Magmatic graphite inclusions in Mn-Fe-rich fluorapatite of perphosphorus granites (the Belvís pluton, Variscan Iberian Belt)

Cecilia Pérez-Soba¹, Carlos Villaseca¹,² and Alfredo Fernández³

¹ Departamento de Petrología y Geoquímica, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, c/ José Antonio Novais 12, 28040 Madrid, Spain
² Instituto de Geociencias IGEO (UCM, CSIC), c/ José Antonio Novais 12, 28040 Madrid, Spain
³ Centro Nacional de Microscopía. Universidad Complutense de Madrid, 28040 Madrid, Spain

Abstract

Three Mn-Fe-rich fluorapatite types have been found in the highly evolved peraluminous and perphosphorous granites of the Belvís pluton. One of these apatite types includes abundant graphite microinclusions, suggestive of a magmatic origin for the graphite. The Belvís pluton is a reversely zoned massif composed by four highly fractionated granite units, showing a varied accessory phosphate phases: U-rich monazite, U-rich xenotime, U-rich fluorapatite and late eosphorite-childrenite. The strong peraluminous character of the granites determines an earlier monazite and xenotime crystallization, so the three types of fluorapatite records late stages of phosphate crystallization. The earlier type 1 apatite is mostly euhedral, small and clear; type 2 apatite is dusty, large (< 2800 μm) and mostly anhedral, with strong interlobates interfaces with
the main granite minerals, more abundant in the less fractionated units and absent in the most evolved unit; type 3 is subeuhedral to anhedral, shows feathery aggregate texture, and only appears in the most evolved unit. Apatite composition was acquired by electron microprobe analyses, laser ablation inductively coupled plasma-mass spectrometry and electron energy loss spectroscopy. Type 1 and type 2 apatite display similar broad compositional ranges showing high MnO (up to 4.30 wt%) and FeO (up to 2.88 wt%) contents, without traces of carbon in apatite structure. Type 2 differs from type 1 by having slightly higher LREE and Sr contents. REE spectra also differ, with type 1 displaying both variable LREE slope and negative Eu anomaly, whereas type 2 shows constant LREE slope and higher negative Eu anomaly, although both display similar HREE slope. Type 3 apatite displays higher FeO contents (up to 5.09 wt%), positively correlated with higher Cl-Na-Li-Be-B-Zn contents and extremely low Y-REE contents when compared to the other apatite types. Cation substitution indicates that part of the Fe content is as Fe$^{3+}$. Graphite has been found exclusively as abundant microinclusions in type 2 apatite, parallel or randomly distributed, and heterogeneously grouped in clusters within the crystals. High resolution electronic images show that graphite occurs with unusual habits: filaments of stacked hexagonal flakes up to 15 μm length and up to 0.5 μm width. Textural and chemical features suggest a highly crystallized melt which favor compartmentalizing in compositional microdomains where the apatite types would have crystallized. The cocrystallization of type 2 apatite and graphite suggests a C-F-P-rich melt, sufficiently saturated to acquire an immiscible character with the highly evolved silicate melt in late-magmatic stages. As type 2 differs from type 1 apatite by higher LREE and Sr contents, we interpret that fluxing components were favorably concentrated in those residual less-depleted LREE-Sr fraction melts, once monazite and zircon (and xenotime) would have crystallized. Type 3 apatite records a change in the ultimate melt stage: an increase of the
oxygen fugacity coupled with high undercooling by volatile lost of highly fractionated residual Cl-richer melts. The presence of biogenic carbon in granite peraluminous melts derived from metasedimentary sources and its later crystallization as graphite filaments open a discussion on the carbon behavior during magma evolution, especially in highly polymerized melt framework.

Key words: Mn-Fe-rich fluorapatite, graphite, granite, melt immiscibility, carbon isotope, perphosphorous, peraluminous

Introduction

Apatite, Ca$_5$(PO$_4$)$_3$(Cl,OH,F), is a common accessory mineral within almost all igneous rocks. It shows a large compositional spectrum due to its favorable lattice for substitutions at different physicochemical conditions. These two characteristics make apatite a valuable tool for constraining magma evolution and thus many studies have related the apatite chemistry to different magmatic environments (e.g., Zhang et al. 1985; Sha and Chappel 1999; Belousova et al. 2002; Piccoli and Candela 2002; Hoshino et al. 2007; Buda and Pál-Molnár 2012; Marks et al. 2012; Mao et al. 2016) This is especially suitable for felsic peraluminous magmas, in which the high apatite solubility delays its crystallization (e.g., Wolf and London 1994). In this sense, some studies (e.g., Miles et al. 2013) point out the apatite as a suitable accessory mineral to record the late-stage magmatic crystallization history. Other phosphates (e.g., monazite, xenotime) would have crystallized early, impoverishing residual magma mainly in REE (Wolf and London 1995) but favoring that volatile, fluxing components (e.g., C, F, Li) and others elements (e.g., Mn, Fe) may enter in later apatite.
Graphite may occur in many rock types, although published accounts of graphite in granitoids or high-silica volcanic rocks are rare. In these rocks graphite has been found in tiny amounts in different textural forms: as a solid phase within fluid inclusions (Frezzotti et al. 1994; Jaszczak and Trinchillo 2013), as small-size crystals interstitial to the main rock-forming minerals (Duke and Rumble 1986; Zeck 1992; Kanaris-Sotiriou 1997; Seifert et al. 2010) or hosted in these (Broska et al. 1992; Seifert et al. 2010), and as graphite spherulites interstitial or hosted in rock-forming minerals (Göd, 1989; Doroshkevich et al. 2007). Different origins have been invoked for graphite in igneous rocks: i) precipitation from C-bearing fluids (Winchel 1911; Alfonso et al. 1995; Luque et al. 1998 and references therein; Long et al. 2013); ii) xenocrystic material, i.e., residual phase inherited from carbonaceous pelitic source rocks (e.g., Broska et al. 1992 and references therein; Kanaris-Sotiriou 1994; Seifert et al. 2010) or assimilated from metasedimentary wall-rocks; iii) metasomatic process involving C-bearing aqueous fluid phases (e.g., Weiss et al. 1981) which may precipitate onto restitic graphite (Duke and Rumble 1986); iv) in carbonatite rocks, breakdown of Fe carbonate with reduction of the carbonate ion (e.g., Rosenberg 1963; Gellantli 1966), or v) precipitation from carbonatite magmas (Doroshkevich et al. 2007). In granitic rocks of peraluminous character (S-type granites), the graphite occurrence is frequently associated to apatite, occurring as solid microinclusions (e.g., “dusky apatite” of Broska et al. 1992, and references therein; Gottesmann and Wirth 1997; Seifert et al. 2010), or as a solid phase in fluid inclusions (e.g., Jaszczak and Trinchillo 2013; Long et al. 2013).

In this study we characterize fluorapatite in the peraluminous and perphosphorous granites from the Variscan Belvis pluton, as part of an ongoing study of its accessory minerals. On the basis of textural, major and trace chemical composition, determined by electron-microprobe (EMP), and laser ablation multicollector inductively coupled plasma mass spectrometry (LA-
ICP-MS), we have characterized three types of magmatic apatite. We also describe a new occurrence of graphite in granitoid rocks, as abundant needle-like inclusions hosted in magmatic fluorapatite. The characteristics of graphite-bearing apatite compared to the other apatite types provide constrains to the origin of this uncommon magmatic graphite occurrence.

Geological setting

The Variscan orogeny generated large granitic batholiths in the inner parts of the Iberian Peninsula (the Central Iberian Zone, CIZ), in an age range from 315 to 295 Ma (Appendix 1 Fig. 1a), which encompasses a significant volume of fractionated plutons (e.g., Villaseca et al. 1998; Orejana et al. 2012; Merino Martínez et al. 2014). The contrasted nature of country rocks as source lithotypes (metasedimentary and metaigneous rocks) would explain two different batholitic lineaments in this area: the Spanish Central System (SCS) and the Montes de Toledo (MT) batholiths, this last in the southern part of the CIZ (Appendix 1 Fig. 1a) (Villaseca et al. 2014). The dominant peraluminous and perphosphorous granitoids of the MT batholith were probably generated from pelitic sources similar to those of the surrounding country rocks, the Schist Greywacke Complex (Villaseca et al. 2008; Merino Martínez et al. 2014), providing a S-type character. The most fractionated and perphosphorous granites of the MT batholith outcrop in the westernmost sector (Villaseca et al. 2008) and, among these, the Belvís pluton stands out. The ca. 3.5 km² Belvís pluton is reversely zoned with four biotite and/or muscovite granite units (G1 to G4) showing a foliated fabric (Appendix 1, Fig. 2c and 2d) broadly parallel to the outer contact with the low-grade metasedimentary rocks (Appendix 1 Fig. 1b; Appendix 1 Figs. 2c and 2d). A km-size contact aureole of high grade is developed in the country rock (Merino et al. 2013), along with a secondary schistosity concordant with the plutonic shape, suggesting
a dome intrusion (Pérez-Soba et al. 2014). The presence of xenoliths for the whole pluton is very rare.

Quartz, K-feldspar, plagioclase, biotite, muscovite and accessory but widespread sillimanite (mainly hosted in most of the magmatic minerals) are the rock-forming minerals in the Belvís granites. Phosphates are common accessory minerals in these granites, including monazite, xenotime, fluorapatite and childrenite-eosphorite. The high U content of monazite, xenotime and zircon and a complex accessory mineral association of gahnite, chrysoberyl and beryl in the Belvís leucogranites have been remarked in previous studies (Orejana et al. 2012; Merino et al. 2013; Pérez-Soba et al. 2014)

The chemical composition of the Belvís granites is characterized by their strong peraluminous character (ASI = 1.26 - 1.32), along with high P₂O₅ (up to 0.85 wt%), low CaO (0.26 - 0.56 wt%) and high U (6.8 - 13.5 ppm) contents (Villaseca et al. 2008; Merino et al. 2013). The inner units (G3 and G4) display higher FeO, MgO, K₂O, TiO₂, Ba, Zr, Hf, Th, Pb, Y and rare earth elements (REE) contents when compared to the outermost granites (G1 and G2 units), which in turn have higher P₂O₅, Na₂O, Rb, Sr, U, Nb, Ta, F and Li contents (Merino et al. 2013; Pérez-Soba et al. 2014). Zircon from the Belvís pluton gave an accurate emplacement age of 310 ± 4 Ma (Merino Martínez et al. 2014), defining a late-to-post Variscan D3 emplacement (320 to 312 Ma age, e.g. Dias et al. 1998). Estimated P-T conditions of pluton emplacement were constrained from 660-695 °C (for G1 pulse) to 725-760 °C (for G4, the last pulse), with pressures in the range of 1.5 to 2 kbar (Merino et al. 2013).

Results

The sampling and analytical methods section is available in Appendix¹ Text.

Apatite petrographic features
A petrographic description of Belvís granites can be found in Merino et al. (2014) and Pérez-Soba et al. (2014). Apatite is, along with monazite, the most abundant accessory mineral in the Belvís granites. Three apatite types are distinguished according to textural features (Table 1). Type 1 mainly appears as light green coloured, equant, euhedral (Fig. 1a) to anhedral (Fig. 1b) crystals, ranging from 20 to 2000 μm, although about 90% are smaller than 600 μm. The euhedral and smaller sections mainly appears as inclusions in plagioclase in the most fractionated granites (G1 and G2), whereas the bigger and anhedral sections, ranging from 250 to 2000 μm, are rare and mostly found in the less fractionated units (G3 and G4), included in or interstitial to feldspars, quartz and micas. Type 2 and type 3 apatite mostly appear as anhedral crystals. Type 2 is characterized by an irregular dusty appearance, with frequent intragranular cracks (Appendix1 Fig. 3b, 3c, 3d and 3e; Figs. 1d, 1e and 1f). They appear as large sections (150 - 2800 μm), interstitial to the main granite minerals with interlobate shapes (Appendix1 Fig. 3b, 3c, 3d and 3e; Figs. 1c-1e), although occasional euhedral sections are found. Type 2 apatite appears in G2, G3 and G4 units, but lacks in the most evolved G1 unit. It may be locally abundant, especially in the G4 granite (e.g., about 30 crystals in a standard thin section, Appendix1 Fig.2). SEM images reveal that dusty sectors contain ample acicular graphite microinclusions (Figs. 1f-1h). Most apatite crystals are inclusion free, with the exception of some occasional zircon crystals. Type 3 apatite appears only in the most evolved G1 granite unit, mainly as anhedral (but also subeuhedral) crystals (Fig. 1i), interstitial to the main granite forming minerals, and some crystal reach up to 300 μm. This apatite type appears as feathery aggregate crystals (Fig. 1i, j), oriented (Fig. 1k) or variably oriented in sectors (Figs. 1j and 1l) and includes occasional childrenite-eosphorite (Fig. 1i). However, large childrenite-eosphorite crystals, which usually include tinny apatite, do not show any relationship with the feathery type. Moreover, type 3 apatite has not been observed in the outer part or cracks of other
magmatic phosphates in the Belvís granites. These observations suggest a magmatic origin for
this apatite type.

The textural relationships with the main granite minerals and the variable shapes of the three
apatite types provide evidence of an overlapping sequential crystallization from type 1 to type
3.

Apatite composition

Representative major and trace element compositions of the three apatite types of the Belvís
granites are shown in the Appendix1 Table1, and their main features are synthesized in Table 1.
The three apatite types are fluorapatite: F ranges from 1.87 to 4.31 wt% (overestimated, see
analytical methods), with low amounts of Cl (<0.50 wt%) and calculated OH. Most fluorapatite
is characterized by high MnO and FeO contents, which display wide ranges (MnO = 0.36 -
4.30 wt%; FeO = 0.04 - 5.09 wt%). In the MnO vs. FeO plot (Fig. 2a) type 1 and type 2 apatite
show the same compositional ranges, with FeO/MnO ratio values below 1:2. Apatite with
graphite inclusions (type 2), although similar in most of the compositional features to type 1, is
richer in Sr, LREE, Zr and Hf contents (Figs. 2b and 2c), and reaches the highest HREE
(<2133 ppm) and U (156 – 460 ppm, average of 260 ppm) contents (Fig. 2d). Type-2 apatite
shows low Th contents (up to 46 ppm, average of 10.53 ppm) compared to U, although both
elements display positive correlation (Fig 3d). The U content of type 1 and type 2 apatite is
high when compared to apatite in other felsic granitic rocks, either from alkaline, S- or I-type
suites (<235 ppm Zirner et al. 2015; <40 ppm, Belousova et al. 2002; <187 ppm, Hoskin et al.
2000; <184 ppm, Cao et al. 2013; <119 ppm; Mao et al. 2016) (Fig 3d), although lower than
data from rare metal-rich highly fractionated granites and LCT pegmatites (e.g., 7404 ppm,
Raimbault and Burnol 1998; ca.1000 ppm, Cao et al. 2013) and from a metamorphosed syenite
(681 ppm, Mao et al, 2016). The high U content in the apatite is in accordance with its
association to exceptional U-rich monazite and xenotime of these Belvís granites (Pérez-Soba et al. 2014). Type 3 apatite composition contrasts by higher FeO$_{tot}$ contents (<5.09 wt%, average of 1.21 wt%) and FeO/MnO ratio values above the 1:1 ratio (Fig. 2a). In addition, type 3 is considerably richer (in wt%) in Na$_2$O (<1.08), Cl (<0.81) (Fig. 2e), and (in ppm) Sr (1596 - 2490) (Fig. 2b), Be (<502), Zn (<239) and B (<28) than type 1 and type 2 apatite, which show most contents below detection limits (Appendix 1 Table 1). On the contrary, type 3 shows the lowest P and Ca contents, low analytical totals (Fig. 2f) and extremely low Y, REE (Fig. 3a), U and Th contents (Fig. 2d). Most apatite crystals show no evidence of zoning in BSE imaging, and those euhedral to subeuhedral crystals with slight zoning do not show systematic core-rim chemical variation.

Li content of the three types show similar range (9 – 104 ppm, average of 39 ppm, Table 1 and Appendix 1 Table 1). Comprehensive data of Li content in apatite are scarce in the literature but these data (e.g., 2.1 ± 0.9 ppm averaged in apatite from felsic rocks, Piccoli and Candela 2002) indicate that Belvís apatite is Li-enriched. Electron energy loss (EEL) spectra performed in the three apatite types does not detected carbon. None of the analyzed nanosamples have absorption K-edge peaks around 284 eV, corresponding to the existence of amorphous carbon in EELS, or around 290 eV (with a second broader peak centered at 302 ev) corresponding to the carbon-edges in carbonates.

The REE content in apatite of the Belvís granites is largely variable (0.5–5878 ppm) (Table 1 and Appendix 1 Table 1). Type 1 and type 2 apatite show a wide REE total contents (1118–5878 ppm), even at sample scale, displaying positive correlation between LREE (2131–4048 ppm) and HREE+Y contents (297–2133 ppm) (Fig. 3a). Type 1 apatite displays broad and continuous chondrite-normalized REE patterns with a significant dissociation between LREE and HREE b: the LREE pattern varies from regular and negative sloped pattern to a flat and
irregular one \(((\text{La/Sm})_N = 1.91–6.06) \) (Fig. 3b), whereas the HREE show a consistent negative
slope \(((\text{Gd/Lu})_N = 1.7–4.9) \) with a constant third tetrad effect \((1.25–1.42, \) with the exception of
one sample having a 2.2 value). Type 2 apatite shows consistent planar LREE patterns and
negative fractionated HREE trend, this last similar to type 1, with a tendency to be HREE
enriched (Fig. 3c). In both apatite types, the negative Eu anomaly increases \((\text{from 0.79 to 0.07}) \)
displaying positive correlation with the total REE content and the REE fractionation \((\text{La/Yb})_N \)
(Fig. 3d). The chondrite-normalized patterns of both apatite types show different anomalies: a
low negative Nd anomaly \((0.76–0.94), \) a weak positive Ce anomaly \((1.06–2.19, \) more
pronounced in type 2 apatite) and a mostly slight positive Yb anomaly \((0.97–1.17). \) Type 3
apatite shows REE contents mostly below detection limits, 3 to 4 orders of magnitude lower
than those from type 1 and type 2. In order to compare with the other apatite types, chondrite
normalized REE patterns of type 3 are estimated using the highest content just above the
detection limits (Fig. 3c).

Most of the described compositional features of type 1 and type 2 apatite are typical of S-
type granites (Sha and Chappell 1999; Broska et al. 2002, 2004). However, some differences
can be highlighted: i) the three apatite types are, on average, richer in Mn and Fe than those
from S-type granites, and even richer than apatite from specialized S-type granites (e.g. Broska
et al. 2002); ii) type 1 and type 2 apatite from Belvís are considerably richer in U than typical
apatite from I or S-type granites (Fig. 2d); iii) they have higher LREE and lower HREE
contents than apatite from other S-type (Sha and Chappell 1999) or peraluminous granites (Chu
et al. 2009); iv) LREE/HREE ratio in Belvís apatite \((1.6 - 4.9) \) is more characteristic of apatite
from mafic I-type granites than from S-types (Sha and Chappell 1999), so in chondrite-
normalized REE spectra the HREE pattern show an atypical negative slope; v) the extremely

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
low Eu negative anomaly in some of the studied type 1 apatite crystals are uncommon in S-
type granites (Sha and Chappell 1999).

Graphite microinclusions

Petrographic features. Graphite inclusions are abundant (up to 10 vol% of apatite crystal),
displaying a broad alignment (Fig. 1f) or randomly arranged within the apatite crystals (Fig.
1g, h), in both cases heterogeneously grouped in clusters. Secondary electron images show that
these graphite inclusions are filaments (Figs. 4a and 4b) with diameters about 1 µm (Figs. 4c
and 4d) and lengths observed of 15 µm (Fig. 1g), and conformed by graphene sheets bonded to
each other in a stacked sequence. It is remarkable the systematic presence of a cavity around
each graphite inclusion with similar contour that the graphite shape and lengths exceeding in
about one third that of the related flake graphite (Figs. 4c and 4d).

Graphite inclusions in igneous minerals commonly appear as flakes, and have never been
described with crystalline habits typical of graphite crystallized from fluids as, e.g., spherules
(Duke and Rumble 1986; Luque et al. 2012). Two previous descriptions of graphite
microinclusions within magmatic apatite were recorded in peraluminous leucogranites from the
Bohemian Massif: Broska et al. (1992) studied dusky apatite in Variscan leucogranite massifs
of the Western Carpathians caused by the presence of “fine graphite flakes”; Seifert et al.
(2010) reported in the Caledonian S-type Rumburk granite disperse graphite (associated to
other minerals) as microinclusions (up to 3 µm) in apatite and other minerals or as “interstitial
flakes”. Other references of graphite in igneous rocks are from Montanini et al. (2010), which
found graphite as “dispersed flakes and stacks of flakes” (up to 2–3 mm) in garnet pyroxenite
layers from the Northern Apennines; Kvasnitsa et al. (1999) described in anorthosites different
textures of graphite interstitial to plagioclase, which display a complete transition from “tabular
flakes to columnar individuals, in a sorter (sic) of macrospiral growths with pseudo-dipyramidal terminations”. Patel and Deshapande (1970) found some graphite filaments (65–125 µm) with c-axis planes oriented along the fiber length, growing from graphite crystals of the Ticonderoga graphite mine. Among graphite shapes found in literature, this last graphite morphology is the most similar to those described here, although significantly longer than the 15 µm observed in graphite of Belvis.

The systematic occurrence of a cavity around graphite inclusions (Figs. 4c and 4d) could be interpreted as a contraction. It is known that low irradiation dose causes the graphite to shrink parallel to the layer planes (a-axis direction) (Burchell 1997). The high U contents of type 2 apatite (up to 450 ppm, Appendix 1 Table 1), exceptionally high for common granite rocks, could be a natural source of the radiation.

Chemical characterization. Identification of graphite has been successively carried out by EMP line analysis, EDX spectra and elemental X-ray maps. Figure 5 shows two EDS line analysis on graphite microinclusions in type 2 apatite for C, Ca, P and F, which systematically reveal that P, Ca and F contents define sharp falls within rich-inclusion areas while carbon defines a peak.

Carbon isotope composition. Carbon isotope composition of bulk rocks have been obtained from the wall rocks (SGC pelitic metasediments), nearby granites of the MT batholith (Navalmoral de la Mata pluton) and the Belvis granites (Table 2). Carbon isotope ratios (δ¹³C in ‰) from the graphite-bearing Belvis granites range from –24.4 to –27.4 indicating a biogenic carbon source (Fig. 6). These values are within the wide range of ratios shown by metapelitic rocks from the CIZ (Fig. 6), although slightly higher than the nearest metasedimentary wall-rocks (–31.00 to –32.49). Moreover, Belvis granites have also similar
but slightly higher $\delta^{13}C$ values than other graphite no-bearing peraluminous granites of the MT batholith (N. Mata granites: -29.24 to -32.78). Carbon isotope composition of the Belvis granites suggests an organic carbon derivation inherited from the metasedimentary source.

Discussion

Substitution mechanisms

Composition of apatite can be described by the common structural formula $M1_4 M2_6 (TO_4)_3 X$ (Pasero et al. 2010). T includes cations with more than 4-fold coordination (P^{5+}, As^{5+}, V^{5+}, Si^{4+}, S^{6+}). The X anionic site is occupied by monovalent anions (F^-, Cl^-, OH^-), which can substitute for each other resulting in almost a complete range of substitution between the three end-members of apatite; moreover, vacancies (e.g., Piccoli and Candela 2002), H_2O molecules, and divalent anions (O^{2-}, CO_3^{2-}) can substitute in this channel site (e.g., Pasero et al. 2010). M-site (Ca^{2+}) accommodates cations in two non-equivalent, symmetrically and crystallographically distinct sites: the 9-fold coordinated site ($M1$ or $Ca1$, larger in size and with trigonal symmetry) and the 7-fold coordinated one ($M2$ or $Ca2$, smaller and lower in symmetry, surrounded by one F atom) (e.g., Pasero et al. 2010). Large divalent (Ca, Pb, Ba, Sr, Mn, Mg, Fe), trivalent (REE, Y, Al, Bi) or monovalent (Na, Li) alkaline earth-element cations substitute over $M1$ and $M2$ sites. The ability of apatite structure to accommodate this broad spectrum of different cations and anions depends on several factors: ionic size, redox conditions, coordination preferences of the substituting cation, temperature, etc. (e.g., Hughes et al. 1991; Pasero et al. 2010; Wopenka and Pasteris 2005).

In the Belvis apatite the T-position is occupied mainly by phosphorous, with occasional analyses with Si content above detection limit. Phosphorous content only displays a broad negative correlation with the Ca content but does not correlate with any of the other analyzed
not essential structural cations (not ESC) (as Mn, Fe, Mg, Sr, Na, Al, REE, Y, Th and U), suggesting that it may be involved in coupled substitution mechanisms. The X-site is dominated by F, with traces of Cl. The occupancy of this site is below full capacity (2 atoms per formula unit (apfu) about 3.7 wt%, de Toledo et al. 2004). This deficiency could be related to the existence of structural OH⁻ (McClellan and Lehr 1969) or vacancies (Pan and Fleet 2002) in this site. In type 1 and type 2 the F content only displays correlation with the OH⁻ content (estimated by charge balance). The estimated values of OH⁻ do not systematically correlate with excess of oxygen analyzed by EMP in the respective analysis (see analytical methods), suggesting, that vacancies may be included in this OH⁻ estimation. The F content in type 3 apatite shows a positive correlation with the Ca contents (Figs. 7a and 7b), suggesting some substitution mechanism involving both F and Ca. These elements participate in several coupled mechanisms, all of them with associated vacancies (Pan and Fleet 2002, and references therein), which may explain the low anion occupancy observed in this apatite type. The F content displays broad negative correlation with the Cl contents of type 3 apatite. This F-Cl correlation may be explained by changes in the P-T conditions (e.g., Harlov 2015; Webster and Piccoli 2015) or competition with other Cl-bearing minerals (e.g., Harlov 2015). In the Belvís granites, muscovite or biotite show extremely low Cl contents (Merino 2014), and the four granite units intruded in a short time span at the same emplacement level. Therefore, the significant higher Cl content in type 3 apatite rather suggests a significant melt compositional change (e.g., enrichment in fluxing components) in the last magmatic stage that this apatite type records, as also would evidence the good positive correlation of Cl with Na (Fig. 2e), Li (Fig. 7c), Be and B contents.

Among the monovalent cations that potentially substitutes for Ca, only Na and Li show significant values in the Belvís apatite. In type 1 and type 2 Li shows positive correlation with
both LREE and Y+HREE contents (Fig. 7d), so Li incorporation could be explained via the coupled substitution: \(\text{Li}^+ + (\text{Y+REE})^{3+} = 2\text{Ca}^{2+} \). A similar mechanism was proposed by Pan and Fleet (2002) and Harlov et al. (2002), although involving Na as the monovalent cation, which, on the other hand, in the studied apatite is not evident. In type 3 apatite, in which Na content is particularly high, this cation only show a remarkable positive correlation with Cl, Li (Figs. 2e and 6e) and Fe contents (Fig. 7f). The correlation between Na and Fe may suggest a charge compensated substitution mechanism of \(\text{Fe}^{3+} \) and \(\text{Na}^+ \) for \(\text{Ca}^{2+} \) (Pan and Fleet 2002). Therefore, Na would have been incorporated in type 3 apatite as long as \(\text{Fe}^{3+} \) was present, and possibly favored by the high Cl and Li contents. In type 3 apatite Li is negatively correlated with F, indicating Li could be likely incorporated via the coupled substitution mechanism: \(\text{Li}^+ + \square = \text{Ca}^{2+} + \text{F}^- \) (Pan and Fleet 2002). In short, in type 3 apatite the strong correlation displayed between Cl, \(\text{Fe}^{3+} \), Li, Na, Be and B suggests the involvement of a residual fraction of magmatic melt rich in fluxing components and with higher oxidation state compared to that related with the type 1 and type 2 apatite.

In the studied three apatite types, \(\text{Fe}^{2+} \) and \(\text{Mn}^{2+} \) are the main cations for Ca substitution. The good correlations between them suggest a simple mechanism for Fe and Mn incorporation:

\[
(\text{Fe}^{2+} + \text{Mn}^{2+}) = \text{Ca}^{2+}
\]

(e.g., Pan and Fleet 2002; Harlov et al. 2006). Other divalent cations, as Sr, Mg or Be, where above detection limits (mostly in type 3, Appendix1 Table 1), are negatively correlated with Ca.

Unlike divalent cations which substitute for Ca without variation of the apatite structure, the incorporation of \(\text{M}^{3+} \) cations requires a coupled substitution in which they substitute for \(\text{Ca}^{2+} \) and \(\text{P}^{5+} \) as long as \(\text{Si}^{4+} \), \(\text{Na}^+ \) or vacancies are involved (Fleet and Pan 1995). In type 1 and type 2 apatite the \(\text{M}^{3+} \) involving cations are \(\text{REE}^{3+} \), Y and \(\text{Al}^{3+} \), which do not show distinct correlations with any other substituting cation. This reduces the substituting mechanisms to this
one: $2\text{REE}^{3+} + \square = 3\text{Ca}^{2+}$ (cf. Elliot 1994). In the case of type 3 apatite, the extremely low REE and Y contents are likely explained from local crystallization of REE-exhausted melts, although their relatively high Cl content could also decrease the uptake of REE in fluorapatite (Fleet et al. 2000).

Tetravalent cations U and Th are only significant in type 1 and type 2 apatite (Appendix 1 Table 1), displaying positive and good correlation between them (Fig. 2d). They can substitute for Ca via a Ca-deficiency mechanism, such as vacancies or coupled substitutions involving Na or Si (Luo et al. 2009, and references therein). As the incorporation of U in the fluorapatite structure is in the tetravalent state (Luo et al. 2009) and in the Belvís apatite samples the (Th + U) content is not correlated with Na or Si, the most plausible mechanism is to charge balance generating vacancies: $(U + Th)^{4+} + \square = 2\text{Ca}^{2+}$.

Type 3 apatite shows systematically low analytical totals (Appendix 1 Table 1, Fig. 2f). Specific references on low analytical totals in apatite from igneous rocks are very scarce in literature (e.g., de Toledo et al. 2004). In general, low totals have been ascribed to weathering effect, porosity by partial dissolution or possible compounds not analyzed. In a profile of variably weathered carbonatitic complex, de Toledo et al. (2004) correlated low analytical totals with: (a) loss of substituting cations for Ca, (b) increase of substituting anion (carbonate) for P, (c) the increase of F, and (d) increasing CaO/P$_2$O$_5$ ratio. In our case, analytical data (LA-ICPMS) on type 3 apatite type show trace contents of substituting cations, and the EEL spectrometry has not detected carbon. Therefore, we consider that low totals of this type 3 apatite may be explained by the microporosity of the surface roughness associated to its feathered texture, which, according to Sorbier et al. (2004), can introduce large quantification errors if a contaminant (e.g., carbon during sample preparation) is not analyzed.
Constrains on the fluorapatite crystallization

Textural features of type 1 apatite from Belvis units suggest a broad crystallization stage evolving from euhedral crystals, included in early rock-forming plagioclase, to anhedral and bigger crystals, included in later rock-forming quartz, micas and K-feldspar. The most frequent interstitial position of type 2 apatite would indicate a widespread later crystallization with respect to type 1 crystals. Whole-rock chemical evolution from G4 to G1 granites shows the typical trends of highly-fractionated, P-rich and Ca-poor S-type granites, with P₂O₅ and MnO increase, and CaO, FeO and REE contents decrease (e.g., London et al. 1993). However apatite composition does not correlate with whole-rock MnO or FeO contents of the corresponding sample, or other whole-rock evolutionary parameters (e.g., ASI, TiO₂ or SiO₂ contents), suggesting that apatite characterizes the last sequence of magmatic evolution in these residual melts. Moreover, the fact that in the same thin section apatite may display significant variations or appear near to other apatite type could evidence the melt drop-like compartmentalization of highly residual melts. The decrease of apatite amount from G4 to G1 granites may be explained by a lower P availability, as increasing phosphorous partition into K-feldspar and plagioclase via the berlinite substitution is shown by the Belvis granites (Table 1 of Villaseca et al. 2008).

The lack of chemical zoning in type 1 and type 2 apatite may provide further information about crystallization conditions. In these cases, the rate of crystal growth is lower than the rate at which elements in the melt diffuse (Kuehner and Joswiak 1996), or apatite crystallization temperatures above 500 °C could erase the zoning, as a result of diffusive equilibration of Mn during or after crystallization (Cherniak 2005; Sirbescu et al. 2009). Temperatures of crystallization in the Belvis granites were estimated about 700°C (Merino et al. 2013), although lower temperatures could be reached because the relatively late apatite crystallization and the presence of fluxing components in melts could decrease granite solidus temperatures,
favouring undercooling conditions. In addition, in these highly fractionated and P-F-rich melts a strong increase of cation and volatile diffusion rates is reasonable to expect (e.g., Hannah and Stein 1990; Holzt et al. 1993; London et al. 1993). Therefore, undercooling conditions coupled with high cation diffusion may result in unzoned apatite crystals.

Low oxygen fugacity is characteristic of S-type magmas (e.g., Sha and Chappell 1999). Some evidences of low oxidation state in magmas deduced from apatite composition are: i) Fe, Mn or U substituting for Ca are indicative of divalent charge \((\text{Fe}^{2+}, \text{Mn}^{2+})\) or tetravalent charge \((\text{U}^{4+})\) (e.g., Belousova et al. 2002; Buda and Pál-Molnár 2012; Miles et al. 2014); ii) low oxygen fugacity enhances \(\text{Eu}^{2+}/\text{Eu}^{3+}\) ratio in the melt, resulting in higher negative Eu anomaly in the chondrite-normalized apatite REE patterns as \(\text{Eu}^{3+}\), with similar ionic radius than Ca, is preferred by the apatite structure (Roeder et al. 1987; Sha and Chappel 1999; Broska et al. 2002; Cao et al. 2011); iii) in the same way, a positive Ce-anomaly could be explained by reduced state of Ce (as \(\text{Ce}^{3+}\)). Pan et al. (2016) propose bivariant plots of elements with opposite partitioning behavior in changing oxidation state during magma crystallization. Following this assumption, \(\text{Eu}/\text{Eu}^*\) or \(\text{Ce}/\text{Ce}^*\) could define the oxidation state during the growing of the three apatite types, as it is shown in Figure 8a. In this plot, type 1 apatite defines a broad negative correlation, possibly recording more variable oxygen fugacity conditions, whereas type 2 plots in low \(f/\text{O}_2\) fields, and type 3 apatite display scattered trends at higher oxygen fugacity. The high negative Eu anomaly in chondrite normalized REE patterns of type 2 apatite would corroborate a low oxidation state. However, in a single thin section type 1 apatite shows strong variations of the Eu and Ce anomalies, suggesting that other factors, in addition of redox conditions or independent of this, could explain these variations. Some studies have shown that the Eu anomaly in accessory minerals may result for previously Eu
depleted melt, either from the source (e.g., Rubatto 2002), after plagioclase crystallization (e.g.,
Hoskin et al. 2000) or by co-crystallization with K-feldspar (Murali et al. 1983).

Apatite chemistry may be interpreted according to whole-rock melt composition (Prowatke
and Klemme 2006; Cicconi et al. 2012), REE preferences of coevally crystallizing accessory
minerals (e.g., Bea 1996; Procházka and Matějka 2006; Miles et al. 2013) or other factors (e.g.,
redox conditions). As apatite chemistry is not correlated with the Belvís granite whole rock
composition, we consider that competition with other mineral phases may control REE apatite
compositional variations. The monazite crystallization would explain that apatite composition
displays a trend of variable Y but constant low Ce contents (e.g., Sha and Chappell, 1999; Chu
et al. 2009; Miles et al. 2013). In similar plots, (e.g., LREE vs. Y+HREE), type 1 apatite shows
a positive correlation whereas type 2 does not (Fig. 8b). These differences are also evident in
the plot (La/Sm)_N vs. (Y + HREE) (Fig. 8c), where type 1 apatite records a variable
competition with other LREE and HREE-bearing phosphates (monazite and xenotime),
whereas type 2 exclusively nucleated and grew from relatively enriched LREE melts,
regardless of HREE-Y content.

Textural and compositional features of type 3 apatite define a change in the magmatic
conditions in the more evolved unit of the Belvís pluton, where it has only found, compared to
those deduced from previous apatite types. The common subhedral to anhedral crystals are
conformed by feather aggregates which evidence a self-assembly mechanism of growing (Penn
2004), typically involving a fast nucleation followed by aggregation growth, in this case in a
disordered way. The high number of nuclei and their small size would evidence crystallization
under high undercooling conditions, i.e., temperature varies more rapidly than nuclei grow. As
type 3 crystal shapes are sharp and with no evidences of reaction with type 1 apatite (type 2
and type 3 do not occur in the same pluton unit), different apatite growth conditions are
involved. The highly evolved composition and the external location of the G1 unit within the pluton may provide appropriate conditions for partial loss of volatiles (or fluxing components), which would contribute to a higher undercooling (Hort 1998). On the other way, higher oxygen fugacity during late crystallization stages can be deduced in the residual melts of the G1 unit, on the basis of both graphite-bearing apatite absence and high Fe$^{3+}$ contents in type 3 apatite composition. Strong Fe$^{3+}/\sum$Fe increases have been observed during devolatization process in hydrous rhyolite magmas by loss of H$_2$ or H$_2$O during the ascent at shallow levels (Humphreys et al. 2015). The previous crystallization of Cl-poor type 1 and 2 apatite would enhance Cl activity in the last fractions of the residual melts, favoring relatively Cl-Na-Li-Be-Fe$^{3+}$-rich and REE-exhausted minor melts, from which type 3 apatite would crystallize.

P-T conditions for the crystallization of apatite could be estimated by calculating apatite saturation temperatures using the experimental model of Piccoli and Candela (1994), modified from Harrison and Watson (1984), according to SiO$_2$ and P$_2$O$_5$ whole-rock composition. The main objection for using this equation in these peraluminous and perphosphorous granites is the complex estimation of the P$_2$O$_5$ content for apatite saturation, since feldspars, but also micas and cordierite, are P-bearing phases in perphosphorous leucogranites, as it is the case of the Belvís granites. So we consider a better proxy the _P-T_ conditions calculated by Merino (2014) and Merino et al. (2013) on the basis of Ti-in-zircon and mineral paragenesis for the central Belvís units (G4 and G3 leucogranites), providing _P_ about 2 kbar, and _T_ up to 750 °C. The estimated lately crystallization for type-3 apatite and the probable higher fluxing contents might indicate significantly lower temperatures.

Origin of graphite in the Belvís granites
The origin of studied graphite is discussed by comparison with previous studies in magmatic rocks:

1. Graphite as interstitial flakes or included in rock-forming minerals has been interpreted as restitic in origin, as this mineral behaves as refractory during anatectic melting processes of metasedimentary protoliths (e.g., Broska et al. 1992, Seifert et al. 2010). Restitic graphite could also be related to assimilation of metasedimentary wall-rocks (Duke and Rumble 1986). The carbon isotope composition of the Belvís granites support that the studied graphite has an inherited biogenic origin (Fig. 6). Although graphite as xenocryst would be plausible in the S-type Belvís pluton, graphite in these granites occurs exclusively as euhedral filaments hosted in magmatic fluorapatite, suggesting that carbon may be present in the residual melts as graphene units growing later as acicular crystals. The rare occurrence of metasedimentary xenoliths, coupled with the higher carbon isotopic composition of the Belvís granites compared to the wall-rocks metasediments, make it unlikely a xenocrystic origin for graphite. Moreover, in the MT batholith graphite has been only found in the highly fractionated Belvís pluton. Therefore, it appears unlikely that more mafic and restite-rich granitic units of this large batholith lack graphite if this were strictly restitic.

2. Carbon mobilized by hydrothermal fluids from the protoliths or wall-rocks (as carbonate or organic-rich sediments) during high temperature events (contact metamorphism, anatexis) would precipitate in the granitic melts as fluid inclusions within rock-forming minerals, with graphite as daughter crystals (Winchel 1911; Duke and Rumble 1986; Alfonso et al. 1995; Long et al. 2013). In the Belvís granites, C has only been observed as graphitic micro-inclusions hosted by magmatic apatite.

3. Carbon content in apatite may reach significant values (Comodi et al. 2001; Brigatti et al. 2004) after carbon substitution at high temperatures, and this carbon may be lately exsolved as
graphite inclusions during cooling. In the apatite structure carbon substitution in the phosphate site is probably operative in the form of CO$_3$ and less frequently in the anion-site for (OH)$^-$ (e.g., Freund 1986; Peck and Tumpane 2007; Yi et al. 2013). The shape of the graphite inclusions in the Belvis apatite, their wide range of grain size and their heterogeneous distribution, either parallel or randomly orientated, are not characteristics of a network of crystallographic-oriented crystals (Figs. 1f-1h). Moreover, EEL analyses do not detect carbon in any of the apatite types.

4. Co-crystallization of apatite and graphite similarly Gottesmann and Wirth (1997) proposed for pyrrhotite inclusions in apatite from granitic rocks. These authors observed rhythmical disposition of pyrrhotite normal to the c-axis of apatite crystals. They proposed that pyrrhotite nuclei would have precipitated in the interface apatite-melt according to changes of Fe and S contents in the melt, and favored by similar lattice spacing between them. In some of the studied apatite crystals graphite inclusions show a preferred orientation (Fig. 1f) but do not define a rhythmical disposition.

The model of simultaneous growth of fluorapatite and graphite from highly differentiated granite melts is considered the most plausible origin for the studied graphite inclusions, as we discuss below.

In the MT batholith the presence of graphite is limited to the most highly fractionated (P-F-Li-Be-Rb-U-Cs-rich) pluton, and has only been observed as microinclusions within fluorapatite. This suggests a strong association of P, F and C related to magma source signatures due to the metasedimentary derivation of these granites (Villaseca et al. 2008; Merino et al. 2013, 2014). High carbon solubility in apatite has been previously noted (e.g., Jahnke 1984; Regnier 1994). Besides the association of P-C-F, another factor might have contributed to graphite occurrence since type 1 apatite, compositionally similar to type 2, does
not include graphite. Type 2 differs from type 1 apatite mainly by having slightly higher LREE-Zr-Sr contents. These differences suggest that C was favorably partitioned into residual fractions of P-rich melt, with relative high REE-U contents (but not enough to stabilize monazite) together with adequate Ca contents to form apatite.

Type 2 apatite mostly appears as interlobated crystals in interstitial position (Figs. 1c-1e). This texture resembles those developed between immiscible melts preserved by rapid cooling rates. On average, the fluorapatite-graphite crystals are made up of 90% fluorapatite and 10% graphite, so a broad estimation on the basis of fluorapatite composition shows that high concentration of volatile and fluxing components (around 30 wt%) has to be achieved in these melt droplets: 18 wt% P + 10 wt% C + 2 wt% F + (Li + Cl + OH) traces. This fluxing-rich residual melt fraction could suggest melt-melt immiscibility behavior with the silicate melt. In igneous systems the silicate immiscibility with salt melts (fluoride, phosphate, chloride, carbonates and sulphate) has been extensively studied (e.g., Dawson 1962). Phosphorous immiscibility in highly evolved silicate melts was shown early (e.g., Rutherford 1974), although later studies have triggered a controversy as many compositional factors control P behavior in silicate melts, which makes difficult to constrain the final ability of P to be immiscible (Roda-Robles et al. 2012 and references there in). Studies in pegmatite bodies show P-rich segregates (e.g., nodules, Roda-Robles et al. 2012; patches, Thomas and Davidson 2013), therefore some degree of immiscibility can be achieved in the late stage of highly evolved melts, whatever the process or conditions for concentrate P. Graphite is typically a residual phase that remains in the residuum during a crustal partial melting process, but if a small proportion enters in the molten fraction, it would behave as a highly incompatible component. Therefore, carbon content will increase towards residual highly fractionated granite melt. However, carbon itself has low solubility in silicate melts and could be easily lost
in epizonal intrusions (as the Belvís pluton is). Therefore, C should be retained in melt for graphite crystallization, and we consider it was most likely associated to these P-F-rich melts, which might enhance the immiscibility character of melt droplets, similarly to immiscibility process in carbonate-silicate liquid systems (e.g. Brooker and Kjarsgaard 2011). Fluorine is highly soluble in hydrous aluminosilicate melts, acting as a fluxing component, apparently more important than P (e.g. Dingwell et al. 1993), but combined with other fluxing components (e.g. Li, B) to explain the viscosity observed in natural systems (Bartels et al. 2013).

We consider that in the succession of magmatic pulses forming the Belvís pluton, when most of the granite magma was crystallized, the occurrence of minor volumes of residual P-C-F-(Li)-rich melt fraction could induce an immiscible character, as it is shown for pegmatite systems (e.g., Veksler et al. 2002; Thomas and Davidson 2007) or deduced from pegmatitic phosphate bodies studies (e.g., Roda-Robles et al. 2012; Miles et al. 2013), triggering an emulsion with droplets dimensions (e.g., Thomas and Davidson 2007; Peretyazhko et al. 2007). Although low temperatures may induce high viscosity in evolved silicate melts, local saturation of fluxing components can be achieved (Bacon 1989). A high initial water content (7-8 w% H2O, Strong 1988) allows peraluminous melts to reach high degrees of crystallization before water-saturation is achieved and favoring a higher enrichment of incompatible elements in the residual melts and coexisting exsolving fluids (Candela 1989). Although interstitial melt droplets may crystallize at low temperatures, the elevated content in fluxing components would reduce its density and viscosity, increasing the cation diffusion rates and inhibiting zoning textures in the apatite. Decreasing temperatures and fO2 in an isobaric cooling system could create favorable conditions for graphite precipitation (Frezzotti et al 1994). Therefore, carbon would nucleate as graphite, heterogeneously distributed, and growing either randomly or oriented. Graphite inclusions do not show textural changes in apatite from the G2 to G4 granite.
units, suggesting that within type-2 apatite carbon supersaturated condition was achieved in these microdomains. In this type of immiscible systems, REE and other incompatible cations tend to be preferentially partitioned into the non-silicate melt (Veksler et al. 2012), which would explain the higher contents in some of these elements such as U, REE, Sr and Zr in type 2 apatite, leaving behind a residual melt highly impoverished in these elements. Finally, the shape of graphite inclusions could reflect strong undercooling in these microdomains, enhancing graphite growth as acicular crystals. The peraluminous nature of the Belvíz magmas, in addition to their P-rich contents, may delay considerably the apatite crystallization and favour the origin of different apatite generations in local highly fractionated and fluxing element-rich fractions.

Implications

The carbon incorporation in granite peraluminous melts from their metasedimentary sources opens a discussion on the carbon behavior during magma evolution while carbon concentrates in the ultimate residual melts (highly fractionated granites and pegmatites), so it questions the way it was transported in an evolving highly polymerized melt framework. Another question is in which conditions graphite from the metasedimentary source is incorporated as a restite phase into the melt and in which allotrope form is maintained during magma evolution until it is stacked as graphene co-crystallizing with granitic apatite.

This study provides a singular case of magmatic graphite with fluorapatite in peraluminous granites, which might not be accidental. Fluxing elements as P-F-H, related to the organic matter, have a crucial role as ligands to carbon. Melt species with P-F-C bonds would probably promote melt immiscibility in high-silica magmas. This is a field to be explored in future.
Conclusions

1. Three different Fe-Mn-rich fluorapatite types crystallized in the late stages of crystallization of the perphosphorous Belvís granites. Textural and compositional ranges of type 1 and type 2 apatite provide evidences of sequentially overlap with subtle compositional differences between them, whereas type 3 apatite defines later and contrasted conditions of crystallization. The compositional variations do not correlate with whole-rock contents, reflecting the decoupling between conditions of whole-rock features and those of the late accessory minerals. Type 1 and type 2 apatite record low oxygen fugacity, crystallization in high undercooling conditions from highly fractionated residual melts, compositionally similar but with significant higher LREE and Sr contents for type 2 apatite.

2. Type 3 apatite shows an unusual feathered aggregate texture and compositionally is extremely low in REE-Y-Th-U contents, whereas it is relatively rich in Cl-Na-Fe$^{3+}$-Be-B-(Zn). These features are interpreted as being related to crystallization from highly fractionated residual melts at high undercooling and oxygen fugacity conditions in a late magmatic stage.

3. Inclusion of acicular graphite in type 2 apatite is explained by co-crystallization in melt drops saturated in volatile and fluxing components (P-F-C-H), segregated from highly fractionated (perphosphorous and peraluminous) melts by immiscibility process. This volatile-enriched segregate appeared in relatively LREE- and Sr-undepleted melt fractions. Therefore, the previous monazite crystallization is determinant of the LREE content of apatite. Another factor for graphite crystallization is the strong affinity between volatile and fluxing components in S-type magmas [P-F-(Li-OH)] and carbon (from the metapelitic source). Carbon in these residual melts could trigger immiscibility behavior respect to silicate-rich melt fraction. Fluorapatite and graphite co-crystallized from immiscible melt droplets with high cation diffusivity promoted by the low viscosity related to the high concentration in fluxing
components. This scenario provides conditions for unzoned crystals as well as unusual graphite
growth as filaments. The occurrence of graphite in felsic magmas, to our knowledge, is
restricted to xenocrysts in peraluminous and P-rich granites. This is the first study assigning a
magmatic crystallization for graphite in a granite melt.

4. Local limitations of cation diffusivity by competition with other phase minerals in
microdomains of residual melts question the use of chondrite-normalized apatite REE patterns
as accurate granite petrogenesis features. On the contrary, detailed studies of compositional
variations in apatite and associated minerals may provide more accurate petrogenetic
interpretations of the late crystallization history of granite magmas.

Acknowledgements

We are grateful to Javier García for the sample preparation and his assistance with the EEL
spectroscopy, and to Ana Vicente and Ángel Mazarios for the efficient advice and assistance
during the SEM sessions, from the Centro Nacional de Microscopía Electrónica. Teresa Jeffries
and Sonia Garcia de Madinabeitia are thanked for support the LA-ICP-MS sessions, in the
Core Research laboratories of the Natural History Museum of London (UK) and in the
Geochronology and Isotope Geochemistry-SGIker facility of the University of the Basque
Country (Spain), respectively. We thank Clemente Recio and his team, from the Laboratorio de
Isótopos Estables de la USAL, for their diligent work. Encarnación Roda-Robles reviewed an
earlier version of the manuscript, which considerably improved the discussion and the clarity
of descriptions. We appreciate the helpful reviews provided by Dominic Papineau and an
anonymous reviewer. This research received support from the SYNTHESYS Project
(http://www.synthesys.info/), which is financed by European Community Research
Infrastructure Action under the FP7 "Capacities" Program. This work is included in the
objectives of, and supported by, the CGL2012-32822 project of the Ministerio de Economía y Competitividad de España, and the 910492 UCM project.
References cited

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure captions

Figure 1. Photomicrograph showing textures of the type 1 (a-b), type 2 (c-h) and type 3 (i-l) apatite in the Belvís granites. SEM = Secondary electron images, BSE= Back scattered electron images. BSE images of euhedral and equant type 1 apatite (a) and subhedral and equant type 1 apatite (b); (c) anhedral dusty sections of apatite 2 under petrographic microscope (plane polarized light); (d-e) BSE image of large and dusty interlobate crystals of type 2 apatite, mainly interstitial to granite-rock forming minerals, with dark irregular areas (richer in graphite inclusions) and frequent intragranular cracks; (f) SEM-BSE image of inclusions of graphite crystals arranged in parallel (BSE dark) within type 2 apatite (BSE light), defining different areas according to inclusion-density; (g) SEM-BSE image of subhedral and equant type-2 apatite, plenty of graphite microinclusions randomly oriented, as it is possible to observe in detail from (h) image; (i) BSE image of an anhedral section of type 3 apatite, with the characteristic feathered aggregate texture, and partially replaced by childrenite- eosphorite-(chil-cos); (j-l) SEM-BSE images of different appearances of the feather texture in different crystals of type 3 apatite, irregular (j), oriented (k), or without preferential orientation (l).

Figure 2. Compositional variation for the three apatite types of the Belvís granites: (a) Plot of FeO and MnO variation, with 1:2 vector defining the main trend for type 1 and type 2, and vector 1:1 for type 3 apatite. (b) Plot of LREE and Sr abundance. (c) Plot of Zr and Hf abundance. (d) Plot of Th and U abundances for apatite from Belvís and compositional fields of apatite from different magmatic suites: I-type granite: Hoskin et al. (2000) (Boggy Plain pluton, Australia); Chu et al. (2009) (Transhimalayan granitoids); Cao et al. (2011) (Central Kazakhstan, Kazagistan), Pan et al. (2016) (Pulong and Xiuwacu plutons, Zhongdian terrane, China); S-type granite: Sha et al. (2009) (Lachlan Fold Belt, Australia), Chu et al. (2009)
(Transhimalayan granitoids); LCT pegmatite: Cao et al. (2013) (Altai Orogen, China); alkaline felsic rocks: Zirner et al. (2015) (Ilímaussaq complex, South Greenland).

Figure 3. REE contents of apatite types from the Belvís granites (a) Plot of Y+HREE and LREE contents. (b) Chondrite-normalized plot showing the REE patterns of type 2 grouped in a grey area for a better comparison with type 1. Owing to the extremely low REE content in type 3 apatite, values just above the detection limits have been used. (c) Plot of REE fractionation $(La/Yb)_N$ ratios against the Eu anomaly for type 1 and type 2 apatite.

Figure 4. Secondary electron images of cracked apatite surfaces illustrating shape and size of graphite inclusions in fluorapatite host. (a-b) Variably sized graphite inclusions (filaments), randomly orientated; (c) Graphite inclusions showing the typical cavity around them; (d) Detail of graphite inclusion composed by graphene stack.

Figure 5. Secondary electron images of graphite inclusions in fluorapatite, with X-ray EDS profiles (white line) crossing the graphite microinclusions for C, Ca, P and F. The profiles are performed along two graphite filaments with different crystal orientations.

Figure 6. Carbon isotope compositions of the Belvís granites and the nearby Navalmoral pluton according to the estimated emplacement temperatures. Carbon (biogenic, mantle and carbonates) compositional fields have been included (Martín-Méndez et al. 2016, and references therein). Biogenic carbon isotopic data from different sectors of the Central Iberian
Zone (at their estimated metamorphic conditions): pelitic wall-rocks from the Schist-Greywacke Complex (SGC), migmatitic metapelites from the Anatetic Complex of Toledo (ACT), and pelitic granulites from lower crustal xenoliths (LC) are taken from Table 2 and from Martín-Méndez et al. (2016).

Figure 7. Compositional variation of the three apatite types of the Belvís granites: (a) Plot of variation of the anionic site between Cl and F. (b) Plot of Ca and F contents, remarking the lack of correlation in type 1 and type 2 apatite. (c) Plot of Cl and Li contents. (d) Plot of (Y+REE) and Li contents. (e) Plot of Na and Li content. (g) Plot of Fe and Na.

Figure 8. REE compositional variation of the three apatite types of the Belvís granites: (a) Plot of Ce and Eu anomalies of the three apatite types and the variation trends for the oxygen fugacity according to data from the literature (Roeder et al. 1987; Sha and Chappel 1999; Broska et al. 2002; Cao et al. 2011); (b) Plot of (Y + HREE) and LREE contents; type 3 apatite is outlined due to their projection close to the origin of coordinates. (c) Plot of (La/Sm)N vs. (Y + HREE) contents including the compositional track records of apatite if monazite and xenotime, respectively, decrease its crystallization rate (“decreasing influence”); type 3 apatite compositional field is outlined to stress the low REE values.
ELECTRONIC SUPPLEMENT

Figure captions

Figure 1. (a) Summarized geological map of the Central Iberian Zone (CIZ) displaying the two main batholithic areas referenced in this paper: the Spanish Central System (SCS) and the Montes de Toledo (MT). (b) Geological map of the Belvís pluton modified from Pérez-Soba et al. (2014). Sample location of granites with analyzed apatite included in Appendix 1 Table 1 (black asterisk: type 1 apatite; white asterisk: type 2 apatite; number sign: type 3 apatite).

Figure 2. Outcrop features of the wall-rock and the Belvís pluton granites: (a) and (b) Schist Greywacke Complex, a monotonous sequence of metapelites and metasamites variably affected by contact metamorphism. (c) Cordierite-bearing muscovite leucogranite (G1) exhibiting magmatic foliation and abundant cordierite-quartz nodules. (d) Muscovite-bearing biotite leucogranite medium grained (G3), with a well defined magmatic foliation (parallel to the pencil).

Figure 3. Photomicrographs (plane-polarized light) in samples from G3 Belvís granite showing textural features and its relationships with the main-rock forming minerals: (a) Thin section of a sample from the G3 granite from the Belvís pluton, with orange dots pointing the localization of type 2 apatite crystals. (b) Apatite type 2 crystals showing the typical dusty and anhedral appearance, with frequent microcracks. (c) Type 2 apatite, exceptionally clear, but including graphite isolated filaments, most of them showing radial disposition. (d) Cluster of three dusty and anhedral type 2 apatite crystals interlocked mainly with biotite and muscovite. (e) Type 2 apatite crystals interlocked with feldspar, biotite, muscovite and quartz.
TABLE 1. General features of fluorapatite types in the Belvís granite units

<table>
<thead>
<tr>
<th></th>
<th>TYPE 1</th>
<th>TYPE 2</th>
<th>TYPE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occurrence in the Belvís granite units</td>
<td>G1-G2-G3-G4</td>
<td>G2-G3-G4 (more abundant in the least fractionated granite)</td>
<td>G1 (the highest fractionated granite)</td>
</tr>
<tr>
<td>Apatite appearance</td>
<td>clear, greenish</td>
<td>dusty</td>
<td>feathery aggregate</td>
</tr>
<tr>
<td>Apatite shape</td>
<td>euhedral (equant) to anhedral</td>
<td>anhedral (interlobate) to euhedral</td>
<td>anhedral to subhedral</td>
</tr>
<tr>
<td>Apatite size</td>
<td>90% crystals: 20-600 μm 10% crystals: 900-2000 μm</td>
<td>250 – 2000 μm</td>
<td>50 - 3000 μm</td>
</tr>
<tr>
<td>Framework position</td>
<td>hosted in feldspars, quartz and micas</td>
<td>interstitial</td>
<td>interstitial</td>
</tr>
<tr>
<td>Remarkable mineral association</td>
<td>graphite inclusions</td>
<td>occasional inclusions of childrenite-eosphorite</td>
<td></td>
</tr>
<tr>
<td>Main chemical features</td>
<td>MnO < 4.30 wt% FeO 2.53 wt%</td>
<td>MnO < 4.17 wt% FeO 5.09 wt% (mainly as Fe2O3)</td>
<td>Low Y, REE contents (bdl)</td>
</tr>
<tr>
<td></td>
<td>REE + Y = 2125 – 9150 ppm High U contents (156 - 460 ppm) Na2O < 0.24 wt (except. one of 0.46 wt%)</td>
<td>Low Y, REE contents (bdl) Low U contents (< 75 ppm) Na2O = 0.16 - 0.83 wt%</td>
<td>High Sr contents (1596 – 2490 ppm) Significant Cl, Li, B, Be, Zn contents</td>
</tr>
<tr>
<td></td>
<td>LREE = 1231 - 2932 ppm Sr = 33-81 ppm Eu anomaly = 0.072 - 0.794</td>
<td>LREE = 3163 - 4048 ppm Sr = 67-203 ppm Eu anomaly = 0.076 -0.233</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Childrenite-eosphorite serie: (Fe, Mn)⁷⁺Al(PO₄)(OH)₂·H₂O; bdl = below detection limits; FeOₗ = Fe total expressed as FeO.
<table>
<thead>
<tr>
<th>Lithology</th>
<th>Sample</th>
<th>weight (mgr)</th>
<th>δ13C (‰)</th>
<th>± 1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slates (SGC)</td>
<td>110194</td>
<td>1.4</td>
<td>-31.00</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>111966</td>
<td>6.2</td>
<td>-32.49</td>
<td>0.30</td>
</tr>
<tr>
<td>Navalmoral de la Mata granites</td>
<td>106804</td>
<td>41.6</td>
<td>-29.24</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>110183</td>
<td>41.9</td>
<td>-32.78</td>
<td>0.11</td>
</tr>
<tr>
<td>Belvis granites</td>
<td>106792 (G1)</td>
<td>40.2</td>
<td>-27.38</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>106796 (G2)</td>
<td>42.5</td>
<td>-25.20</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>111401 (G3)</td>
<td>41.2</td>
<td>-24.35</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Note: SGC = Schist Greywacke Complex; G1, G2 and G3 are granite units of the Belvis pluton.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8