1	Determination of pressure in aqueo-carbonic fluid inclusions at high
2	temperatures from measured Raman frequency shifts of $\rm CO_2$
3	(Revision 5)
4	Xueyin Yuan ^{1, 2} , Robert A. Mayanovic ³ , Haifei Zheng ^{1*} , Qiang Sun ¹
5	¹ Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, Peking University, Beijing 100871, China
6	² MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological
7	Sciences, Beijing 100037, China

³ Department of Physics, Astronomy and Material Science, Missouri State University, Springfield, MO 65897, USA

Abstract: Due to the presence of additional volatiles and/or electrolytes in CO₂-H₂O fluids, the 9 10 total pressure of many natural aqueo-carbonic fluid inclusions at high temperatures as determined using microthermometry is usually made with considerable uncertainty. In this paper, we present the 11 12 results of our high p-T in-situ Raman scattering study of high-density aqueo-carbonic fluids, with 13 and without a small amount of CH₄ and NaCl, whose objective is to derive a new method for 14 pressure determination in aqueo-carbonic fluid inclusions at high temperatures. The measurement of the Fermi diad bands at temperatures up to 400 °C and pressures up to 1200 MPa is described. The 15 manner in which the frequency shifts and intensity of Raman bands are governed by pressure, 16 temperature, presence of CH₄ in carbonic and NaCl in aqueous fluids is discussed. From the 17 18 monotonic dependence of the frequency shifts of the lower Fermi diad band $v_{\rm c}$ and the Fermi resonant splitting D ($D = v_+ - v_-$) with pressure and temperature, the pressure (in MPa) of 19 aqueo-carbonic fluid inclusions at elevated temperatures can be determined directly by using the 20 21 following two polynomial equations:

22 $p(\text{MPa}) = -16 + 1.232 \times T - 53.72 \times (\Delta v_{-}) - 1.83 \times 10^{-3} \times T^{2} + 24.46 \times (\Delta v_{-})^{2} - 0.292 \times T \times (\Delta v_{-});$

^{*} Corresponding Author, Email: hfzheng@pku.edu.cn

23
$$p (MPa) = -26 + 1.501 \times T + 193.24 \times (\Delta D) - 1.61 \times 10^{-3} \times T^2 + 5.436 \times (\Delta D)^2 + 0.158 \times T \times (\Delta D)$$

Where *T* is in °C, Δv . and ΔD represent frequency shifts (in cm⁻¹) of the lower band and the resonant splitting relative to the reference values measured at 23 °C and 6 MPa, respectively. Based on the attainable accuracy of the fitted peak positions and the results from fitting of Raman frequency shifts' dependence with pressure and temperature, the uncertainty in pressure determination is about 50 MPa for pressures determined from *v*. and 40 MPa from that determined from *D*.

29 Key words: CO₂, Raman spectroscopy, pressure determination, HDAC, fluid inclusion

30

31 Introduction

32 Fluid inclusions containing H₂O-CO₂ fluids (aqueo-carbonic fluid inclusions) are very common and are often the dominant fluid inclusion type occurring in hydrothermal and medium- to 33 high-grade metamorphic deposits (Chi et al., 2006; Lowenstern, 2001; Mumm et al., 1997; Phillips 34 35 and Evans, 2004; Thomas and Spooner, 1992; Tsunogae et al., 2002; Williams-Jones and Ferreira, 1989; Xu and Pollard, 1999). Determining the pressure of aqueo-carbonic fluid inclusions is of great 36 significance both in understanding their thermodynamic properties and in constraining the depth of 37 38 fluid activity and mineralization leading to trapping of the fluid inclusions. Presently, the principal method of estimating the pressure in aqueo-carbonic fluid inclusions is by microthermometry, which 39 is based on measurements of two phase transition temperatures during heating, the liquid-vapor CO_2 40 41 homogenization temperature and the homogenization temperature of the immiscible-to-miscible aqueous and carbonic phase transition, and use of the known p-V-T-x properties of the H₂O-CO₂ 42 binary system (Bakker and Diamond, 2000; Diamond, 1996; Diamond, 2001; Hurai, 2010; Mao et al., 43 44 2009). However, due to the presence of additional volatiles in the carbonic or electrolytes in the

aqueous phase in natural fluid inclusions (Berkesi et al., 2009; Bersani et al., 2009; Giorgetti et al.,
1996; Li et al., 2014; Peng et al., 2014; Salvioli-Mariani et al., 2015; Thomas et al., 1990; Wang et al.,
2013; Zhu and Peng, 2015), the phase transition temperatures in these aqueo-carbonic fluid
inclusions could be apparently different from those of the H₂O-CO₂ binary system (Akinfiev and
Diamond, 2010; Aranovich et al., 2010; Hurai, 2010; Mao et al., 2013; Shmulovich and Graham,
1999; Shmulovich and Graham, 2004; Thomas et al., 1990). In these cases, considerable errors in

51 pressure estimation using microthermometry can occur.

52 The Raman vibrational modes of CO_2 have been measured and interpreted (Gordon and McCubbin, 1966; Rosso and Bodnar, 1995; Stoicheff, 1958), and based on the experiments that were 53 54 made in investigating the effects of temperature, pressure or density on CO_2 Raman peaks (Fig. 1), the characteristic Fermi diad bands (v_{+} and v_{-}) shift to lower frequencies, the resonant splitting (D =55 $v_{+} - v_{-}$) and the intensity ratio of the upper band to the lower band $(I(v_{+})/I(v_{-}))$ increase monotonically 56 with increasing pressure or density (Fall et al., 2011; Garrabos et al., 1989; Garrabos et al., 1980; 57 Guo et al., 2014; Kawakami et al., 2003; Rosso and Bodnar, 1995; Song et al., 2009; Wang and 58 Wright, 1973; Wang et al., 2011; Welsh et al., 1952; Yamamoto and Kagi, 2006). Several attempts 59 60 have been made at ambient or low temperatures, in determining the pressure or CO_2 density in pure CO_2 or H_2O - CO_2 fluid inclusions from the splitting of the two CO_2 Fermi diad bands (Azbej et al., 61 2007; Chen et al., 2006; Fall et al., 2011; Kawakami et al., 2003; Rosso and Bodnar, 1995; Schmidt 62 et al., 1995; Song et al., 2009; Thomas et al., 1990; Yamamoto et al., 2007). However, to our 63 knowledge no investigation of the dependence of the CO₂ Fermi diad band frequencies with 64 variations of both pressure and temperature to high pressure-temperature (p-T) conditions has been 65 made. Here we present results from our high p-T Raman spectroscopy investigations of 66

 H_2O-CO_2-NaCl , $H_2O-CO_2-CH_4$ and $H_2O-CO_2-CH_4-NaCl$ systems, in order to determine the dependence of the CO_2 Fermi diad band frequencies with pressure and temperature, and to study the effects on these bands due to the presence of CH_4 in high-density carbonic and NaCl in aqueous fluids. From these investigations, we have derived a new geobarometry for determining the total pressure of aqueo-carbonic fluid inclusions at room to 400 °C temperature conditions.

72 Experimental apparatus and procedures

73 Hydrothermal diamond cell

A Bassett-type (Bassett et al., 1993) hydrothermal diamond anvil cell (HDAC) was used to 74 75 perform our Raman experiments. Two opposed diamond anvils with 800 µm diameter culets were mounted on tungsten carbide seats and heated externally using molybdenum heaters wound around 76 the seats. The sample chamber was made by sealing a 400 µm diameter hole in the center of a 250 77 78 µm thick rhenium gasket against the anvils. The temperature was measured using two K-type thermocouples attached to each of the diamond anvils and calibrated in advance by measuring the 79 melting point of stearic acid (69.6 °C) and sodium nitrate (307 °C) at ambient pressure. The pressure 80 in the sample chamber was determined either from the liquid-vapor equilibrium pressure of CO_2 at 81 low p-T conditions where vapor (V), carbonic liquid (L_{car}) and aqueous liquid (L_{aq}) coexisted, or 82 from the relative (to the value at ambient conditions) frequency shift of the 464 cm⁻¹ Raman peak of 83 84 quartz at high *p*-*T* conditions (Schmidt and Ziemann, 2000):

85
$$p(MPa) = 0.36079 \times (v_{p,T} - v_{0,T})^2 + 110.86 \times (v_{p,T} - v_{0,T});$$
 (1a)

86
$$v_{0,T}(cm^{-1}) = v_{0,23^{\circ}C} + 2.50136 \times 10^{-11} \times T^{4} + 1.46454 \times 10^{-8} \times T^{3} - 1.801 \times 10^{-5} \times T^{2} - 0.01216 \times T + 0.29$$
(1b)

At low *p*-*T* conditions the pressure in the sample chamber was in fact the V+L_{car}+L_{aq} equilibrium pressure of H₂O+CO₂±CH₄±NaCl systems, which differs slightly from the V+L equilibrium pressure of pure CO₂. However, in comparison to the overall pressure uncertainty, the errors introduced by not accounting explicitly for the partial pressure of dissolved H₂O and/or CH₄ in CO₂ are negligible. At high *p*-*T* conditions the pressure determined from the quartz sensor yields the total pressure value, with a reported pressure uncertainty of better than ±50 MPa based on an attainable accuracy of the fitted Raman peak position of ±0.2 cm⁻¹ (Schmidt and Ziemann, 2000).

94 Sample preparation

As gas-loading equipment is not readily available in our laboratory, the loading of CO_2 into the aqueo-carbonic samples within the sample chamber of the hydrothermal diamond anvil cell was accomplished using decomposition reactions described in greater detail below.

98 Decomposition of oxalic acid dihydrate ($H_2C_2O_4$ ·2 H_2O) crystals in water (Sample I) and in NaCl 99 aqueous solution (Sample II) at high temperatures was accomplished as follows: Crystals of oxalic 100 acid dihydrate and quartz (for pressure calibration) were first loaded into the sample chamber, 101 followed by adding HPLC water (Sample I) or 10 wt% NaCl aqueous solution (Sample II; as H₂O 102 evaporated during sample loading whereas extra H₂O was generated from the decomposition of 103 oxalic acid dihydrate, the final NaCl concentration was not exact but around 10 wt%) just prior to sealing of the sample chamber in the HDAC (Fig. 2a). During heating, the oxalic acid dehydrate 104 105 decomposed into H₂O, CO₂, CO and H₂ (Holloway et al., 1968; Wang and Zheng, 2012) at 106 approximately 250 °C (Fig. 2b), which was followed by generating CH₄ from the complete reaction 107 of CO and H₂ during further heating of the sample (I and II) to 600 °C. The composition of the 108 carbonic phase in Samples I and II, as estimated by use of the intensity ratio of the CO_2 and CH_4

Raman bands at room temperature and the quantification factor ratio given by Seitz et al. (1996), is
about 90 mol% CO₂ and 10 mol% CH₄ (Fig. 3).

Chemical reaction between sodium bicarbonate (NaHCO₃) and hydrochloric acid (HCl) in 111 aqueous solution (Sample III) was accomplished as follows: A sodium bicarbonate crystal and a 112 113 piece of quartz chip was firstly loaded inside the hole in the Re gasket positioned on top of the bottom anvil, followed by the suspension of a small drop of $1.5 \text{ mol} \cdot L^{-1}$ hydrochloric acid aqueous 114 solution to the center of the face of the upper diamond anvil. The sample chamber of the HDAC was 115 116 subsequently quickly sealed by bringing the top anvil against the bottom anvil and gasket. Upon contact and subsequent reaction of the sodium bicarbonate crystal and the hydrochloric acid solution, 117 CO₂ was generated and partly trapped within the sample chamber. The composition of the fluid 118 119 sealed in the sample chamber consisted of CO₂, H₂O, NaCl and potentially a small amount of 120 unreacted HCl. No Raman signal of HCO₃⁻ was detected.

121 Raman measurement, spectral calibration and peak fitting

All Raman measurements were made using a HORIBA Jobin Yvon confocal LabRAM HR800 122 micro-Raman system installed at Missouri State University. A 80 mW 785nm laser excitation source, 123 a Mitutoyo M Plan Apo NIR 20× long-working distance objective (NA = 0.4, f = 200), and a 124 stigmatic 800 mm spectrometer with a 2400 groove/mm grating were used to make the Raman 125 spectroscopy experiments. The confocal hole was set at 200 µm and the corresponding spectral 126 resolution was 0.5 cm⁻¹ of the spectral measurements. Raman spectra were measured between 100 127 and 600 cm⁻¹ and between 1000 and 1500 cm⁻¹ for quartz and CO₂, respectively, using a counting 128 time of 60 seconds and by averaging 5 repeated collections. 129

In order to correct for peak position shifts during the experiment, 3 external (to the sample) 130 emission peaks occurring at 659.20, 865.32 and 888.44 cm⁻¹ (Fig.3) and originating from a General 131 Electric 13-watt Energy Smart (model no. 74198) compact fluorescent lamp were collected 132 simultaneously at each p-T point for spectral calibration. The corrected peak positions (v_{corr}) were 133 spectrally calibrated from the Raman bands measured from the samples (v_{measured}) using: 134

135
$$v_{\rm corr} = v_{\rm measured} - v_{\rm light} + 804.32$$
 (2)

where v_{light} is the average value of the 3 peak positions. The consistency of v_{light} was verified in 136 advance by measuring the emission peaks simultaneously with the Raman band of a standard silicon 137 wafer at ambient temperatures ranging from 20 to 32 °C. Relative to the 520.70 cm⁻¹ peak of silicon, 138 the variation in v_{light} was less than 0.10 cm⁻¹ throughout the experiments. 139

Because of the fundamental dissimilarity between CO_2 and H_2O_2 and depending upon the *p*-*T*-X 140 conditions, CO₂ can present as a carbonic phase or phases (vapor, liquid, solid or clathrate hydrate) 141 or it can dissolve in the aqueous liquid of the CO₂-H₂O system (Diamond, 2001). In this study, a 142 separate, high-density (higher than the critical density of CO₂) carbonic phase was observed over a 143 wide pressure and temperature range. The p-T conditions and number of Raman spectra that were 144 measured for the samples are as follows: 27 spectra were measured from Sample I at *p*-*T* conditions 145 up to 250 °C and 900 MPa, 64 spectra were measured from Sample II at up to 400 °C and 1200 MPa, 146 and 18 spectra were measured from Sample III from 22 °C and 5 MPa to 193 °C and 284 MPa. The 147 peak center (with precision of 0.01 cm⁻¹ after peak fitting) and intensity of the two Fermi diad bands 148 of CO₂ and the v_1 band of diamond were determined by fitting the Raman bands with Gauss-Lorentz 149 amplitude functions within the PeakFit V4.04 software package; the 464 cm⁻¹ peak of quartz was 150 fitted with a Pearson IV amplitude function that permits variable peak asymmetry (Schmidt and 151

Ziemann, 2000), the three emission peaks used for v_{light} were fit consistently using Beta amplitude functions. All iterative computations were carried out until the squared correlation coefficients $r^2 >$ 0.99 were obtained. The uncertainties in frequency of the spectrally calibrated CO₂ Fermi diad bands and the 464 cm⁻¹ peak of quartz were ±0.1 and ±0.2 cm⁻¹ at temperatures below and above 200 °C, respectively.

157 **Results**

158 The representative Raman spectra measured with Sample I and II at room temperature are shown 159 in Figure 4. The frequency of the lower band (v_{-}) decreases monotonically with increasing pressure, from 1281.56 cm⁻¹ at 6 MPa to 1277.41 cm⁻¹ at 698 MPa. Within the same pressure range, the 160 frequency of the upper band (v_{+}) also decreases with increasing pressure but varies by less than 1.2 161 cm^{-1} , and the magnitude of the resonance splitting (D) increases monotonically from 104.07 cm⁻¹ at 6 162 MPa to 107.26 cm⁻¹ at 698 MPa. The intensity of the upper Fermi diad band increased significantly 163 164 whereas that of the lower band remained nearly constant as the density of carbonic phase increased 165 with pressure. Our results are in good agreement with the Raman spectroscopy results obtained from pure CO₂ at ambient temperature and high pressures (Garrabos et al., 1989; Kawakami et al., 2003; 166 167 Rosso and Bodnar, 1995; Song et al., 2009; Wang et al., 2011; Yamamoto and Kagi, 2006). The temperature dependence of the frequency values of the Fermi diad bands, as measured at 168 p-T conditions ranging from 141 MPa at 23 °C to 474 MPa at 250 °C for Sample I, and from 124 169 170 MPa at 23 °C to 639 MPa at 350 °C for Sample II, and after accounting for the pressure dependence,

- 171 is shown in Figure 5. The lower Fermi diad band increases at a slightly higher $\partial v / \partial T$ rate than the
- 172 upper band and D exhibits a negative $\partial v / \partial T$ rate with increasing temperature, which is in agreement
- 173 with the temperature dependence of the Raman vibrations of pure CO_2 (Wang et al., 2011). The

intensity of two hot bands was found to increase with temperature to ~250 °C, and the intensity of all observed Raman bands of CO₂ decreased significantly at temperatures higher than 300 °C (Fig. 5). The overall *p*-*T*-dependent frequency shifts of v_{-} , v_{+} and *D* in high-density carbonic fluids, are given by the following polynomial equation (where the frequency of v_{-} , v_{+} or *D* values is represented by v):

179
$$v(p, T) = v(p_0, T_0) + \Delta v(p, T) = a + b \times T + c \times p + d \times T^2 + e \times p^2 + f \times T \times p$$
 (3)

180 Parameters a-f were evaluated by fitting the frequencies of v_{-} , v_{+} and D with pressure and 181 temperature using a TableCurve 3D V4.0 software package. The fitting results are listed in Table 1 and illustrated in Figures 6a-c. The residuals between the measured data and their fitted values are 182 less than 0.3, 0.4 and 0.2 cm⁻¹ for v_{-} , v_{+} and D, respectively. Our results show that the largest 183 pressure-dependent frequency shifts occur for the lower Fermi diad band v_{-} and the resonance 184 splitting D value of CO₂ in H₂O-CO₂ \pm NaCl \pm CH₄ fluids, within the p-T range covered by our 185 186 experiment. Thus, the v_{z} and D frequency shifts are more suitable for pressure sensing in aqueo-carbonic fluid systems. 187

188 Discussion

189 Effect of temperature and pressure on the Fermi diad bands

As can be seen from Figure 6a, within the *p*-*T* range of our experiment, *v*. shifts to lower frequencies with increasing pressure and to higher frequencies with increasing temperature, at progressively lower $\partial v_{-}/\partial p$ and $\partial v_{-}/\partial T$ rates, respectively. Conversely, the effect of pressure on the frequency shift of the v_{+} band is weaker and non-monotonic (Fig. 6b): The v_{+} band was observed to shift to lower frequencies at low *p*-values and to higher frequencies with pressure at high *p*-values, with a minimum between 400 to 500 MPa. Due to the nature of the variations in temperature and pressure of the v_{-} and v_{+} bands' frequencies, the *D* frequency value increases with pressure and decreases with temperature in monotonic fashion, as shown in Fig. 6c.

198 Influence of fluid composition on the Raman peak positions

In most cases, natural aqueo-carbonic fluid inclusions contain CH_4 , CO or N_2 in the carbonic and electrolytes in the aqueous phase (Berkesi et al., 2009; Bersani et al., 2009; Giorgetti et al., 1996; Li et al., 2014; Peng et al., 2014; Salvioli-Mariani et al., 2015; Thomas et al., 1990; Wang et al., 2013; Zhu and Peng, 2015). In order to determine the pressures within these aqueo-carbonic fluid inclusions using CO_2 as an internal pressure sensor, it is fundamentally important to ascertain the influence of these additional components on the *p*-*T*-dependent behavior of the CO_2 Raman peak position shifts.

The solubility of NaCl (as well as many other electrolytes) in CO_2 is lower by 5-7 orders of 206 207 magnitude than in H_2O (Zakirov et al., 2007) and thus can be neglected. However, the dissolved 208 NaCl in H₂O can not only reduce the mutual solubilities of H₂O and CO₂, but also interacts with 209 water molecules and influence water structure (Sun et al., 2010). In principle, at high temperatures 210 where the carbonic phase contains a high concentration of water and weak hydrogen bond is formed 211 between CO₂ and H₂O molecules, the addition of NaCl should have influence on the Fermi diad bands' frequency. However, in our results (see Figures 4-6), within the error ranges, there is no 212 measurable difference in the *p*-*T*-dependence of the Fermi diad bands' frequencies measured from 213 214 Sample I (no NaCl) and II (with ~10 wt% NaCl). We think this probably because the dissolved NaCl 215 in Sample II is ~ 10 wt% and its effect on the CO₂ Fermi diad bands' frequency is insignificant. The 216 presence of CH₄ in the carbonic phase will reduce the CO₂ partial pressure, potentially leading to an underestimation of the *p*- and *T*-dependent rates of the Fermi diad bands' vibrational frequencies. 217

218 Nevertheless, the influence of CH_4 on the Fermi diad band peak positions is negligible, provided that the CH₄ content is no more than 10 mol% (Seitz et al., 1996). This is confirmed from our Raman 219 220 measurements (see Figure 6) showing that the difference between the Fermi diad band peak positions 221 measured from Sample I (with ~10 mol% CH₄) and III (no CH₄) is negligible within the estimated 222 errors.

223 Determination of pressure from CO₂ Raman frequency shifts

224 Based on the systematic frequency shifts of $v_{.}$ and D with pressure and temperature, for which we have demonstrated that small amounts of CH_4 in the carbonic phase (~10 mol%) and NaCl in the 225 aqueous phase ($\sim 10 \text{ wt\%}$) have no measureable effect, the total pressure (in MPa) of aqueo-carbonic 226 $(H_2O-CO_2 \pm NaCl \pm CH_4)$ fluid inclusions at elevated temperatures can be determined, by using the 227 following two polynomial equations: 228

229
$$p = -16 + 1.232 \times T - 53.72 \times (\Delta v_{-}) - 1.83 \times 10^{-3} \times T^{2} + 24.46 \times (\Delta v_{-})^{2} - 0.292 \times T \times (\Delta v_{-}), R^{2} = 0.9962;$$

(4a)

230

231
$$p = -26 + 1.501 \times T + 193.24 \times (\Delta D) - 1.61 \times 10^{-3} \times T^2 + 5.436 \times (\Delta D)^2 + 0.158 \times T \times (\Delta D), R^2 = 0.9976.$$

(4b)

where $\Delta v_{-} = v_{-p} - 1281.56 \text{ cm}^{-1}$ and $\Delta D = D_p - 104.07 \text{ cm}^{-1}$, representing the frequency shifts of v. 233 and D, respectively, relative to the reference values measured at 23°C and 6 MPa, at which point 234 235 vapor and liquid CO₂ are in equilibrium. Equations 4a and 4b can be used at $22 \le T \le 400$ °C and 236 pressures up to 1200 MPa, with uncertainties of better than 50 MPa and 40 MPa for the pressure 237 determined from v. and D, respectively (Fig. 7).

238 Application to fluid inclusion research

All of the Raman spectra in our experiments were measured from high-density (higher than CO₂ 239 critical density) aqueo-carbonic fluids. Therefore, the applicability of equations 4a and 4b for 240 241 pressure determination holds only for aqueo-carbonic fluid inclusions containing a liquid carbonic phase. The presence of <10 mol% CH₄ or <10 wt% NaCl will not affect the results significantly, but 242 higher concentrations of such volatiles or electrolytes may lead to the estimated pressure being 243 different from real values. In addition, the inclusions selected for study need to be sufficiently large 244 (i.e. $>10 \mu$ m) and close to the surface, in order to optimize the Raman signal particularly at high 245 temperatures where instabilities in the CO₂-H₂O phase boundaries are encountered (Burke, 2001). 246 Due to the rapidly increasing internal pressure with rising temperature, decrepitation of such 247 inclusions is very common (Bodnar, 2003; Bodnar et al., 1989). This problem can be avoided by 248 249 heating the inclusions within a HDAC or other similar high-pressure, high-temperature instruments (Darling and Bassett, 2002; Schmidt et al., 1998). As pressure within the fluid inclusions and in the 250 HDAC sample chamber are increased jointly with temperature, the pressure gradient from within the 251 inclusion to the host mineral is greatly reduced and decrepitation can be prevented. 252

After an appropriate aqueo-carbonic fluid inclusion within an assemblage has been selected for probing, the second step is to determine the Raman peak positions of CO_2 at a known reference *p*-*T* condition (e.g., 22 °C and 6 MPa). This is straightforward for a V+L_{car}+L_{aq} inclusion as its pressure can be estimated from the CO₂ vapor-liquid equilibrium pressure, whereas for a L_{car}+L_{aq} inclusion with unknown pressure at room temperature, we can either determining its reference pressure using a microthermometric method, or as an optional choice, determining the reference peak positions by additional Raman scattering measurements with the same settings of a V+L_{car}+L_{aq} inclusion. This

step is critical for the usage of Equation 4a because different Raman scattering or calibration settings will affect the measured Raman peak positions to a significant degree. As for the usage of Equation 4b, this step is suggested but not required because the relationship between D and CO_2 density or pressure has been proven to be quite reproducible (Fall et al., 2011; Kawakami et al., 2003; Rosso and Bodnar, 1995; Song et al., 2009; Wang et al., 2011; Yamamoto and Kagi, 2006).

In the third step, Raman spectra of the carbonic phase in the target aqueo-carbonic fluid 265 266 inclusion should be measured from room to its homogenization temperature with proper intervals. During this part of the procedure, measurement of a Raman signal from an external source for 267 spectral calibration is strongly recommended as the heat from the HDAC or heating stage will 268 significantly affect the measured Raman peak positions. In the final step, Δv . or ΔD at different 269 temperatures are calculated and the total pressure in the target inclusion is determined either from Δv . 270 using Equation 4a or from ΔD using Equation 4b. Compared with v., which may be affected by some 271 unexpected errors, pressures calculated from D appear to be more reliable as the frequency shifts of 272 v_{-} and v_{+} are usually affected by those unexpected errors in the same manner. 273

274 Implications

The use of microthermometry for estimation of pressure in natural H₂O-CO₂ fluid inclusions is often limited by the presence of additional volatiles, such as CH₄ and CO, and electrolytes such as NaCl. We have made a systematic in situ Raman study of H₂O-CO₂ fluids, with and without CH₄ or NaCl, using the HDAC within the *p*-*T* range of 22 °C $\leq T \leq$ 400 °C and 5 $\leq p \leq$ 1200 MPa, in order to develop the use of CO₂ as an internal sensor for monitoring the pressure of aqueo-carbonic fluid inclusions. We have determined the frequency shifts of the Fermi diad bands of CO₂ in H₂O-CO₂±NaCl±CH₄ fluids as a function of pressure and temperature and, from these measurements, closely examined the effect of CH₄ or NaCl on these shifts. The *p*-*T*-dependencies of the frequency shifts of the lower Fermi diad band v_{\cdot} and the resonant splitting *D* between the upper Fermi diad band v_{+} and v_{-} of CO₂ in aqueo-carbonic fluids were found to be monotonic, easily measurable and quantifiable so as to be suitable for use as an internal pressure sensor.

Based on the quantified relationships of the frequency shifts of the Fermi diad bands with 286 287 temperature and total pressure, two polynomial equations were derived for the first time, for the lower Fermi diad band $v_{\rm a}$ and the splitting D value, that can be used for determining the total pressure 288 in aqueo-carbonic fluid inclusions from ambient pressure to 1200 MPa. Our method is applicable for 289 aqueo-carbonic fluid inclusions containing a liquid carbonic phase and is recommended for content 290 levels <10 mol% CH₄ or <10 wt% NaCl. The use of CO₂ as an internal pressure sensor as developed 291 292 using our quantification procedure provides a more straightforward and more reliable method than by the use of microthermometry for determining the pressure of natural aqueo-carbonic fluid 293 inclusions under elevated p-T conditions. As better pressure sensors with a better pressure resolution 294 295 are developed, higher-precision Raman instruments having greater signal sensitivity are produced and more CO₂ Raman data are measured from aqueo-carbonic systems, the CO₂ Raman pressure 296 sensor will become more accurate for work on fluid inclusions in the future. 297

298 Acknowledgements

301

This work is supported by National Natural Science Foundation of China (No. 41373057) and by the China Scholarship Council (No. 201406010059). We are sincerely grateful to Prof. Robert J.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Bodnar and an anonymous reviewer for their critical comments and valuable suggestions.

302 **References**

- Akinfiev, N.N., and Diamond, L.W. (2010) Thermodynamic model of aqueous CO₂-H₂O-NaCl solutions from -22 to
 100°C and from 0.1 to 100MPa. Fluid Phase Equilibria, 295(1), 104-124.
- Aranovich, L.Y., Zakirov, I., Sretenskaya, N., and Gerya, T. (2010) Ternary system H₂O-CO₂-NaCl at high *T-P* parameters: An empirical mixing model. Geochemistry International, 48(5), 446-455.
- Azbej, T., Severs, M.J., Rusk, B.G., and Bodnar, R.J. (2007) In situ quantitative analysis of individual H₂O-CO₂ fluid
 inclusions by laser Raman spectroscopy. Chemical Geology, 237(3–4), 255-263.
- Bakker, R.J., and Diamond, L.W. (2000) Determination of the composition and molar volume of H₂O-CO₂ fluid
 inclusions by microthermometry. Geochimica et Cosmochimica Acta, 64(10), 1753-1764.
- Bassett, W., Shen, A., Bucknum, M., and Chou, I.M. (1993) A new diamond anvil cell for hydrothermal studies to 2.5
 GPa and from -190 to 1200 °C. Review of Scientific Instruments, 64(8), 2340-2345.
- 313 Berkesi, M., Hidas, K., Guzmics, T., Dubessy, J., Bodnar, R.J., Szabó, C., Vajna, B., and Tsunogae, T. (2009) Detection
- of small amounts of H₂O in CO₂-rich fluid inclusions using Raman spectroscopy. Journal of Raman
 Spectroscopy, 40(11), 1461-1463.
- Bersani, D., Salvioli-Mariani, E., Mattioli, M., Menichetti, M., and Lottici, P.P. (2009) Raman and micro-thermometric
 investigation of the fluid inclusions in quartz in a gold-rich formation from Lepaguare mining district (Honduras,
 Central America). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73(3), 443-449.
- Bodnar, R.J. (2003) Reequilibration of fluid inclusions. In A.A. Samson, and D. Marshall, Eds. Fluid inclusions: Analysis
 and interpretation, 32, p. 213-230. Mineral. Assoc. Canada.
- 321 Bodnar, R.J., Binns, P.R., and Hall, D.L. (1989) Synthetic fluid inclusions-VI. Quantitative evaluation of the
- decrepitation behaviour of fluid inclusions in quartz at one atmosphere confining pressure. Journal of
 Metamorphic Geology, 7(2), 229-242.
- 324 Burke, E.A.J. (2001) Raman microspectrometry of fluid inclusions. Lithos, 55(1–4), 139-158.
- Chen, Y., Zhou, Y., and Ni, P. (2006) A new method for measurement of internal pressure of inclusions: CO₂-Raman
 spectrometry. Rock and Mineral Analysis, 25(3), 211-214.
- Chi, G., Dubé, B., Williamson, K., and Williams-Jones, A. (2006) Formation of the Campbell-Red Lake gold deposit by
 H₂O-poor, CO₂-dominated fluids. Mineralium Deposita, 40(6-7), 726-741.
- Darling, R.S., and Bassett, W.A. (2002) Analysis of natural H₂O+ CO₂+ NaCl fluid inclusions in the hydrothermal diamond anvil cell. American Mineralogist, 87(1), 69-78.
- Diamond, L.W. (1996) Isochoric paths in immiscible fluids and the interpretation of multicomponent fluid inclusions.
 Geochimica et Cosmochimica Acta, 60(20), 3825-3834.
- 333 Diamond, L.W. (2001) Review of the systematics of CO₂–H₂O fluid inclusions. Lithos, 55(1–4), 69-99.
- Fall, A., Tattitch, B., and Bodnar, R.J. (2011) Combined microthermometric and Raman spectroscopic technique to
 determine the salinity of H₂O-CO₂-NaCl fluid inclusions based on clathrate melting. Geochimica et
 Cosmochimica Acta, 75(4), 951-964.
- 337 Garrabos, Y., Echargui, M.A., and Marsault-Herail, F. (1989) Comparison between the density effects on the levels of the
- Raman spectra of the Fermi resonance doublet of the ${}^{12}C^{16}O_2$ and ${}^{13}C^{16}O_2$ molecules. The Journal of Chemical Physics, 91(10), 5869-5881.
- Garrabos, Y., Tufeu, R., Le Neindre, B., Zalczer, G., and Beysens, D. (1980) Rayleigh and Raman scattering near the
 critical point of carbon dioxide. The Journal of Chemical Physics, 72(8), 4637-4651.

- Giorgetti, G, Frezzotti, M.L.E., Palmeri, R., and Burke, E.A.J. (1996) Role of fluids in migmatites: CO₂-H₂O fluid
 inclusions in leucosomes from the Deep Freeze Range migmatites (Terra Nova Bay, Antarctica). Journal of
 Metamorphic Geology, 14(3), 307-317.
- Gordon, H.R., and McCubbin, T.K. (1966) The 2.8-micron bands of CO₂. Journal of Molecular Spectroscopy, 19, 137-154.
- Guo, H., Chen, Y., Hu, Q., Lu, W., Ou, W., and Geng, L. (2014) Quantitative Raman spectroscopic investigation of
 geo-fluids high-pressure phase equilibria: Part I. Accurate calibration and determination of CO₂ solubility in
 water from 273.15 to 573.15K and from 10 to 120MPa. Fluid Phase Equilibria, 382(0), 70-79.
- Holloway, J.R., Burnham, C.W., and Millhollen, G.L. (1968) Generation of H₂O-CO₂ Mixtures for Use in Hydrothermal
 Experimentation. Journal of Geophysical Research, 73(20), 6598-6600.
- Hurai, V. (2010) Fluid inclusion geobarometry: Pressure corrections for immiscible H₂O-CH₄ and H₂O-CO₂ fluids.
 Chemical Geology, 278(3-4), 201-211.
- Kawakami, Y., Yamamoto, J., and Kagi, H. (2003) Micro-Raman Densimeter for CO₂ Inclusions in Mantle-Derived
 Minerals. Applied spectroscopy, 57(11), 1333-1339.
- Li, N., Chen, Y.-J., Deng, X.-H., and Yao, J.-M. (2014) Fluid inclusion geochemistry and ore genesis of the Longmendian
 Mo deposit in the East Qinling Orogen: Implication for migmatitic-hydrothermal Mo-mineralization. Ore
 Geology Reviews, 63, 520-531.
- Lowenstern, J. (2001) Carbon dioxide in magmas and implications for hydrothermal systems. Mineralium Deposita,
 36(6), 490-502.
- Mao, S., Duan, Z., and Hu, W. (2009) A vapor-liquid phase equilibrium model for binary CO₂-H₂O and CH₄-H₂O
 systems above 523K for application to fluid inclusions. The Journal of Supercritical Fluids, 50(1), 13-21.
- Mao, S., Hu, J., Zhang, D., and Li, Y. (2013) Thermodynamic modeling of ternary CH₄-H₂O-NaCl fluid inclusions.
 Chemical Geology, 335(0), 128-135.
- Mumm, A.S., Oberthür, T., Vetter, U., and Blenkinsop, T.G. (1997) High CO₂ content of fluid inclusions in gold
 mineralisations in the Ashanti Belt, Ghana: a new category of ore forming fluids? Mineralium Deposita, 32(2),
 107-118.
- Peng, Y., Gu, X., Zhang, Y., Liu, L., Wu, C., and Chen, S. (2014) Ore-forming process of the Huijiabao gold district,
 southwestern Guizhou Province, China: Evidence from fluid inclusions and stable isotopes. Journal of Asian
 Earth Sciences, 93, 89-101.
- Phillips, G., and Evans, K. (2004) Role of CO₂ in the formation of gold deposits. Nature, 429(6994), 860-863.
- Rosso, K.M., and Bodnar, R.J. (1995) Microthermometric and Raman spectroscopic detection limits of CO₂ in fluid
 inclusions and the Raman spectroscopic characterization of CO₂. Geochimica et Cosmochimica Acta, 59(19),
 3961-3975.
- Salvioli-Mariani, E., Toscani, L., Boschetti, T., Bersani, D., and Mattioli, M. (2015) Gold mineralisations in the Canan
 area, Lepaguare District, east-central Honduras: Fluid inclusions and geochemical constraints on gold deposition.
 Journal of Geochemical Exploration, 158, 243-256.
- Schmidt, C., Chou, I., Bodnar, R.J., and Bassett, W.A. (1998) Microthermometric analysis of synthetic fluid inclusions in
 the hydrothermal diamond-anvil cell. American Mineralogist, 83, 995-1007.
- Schmidt, C., Rosso, K.M., and Bodnar, R.J. (1995) Synthetic fluid inclusions: XIII. Experimental determination of PVT
 properties in the system H₂O+ 40 wt % NaCl + 5 mol% CO₂ at elevated temperature and pressure. Geochimica
 et Cosmochimica Acta, 59(19), 3953-3959.
- Schmidt, C., and Ziemann, M.A. (2000) In-situ Raman spectroscopy of quartz: A pressure sensor for hydrothermal
 diamond-anvil cell experiments at elevated temperatures. American Mineralogist, 85(11-12), 1725-1734.

385	Seitz, J.C., Pasteris, J.D., and Chou, IM. (1996) Raman spectroscopic characterization of gas mixtures. II. Quantitative
386	composition and pressure determination of the CO_2 -CH ₄ system. American Journal of Science, 296(6), 577-600.
387	Shmulovich, K.I., and Graham, C.M. (1999) An experimental study of phase equilibria in the system H ₂ O-CO ₂ -NaCl at
388	800°C and 9 kbar. Contributions to mineralogy and petrology, 136(3), 247-257.
389	Shmulovich, K.I., and Graham, C.M. (2004) An experimental study of phase equilibria in the systems H ₂ O-CO ₂ -CaCl ₂
390	and H ₂ O–CO ₂ –NaCl at high pressures and temperatures (500–800°C, 0.5–0.9 GPa): geological and geophysical
391	applications. Contributions to Mineralogy and Petrology, 146(4), 450-462.
392	Song, Y., Chou, I.M., Hu, W., Robert, B., and Lu, W. (2009) CO ₂ Density-Raman Shift Relation Derived from Synthetic
393	Inclusions in Fused Silica Capillaries and Its Application. Acta Geologica Sinica-English Edition, 83(5),
394	932-938.
395	Stoicheff, B.P. (1958) High Resolution Raman Spectroscopy of Gases: XI. Spectra of CS ₂ and CO ₂ . Canadian Journal of
396	Physics, 36(2), 218-230.
397	Sun, Q., Zhao, L., Li, N., and Liu, J. (2010) Raman spectroscopic study for the determination of Cl ⁻ concentration
398	(molarity scale) in aqueous solutions: Application to fluid inclusions. Chemical Geology, 272(1), 55-61.
399	Thomas, A.V., Pasteris, J.D., Bray, C.J., and Spooner, E.T.C. (1990) H ₂ O-CH ₄ -NaCl-CO ₂ inclusions from the footwall
400	contact of the Tanco granitic pegmatite: Estimates of internal pressure and composition from microthermometry,
401	laser Raman spectroscopy, and gas chromatography. Geochimica et Cosmochimica Acta, 54(3), 559-573.
402	Thomas, A.V., and Spooner, E.T.C. (1992) The volatile geochemistry of magmatic H ₂ O-CO ₂ fluid inclusions from the
403	Tanco zoned granitic pegmatite, southeastern Manitoba, Canada. Geochimica et Cosmochimica Acta, 56(1),
404	49-65.
405	Tsunogae, T., Santosh, M., Osanai, Y., Owada, M., Toyoshima, T., and Hokada, T. (2002) Very high-density carbonic
406	fluid inclusions in sapphirine-bearing granulites from Tonagh Island in the Archean Napier Complex, East
407	Antarctica: implications for CO ₂ infiltration during ultrahigh-temperature (T>1,100 °C) metamorphism.
408	Contributions to Mineralogy and Petrology, 143(3), 279-299.
409	Wang, C.H., and Wright, R.B. (1973) Raman studies of the effect of density of the fermi resonance in CO ₂ . Chemical
410	Physics Letters, 23(2), 241-246.
411	Wang, GG., Ni, P., Wang, RC., Zhao, KD., Chen, H., Ding, JY., Zhao, C., and Cai, YT. (2013) Geological, fluid
412	inclusion and isotopic studies of the Yinshan Cu-Au-Pb-Zn-Ag deposit, South China: Implications for ore
413	genesis and exploration. Journal of Asian Earth Sciences, 74, 343-360.
414	Wang, H., and Zheng, H. (2012) Research on Raman Spectra of Oxalic Acid During Decarboxylation under High
415	Temperature and High Pressure. Spectroscopy and Spectral Analysis, 32(3), 669-672.
416	Wang, X., Chou, I., Hu, W., Burruss, R.C., Sun, Q., and Song, Y. (2011) Raman spectroscopic measurements of CO2
417	density: Experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule
418	(FSCC) with application to fluid inclusion observations. Geochimica et Cosmochimica Acta, 75(14), 4080-4093.
419	Welsh, H.L., Pashler, P.E., and Stoicheff, B.P. (1952) Density Effects in the Spectrum of Carbon Dioxide. Canadian
420	Journal of Physics, 30(2), 99-110.
421	Williams-Jones, A., and Ferreira, D. (1989) Thermal metamorphism and H2O-CO2-NaCl immiscibility at Patapedia,
422	Quebec: evidence from fluid inclusions. Contributions to Mineralogy and Petrology, 102(2), 247-254.
423	Xu, G., and Pollard, P.J. (1999) Origin of CO ₂ -rich fluid inclusions in synorogenic veins from the Eastern Mount Isa Fold
424	Belt, NW Queensland, and their implications for mineralization. Mineralium Deposita, 34(4), 395-404.
425	Yamamoto, J., and Kagi, H. (2006) Extended micro-Raman densimeter for CO ₂ applicable to mantle-originated fluid
426	inclusions. Chemistry letters, 35(6), 610-611.

Yamamoto, J., Kagi, H., Kawakami, Y., Hirano, N., and Nakamura, M. (2007) Paleo-Moho depth determined from the
 pressure of CO₂ fluid inclusions: Raman spectroscopic barometry of mantle- and crust-derived rocks. Earth and
 Planetary Science Letters, 253(3-4), 369-377.

Zakirov, I., Sretenskaja, N., Aranovich, L., and Volchenkova, V. (2007) Solubility of NaCl in CO₂ at high pressure and
 temperature: First experimental measurements. Geochimica et Cosmochimica Acta, 71(17), 4251-4255.

Zhu, Y., and Peng, J. (2015) Infrared microthermometric and noble gas isotope study of fluid inclusions in ore minerals at
 the Woxi orogenic Au–Sb–W deposit, western Hunan, South China. Ore Geology Reviews, 65, Part 1, 55-69.

Table 1. Parameters from fitting of the frequency positions of the CO_2 Fermi diad bands (v_+ and v_-)

437 in the text.

	а	b	С	<i>d</i> ×10 ⁻⁶	<i>e</i> ×10 ⁻⁶	f×10 ⁻⁶	R^2
<i>V</i> -	1281.37(4)	0.01077(5)	-0.00853(2)	-15.2(12)	3.24(16)	0.066(6)	0.9934
\mathcal{V}_+	1385.63(5)	0.00427(6)	-0.00378(17)	-8.6(15)	2.85(21)	-1.3(7)	0.8717
D	104.17(2)	-0.00738(2)	0.00505(7)	9.9(7)	-0.41(9)	-2.0(3)	0.9971

438

439

440

442 Figure 1. A typical Raman spectrum of CO_2 with the effects of density and temperature illustrated by

444

446 Figure 2. Photographs of the sample chamber at different temperatures for Sample II (see text):

(a) oxalic acid (OA, partly dissolved), H₂O+NaCl an air bubble (V) in the sealed sample chamber at room temperature; (b) oxalic acid dissolved at 73 °C and the system homogenized at 92 °C; (c) CO₂ bubbles generated from the decomposition of oxalic acid at about 260 °C; (d) aqueous and high-density carbonic fluid (90 mol% CO₂ and 10 mol% CH₄) coexist within the chamber after the system was cooled down to 22 °C.

Figure 3. Raman spectra of the carbonic phase measured with 532nm and 785nm laser excitation, respectively, at 23 °C and ~ 30 MPa in Sample II (see text). In the spectrum measured with 532 nm laser excitation, the intensity of the CH₄ v_1 band (1.11×10⁴) is about 38% of that of the CO₂ v_+ band (2.92×10⁴), and the corresponding CH₄ concentration in the carbonic phase, after taking into account of the quantification factor ratio given by Seitz et al. (1996), was estimated to be ~10 mol%.

459

Figure 4. The effect of pressure on the Raman vibrational frequencies of CO₂ at 23 °C. The insets show the frequency shifts of the CO₂ Fermi diad bands v_+ and v_- and the splitting *D*, as a function of pressure for Sample I (open diamonds) and Sample II (solid diamonds). All spectra are shown after baseline corrections and spectral calibrations were made.

465

Figure 5. The effect of temperature on the Raman vibrational frequencies of CO_2 at approximately 200 MPa. The insets show the frequency shifts of the CO_2 Fermi diad bands v_+ and v_- and the splitting *D*, as a function of temperature for Sample I (open diamonds) and Sample II (solid diamonds). All spectra are shown after making baseline corrections, spectral calibrations and pressure corrections (see text).

471

472

473

476

Figure 6. Fitting results of the CO₂ Raman vibrational frequencies (**a** for v_{-} , **b** for v_{+}) and D splitting 477 (c) with pressure and temperature. Diamonds, circles and squares represent data measured from 478 Sample I, II and III, respectively; border color represents the measured data that are higher (blue) or 479 lower (red) than their fitted values; filled color represents the error between measured data and fitted 480 value, blue is for error $<0.1 \text{ cm}^{-1}$, green is for $0.1 \sim 0.2 \text{ cm}^{-1}$ and yellow is for $0.2 \sim 0.4 \text{ cm}^{-1}$. 481 482

Figure 7. Pressure determination from the frequency shifts of v. (a) and D (b) of CO₂ at different temperatures. Diamonds, circles and squares represent data measured from Sample I, II or III, respectively; border color represents the measured data that are higher (blue) or lower (red) than their fitted values; filled color represents the errors between measured data and fitted value, blue is for error less than 20 MPa and green is for error between 20 and 50 MPa.

Sample I								
T/°C	p/Mpa	<i>v</i> -	Iv-	v+	Iv+	D	Δv -	ΔD
22	84	1280.82	6711	1385.26	11740	104.44	-0.74	0.37
50	109	1280.79	6410	1385.16	11390	104.37	-0.77	0.30
100	163	1280.85	5229	1385.24	9559	104.40	-0.72	0.33
150	250	1280.69	3719	1385.14	6963	104.45	-0.87	0.38
200	305	1280.51	2202	1384.98	4294	104.48	-1.06	0.41
250	408	1280.01	651	1384.63	1724	104.62	-1.55	0.55
22	78	1280.71	4119	1385.04	7541	104.33	-0.85	0.26
23	362	1278.71	3565	1384.48	6781	105.78	-2.86	1.71
50	478	1278.39	2543	1384.48	5158	106.10	-3.17	2.03
100	639	1278.12	2547	1384.49	5875	106.38	-3.45	2.31
150	714	1278.16	1168	1384.74	3398	106.58	-3.41	2.51
200	823	1278.04	1056	1384.66	2739	106.61	-3.52	2.54
250	887	1278.09	492	1384.69	1278	106.60	-3.47	2.53
22	151	1280.20	3791	1384.92	8116	104.72	-1.36	0.65
50	186	1280.27	3682	1384.97	6723	104.70	-1.29	0.63
100	249	1280.19	3839	1384.98	7306	104.79	-1.37	0.72
150	329	1279.92	2623	1384.78	4937	104.86	-1.64	0.79
200	390	1279.83	1252	1384.77	2751	104.94	-1.73	0.87
250	474	1279.85	575	1384.73	1493	104.88	-1.71	0.81
23	29	1281.38	5109	1385.56	9214	104.18	-0.18	0.11
50	72	1281.37	2865	1385.49	5223	104.12	-0.19	0.05
100	83	1281.57	3677	1385.52	6838	103.95	0.01	-0.12
150	142	1281.29	3806	1385.25	6768	103.96	-0.27	-0.11
200	166	1281.41	2436	1385.35	4487	103.94	-0.15	-0.13
250	274	1280.88	1234	1384.99	2335	104.12	-0.69	0.05
22	117	1280.71	3820	1385.39	7304	104.68	-0.85	0.61
22	550	1277.98	2167	1384.55	4764	106.56	-3.58	2.49
			:	Sample II				
23	7	1281.56	2077	1385.63	3523	104.07	0.00	0.00
50	12	1282.00	2708	1385.93	3722	103.94	0.43	-0.13
100	20	1282.29	2688	1385.99	4052	103.70	0.73	-0.37

150	48	1282.43	2377	1386.04	3750	103.61	0.86	-0.46
200	73	1282.52	1913	1385.82	3084	103.31	0.96	-0.76
250	101	1282.43	1925	1385.82	3126	103.39	0.87	-0.68
300	140	1282.23	1226	1385.61	2295	103.39	0.66	-0.68
350	169	1281.86	669	1385.37	1572	103.52	0.29	-0.55
400	284	1281.08	265	1385.03	729	103.95	-0.48	-0.12
23	270	1279.42	5865	1384.84	11800	105.42	-2.14	1.35
50	331	1279.34	5318	1384.74	10580	105.40	-2.23	1.33
100	434	1279.23	4496	1384.70	9167	105.47	-2.34	1.40
150	514	1279.14	3214	1384.66	7105	105.52	-2.42	1.45
200	587	1279.08	2542	1384.65	5938	105.57	-2.48	1.51
250	659	1278.87	1741	1384.69	4581	105.81	-2.69	1.74
300	794	1278.59	364	1384.72	1240	106.14	-2.97	2.07
22	7	1281.73	3224	1385.69	5492	103.97	0.17	-0.10
23	6	1281.56	3145	1385.52	5840	103.96	0.00	-0.11
50	30	1281.84	3546	1385.85	6695	104.01	0.28	-0.06
100	40	1282.14	3386	1385.81	5746	103.68	0.57	-0.39
150	56	1282.39	3306	1386.00	5730	103.61	0.82	-0.46
200	74	1282.32	2708	1385.77	4766	103.45	0.76	-0.62
250	115	1282.21	2049	1385.80	3804	103.59	0.64	-0.48
300	153	1282.08	820	1385.66	1820	103.58	0.52	-0.49
350	208	1281.57	591	1385.22	1447	103.64	0.01	-0.43
400	239	1281.18	121	1384.95	378	103.77	-0.38	-0.30
23	507	1278.09	5268	1384.59	12140	106.50	-3.48	2.43
50	550	1278.08	4556	1384.53	10030	106.45	-3.48	2.38
100	674	1277.91	4010	1384.66	9081	106.75	-3.65	2.68
150	774	1278.13	3171	1384.88	7697	106.74	-3.43	2.68
200	890	1278.08	1232	1384.94	2979	106.86	-3.48	2.79
250	985	1277.97	928	1385.07	2239	107.10	-3.59	3.03
300	1077	1277.84	546	1385.10	1365	107.27	-3.73	3.20
350	1138	1277.71	302	1385.02	801	107.31	-3.85	3.24
23	564	1277.89	5625	1384.70	10140	106.82	-3.68	2.75
50	629	1277.88	4265	1384.67	9219	106.79	-3.68	2.72

100	725	1277.86	4119	1384.72	9172	106.86	-3.70	2.79
150	860	1277.84	3243	1384.77	6750	106.94	-3.73	2.87
200	970	1277.68	2515	1384.80	5898	107.12	-3.88	3.05
250	1129	1277.45	1814	1385.04	5179	107.59	-4.12	3.52
23	698	1277.41	2697	1384.67	5962	107.26	-4.15	3.19
50	767	1277.28	2777	1384.60	5882	107.32	-4.29	3.25
100	908	1277.35	2476	1384.96	5414	107.62	-4.22	3.55
150	985	1277.39	1789	1384.92	4342	107.54	-4.17	3.47
200	1073	1277.35	1490	1384.91	3653	107.56	-4.21	3.49
250	1166	1277.43	916	1385.11	2482	107.68	-4.13	3.61
300	1241	1277.42	579	1385.14	1643	107.73	-4.14	3.66
22	364	1278.88	4992	1384.75	9215	105.87	-2.69	1.80
50	433	1278.70	5329	1384.71	10170	106.01	-2.87	1.94
100	529	1278.77	4648	1384.80	9347	106.02	-2.79	1.95
150	639	1278.73	4853	1384.75	9295	106.02	-2.83	1.95
200	696	1278.64	1921	1384.69	4693	106.05	-2.92	1.98
250	786	1278.65	1470	1384.80	4072	106.15	-2.91	2.08
300	881	1278.38	1107	1384.70	2833	106.32	-3.18	2.25
350	892	1278.44	475	1384.79	1340	106.35	-3.12	2.28
22	148	1280.43	4225	1385.11	6908	104.69	-1.14	0.62
22	124	1280.78	4978	1385.29	8297	104.51	-0.78	0.44
50	160	1280.69	3376	1385.31	6120	104.62	-0.88	0.55
100	275	1280.34	3321	1385.14	5682	104.80	-1.23	0.73
150	295	1280.36	1774	1385.13	3333	104.78	-1.21	0.71
200	369	1280.11	1351	1384.96	2673	104.85	-1.46	0.78
250	475	1279.97	1137	1385.07	2360	105.10	-1.59	1.03
300	551	1279.66	822	1384.89	1832	105.23	-1.90	1.17
350	639	1279.35	565	1384.77	1079	105.42	-2.21	1.35
				Sample III				
22	5	1281.58	4119	1385.87	9502	104.21	0.01	0.06
25	10	1281.54	5122	1385.62	11580	104.00	-0.02	-0.15
31	20	1281.51	8949	1386.10	17130	104.03	-0.05	-0.12
42	35	1281.49	8659	1385.89	16720	104.09	-0.08	-0.06

52	50	1281.41	8895	1385.89	17110	104.12	-0.15	-0.03
63	68	1281.33	8727	1385.84	16210	104.14	-0.24	-0.01
74	86	1281.30	8224	1385.85	15700	104.12	-0.27	-0.03
85	104	1281.24	7799	1385.84	14900	104.20	-0.33	0.05
96	122	1281.14	7043	1385.82	14000	104.26	-0.43	0.11
106	140	1281.15	7223	1385.73	14080	104.24	-0.41	0.09
117	158	1281.07	5871	1385.80	11530	104.27	-0.49	0.13
128	176	1281.04	5122	1385.79	10760	104.29	-0.52	0.14
139	194	1281.06	6130	1385.69	12430	104.30	-0.51	0.15
150	212	1281.03	6405	1385.68	12090	104.31	-0.54	0.16
160	230	1280.93	5407	1385.68	11300	104.38	-0.64	0.24
171	248	1280.80	3435	1385.51	7705	104.39	-0.77	0.24
182	266	1280.68	2835	1385.45	6779	104.49	-0.89	0.34
193	284	1280.60	1430	1385.43	3464	104.40	-0.97	0.25