	0.90	This study (EPMA)	R
Moore's Mill, Cumberland Co., Pennsylvania, USA	wavellite	0.69	0.15	This study (EPMA)	R
Mt. Holly Springs, Cumberland Co., Pennsylvania, USA	wavellite	0.69	0.15	This study (EPMA)	R
Mt. Holly Springs, Cumberland Co., Pennsylvania, USA	fluorwavellite	3.95	0.86	Jacob et al. 1933 (wet chemistry)	R
Wharton mine, Pennsylvania, USA	fluorwavellite	3.18	0.69	This study (EPMA)	R
Silver Coin mine, Arsenate Drift, Humboldt Co., Nevada, USA	fluorwavellite	3.65	0.80	This study (SEM/WDS)	Н
Silver Coin mine, Copper Stope, Humboldt Co., Nevada, USA	fluorwavellite	4.11	0.90	This study (SEM/WDS)	Н

Silver Coin mine, Copper Stope, Humboldt Co., Nevada, USA	fluorwavellite	4.74	1.03	This study (EPMA; Table 1)	Н
Silver Coin mine, Phosphate Stope, Humboldt Co., Nevada, USA	fluorwavellite	3.90	0.85	This study (EPMA)	Н
Willard mine, Pershing Co., Nevada, USA	fluorwavellite	4.91	1.07	This study (SEM/WDS)	Н
Northern Belle mine, Candelaria, Mineral Co., Nevada, USA	fluorwavellite	3.10	0.68	This study (SEM/WDS; core)	Н
Northern Belle mine, Candelaria, Mineral Co., Nevada, USA	fluorwavellite	4.07	0.89	This study (SEM/WDS; rim)	Н
Copper Knob, Cocke Co., Tennessee, USA	fluorwavellite (F-poor)	2.96	0.64	This study (EPMA)	R
Wood mine, Cocke Co., Tennessee, USA	fluorwavellite	4.08	0.89	This study (EPMA; Table 1)	R
Wood mine, Cocke Co., Tennessee, USA	fluorwavellite	4.18	0.91	This study (EPMA)	R
Bingham Canyon mine, Salt Lake Co., Utah, USA	fluorwavellite	3.19	0.69	This study (EPMA)	Н
Kelly Bank mine, Rockbridge Co., Virginia, USA	wavellite (F-rich)	2.14	0.47	This study (EPMA)	R
Kelly Bank mine, Rockbridge Co., Virginia, USA	fluorwavellite	3.17	0.69	This study (EPMA)	R
Rorer mine, Roanoke, Virginia, USA	fluorwavellite (F-poor)	3.02	0.66	This study (EPMA)	R

* Wavellite genesis types: F = Fluid expulsion, H = Hydrothermal ore alteration, P = Pegmatite phosphate alteration, R = Residual carbonate weathering, S = Sedimentary leached zone

483 _Table 2. Analytical data (wt%) for fluorwavellite.

Const.	Si	lver Coin mine			Wood mine		Probe
Collst.	Mean	Range	SD	Mean	Range	SD	Standard
Al_2O_3	36.79	36.35-37.07	0.22	36.68	36.42-37.09	0.21	sanidine
P_2O_5	34.66	33.90-35.51	0.50	34.31	33.50-34.95	0.42	apatite
F	4.74	4.48-4.96	0.17	4.08	3.58-4.46	0.26	syn. CaF ₂
H_2O^*	26.65			26.52			
F=O	-2.00			-1.72			
Total	100.84			99.87			
*Based on t	the structur	re					

486	Table 3. Powder X-ray diffraction data (<i>d</i> in Å) for fluorwavellite.
187	

_											
I_{obs}	$d_{\rm obs}$	1	$d_{\rm calc}$	I_{calc}	hkl	$I_{\rm obs}$	$d_{\rm obs}$	1	$d_{\rm calc}$	I_{calc}	hkl
100	8.53	{	8.6865	52	020	15	1.9699	{	1.9796	5	280
		l	8.4233	48	110			l	1.9635	5	370
26 10	5.65 5.39		5.6595 5.3812	26 7	$\begin{smallmatrix}1&0&1\\1&1&1\end{smallmatrix}$				1.9551 1.9145	1 1	$\begin{array}{c}3&5&2\\5&1&0\end{array}$
4	<i>4.98</i>		4.9630	7	130			(1.9143	1	451
		(4.8156	9	$130 \\ 200$	6	1.8928	Į	1.8927	1	190
17	4.81	1	4.7419	3	121	0	1.0720	1	1.8905	1	371
4	4.335		4.3433	1	040				1.8659	1	272
		5	4.0476	5	131				1.8435	1	$\frac{1}{3}2\frac{1}{3}$
8	4.023	1	3.9664	4	201	5	1.8274	5	1.8317	2	362
6	3.892		3.8669	2	211	5	1.02/4	l	1.8161	1	521
28	3.430	Ş	3.4456	6	141				1.7684	1	531
20	5.150	l	3.4285	22	012	5	1.7440		1.7487	4	004
			3.2873	1	102			1	1.7303	1	343
			3.2724	3	231	8	1.7153	{	1.7224	4	452
41	2 222		3.2300 3.2252	$\frac{1}{27}$	$\begin{array}{c}1&1&2\\2&4&0\end{array}$			l	1.7121	3	114 541
41	3.223		3.1569	27 3	$240 \\ 310$			(1.7075 1.6749	1 1	403
11	3.071		3.0745	8	122	5	1.6708	Į	1.6735	2	173
11	5.071		2.9937	2		5	1.0700		1.6608	1	1 10 1
1.5	2 02 4	1	2.9611	$\frac{2}{4}$	151			ì	1.6493	1	134
15	2.934	í	2.9289	4	241	2	1.6432	{	1.6447	1	423
			2.9177	1	301				1.6436	1	204
			2.8955	2	060				1.6221	1	044
			2.8774	2	311			(1.6126	3	480
13	2.804		2.8078	7	330	9	1.6040	Į	1.6099	1	391
			2.7659	1	321		1.0010		1.6052	1	600
			2.7240	1	042			l	1.5947	3	292
			2.6212 2.6136	1 2	142 251	o	1.5698		1.5812 1.5727	1	234
		(2.6057	2 4	2 3 1 3 3 1	8 2	1.5567		1.5727	3 4	542 1110
28	2.580	ł	2.5777	14	161			(1.5372	5	244
	2.000	l	2.5425	4	232	11	1.5327	í	1.5217	2	570
1	2 176	Ś	2.4815	1	$\frac{1}{260}$	3	1.4802		1.4843	2	334
4	2.476	Ì	2.4649	1	052				1.4723	1	491
			2.4220	1	341				1.4695	1	193
1	2.410		2.4078	2	400			ſ	1.4578	5	562
9	2.364	1	2.3650	5	302	9	1.4547	1	1.4537	1	612
6	2.274	{	2.2767	4	401			2	1.4478	2	0 12 0
		1	2.2729	1	171				1.4172	1	3110
3	2.234	{	2.2344 2.2303	2 1	351 062	7	1.4093	Į	1.4147 1.4140	1 2	632 174
		2	2.2303	1	4 2 1	/	1.7075		1.4140	2 1	1 1 2 1
5	2.187	ł	2.1927	1	123				1.4001	1	3 10 2
0			2.1728	1	$123 \\ 162$	2	1 2022	Ì	1.3844	1	105
		Ì	2.1103	2	$1 3 \overline{3}$	3	1.3823	ĺ	1.3833	1	492
16	2.101)	2.1058	6	440			(1.3500	1	701
10	2.101		2.1039	1	271				1.3492	1	393
		l	2.0985	4	203	6	1.3449	\langle	1.3486	1	184
		1	2.0834	2	213				1.3459	1	711
10	2.041	{	2.0552	2	361			l	1.3453	2	444
-		(2.0398	2	223			1	1.3386	1	730
			2.0275 2.0240	1 1	$\begin{array}{c}1&8&1\\0&7&2\end{array}$	6	1.3127	Į	1.3221 1.3147	1 1	603 731
			2.0240	1	172	0	1.314/		1.3147	1 1	284
			1.7007	1	1/4			`	1,5100	1	201

489 490 491 Diffractometer Rigaku R-Axis Rapid II 492 X-ray radiation / power Mo*K* α (λ = 0.71075 Å) / 50 kV, 40 mA 493 Temperature 293(2) K 494 Structural Formula Al₃(PO₄)₂(OH)₂[F_{0.90}(OH)_{0.10}]·5H₂O 495 Space group Pcmn *a* = 9.6311(4) Å 496 Unit cell parameters 497 b = 17.3731(12) Å 498 c = 6.9946(3) Å 499 V $1170.35(11) \text{ Å}^3$ 4 500 Ζ $2.353 \text{ g} \cdot \text{cm}^{-3}$ Density (for above formula) 501 0.701 mm^{-1} Absorption coefficient 502 *F*(000) 843.6 503 Crystal size 504 $130 \times 75 \times 45 \,\mu m$ 505 θ range 3.60 to 27.49° 506 Index ranges $-12 \le h \le 12, -22 \le k \le 22, -9 \le l \le 6$ 507 Reflections collected / unique $6066 / 1376 [R_{int} = 0.035]$ Reflections with $F_{o} > 4\sigma F$ 508 1248 Completeness to $\theta = 27.49^{\circ}$ 509 99.3% 510 Min. and max. transmission 0.914 and 0.969 Full-matrix least-squares on F^2 511 Refinement method 512 Parameters refined / restraints 124 / 7513 1.082 GoF 514 $R_1 = 0.0342, wR_2 = 0.0946$ R indices $[F_o > 4\sigma F]$ $R_1 = 0.0370, wR_2 = 0.0970$ 515 *R* indices (all data) $+0.66 / -0.44 e/A^3$ 516 Largest diff. peak / hole * $R_{\text{int}} = \Sigma |F_o^2 - F_o^2(\text{mean})| \Sigma [F_o^2]$. GoF = $S = \{\Sigma [w(F_o^2 - F_c^2)^2] / (n-p)\}^{1/2}$. $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma ||F_o||$. $wR_2 = \{\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]\}^{1/2}$. $w = 1 / [\sigma^2 (F_o^2) + (aP)^2 + bP]$ where *a* is 0.0716, *b* is 0.1059 and *P* 517 518 is $[2F_{c}^{2} + Max(F_{o}^{2}, 0)]/3$. 519 520

Table 4. Data collection and structure refinement details for fluorwavellite from the Wood mine.*

323											
524		x/a	y/b	z/c	$U_{ m eq}$	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
525	Al1	0.22360(8)	0.25	0.12424(10)	0.0108(2)	0.0126(4)	0.0105(4)	0.0093(4)	0	-0.0004(3)	0
526	A12	0.75614(5)	0.01608(3)	0.14135(7)	0.00850(18)	0.0090(3)	0.0102(3)	0.0064(3)	0.00031(17)	0.00018(19)	-0.00012(18)
527	P1	0.06047(4)	0.09249(2)	0.10416(6)	0.00804(18)	0.0083(3)	0.0083(3)	0.0076(3)	-0.00026(13)	-0.00008(15)	-0.00016(15)
528	01	0.90414(12)	0.08341(7)	0.06432(18)	0.0110(3)	0.0091(6)	0.0140(6)	0.0099(6)	0.0015(5)	-0.0017(5)	-0.0012(4)
529	O2	0.08825(13)	0.17679(7)	0.15583(19)	0.0148(3)	0.0159(6)	0.0103(6)	0.0183(7)	-0.0041(5)	0.0045(5)	-0.0031(5)
530	O3	0.10072(12)	0.04175(7)	0.27410(18)	0.0129(3)	0.0115(6)	0.0173(6)	0.0099(6)	0.0036(5)	0.0011(5)	0.0032(5)
531	O4	0.35889(13)	0.07249(7)	0.42095(17)	0.0108(3)	0.0126(6)	0.0117(5)	0.0080(6)	0.0004(4)	-0.0016(5)	-0.0014(5)
532	F5	0.27950(19)	0.25	0.3695(2)	0.0197(6)	0.0246(10)	0.0243(10)	0.0101(9)	0	-0.0043(6)	0
533	O6	0.82046(14)	0.01765(7)	0.39498(16)	0.0106(5)	0.0067(7)	0.0176(7)	0.0075(7)	0.0000(4)	0.0008(4)	-0.0008(5)
534	H6	0.905(2)	0.0253(14)	0.398(3)	0.016						
535	07	0.36874(15)	0.17072(9)	0.0972(2)	0.0228(3)	0.0213(7)	0.0241(7)	0.0230(8)	-0.0042(5)	-0.0021(6)	0.0052(6)
536	H71	0.372(3)	0.1362(13)	0.198(3)	0.027						
537	H72	0.379(3)	0.1436(14)	0.008(3)	0.027						
538	08	0.65089(14)	0.11053(8)	0.1977(2)	0.0151(3)	0.0181(7)	0.0156(6)	0.0115(6)	0.0022(5)	0.0035(5)	0.0025(5)
539	H81	0.640(3)	0.1065(13)	0.309(3)	0.018						
540	H82	0.689(2)	0.1507(12)	0.173(3)	0.018						
541	09	0.8088(8)	0.25	0.229(3)	0.053(4)	0.037(3)	0.036(3)	0.086(12)	0	0.015(4)	0
542	O10	0.7814(14)	0.25	0.107(3)	0.057(4)	0.077(6)	0.025(3)	0.069(10)	0	0.028(6)	0
543	Refin	ed occupancie	es: $F5/O5 = 0$	0.90/0.10(5);	O6/F6 = 1.00)/0.00(3); 09	/O10 = 0.49/	0.51(3)			
544		1				× //					

Table 5. Atom coordinates and displacement parameters $(Å^2)$ for fluorwavellite.

546							
547	Al1–F5	1.7818(17)	Al2-OH6	1.8747(12)	P1O3	1.5297(12)	
548	Al1–F5	1.7982(16)	Al2–OH6	1.8793(12)	P1O2	1.5321(12)	
549	Al1–O2 (×2)	1.8346(13)	Al204	1.8807(13)	P104	1.5382(12)	
550	Al1–O7 (×2)	1.9715(15)	Al2-03	1.8973(12)	P101	1.5393(12)	
551	< Al1–O>	1.8654	Al201	1.9210(13)	< P1-0>	1.5348	
552			Al2-08	1.9686(14)			
553			< Al2–O>	1.9036			
554							
555	Hydrogen bor	nds					
556	$D-\mathrm{H}^{}A$	D–H	$H^{}A$	$D^{\cdot\cdot\cdot}A$	<d-h-a< td=""><td>l</td><td></td></d-h-a<>	l	
557	O6–H6 O3	0.83(2)	2.09(2)) 2.8594(17)	154.3(19	9)	
558	O7–H71 O4	0.92(2)	1.92(2)) 2.837(2)	172(2)		
559	O7–H72 O2	0.79(2)	2.55(2)) 3.117(2)	130(2)		
560	O7–H72 O3	0.79(2)	2.42(2)) 3.1959(19)	~ /		
561	O8–H81 O1	0.79(2)	1.88(2)	· · · · ·			
562	O8–H82 O9	0.807(19	/	· · · · ·	156(2)		
563	O8–H82 O10	0.807(19	2.00(2)) 2.803(4)	179(2)		
564							

545 Table 6. Selected bond distances (Å) in fluorwavellite.546

	01	02	O3	04	F5	06	07	08	Σ
A11		0.60			0.53		0.41		3.05
AII		$\times 2 \rightarrow$			0.50		$\times 2 \rightarrow$		5.02
A12	0.47		0.50	0.53		0.54		0.42	2.99
1112	0.17		0.20	0.00		0.53		0.12	
Р	1.23	1.26	1.27	1.24					5.00
H6			0.16						
H71				0.17			0.83		
H72		0.04					0.96		
H81	0.22							0.78	
H82								0.82	
Σ	1.92	1.90	1.93	1.94	1.03	1.07	2.20	2.02	

Table 7. Bond-valence analysis for fluorwavellite.* Values are expressed in valence units. 566 567

* Multiplicity is indicated by $\times 2 \rightarrow$. Al–O bond valence parameter is from Brese and O'Keeffe (1991) and those for P⁵⁺–O and Al–F are from Brown and Altermatt (1985). Hydrogen-bond 568

569

strengths are based on O^{...}O bond lengths, from Brown and Altermatt (1985). The O9 and O10 570

571 sites are not included.

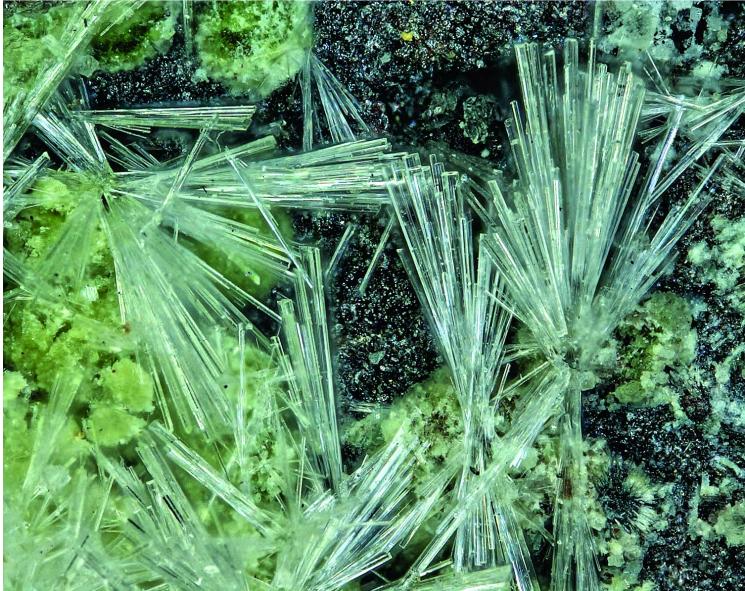
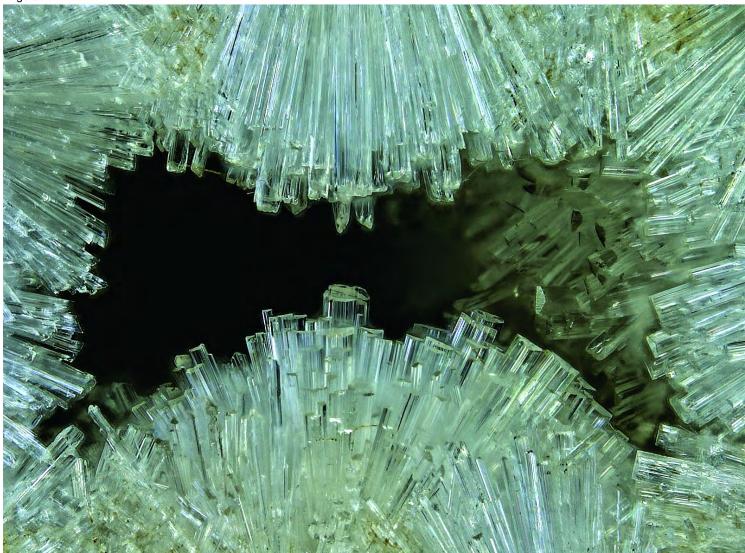
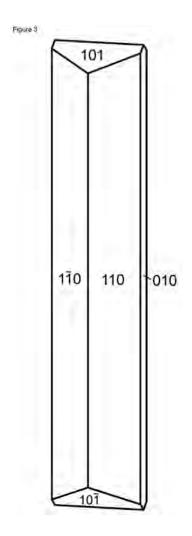
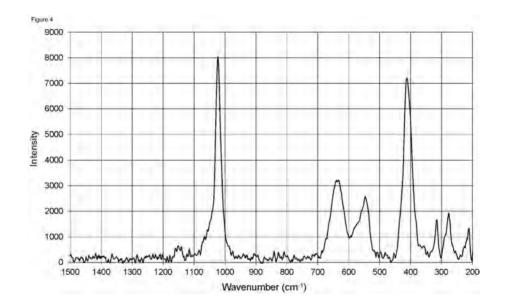
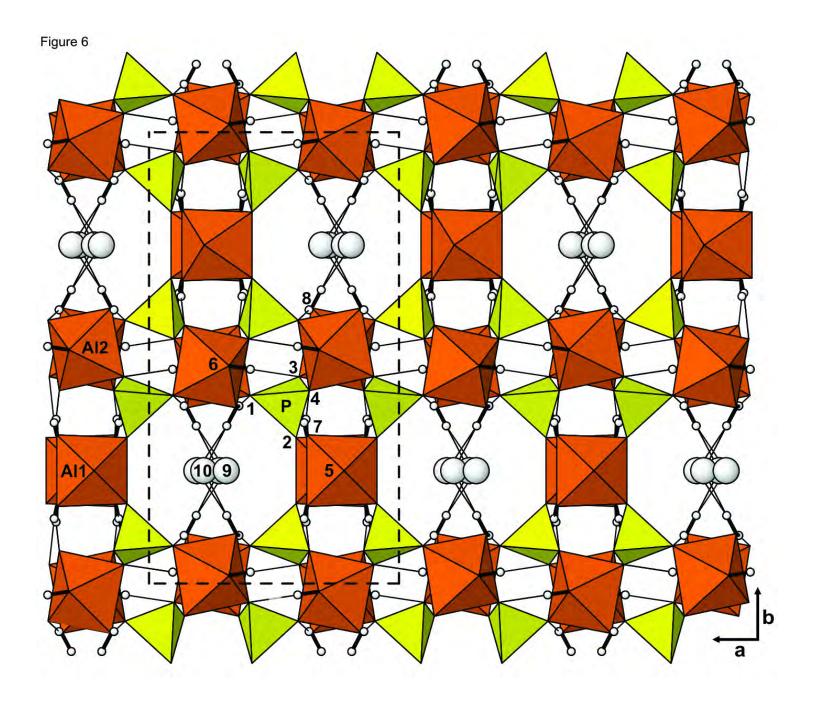
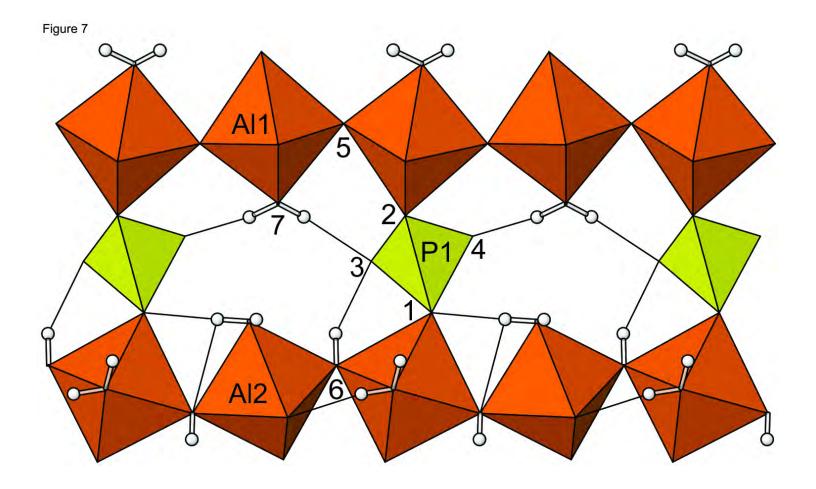


Figure 1


Figure 2

