1 Revision 2

2	Equation of State and Hyperfine Parameters of High-Spin
3	Bridgmanite in the Earth's Lower Mantle by Synchrotron X-
4	Ray Diffraction and Mössbauer Spectroscopy
5	Zhu Mao ^{1*} , Fan Wang ¹ , Jung-Fu Lin ^{2,3*} , Suyu Fu ^{1,2} , Jing Yang ² , Xiang Wu ⁴ , Takuo
6	Okuchi ⁵ , Naotaka Tomioka ⁶ , Vitali B. Prakapenka ⁷ , Yuming Xiao ⁸ , Paul Chow ⁸
7	
8	¹ Laboratory of Seismology and Physics of Earth's Interior, School of Earth and
9	Planetary Sciences, University of Science and Technology of China, Hefei, Anhui
10	230026, China
11	² Department of Geological Sciences, Jackson School of Geosciences, The University
12	of Texas at Austin, Austin, TX 78712, USA
13	³ Center for High Pressure Science and Technology Advanced Research (HPSTAR),
14	Shanghai 130012, China
15	⁴ State Key Laboratory of Geological Processes and Mineral Resources, China
16	University of Geosciences, Wuhan 430074, China
17	⁵ Institute for Study of the Earth's Interior, Okayama University, Misasa, Tottori 682-
18	0193, Japan
19	⁶ Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science
20	and Technology, Nankoku, Kochi 783-8502, Japan
21	⁷ Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637,
22	USA

⁸HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, IL
60439, USA

25

26 Abstract

27	In this study, we performed synchrotron X-ray diffraction (XRD) and Mössbauer
28	spectroscopy (SMS) measurements on two single-crystal bridgmanite samples
29	$(Mg_{0.94}Fe_{0.04}{}^{2+}Fe_{0.02}{}^{3+}Al_{0.01}Si_{0.99}O_3 \ (Bm6) \ and \ Mg_{0.89}Fe_{0.024}{}^{2+}Fe_{0.096}{}^{3+}Al_{0.11}Si_{0.89}O_3$
30	(Al-Bm11)) to investigate the combined effect of Fe and Al on the hyperfine
31	parameters, lattice parameters, and equation of state (EoS) of bridgmanite up to 130
32	GPa. Our SMS results show that Fe^{2+} and Fe^{3+} in Bm6 and Al-Bm11 are
33	predominantly located in the large pseudo-dodecahedral sites (A-site) at lower-mantle
34	pressures. The observed drastic increase in the hyperfine quadrupole splitting (QS)
35	between 13 and 32 GPa can be associated with an enhanced local distortion of the A-
36	site Fe ²⁺ in Bm6. In contrast to Bm6, the enhanced lattice distortion and the presence
37	of extremely high QS values of Fe ²⁺ are not observed in Al-Bm11 at high pressures.
38	Our results here support the notion that the occurrence of the extremely high QS
39	component of approximately 4 mm/s in bridgmanite is due to the lattice distortion in
40	the high-spin (HS) A-site Fe^{2+} , instead of the occurrence of the intermediate-spin state.
41	Both A-site Fe ²⁺ and Fe ³⁺ in Bm6 and Al-Bm11 remain in the HS state at lower-mantle
42	pressures. Together with XRD results, we present the first experimental evidence that
43	the enhanced lattice distortion of A-site Fe ²⁺ does not cause any detectable variation
44	in the EoS parameters, but is associated with anomalous variations in the bond length,

45	tilting angle, and shear strain in the octahedra of Bm6. Analysis of the obtained EoS
46	parameters of bridgmanite at lower-mantle pressures indicates that the substitution of
47	Fe in bridgmanite will cause an enhanced density and a reduced bulk sound velocity
48	(V_{Φ}) , whereas the Al and Fe substitution has a reduced effect on density and a
49	negligible effect on V_{Φ} . These experimental results provide new insight into the
50	correlation between lattice, hyperfine, and EoS parameters of bridgmanite in the
51	Earth's lower mantle.
52	
53	Key words: bridgmanite, lattice distortion, equation of state, Fe and Al, lower mantle,
54	high-spin
55	
56	Introduction
57	Bridgmanite, (Mg,Fe)(Fe,Al,Si)O ₃ , is the most abundant mineral in the Earth's lower
58	mantle occupying approximately 75% by volume in a pyrolitic mantle composition or
59	as high as \sim 93% in the chondritic Earth model with a Si-enriched lower mantle (Hirose
60	2002; Irifune et al. 2010; Murakami et al. 2012; Ringwood 1975). In the past few
61	decades, physical properties of bridgmanite at relevant pressure and temperature (P-
62	T) conditions of the lower mantle have attracted extensive research interest (e.g.
63	Hemley and Cohen 1992; McCammon 1997; Stixrude and Cohen 1993; Tsuchiya et

65 Fe in lower-mantle bridgmanite undergoes spin pairing transitions, calling for

66 investigations into the effect of Fe spin transition on the physical properties of

67	bridgmanite at lower-mantle pressures (e.g. Catalli et al. 2011; Catalli et al. 2010;
68	Goncharov et al. 2010; Hsu et al. 2012; Lin et al. 2008; Lin et al. 2012; Mao et al.
69	2011; Mao et al. 2015; McCammon et al. 2008; Tsuchiya and Wang 2013). However,
70	the spin and valence states of iron in bridgmanite remain controversial (e.g. see Lin et
71	al. 2013 for a review).

73	Fe can exist as both Fe^{2+} and Fe^{3+} in lower-mantle bridgmanite in large pseudo-
74	dodecahedral sites (A-site) and small octahedral sites (B-site) (Lin et al. 2013),
75	complicating our understanding of the spin states of Fe in bridgmanite. Thus far, both
76	experimental and theoretical studies are in agreement that Fe^{3+} in the B-site will
77	undergo the high-spin (HS) to low-spin (LS) transition at lower-mantle pressures, but
78	the A-site Fe^{3+} will stay in the HS state (Bengtson et al. 2009b; Catalli et al. 2011;
79	Catalli et al. 2010; Dorfman et al. 2015; Fujino et al. 2014; Fujino et al. 2012; Hsu et
80	al. 2011; Hsu et al. 2012; Lin et al. 2013; Lin et al. 2016). Although Fe^{2+} will only
81	locate at the A-site in bridgmanite, the spin state of Fe^{2+} is still under debate (Bengtson
82	et al. 2009b; Hsu et al. 2010; Hsu and Wentzcovitch 2014; Jackson et al. 2005; Li et
83	al. 2006; Lin et al. 2012; McCammon et al. 2010; McCammon et al. 2008; Shukla et
84	al. 2015). High-pressure Mössbauer spectroscopy studies have shown that the
85	quadrupole splitting (QS) of the A-site Fe^{2+} increases drastically to an extremely high
86	value of ~4 mm/s at approximately 18-30 GPa (Lin et al. 2012; Lin et al. 2013; Mao
87	et al. 2011; McCammon et al. 2010; McCammon et al. 2008; Narygina et al. 2010).
88	The anomalous increase in the QS of A-site Fe ²⁺ in bridgmanite has been interpreted

89	as the HS to intermediate-spin (IS) transition by high-pressure Mössbauer studies,
90	which has been proposed to produce a softening in the spontaneous shear strain and
91	affect the octahedral tilting during compression (Boffa Ballaran et al. 2012; Lin et al.
92	2008; McCammon et al. 2010; McCammon et al. 2008; Narygina et al. 2010).
93	However, theoretical calculations have pointed out that the IS Fe^{2+} in bridgmanite is
94	energetically disfavored and highly unlikely to be stable at lower-mantle pressures,
95	and the observed extremely high QS component is caused by the enhanced lattice
96	distortion of the HS Fe^{2+} in the A-site (Bengtson et al. 2009a; Hsu et al. 2010; Hsu
97	and Wentzcovitch 2014).

The influence of the spin states of Fe^{3+} and Fe^{2+} on the physical properties, in 99 particular the equation of state (EoS), of bridgmanite is a crucial issue to understand 100 the chemistry and dynamics of the lower-mantle. Theoretical and experimental studies 101 have shown that the spin transition of B-site Fe³⁺ in bridgmanite can cause an abrupt 102 reduction in its unit cell volume and softening in its bulk modulus at high pressure 103 104 (Catalli et al. 2011; Hsu et al. 2011; Tsuchiya and Wang 2013). A Recent experimental study has observed an anomalous collapse in the volume of bridgmanite with 10% Fe 105 106 between 18 and 25 GPa at 300 K (Mao et al. 2015). The cause for the observed anomalous change in the volume of bridgmanite remains unclear because the spin 107 transition of B-site Fe³⁺ occurs coincidently with the enhanced lattice distortion of A-108 site Fe^{2+} and we still lack of direct experimental evidence for the effect of enhanced 109 lattice distortion of A-site Fe²⁺ on the EoS parameters of bridgmanite (Mao et al., 110

111	2015). In addition, most previous high-pressure studies for the EoS of bridgmanite did
112	not determine the spin and valence states of Fe in the powder samples at high pressures,
113	complicating our understanding of the effects of different spin and valence states of
114	Fe on the EoS of bridgmanite (Andrault et al. 2001; Boffa Ballaran et al. 2012;
115	Dorfman et al. 2013; Lundin et al. 2008; Mao et al. 1991; Nishio-Hamane et al. 2008).
116	
117	Besides Fe, lower-mantle bridgmanite is expected to accommodate $\sim 10\%$ Al via the
118	coupled substitution of $Fe^{3+}-Al^{3+}$ and/or $Al^{3+}-Al^{3+}$ to replace Mg^{2+} in the pseudo-
110	dodecahedral A site and the octahedral B-site Si ⁴⁺ (Frost et al. 2004: Irifune et al. 1996:

117	Besides Fe, lower-mantle bridgmanite is expected to accommodate $\sim 10\%$ Al via the
118	coupled substitution of Fe ³⁺ -Al ³⁺ and/or Al ³⁺ -Al ³⁺ to replace Mg^{2+} in the pseudo-
119	dodecahedral A site and the octahedral B-site Si ⁴⁺ (Frost et al. 2004; Irifune et al. 1996;
120	Irifune et al. 2010; McCammon 1997; Vanpeteghem et al. 2006). The Fe ²⁺ , Fe ³⁺ , and
121	Al ³⁺ contents in bridgmanite in a pyrolitic composition have been reported to change
122	with depth in the lower mantle (e.g., Irifune et al. 2010). Theoretical calculations have
123	shown that the addition of Al does not affect the response of the A-site Fe^{3+} spin states
124	to pressure (Hsu et al. 2012), yet how the presence of Al may influence the lattice
125	distortion of A-site Fe ²⁺ is unknown. In addition, although previous experimental
126	studies have yielded a wealth of results on the effects of Fe and Al on the EoS
127	parameters of bridgmanite using X-ray diffraction (XRD) in a diamond anvil cell
128	(DAC), the spin states of Fe in (Fe,Al)-bearing bridgmanite are mostly not determined
129	in these studies, and the experimental results on the combined effects of Fe and Al on
130	the EoS parameters of bridgmanite are still controversial (Andrault et al. 2001; Boffa
131	Ballaran et al. 2012; Dorfman et al. 2012; Glazyrin et al. 2014; Nishio-Hamane et al.
132	2008). For example, Andrault et al. (2001) showed that the presence of Fe and Al can

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5770 Mao et al., Spin State and EoS of Single-Crystal Bridgmanite AM manuscript

133	increase the isothermal bulk modulus at ambient conditions, K_{0T} , by 4% relative to
134	that of MgSiO ₃ -bridgmanite (Mg-Bm) if the initial pressure derivative of the
135	isothermal bulk modulus is fixed to the value of 4. In contrast, two other studies have
136	shown that the presence of 11-13% Fe and 12-15% Al leads to a 3-4% reduction in K_0
137	with a fixed K_0 '=4 using Mg-Bm as the reference (Catalli et al. 2011; Nishio-Hamane
138	et al. 2008). As a result, the effects of the Al and Fe chemistry variation and iron
139	valence and spin state on the derived EoS parameters of these bridgmanite samples
140	remain poorly understood.

141

To correlate the lattice parameters with the hyperfine parameters (spin and valence 142 143 states) of iron in bridgmanite and to better constrain the effect of Fe and Al on its 144 density and sound velocity in the lower mantle, direct examinations of the hyperfine, 145 lattice, and EoS parameters of high-quality Fe-bearing and (Fe,Al)-bearing single-146 crystal bridgmanite with well characterized iron valence states, site occupancy, spin states, and crystal chemistry are needed to provide new insights into these 147 148 aforementioned outstanding issues. In this study, we have performed high-pressure synchrotron XRD and SMS measurements on two single-crystal bridgmanite samples 149 (Mg0.95Fe0.06Si0.99O3 and Mg0.89Fe0.12Al0.11Si0.89O3) up to 130 GPa and 300 K. SMS is 150 151 used as a unique probe to determine hyperfine parameters and to infer the spin and 152 valence states of Fe in the single-crystal samples at lower-mantle pressures, while analysis of high quality single-crystal XRD data reveals local lattice parameters and 153 bulk compression of bridgmanite crystals at high pressures. These results allow to 154

correlate the occurrence of the extremely high-quadrupole splitting of Fe²⁺ with the
A-site local lattice distortion in the high-spin state, and to model the effects of Fe and
Al on the density and bulk sound velocity profiles of bridgmanite at lower-mantle
pressures.

159

160 **Experimental details**

We synthesized single-crystal bridgmanite samples using the 5000-ton Kawai-type 161 multi-anvil apparatus at Okayama University at Misasa, Japan (Okuchi et al. 2015). 162 163 Fe-bearing bridgmanite with run number #5k2174 was synthesized using a mixture of ground MgSiO₃, Mg(OH)₂, and 57 FeO in an appropriate ratio as the starting sample, 164 while the (Fe,Al)-bridgmanite with run number #5k2179 was synthesized using a 165 mixture of ground MgSiO₃, Mg(OH)₂, Al₂O₃, and ⁵⁷FeO (Okuchi et al. 2015). Here, 166 ⁵⁷Fe-enriched FeO (>95% enrichment) was used in the synthesis to enable high-167 pressure Mössbauer spectroscopy measurements in a DAC. Each starting mixture was 168 cold-sealed into a Pt capsule, and compressed to 24 GPa. At this pressure, the material 169 170 was heated at 1650 °C for 5.5 hrs for run #5k2174 and at 1750 °C for 7 hrs for run #5k2179. For each run, the synthesis temperature was determined from the power-171 temperature relation of the cell assemblage that was calibrated using a 172 W97Re3/W97Re25 thermocouple. The obtained single crystals were examined by an 173 174 electron microprobe to confirm their chemical compositions and homogeneity, showing a homogeneous composition of Mg_{0.94}Fe_{0.06}Al_{0.01}Si_{0.99}O₃ (Bm6) in run 175 176 #5k2174 and Mg_{0.89}Fe_{0.12}Al_{0.11}Si_{0.89}O₃ (Al-Bm11) in run #5k2179 (Okuchi et al.

 This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)

 Cite as Authors (Year) Title. American Mineralogist, in press.

 (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5770

 Mao et al., Spin State and EoS of Single-Crystal Bridgmanite
 AM manuscript

177	2015). Considering the measurement error of the electron microprobe to be 1% and
178	the low concentration of Al_2O_3 in Bm6, the Bm6 sample can be considered as an Al-
179	free bridgmanite. Single-crystal XRD measurements performed at 1 bar and 300 K
180	proved that the synthesized single crystals in both compositions were in the silicate
181	perovskite structure (<i>Pbnm</i>). The refined cell parameters are: $a = 4.7880(2)$ Å, $b =$
182	4.9339(2) Å, $c = 6.8983(3)$ Å for Bm6 and $a = 4.7867(2)$ Å, $b = 4.9569(2)$ Å, $c =$
183	6.9141(4) Å for Al-Bm11 at ambient conditions. The full width at half maximum
184	(FWHM) for each diffraction peak of each given crystal is $\sim 0.044^{\circ}$, indicating that the
185	synthesized single crystals are of a high quality.

186

187 These crystals were also analyzed using conventional Mössbauer spectroscopy at ambient conditions to determine the hyperfine parameters and to refer the spin and 188 189 valence states of Fe in the samples. Mössbauer spectra, accumulated for 3 days for each composition, were recorded at room temperature in transmission mode on a 190 constant acceleration Mössbauer spectrometer with a nominal 370 MBq ⁵⁷Co high 191 192 specific activity source in a 12 µm thick Rh matrix. The velocity scale was calibrated 193 relative to a 25 μ m thick α -Fe foil using the positions certified for (former) National 194 Bureau of Standards standard reference material no. 1541. The conventional 195 Mössbauer spectra were fitted using the program MossA to Lorentzian doublets 196 according to current models in the literature, and the usual constraints were applied to 197 all doublets (equal component areas and widths) (Lin et al. 2016; Prescher et al. 2012).

199	For SMS measurements, we selected Bm6 and Al-Bm11 crystals less than 25 μm thick
200	which were polished using a 3M diamond film and water as lubricant. The use of
201	water during polishing was intended to prevent potential heating up and amorphisation.
202	A sample platelet for each composition approximately 10 μm thick and 40 μm wide
203	was loaded into a symmetric DAC equipped with a pair of beveled diamonds with
204	150/300 μm culet. NaCl was used as the pressure medium. The fluorescence shift of
205	the ruby R_1 peak was used for the pressure calibration when the pressure was less than
206	80 GPa (Mao et al. 1986). Above 80 GPa, the ruby fluorescence peak was too broad
207	and weak to be a reliable calibrant. We thus used the edge of the first-order Raman
208	peak measured from one of the diamond anvils for the pressure calibration above 80
209	GPa (Akahama and Kawamura 2006). The SMS measurements were conducted at
210	High Pressure Collaborative Access Team (HPCAT) of the Advanced Photon Source
211	(APS), Argonne National Laboratory (ANL). An incident X-ray beam with an energy
212	of 14.4125 keV and a bandwidth of 2 meV was used to excite the ⁵⁷ Fe nuclei in the
213	sample. An avalanche photodiode detector (APD) was used to collect the SMS signals
214	with a typical collection time of \sim 4 to 6 hrs for each spectrum. Mössbauer spectra of
215	the sample were collected with and without a stainless steel foil (~10 μm thick) with
216	natural $^{57}\mathrm{Fe}$ abundance at each given pressure in pressure steps of ${\sim}7$ to 8 GPa up to
217	85 GPa for Bm6 and up to 130 GPa for Al-Bm11. The stainless steel foil was placed
218	in front of the sample and used as a reference to determine the chemical shift of the
219	Fe sites.

221	High-pressure XRD experiments of the single crystal samples were carried out at
222	GeoSoilEnviroCARS (GSECARS) of the APS, ANL. We used the same batch of the
223	single crystals of Bm6 and Al-Bm11 as in the SMS experiments. The single-crystal
224	samples were polished down to ${\sim}5~\mu m$ in thickness and loaded into sample chambers
225	drilled in Re gaskets in DACs equipped with a pair of beveled diamonds with 150/300
226	μm culet. Pt powder slightly packed to ${\sim}5~\mu m$ thick was placed next to the single-
227	crystal bridgmanite sample to determine the pressure, while He was used as the
228	pressure medium in the sample chamber. In total, we made two runs of XRD
229	measurements for each composition at room temperature. Diffraction patterns of
230	bridgmanite single crystals were collected by rotating $\pm 15^{\circ}$ about the vertical axis of
231	the sample stage to allow collecting as many diffraction spots as possible. The
232	pressure step for the measurements was ~ 1 to 2 GPa.

234 **Results**

235	The analysis of the obtained conventional Mössbauer spectra showed that 45% of the
236	total Fe in Bm6 is Fe^{3+} with QS = 0.32 mm/s and CS = 0.24 mm/s, while the remaining
237	55% Fe is in Fe ²⁺ with QS = 1.63 mm/s and CS = 1.16 mm/s. Fe in Al-Bm11 is
238	dominated by 80% Fe^{3+} with QS = 0.92 mm/s and CS = 0.46 mm/s. Only 20% Fe in
239	Al-Bm11 is Fe^{2+} with QS = 1.79 mm/s and CS = 1.20 mm/s.

240

The obtained SMS spectra of Bm6 between 1 and 13 GPa are characterized by two time beats (Fig. 1). It should be noted that the spectra of Bm6 start to change greatly This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5770 Mao et al., Spin State and EoS of Single-Crystal Bridgmanite AM manuscript

243	from 13 GPa to 32 GPa with more time beats observed. Above 32 GPa and up to 85
244	GPa, four time beats were observed for Bm6, indicating the presence of a high
245	quadrupole splitting (QS) component in the sample. In contrast to Bm6, the SMS
246	spectra of Al-Bm11 only exhibit a slight change with increasing pressure up to 130
247	GPa (Fig. 2). Below 29 GPa, there is only a broad time beat observed in the SMS
248	spectra of Al-Bm11, whereas the spectra change to exhibit two broad time beats
249	between 29 and 130 GPa.

251	The Mössbauer spectra of both Bm6 and Al-Bm11 were analyzed using the CONUSS
252	program to derive the hyperfine parameters and doublet abundances at high pressures
253	(Figs. 1 and 2) (Sturhahn 2000). The SMS spectra for Bm6 can be well represented
254	using a three-doublets model (Fig. 3). According to our derived QS and chemical shift
255	(CS) values at 1 bar and literature results at ambient conditions, doublet 1 with $QS =$
256	1.63 mm/s and doublet 2 with $QS = 1.50$ mm/s at ambient conditions were assigned
257	to be the HS Fe^{2+} in the A-site, whereas doublet 3 with an extremely low QS value of
258	0.44 mm/s was assigned to be the HS Fe^{3+} in the A-site (Table S1) (Dyar et al. 2006).
259	A-site Fe^{2+} accounts for 66% of the total Fe in Bm6, which is in general agreement
260	with the conventional Mössbauer results at ambient conditions. Combining the
261	Mössbauer and electron microprobe results, the chemical formula for Bm6 is
262	$Mg_{0.94}Fe_{0.04}{}^{2+}Fe_{0.02}{}^{3+}Al_{0.01}Si_{0.99}O_3.$ We have kept the abundances of Fe^{2+} and Fe^{3+}
263	constant for high-pressure spectral modelling. With increasing pressure, QS of doublet
264	1 exhibits a dramatic increase to 3.6 mm/s between 13 GPa and 32 GPa and only a

265	slightly increase with pressure to 4 mm/s up to 85 GPa. Although QS of doublet 2 for
266	Bm6 also exhibits an abrupt increase between 13 GPa and 32 GPa, the variation of
267	QS for doublet 2 with increasing pressure is much less than doublet 1. The abundance
268	of doublet 2 significantly decreases with pressure between 13 and 32 GPa and is
269	accompanied by an increase in the abundance of doublet 1, with a higher QS
270	component at high pressures.

272	A three-doublet model was also used to fit the SMS spectra of Al-Bm11 (Fig. 3).
273	Doublet 1 with $QS = 2.90$ mm/s and doublet 2 with $QS = 1.69$ mm/s at 4 GPa were
274	assigned to be the HS Fe^{2+} in the A-site, whereas doublet 3 with $QS = 0.66$ mm/s was
275	assigned to be the HS Fe^{3+} based on literature results (Table S1) (Dyar et al. 2006).
276	The total abundance of A-site Fe^{2+} is ~20%, which is consistent with the conventional
277	Mössbauer results and does not change with increasing pressure. The chemical
278	formula for Al-Bm11 can thus be written as $Mg_{0.89}Fe_{0.024}^{2+}Fe_{0.096}^{3+}Al_{0.11}Si_{0.89}O_3$ by
279	combining the Mössbauer and electron microprobe results. For both doublet 1 and 2,
280	their QS values show a weak increase with pressure, and the total abundance of
281	doublet 1 and doublet 2 remains constant with increasing pressure. The conversion
282	from the lower QS component to the higher QS component shown in Bm6 is not
283	observed in Al-Bm11 (Fig. 3). Previous experimental studies have shown that addition
284	of Al can cause an apparent increase in the volume of bridgmanite (Andrault et al.
285	2001; Boffa Ballaran et al. 2012). We speculate that the presence of Al also decreases
286	the difference in volume between the sites hosting Fe^{2+} with high QS (doublet 1) and

287	those hosting Fe^{2+} with low QS (doublet 2). As a result, the enthalpy of doublet 2 in
288	our Al-Bm11 could be smaller than that of doublet 1 in the entire lower-mantle
289	pressure range. The conversion from the low-QS doublet 2 to the high QS doublet 1
290	thus does not occur in Al-Bm11. In addition, QS of doublet 3 only exhibits a weak
291	increase with pressure up to 130 GPa.

Single-crystal XRD patterns were collected from ambient conditions to pressures of 293 85 GPa for Bm6 and 110 GPa for Al-Bm11 at 300 K. The FWHM for each peak in 294 295 our collected XRD patterns slightly increases from 0.044° at ambient conditions to $\sim 0.059^{\circ}$ at the maximum experimental pressure (Fig. S2), indicating the collected 296 297 single-crystal XRD patterns are of a high crystal quality in a quasi-hydrostatic helium 298 pressure medium. The obtained unit cell volumes of both Bm6 and Al-Bm11 exhibit 299 a continuous decrease with increasing pressure (Fig. 4 and Table S2). Comparison of the obtained P-V relationships of Bm6 and Al-Bm11 to single-crystal Mg-Bm data 300 shows no abrupt variation in the unit cell volume as a function of pressure. The P-V 301 302 data for each given sample were fitted to the 3rd-order Birch-Murnaghan EoS (Fig. 4). For Bm6, we fixed $V_0 = 162.96(\pm 0.01)$ Å³ as determined by XRD measurements 303 at ambient conditions and K_{0T} = 4, yielding K_{0T} = 255(±2) GPa. For Al-Bm11, K_{0T} 304 was determined to be 264(±2) GPa with K_{0T} = 4 (fixed) and $V_0 = 164.05(\pm 0.01)$ Å³ 305 306 (fixed). We also constructed the confidence ellipses to demonstrate the trade-off between the derived K_{0T} and K_{0T} for Bm6 and Al-Bm11 without fixing the K_{0T} value 307 308 (Fig. 5).

309

Discussion 310

Hyperfine parameters, spin states and lattice of bridgmanite 311

312	As shown in our Mössbauer results, QS and CS of both doublets 1 and 2, assigned to
313	be the A-site Fe^{2+} at ambient conditions, exhibit an abrupt increase between 13 and 32
314	GPa, and QS of doublet 1 in Bm6 has an extremely high value of 3.5-4.0 mm/s
315	between 32 and 85 GPa (Fig. 3 and Table S1). The observed dramatic increase in QS
316	and the occurrence of the extremely high-QS component in Fe-bearing bridgmanite
317	are consistent with previous experimental results using both SMS and conventional
318	Mössbauer spectroscopy (Jackson et al. 2005; Li et al. 2006; Lin et al. 2012;
319	McCammon et al. 2010; McCammon et al. 2013; McCammon et al. 2008; Narygina
320	et al. 2010; Potapkin et al. 2013). Some previous studies interpreted the appearance
321	of the new extremely high-QS component as the HS to IS spin transition of Fe^{2+} in the
322	A-site (Table 1) (McCammon et al. 2010; McCammon et al. 2013; McCammon et al.
323	2008; Narygina et al. 2010; Potapkin et al. 2013). One of the main experimental
324	supports for the presence of the IS state in the A-site Fe^{2+} is based on the observation
325	of a partial collapse of the $K\beta$ satellite peak and a decrease in the derived spin moment
326	in high-pressure X-ray emission spectroscopy (XES) measurements (Badro et al. 2004;
327	Kupenko et al. 2014; Li et al. 2004; Mao et al. 2011; McCammon et al. 2010;
328	McCammon et al. 2013; McCammon et al. 2008; Narygina et al. 2010; Potapkin et al.
329	2013). However, the partial collapse of the $K\beta$ satellite peak at high pressures could
330	be interpreted as an artifact of the pressure-induced broadening of the XES spectra

331	under non-hydrostatic conditions in the cold-compressed samples (Lin et al. 2016;
332	Mao et al. 2014). Recent high-pressure synchrotron XES and SMS measurements on
333	Fe-bearing bridgmanite with 38% Fe, showed the presence of an extremely high QS
334	Fe^{2+} component (4.15 mm/s) at 126 GPa together with a partial collapse in the $K\beta$
335	satellite peak (Dorfman et al. 2015). However, the spin moment for Fe-bearing
336	bridgmanite with 38% Fe is approximately constant with increasing pressure once the
337	pressure-induced broadening effect is corrected using the integrated relative
338	difference method (Dorfman et al. 2015). These indicate that the occurrence of the
339	extremely high QS Fe^{2+} component is not a result of HS to IS spin transition in
340	bridgmanite at lower-mantle pressures (Dorfman et al. 2015; Mao et al. 2014).
341	Importantly, a combined XES and SMS study on (Fe,Al)-bearing bridgmanite with a
342	composition of relevance to the lower mantle showed that both Fe^{2+} and Fe^{3+}
343	predominantly occupy the A site of the crystal lattice and remain in the high-spin state
344	at lower mantle conditions (Lin et al., 2016).

Furthermore, theoretical studies suggest that the QS value of IS Fe^{2+} should be between 0.8 and 1.6 mm/s at lower-mantle pressures (Bengtson et al. 2009; Hsu et al. 2010), which is much lower than the QS values observed for both doublets 1 and 2 in Bm6 and results in previous Mössbauer studies (Lin et al. 2012; McCammon et al. 2010; McCammon et al. 2013; McCammon et al. 2008; Narygina et al. 2010; Potapkin et al. 2013). Furthermore, the IS Fe^{2+} in the A-site is theoretically predicted to be not energetically favorable (Bengtson et al., 2009; Hsu et al., 2010; Hsu and Wentzcovitch,

 This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)

 Cite as Authors (Year) Title. American Mineralogist, in press.

 (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2017-5770

 Mao et al., Spin State and EoS of Single-Crystal Bridgmanite
 AM manuscript

353	2014). A dramatic increase in the QS value of the A-site Fe^{2+} in bridgmanite should
354	be associated with the enhanced lattice distortion but not a change in the spin state
355	(Bengtson et al. 2009a; Hsu et al. 2010; Hsu and Wentzcovitch 2014). In addition, QS
356	of both doublets 1 and 2 in Al-Bm11 which were assigned to be the HS Fe ²⁺ at ambient
357	conditions only shows a weak increase with pressure (Fig. 3). In particular, QS of
358	doublet 1 in Al-Bm11 is as high as 3-3.3 mm/s at lower mantle pressures. A recent
359	high pressure-temperature XES study using the same Al-Bm11 sample has shown that
360	the spin moment of Al-Bm11 is approximately constant with increasing pressure,
361	indicating no change in the spin state of Fe^{2+} in Al-Bm11 at lower-mantle pressures
362	(Lin et al. 2016). Together with recent theoretical results, we thus conclude that the
363	A-site Fe ²⁺ in both Fe-bearing and (Fe,Al)-bearing bridgmanite should remain in the
364	HS state at lower-mantle pressures, and the HS to IS crossover of the A-site Fe^{2^+} will
365	not occur in bridgmanite (Bengtson et al. 2009; Hsu et al. 2010; Hsu and Wentzcovitch
366	2014; Lin et al. 2016).

367

As shown in the Mössbauer analysis, both of our Bm6 and Al-Bm11 contain a certain amount of Fe^{3+} (Fig. 3). The QS value of Fe^{3+} in Bm6 and Al-Bm11 weakly increases with pressure and is less than 1 mm/s up to 130 GPa, which is significantly lower than that of the LS Fe^{3+} in bridgmanite (Fig. 3 and Table S1) (Catalli et al. 2010; Catalli et al., 2011; Hsu et al. 2011; Lin et al. 2012; Lin et al. 2013; Lin et al. 2016; Mao et al. 2011). This indicates that Fe^{3+} should reside in the A-site in both Bm6 and Al-Bm11 crystals and stay in the HS state at lower-mantle pressures. Since our Bm6 contains

375	minor amount of Al, the A-site Fe^{3+} should be incorporated by the coupled substitution
376	of Al^{3+} with Mg^{2+} and Si^{4+} as well as the Mg vacancies, yielding a charge balance
377	considering the uncertainties of the measurements (Boffa Ballaran et al. 2012; Frost
378	and Langenhorst 2002; Hummer and Fei 2012; Lauterbach et al. 2000; McCammon
379	1997; Potapkin et al. 2013). In Al-Bm11, Fe ³⁺ is incorporated by the coupled
380	substitution of Al^{3+} to replace Mg^{2+} and Si^{4+} (Boffa Ballaran et al. 2012; Frost and
381	Langenhorst 2002; Irifune et al. 1996; Lauterbach et al. 2000; McCammon 1997;
382	Potapkin et al. 2013).

384	Combining the SMS with XRD results, we then investigated how the dramatic
385	increase in the QS value and the presence of the extremely high QS component of
386	the A-site Fe ²⁺ would be associated with the EoS and lattice parameters of lower-
387	mantle bridgmanite. Comparison of the obtained P-V relations of our single-crystal
388	Bm6 to Mg-Bm shows that the unit cell volume of Bm6 decreases continuously with
389	pressure and does not exhibit any anomalous change (Fig. 4), indicating that the
390	dramatic increase in the QS value of Fe^{2+} between 13 and 32 GPa does not affect the
391	bulk unit cell volume of bridgmanite at lower-mantle pressures. This is also
392	consistent with recent theoretical predictions (Shukla et al. 2015). Recent studies
393	have reported a decrease in the unit cell volume of bridgmanite and an increase in
394	the bulk modulus after a volume collapse that was proposed to be associated with
395	the spin transition of B-site Fe^{3+} and/or the enhanced lattice distortion of A-site Fe^{2+}
396	at high pressures (Hsu et al. 2011; Mao et al. 2011; Mao et al. 2015). The observed

397	abnormal changes in the P-V data and the bulk modulus in previous studies should
398	only be caused by the spin transition of the B-site Fe^{3+} (Hsu et al. 2011; Mao et al.
399	2011; Mao et al. 2015; Tsuchiya and Wang 2013).
400	
401	We have further evaluated the diffraction results using previously reported models
402	(Fig. 6) (O'keeffe and Hyde 1977). Here, the unit cell volume of a centro-
403	symmetrically distorted ABX ₃ in perovskite structure (space group $Pbnm$, Z = 4),
404	such as bridgmanite, can be described as follows (O'keeffe and Hyde 1977; Zhao et
405	al. 1993):
406	$V = a \cdot b \cdot c = 32 \left[B - X \right]^3 \cos^2 \Phi \tag{1}$
407	where [B-X] is the bond length of the octahedra, and ϕ is the titling angle of the
408	pseudo-three-fold axis of the octahedra. Although [B-X] and ϕ were calculated for
409	the octahedra in bridgmanite, the variation in the bond length and titling angle of the
410	octahedra is expected to affect the related properties of the large dodecahedra. $[B-X]$
411	and ϕ of perovskite in orthorhombic structures can be approximated from the
412	lattice parameters (O'keeffe and Hyde 1977; Zhao et al. 1993):
413	$[B-X] = b \cdot c / (4a)$
414	$\phi = \cos^{-1}(\sqrt{2}a^2/bc) \tag{2}$
415	

416 For Bm6, [*B-X*] decreases linearly with increasing pressure, but the slope of [*B-X*] 417 changes around 40 GPa (Fig. 6). ϕ of Bm6 exhibits an anomalous softening around 418 40 GPa. In contrast to Bm6, [*B-X*] and ϕ of Al-Bm11 vary continuously with

419	pressure. Comparison of the calculated [<i>B</i> -X] and ϕ of Bm6 to those of Al-Bm11
420	shows that the anomalous change in $[B-X]$ and ϕ with pressure should be
421	associated with the dramatic increase in the QS value of Fe^{2+} in the A-site with the
422	enhanced Jahn-Teller effect, which has been observed in Bm6 but is absent in Al-
423	Bm11 based on the SMS results (Fig. 6). It is also interesting to note that the
424	observed anomalous change in [B-X] and ϕ of Bm6 with pressure shown in the
425	XRD data occurs at a higher pressure than that from the SMS results (Fig. 6).
426	
427	We have also calculated [<i>B</i> -X] and ϕ of the single-crystal P-V data reported by
428	Boffa Ballaran et al. (2012) to compare with our results (Fig. 6). Both [<i>B</i> -X] and ϕ
429	of Fe-bearing bridgmanite (Bm4) in Boffa Ballaran et al. (2012) show a similar
430	abnormal change with pressure as our Bm6, whereas [<i>B</i> -X] and ϕ of (Fe,Al)-
431	bridgmanite (Mg _{0.60} Fe _{0.41} Al _{0.36} Si _{0.62} O ₃ , Al-Bm41) in Boffa Ballaran et al. (2012)
432	follow a similar trend with pressure as those of our Al-Bm11. Although the spin and
433	valence states of Fe in bridgmanite were not determined in Boffa Ballaran et al.
434	(2012), the enhanced lattice distortion of Fe^{2+} should also occur in Bm4 of Boffa
435	Ballaran et al. (2012) but is absent in their Al-Bm41. The difference in the calculated
436	[<i>B-X</i>] and ϕ between Bm4 in Boffa Ballaran et al. (2012) and Bm6 in this study
437	could be caused by the difference in the Fe^{2+} and Fe^{3+} as well as Al contents of the
438	synthesized crystals, leading to their different axial compression behaviors (Fig. S3).
439	

440 The spontaneous shear strain, e_4 , of bridgmanite at lower-mantle pressures has also

441	been evaluated from our high-pressure XRD data (Fig. 6). e_4 has been used to
442	describe the structural change of minerals in the perovskite structure that relates the
443	$M_3{}^{\scriptscriptstyle +}$ and $R_4{}^{\scriptscriptstyle +}$ tilting with the Jahn-Teller distortions using the complete Landau
444	expansion (e.g. Carpenter et al. 2001; Fujishita et al. 2010; Ozaki et al. 2011; Tange
445	et al. 2012; Wang et al. 2015). The M_3^+ and R_4^+ distortion are associated with the tilt
446	of octahedra around the b and a axis of the orthorhombic unit cell, respectively.
447	Analysis of the derived e_4 of Al-Bm11 shows a continuous increase with pressure,
448	consistent with previous results for single-crystal Mg-Bm and Al-Bm41 in Boffa
449	Ballaran et al. (2012). A softening in e4 of our Bm6 occurs between 30 and 50 GPa,
450	which should be related to the enhanced lattice distortion of Fe^{2+} in the A-site.
451	Similar softening in e_4 has also been identified in Bm4 in Boffa Ballaran et al.
452	(2012), although the reduction in e_4 of Bm4 between 40 and 50 GPa is much less
453	than that observed in our Bm6. The sudden change in the QS of Bm6 from the SMS
454	measurements occurs at a lower pressure than the structural change shown in XRD
455	results, which could be a result of using different pressure media and calibrants. In
456	addition, we have also calculated [<i>B</i> -X], ϕ , and e_4 of bridgmanite at high pressures
457	using literature data from polycrystalline samples (Figs. S4 and S5) (Andrault et al.
458	2001; Catalli et al. 2010; Catalli et al. 2011; Dorfman et al. 2013; Lundin et al. 2008;
459	Mao et al. 1991; Nishio-Hamane et al. 2008). These parameters are much more
460	scattered than those from single-crystal measurements, likely due to low-resolution
461	XRD data. Any potential anomalous change in [B-X], ϕ , and e_4 thus cannot be
462	identified from the polycrystalline data.

464	Combining our high-pressure SMS and XRD results and recent XES analysis
465	(Dorfman et al. 2015; Lin et al. 2016), we conclude that both A-site Fe^{2+} and Fe^{3+}
466	remain in the HS state at lower-mantle pressures. The presence of the extremely high
467	QS component of the A-site Fe^{2+} in Fe-bearing bridgmanite can be explained as a
468	result of the enhanced lattice distortion (Figs. 3 and 6) (Bengtson et al. 2009; Hsu et
469	al. 2010; Hsu and Wentzcovitch 2014). The presence of the extremely high QS
470	component of Fe^{2+} in Fe-bearing bridgmanite is associated with the conversion
471	between the low QS component to the high QS component because of the crossover
472	of the enthalpy between these two components. Theoretical calculations showed that
473	these components of the HS Fe ²⁺ have different energies, bond lengths, lattice
474	parameters, <i>d</i> -orbital occupancies, and QS values (Bengtson et al. 2009; Hsu et al.
475	2014). The conversion between doublet 2 to doublet 1 in our study can be correlated
476	with changes in the bond length and tilting angle of the octahedra and the
477	spontaneous shear strain. In contrast, the conversion from the lower QS component
478	to the higher QS component is not shown in Al-Bm11 (Fig. 3). Previous
479	experimental studies have shown that addition of Al in bridgmanite can cause an
480	apparent increase in its volume (Andrault et al. 2001; Ballaran et al. 2012). The
481	presence of Al may decrease the difference in volume between the iron site with a
482	high QS and the doublet 2 site with a low QS. As a result, the enthalpy of the high
483	QS component in our Al-Bm11 could be smaller than that of the low QS component
484	throughout the whole lower-mantle pressure range. This helps explain why the

conversion from the low-QS doublet 2 to the high QS doublet 1 does not occur in

- 486 Al-Bm11.
- 487

488 Effect of Fe and Al on the EoS parameters of bridgmanite

489 Using our XRD results together with literature data, we have further investigated the 490 effect of Fe and Al on the density, bulk modulus, and bulk sound velocity of bridgmanite (Figs. 7 and 8) (Andrault et al. 2001; Boffa Ballaran et al. 2012; Catalli 491 et al. 2011; Lundin et al. 2008; Mao et al. 1991; Nishio-Hamane et al. 2008). We focus 492 our discussion on the Fe-diluted bridgmanite with up to 15% Al because the Fe and 493 Al content in the crystal is believed to be $\sim 10\%$ in the lower mantle (Irifune et al. 494 2010). The obtained ρ_0 and K_{0T} of our Bm6 and Al-Bm11 were firstly compared to the 495 496 literature values of bridgmanite that did not display apparent abnormal changes in the 497 P-V relationships (Andrault et al. 2001; Boffa Ballaran et al. 2012; Catalli et al. 2011; 498 Catalli et al. 2010; Lundin et al. 2008; Mao et al. 1991).

499

500 ρ_0 of Fe-bearing bridgmanite, which is calculated from XRD measurements and 501 electron microprobe analysis, exhibits a linear increase with its Fe content (Fig. 7) 502 (Andrault et al. 2001; Boffa Ballaran et al. 2012; Catalli et al. 2010; Dorfman et al. 503 2013; Lundin et al. 2008; Mao et al. 1991; Mao et al. 2015). Comparing ρ_0 of our 504 single-crystal Al-Bm11 to that of the corresponding Fe-bearing bridgmanite with the 505 same amount of Fe shows that the presence of Al produces a decrease in the density 506 of bridgmanite (Fig. 7). However, previous studies have shown a greater reduction in

507	ρ_0 by the presence of Al in bridgmanite using Fe-bearing bridgmanite with the same
508	amount of Fe as the reference (Andrault et al. 2001; Catalli et al. 2011; Nishio-Hamane
509	and Yagi 2009; Saikia et al. 2009). It is worth noting that ρ_0 of bridgmanite in previous
510	studies was determined from decompressed polycrystalline samples at ambient
511	conditions (Andrault et al. 2001; Catalli et al. 2011; Nishio-Hamane and Yagi 2009).
512	During the decompression, the powder bridgmanite sample was normally not laser-
513	annealed to avoid the potential transformation to low-pressure phases or amorphous
514	state. XRD peaks collected during the decompression are normally quite broad, which
515	could result in much larger uncertainties on the derived volume and density of
516	bridgmanite at ambient conditions. Using well-characterized and chemically
517	homogeneous single-crystal bridgmanite samples thus allows us to provide more
518	reliable constraints on the ρ_0 . ρ_0 in Saikia et al. (2009) was also determined from XRD
519	measurements and electron microprobe analysis of a single-crystal bridgmanite. The
520	different trend in ρ_0 with increasing Fe content between Saikia et al. 2009 and this
521	study could be caused by the presence of water. (Fe,Al)-bearing bridgmanite has been
522	reported to accommodate up to 1 wt.% water as structurally-bond hydroxyl (Inoue et
523	al. 2012). Synthesis of bridgmanite crystals in hydrous conditions using melt as a flux
524	can help to grow larger crystals (Boffa Ballaran et al. 2012; Saikia et al. 2009; Okuchi
525	et al. 2015). We note that the water content was not examined for the synthesized
526	single crystals in Saikia et al. (2009). The presence of water can also lower the density
527	of bridgmanite which may help reconcile the conflicting results between our and
528	literature results (Saikia et al. 2009).

530	Comparing K_{0T} of bridgmanite between different studies using literature values can
531	be problematic due to the use of different pressure calibrants in these studies (Andrault
532	et al. 2001; Boffa Ballaran et al. 2012; Catalli et al. 2011; Catalli et al. 2010; Lundin
533	et al. 2008; Mao et al. 1991). To be able to directly compare K_{0T} between different
534	studies, we have re-calculated the experimental pressures in all previous studies
535	without an apparent abnormal change in the P-V data using the internally consistent
536	pressure scale in Fei et al. (2007) to determine the EoS parameters of bridgmanite. For
537	studies that used Au as the pressure calibrant, pressures were re-calculated using the
538	Au pressure scale in Fei et al. (2007), which has provided an internally consistent Pt
539	scale used in this study (Catalli et al. 2011; Catalli et al. 2010; Lundin et al. 2008; Mao
540	et al. 1991). Although Andrault et al. (2001) and Boffa Ballaran et al. (2012) used
541	ruby as the pressure calibrant, we have re-calibrated the pressures in those two studies
542	using the Ruby pressure scale in Dewaele et al. (2004), which is most consistent with
543	the metal pressure scales in Fei et al. (2007) and with the use of He medium in our
544	study. We then fitted the literature P-V data using the 3^{rd} order Birch-Murnaghan EoS
545	with fixed K_{0T} ' = 4 and fixed V_0 from XRD measurements at ambient conditions. The
546	purpose of fixing the value of K_{0T} ' is to minimize the influence of the tradeoff between
547	K_{0T} and K_{0T} ' when comparing K_0 between different studies. The error ellipses for each
548	literature P-V data have been calculated to show the trade-off between K_{0T} and K_{0T} '
549	(Fig. 8)

551	We found that K_{0T} of Fe-bearing bridgmanite, 253 (±3) GPa, is independent of the Fe
552	content within experimental uncertainties (Andrault et al. 2001; Boffa Ballaran et al.
553	2012; Lundin et al. 2008; Mao et al. 1991) (Fig. 7). Here, our high-quality single-
554	crystal XRD results show an increase in K_{0T} in the Fe-diluted system by the addition
555	of Al using Fe-bearing bridgmanite as the reference. Andrault et al. (2001) also
556	showed that the presence of Al increases K_{0T} of bridgmanite compared to the
557	corresponding Fe-bearing phase. Yet other two studies that also used polycrystalline
558	samples suggested a reduction of K_{0T} with Al substitution (Fig. 7 and Fig. S6) (Catalli
559	et al. 2011; Nishio-Hamane et al. 2008). Single-crystal bridgmanite with higher Fe
560	and Al contents also has a K_{0T} value much lower than its Fe-bearing counterpart (Fig.
561	S6) (Boffa Ballaran et al. 2012). We note that K_{0T} of the lower-mantle ferropericlase
562	exhibits a weak positive dependence on the Fe content, though it starts to decrease
563	once the Fe content is greater than 20 mol.% (Jacobsen et al. 2002), indicating that the
564	enrichment of Fe may lead to a reduction in K_{0T} . Whether K_{0T} of (Fe,Al)-bearing
565	bridgmanite exhibits a similar dependence on the Fe content to ferropericlase or not
566	needs to be investigated in future studies using high-quality single crystals. In addition,
567	the limited pressure of the experiments by Saikia et al. (2009), which resulted in a
568	high K_{0T} ' value of 5-6.3, may reduce the reliability of their constraints on the EoS
569	parameters.

571 Implications

572 Using the obtained EoS parameters, we modeled ρ and V_{Φ} of bridgmanite at lower-

573	mantle pressures. The temperature effect is not included because the experimental
574	studies on the thermal EoS parameters of bridgmanite are limited, and it is unclear
575	how the compositional variation affects the thermal EoS parameters (Fiquet et al. 2000;
576	Tange et al. 2012; Wolf et al. 2015). Bridgmanite in the lower mantle is expected to
577	have an average composition of $(Mg_{0.9}Fe_{0.1})(Al_{0.1}Si_{0.9})O_3$ (Al-Bm10), which is used
578	as the reference to understand how the enrichment of Fe and/or Al influences ρ and
579	V_{Φ} . We firstly modeled the ρ and V_{Φ} profiles of bridgmanite with a composition of
580	$(Mg_{0.8}Fe_{0.2})(Al_{0.1}Si_{0.9})O_3$ in which half of the total Fe is Fe ²⁺ . Our modeling results
581	show that $(Mg_{0.8}Fe_{0.2})(Al_{0.1}Si_{0.9})O_3$ -bridgmanite has a 2.5(±0.2)% greater ρ but a
582	1.3(±0.7)% lower V_{Φ} than Al-Bm10 (Fig. 9). In this case, the enrichment of Fe in
583	bridgmanite will exhibit a seismic signature of greater ρ but lower V_{Φ} . The enrichment
584	of Al should occur with the increase in the amount of A-site Fe in bridgmanite through
585	the coupled substitution of Al and Fe with Mg and Si. We have also calculated ρ and
586	V_{Φ} of (Mg _{0.8} Fe _{0.2})(Al _{0.2} Si _{0.8})O ₃ -bridgmanite which is enriched in both Al and Fe. We
587	simply assumed that $(Mg_{0.8}Fe_{0.2})(Al_{0.2}Si_{0.8})O_3$ -bridgmanite has a similar K_{0T} to our
588	Al-Bm11 due to complex behavior of Fe on K_{0T} of (Fe,Al)-bearing bridgmanite. Our
589	modeling results show that increasing the Fe and Al content in bridgmanite up to 20%
590	[(Mg _{0.8} Fe _{0.2})(Al _{0.1} Si _{0.9})O ₃] will lead to a $\rho \sim 1.5\%$ greater than that of Al-Bm10 in the
591	lower mantle. Meanwhile, the combined effect of Al and Fe enrichment will produce
592	a 0.1-0.5(\pm 0.7)% increase in V_{Φ} . V_{Φ} of bridgmanite, which is enriched in both Al and
593	Fe, is indistinguishable from that of Al-Bm10 considering the calculation
594	uncertainties.

596	Combining our synchrotron XRD and SMS measurements on single-crystal
597	bridgmanite and together with literature XES results (Dorfman et al. 2015; Lin et al.
598	2016), we conclude that A-site Fe^{2+} in Fe-bearing bridgmanite will be in the HS state
599	in the Earth's lower mantle. For Fe-bearing bridgmanite, the enhanced lattice
600	distortion of A-site Fe^{2+} will occur at the top of the lower mantle, resulting in an
601	extremely high QS value of 3.5-4 mm/s. The presence of the extremely high QS Fe^{2+}
602	component does not affect the variation of the unit cell volume with pressure but is
603	associated with changes in the bond length, titling angle of the octahedra, and the
604	spontaneous shear strain. Although previous studies attributed the presence of the
605	extremely high QS Fe^{2+} component to be a result of the HS to IS spin transition which
606	is mainly supported by the partial collapse of the $K\beta$ satellite peak from the XES
607	measurements, recent high pressure-temperature XES studies showed that the partial
608	collapse of the $K\beta$ satellite peak is only an artifact of the peak broadening at high
609	pressures (Dorfman et al. 2015; Lin et al. 2016; Mao et al. 2014). Our results support
610	the notion that the intermediate-spin state of the A-site Fe^{2+} will not occur in
611	bridgmanite at relevant pressure and temperature conditions of the lower mantle. In
612	(Fe,Al)-bridgmanite where Al is expected to substitute into B-site, the enhanced
613	lattice distortion of A-site Fe^{2+} is absent. Our XRD and SMS results thus provide
614	crucial constraints on the Fe spin states, lattice and the EoS parameters of bridgmanite
615	at relevant pressure conditions of the lower mantle. More importantly, we further
616	discussed the effect of compositional variation on the ρ and V_{Φ} profiles of the lower-

617	mantle bridgmanite using the obtained EoS parameters. Our modeling results have
618	shown that the enrichment of Fe will cause an enhanced ρ and a reduced V_{Φ} in
619	bridgmanite, whereas the Al and Fe enrichment in bridgmanite will exhibit a seismic
620	signature of higher ρ , but a V_{Φ} profile undistinguishable from bridgmanite with an
621	average mantle composition within calculation uncertainties. These modeling results
622	are crucial for understanding the potential chemical cause for the observed seismic
623	anomalies in the Earth's lower mantle.

625 Acknowledgement

We acknowledge J. Liu for XRD measurements, C. McCammon for conventional 626 Mössbauer measurements and data analysis, and H. Hsu for thoughtful discussion. Z. 627 628 Mao acknowledges financial support from the National Natural Science Foundation 629 of China (41522403), National Basic Research Program of China (2014CB845904), and the Fundamental Research Funds for the Central Universities in China 630 (WK2080000052). J. F. Lin acknowledges support from the US National Science 631 632 Foundation (EAR-1446946). Portions of this work were performed at GeoSoilEnviroCARS, Advanced Photon Source, Argonne National Laboratory. 633 GSECARS was supported by the National Science Foundation (EAR-0622171) and 634 635 Department of Energy (DE-FG02-94ER14466) under Contract No. DE-AC02-636 06CH11357. Portions of this work were performed at HPCAT (Sector 16) of the Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported 637 638 by CIW, CDAC, UNLV, and LLNL through funding from DOE-NNSA, DOE-BES and NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357.

640

641 **References**

- Akahama, Y., and Kawamura, H. (2006) Pressure calibration of diamond anvil Raman
 gauge to 310 GPa. Journal of Applied Physics, 100, doi: 10.1063/1.2335683.
- Andrault, D., Bolfan-Casanova, N., and Guignot, N. (2001) Equation of state of lower
- 645 mantle (Al,Fe)-MgSiO₃ perovskite. Earth and Planetary Science Letters, 193, 501-508.
- Badro, J., Rueff, J.P., Vanko, G., Monaco, G., Fiquet, G., and Guyot, F. (2004)
 Electronic transitions in perovskite: Possible nonconvecting layers in the lower mantle.
- 648 Science, 305, 383-386.
- 649 Boffa Ballaran, T., Kurnosov, A., Glazyrin, K., Frost, D.J., Merlini, M., Hanfland, M.,
- and Caracas, R. (2012) Effect of chemistry on the compressibility of silicate perovskite in the lower mantle. Earth and Planetary Science Letters, 333, 181-190.
- Bengtson, A., Li, J., and Morgan, D. (2009a) Mössbauer modeling to interpret the spin
 state of iron in (Mg,Fe)SiO3 perovskite. Geophysical Research Letters, 36, doi:
- 654 10.1029/2009gl038340.
- Bengtson, A., Li, J., and Morgan, D. (2009b) Mossbauer modeling to interpret the
 spin state of iron in (Mg,Fe)SiO₃ perovskite. Geophysical Research Letters, 36, doi:
 10.1029/2009gl038340.
- 658 Carpenter, M.A., Becerro, A.I., and Seifert, F. (2001) Strain analysis of phase 659 transitions in (Ca,Sr)TiO₃ perovskites. American Mineralogist, 86, 348-363.
- 660 Catalli, K., Shim, S.H., Dera, P., Prakapenka, V.B., Zhao, J.Y., Sturhahn, W., Chow,
- P., Xiao, Y.M., Cynn, H., and Evans, W.J. (2011) Effects of the Fe³⁺ spin transition on
 the properties of aluminous perovskite-New insights for lower-mantle seismic
 heterogeneities. Earth and Planetary Science Letters, 310, 293-302.
- 664 Catalli, K., Shim, S.H., Prakapenka, V.B., Zhao, J.Y., Sturhahn, W., Chow, P., Xiao,
- Y.M., Liu, H.Z., Cynn, H., and Evans, W.J. (2010) Spin state of ferric iron in MgSiO₃
 perovskite and its effect on elastic properties. Earth and Planetary Science Letters,
 289, 68-75.
- Dewaele, A., Loubeyre, P., and Mezouar, M. (2004) Equations of state of six metals
 above 94 GPa. Physical Review B, 70, doi: 10.1103/Physrevb.70.094112.
- Dorfman, S.M., Shieh, S.R., Meng, Y., Prakapenka, V.B., and Duffy, T.S. (2012)
- 671 Synthesis and equation of state of perovskites in the (Mg,Fe)₃Al₂Si₃O₁₂ system to 172
- GPa. Earth and Planetary Science Letters, 357-358, 194-202.
- Dorfman, S.M., Meng, J., Prakapenka, V.B., and Duffy, T.S. (2013) Effects of Fe-
- enrichment on the equation of state and stability of (Mg,Fe)SiO₃ perovskite. Earth and
 Planetary Science Letters, 361, 249-257.
- Dorfman, S.M., Badro, J., Rueff, J.P., Chow, P., Xiao, Y.M., and Gillet, P. (2015)
- 677 Composition dependence of spin transition in (Mg,Fe)SiO₃ bridgmanite. American
- 678 Mineralogist, 100, 2246-2253.
- Dyar, M.D., Agresti, D.G., Schaefer, M.W., Grant, C.A., and Sklute, E.C. (2006)

- 680 Mössbauer spectroscopy of earth and planetary materials. Annual Review of Earth
- and Planetary Sciences, 34, 83-125.
- Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007)
- Toward an interally consistent pressure scale. Proceeding of the National Academy of
 Sciences of the UAS, 104, 9182-9186.
- Fiquet, G., Dewaele, A., Andrault, D., Kunz, M., and Le Bihan, T. (2000)
 Thermoelastic properties and crystal structure of MgSiO₃ perovskite at lower mantle
 pressure and temperature conditions. Geophysical Research Letters, 27, 21-24.
- 688 Frost, D.J., and Langenhorst, F. (2002) The effect of Al₂O₃ on Fe-Mg partitioning
- between magnesiowüstite and magnesium silicate perovskite. Earth and Planetary
 Science Letters, 199, 227-241.
- 691 Frost, D.J., Liebske, C., Langenhorst, F., McCammon, C.A., Tronnes, R.G., and Rubie,
- D.C. (2004) Experimental evidence for the existence of iron-rich metal in the Earth's
 lower mantle. Nature, 428, 409-412.
- Fujino, K., Nishio-Hamane, D., Nagai, T., Seto, Y., Kuwayama, Y., Whitaker, M.,
 Ohfuji, H., Shinmei, T., and Irifune, T. (2014) Spin transition, substitution, and
- partitioning of iron in lower mantle minerals. Physics of the Earth and Planetary
 Interiors, 228, 186-191.
- Fujino, K., Nishio-Hamane, D., Seto, Y., Sata, N., Nagai, T., Shinmei, T., Irifune, T.,
- Ishii, H., Hiraoka, N., Cai, Y.Q., and Tsuei, K.D. (2012) Spin transition of ferric ironin Al-bearing Mg-perovskite up to 200 GPa and its implication for the lower mantle.
- Earth and Planetary Science Letters, 317, 407-412.
- Fujishita, H., Yamada, T., Nakada, S., Okamoto, H., Shitara, S., Kato, M., and Koike,
- Y. (2010) Spontaneous strain in Ba_{0.6}Ka_{0.4}BiO₃. Physica C-Superconductivity and Its
 Applications, 470, S770-S771, doi: 10.1016/j.physc.2009.11.023.
- 704 Applications, 470, 5770-5771, doi: 10.1016/j.physc.2009.11.023.
- 705 Glazyrin, K., Boffa Ballaran, T.B., Frost, D.J., McCammon, C., Kantor, A., Merlini,
- M., Hanfland, M., and Dubrovinsky, L. (2014) Magnesium silicate perovskite and
 effect of iron oxidation state on its bulk sound velocity at the conditions of the lower
- mantle. Earth and Planetary Science Letters, 393, 182-186.
- 709 Goncharov, A.F., Struzhkin, V.V., Montoya, J.A., Kharlamova, S., Kundargi, R.,
- 710 Siebert, J., Badro, J., Antonangeli, D., Ryerson, F.J., and Mao, W. (2010) Effect of
- 711 composition, structure, and spin state on the thermal conductivity of the Earth's lower
- mantle. Physics of the Earth and Planetary Interiors, 180, 148-153.
- Hemley, R.J., and Cohen, R.E. (1992) Silicate perovskite. Annual Review of Earth
 and Planetary Sciences, 20, 553-600.
- 715 Hirose, K. (2002) Phase transitions in pyrolitic mantle around 670-km depth:
- 716 Implications for upwelling of plumes from the lower mantle. Journal of Geophysical
- 717 Research-Solid Earth, 107, doi: 10.1029/2001jb000597.
- Hsu, H., Blaha, P., Cococcioni, M., and Wentzcovitch, R.M. (2011) Spin-state
 crossover and hyperfine interactions of ferric iron in MgSiO₃ perovskite. Physical
 Review Letters, 106, doi: 10.1103/Physrevlett.106.118501.
- Hsu, H., Umemoto, K., Blaha, P., and Wentzcovitch, R.M. (2010) Spin states and
- hyperfine interactions of iron in (Mg,Fe)SiO₃ perovskite under pressure. Earth and
- Planetary Science Letters, 294, 19-26.

- Hsu, H., and Wentzcovitch, R.M. (2014) First-principles study of intermediate-spin
- ferrous iron in the Earth's lower mantle. Physical Review B, 90, doi:
 10.1103/Physrevb.90.195205.
- Hsu, H., Yu, Y.G., and Wentzcovitch, R.M. (2012) Spin crossover of iron in aluminous
- MgSiO₃ perovskite and post-perovskite. Earth and Planetary Science Letters, 359-360,
 34-39.
- Hummer, D.R., and Fei, Y.W. (2012) Synthesis and crystal chemistry of Fe³⁺-bearing
 (Mg,Fe³⁺)(Si,Fe³⁺)O₃ perovskite. American Mineralogist, 97, 1915-1921.
- 732 Inoue, T., Yabuki, T., and Yurimoto, H. (2012) Water contents of Al-bearing minerals
- in the mantle transition zone and the lower mantle. In T. Okuchi, Ed., Joint
- Symposium of Misasa-2012 and Geofluid-2, p. P21-02. ISEI, Misasa, Tottori, Japan.
 Irifune, T., Koizumi, T., Ando, J-I. (1996) An experimental study of the garnet-
- perovskite transformation in the system MgSiO3-Mg3Al2Si3O12. Physics of the
- Earth and Planetary Interiors, 96, 147-157.
- 738 Irifune, T., Shinmei, T., McCammon, C.A., Miyajima, N., Rubie, D.C., and Frost, D.J.
- (2010) Iron partitioning and density changes of pyrolite in Earth's lower mantle.Science, 327, 193-195.
- Jackson, J.M., Sturhahn, W., Shen, G.Y., Zhao, J.Y., Hu, M.Y., Errandonea, D., Bass,
- J.D., and Fei, Y.W. (2005) A synchrotron Mössbauer spectroscopy study of
 (Mg,Fe)SiO₃ perovskite up to 120 GPa. American Mineralogist, 90, 199-205.
- 744 Kupenko, I., McCammon, C., Sinmyo, R., Prescher, C., Chumakov, A.I., Kantor, A.,
- Ruffer, R., and Dubrovinsky, L. (2014) Electronic spin state of Fe,Al-containing
 MgSiO₃ perovskite at lower mantle conditions. Lithos, 189, 167-172, doi:
 10.1016/j.lithos.2013.10.022.
- Lauterbach, S., McCammon, C.A., van Aken, P., Langenhorst, F., and Seifert, F. (2000)
- Mössbauer and ELNES spectroscopy of (Mg,Fe)(Si,Al)O₃ perovskite: a highly
 oxidised component of the lower mantle. Contributions to Mineralogy and Petrology,
- 751 138, 17-26.
- Li, J., Struzhkin, V.V., Mao, H.K., Shu, J.F., Hemley, R.J., Fei, Y.W., Mysen, B., Dera,
- P., Prakapenka, V., and Shen, G.Y. (2004) Electronic spin state of iron in lower mantle
 perovskite. Proceedings of the National Academy of Sciences of the United States of
- 755 America, 101, 14027-14030.
- Li, J., Sturhahn, W., Jackson, J.M., Struzhkin, V.V., Lin, J.F., Zhao, J., Mao, H.K., and
- 757 Shen, G. (2006) Pressure effect on the electronic structure of iron in (Mg,Fe)(Si,Al)O₃
- perovskite: a combined synchrotron Mössbauer and X-ray emission spectroscopy
 study up to 100 GPa. Physics and Chemistry of Minerals, 33, 575-585.
- Lin, J.F., Alp, E.E., Mao, Z., Inoue, T., McCammon, C., Xia, Y.M., Chow, P., and
 Zhao, J.Y. (2012) Electronic spin states of ferric and ferrous iron in the lower-mantle
 silicate perovskite. American Mineralogist, 97, 592-597.
- Lin, J.F., Speziale, S., Mao, Z., and Marquardt, H. (2013) Effects of the electronic spin
- transitions of iron in lower-mantle minerals: implications to deep-mantle geophysicsand geochemistry. Review in Geophysics, 51, 2012RG000414.
- Lin, J.F., Watson, H., Vanko, G., Alp, E.E., Prakapenka, V.B., Dera, P., Struzhkin, V.V.,
- 767 Kubo, A., Zhao, J.Y., McCammon, C., and Evans, W.J. (2008) Intermediate-spin

- ferrous iron in lowermost mantle post-perovskite and perovskite. Nature Geoscience,1, 688-691.
- 770 Lin, J.F., Mao, Z., Yang, J., Liu, J., Xiao, Y., Chow, P., and Okuchi, T. (2016) High-
- spin Fe^{2+} and Fe^{3+} in single-crystal aluminous bridgmanite in the lower mantle.
- Geophysical Research letters, 43, doi:10.1002/2016GL069836.
- Lundin, S., Catalli, K., Santillan, J., Shim, S.H., Prakapenka, V.B., Kunz, M., and
 Meng, Y. (2008) Effect of Fe on the equation of state of mantle silicate perovskite
- over 1 Mbar. Physics of the Earth and Planetary Interiors, 168, 97-102.
- Mao, H.K., Xu, J., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to
- 800-Kbar under quasi-hydrostatic conditions. Journal of Geophysical Research-Solid
 Earth and Planets, 91, 4673-4676.
- Mao, Z., Lin, J.F., Scott, H.P., Watson, H.C., Prakapenka, V.B., Xiao, Y., Chow, P.,
- and McCammon, C. (2011) Iron-rich perovskite in the Earth's lower mantle. Earth and
 Planetary Science Letters, 309, 179-184.
- Mao, Z., Lin, J.F., Yang, J., Inoue, T., and Prakapenka, V.B. (2015) Effects of the Fe³⁺
- spin transition on the equation of state of bridgmanite. Geophysical Research Letters,
 42, 4335-4342, doi: 10.1002/2015GL064400.
- Mao, Z., Lin, J.F., Yang, J., Wu, J., Watson, H.C., Xiao, Y., Chow, P., and Zhao, J.
- 786 (2014) Spin and valence states of iron in Al-bearing silicate glass at high pressures
- studied by synchrotron Mössbauer and X-ray emission spectroscopy. American
 Mineralogist, 99, 415-423.
- McCammon, C. (1997) Perovskite as a possible sink for ferric iron in the lower mantle.
 Nature, 387, 694-696.
- 791 McCammon, C., Dubrovinsky, L., Narygina, O., Kantor, I., Wu, X., Glazyrin, K.,
- 792 Sergueev, I., and Chumakov, A.I. (2010) Low-spin Fe²⁺ in silicate perovskite and a
- possible layer at the base of the lower mantle. Physics of the Earth and PlanetaryInteriors, 180, 215-221.
- McCammon, C., Glazyrin, K., Kantor, A., Kantor, I., Kupenko, I., Narygina, O., Potapkin, V., Prescher, C., Sinmvo, R., Chumakov, A., Ruffer, R., Sergueev, I.,
- Smirnov, G., and Dubrovinsky, L. (2013) Iron spin state in silicate perovskite at conditions of the Earth's deep interior. High Pressure Research, 33, 663-672, doi:
- 799 10.1080/08957959.2013.805217.
- 800 McCammon, C., Kantor, I., Narygina, O., Rouquette, J., Ponkratz, U., Sergueev, I.,
- 801 Mezouar, M., Prakapenka, V., and Dubrovinsky, L. (2008) Stable intermediate-spin
- ferrous iron in lower-mantle perovskite. Nature Geoscience, 1, 684-687.
- Murakami, M., Ohishi, Y., Hirao, N., and Hirose, K. (2012) A perovskitic lower
 mantle inferred from high-pressure, high-temperature sound velocity data. Nature,
 485, 90-U118, doi: 10.1038/Nature11004.
- Narygina, O.V., Kantor, I.Y., McCammon, C.A., and Dubrovinsky, L.S. (2010)
- Electronic state of Fe^{2+} in (Mg,Fe)(Si,Al)O₃ perovskite and (Mg,Fe)SiO₃ majorite at
- pressures up to 81 GPa and temperatures up to 800 K. Physics and Chemistry of
- 809 Minerals, 37, 407-415.
- 810 Nishio-Hamane, D., Seto, Y., Fujino, K., and Nagai, T. (2008) Effect of FeAlO₃
- 811 incorporation into MgSiO₃ on the bulk modulus of perovskite. Physics of the Earth

- and Planetary Interiors, 166, 219-225.
- 813 Nishio-Hamane, D., and Yagi, T. (2009) Equations of state for postperovskite phases
- in the MgSiO₃-FeSiO₃-FeAlO₃ system. Physics of the Earth and Planetary Interiors,
- 815 175, 145-150.
- 816 O'keeffe, M., and Hyde, B.G. (1977) Some structures topologically related to cubic
- perovskite (E21), ReO₃ (D0₉) and Cu3Au(L1₂). Acta Crystallographica Section B-Structural Science, 33, 3802-3813.
- 819 Okuchi, T., Purevjav, N., Tomioka, N., Lin, J.F., Kuribayashi, T., Schoneveld, L.,
- Hwang, H., Sakamoto, N., Kawasaki, N., and Yurimoto, H. (2015) Synthesis of large
- and homogeneous single crystals of water-bearing minerals by slow cooling at deepmantle pressures. American Mineralogist, 100, 1483-1492.
- 823 Ozaki, T., Kusunose, K., Yamaguchi, H., Kajiwara, K., and Chikaura, Y. (2011)
- 824 Spontaneous strain of conductive strontium titanate $Sr_{1-x}LaxTiO_3$ measured by using
- 825 X-ray topographic domain contrast. Phase Transitions, 84, 837-842.
- Potapkin, V., McCammon, C., Glazyrin, K., Kantor, A., Kupenko, I., Prescher, C.,
- Sinmyo, R., Smirnov, G.V., Chumakov, A.I., Ruffer, R., and Dubrovinsky, L. (2013)
- Effect of iron oxidation state on the electrical conductivity of the Earth's lower mantle.
- Nature Communications, 4, doi: 10.1038/Ncomms2436.
- 830 Prescher, C., McCammon, C., and Dubrovinsky, L. (2012) MossA: a program for
- analyzing energy-domain Mossbauer spectra from conventional and synchrotron
 sources. Journal of Applied Crystallography, 45, 329-331.
- Ringwood, A.E. (1975) Composition and petrology of the Earth's mantle. 618 p.
- 834 McGraw-Hill, New York.
- 835 Saikia, A., Boffa Ballaran, T.B., and Frost, D.J. (2009) The effect of Fe and Al 836 substitution on the compressibility of MgSiO₃-perovskite determined through single-
- crystal X-ray diffraction. Physics of the Earth and Planetary Interiors, 173, 153-161.
- Shukla, G., Wu, Z.Q., Hsu, H., Floris, A., Cococcioni, M., and Wentzcovitch, R.M.
- (2015) Thermoelasticity of Fe²⁺-bearing bridgmanite. Geophysical Research Letters,
 42, 1741-1749.
- Stixrude, L., and Cohen, R.E. (1993) Stability of orthorhombic MgSiO₃ perovskite in
 the Earth's lower mantle. Nature, 364, 613-616.
- Sturhahn, W. (2000) CONUSS and PHOENIX: Evaluation of nuclear resonant
 scattering data. Hyperfine Interactions, 125, 149-172.
- Tange, Y., Kuwayama, Y., Irifune, T., Funakoshi, K., and Ohishi, Y. (2012) P-V-T
- 846 equation of state of MgSiO₃ perovskite based on the MgO pressure scale: A 847 comprehensive reference for mineralogy of the lower mantle. Journal of Geophysical
- 848 Research, 117, doi: 10.1029/2011jb008988.
- Tsuchiya, T., Tsuchiya, J., Umemoto, K., and Wentzcovitch, R.A. (2004) Phase
 transition in MgSiO₃ perovskite in the earth's lower mantle. Earth and Planetary
 Science Letters, 224, 241-248.
- Tsuchiya, T., and Wang, X. (2013) Ab initio investigation on the high-temperature
- 853 thermodynamic properties of Fe3+-bearing MgSiO3 perovskite. Journal of
- Geophysical Research, 118, 83-91.
- Vanpeteghem, C.B., Angle, R.J., Ross, N.L., Jacobsen, S.D., Dobson, D.P., Litasov,

- K.D., and Ohtani, E. (2006) Al, Fe substitution in the MgSiO3 perovskite structure: A single-crystal X-ray diffraction study. Physics of the Earth and Planetary Interiors, 155, 96-103. Wang, X.L., Tsuchiya, T., and Hase, A. (2015) Computational support for a pyrolitic lower mantle containing ferric iron. Nature Geoscience, 8, 556-559. Wolf, A.S., Jackson, J.M., Dera, P., and Prakapenka, V.B. (2015) The thermal equation of state of (Mg, Fe)SiO₃ bridgmanite (perovskite) and implications for lower mantle structures. Journal of Geophysical Research-Solid Earth, 120, 7460-7489, doi: 10.1002/2015JB012108. Zhao, Y.S., Weidner, D.J., Parise, J.B., and Cox, D.E. (1993) Critical phenomena and phase transition of perovskite data for NaMgF₃ Perovskite. Part II. Physics of the Earth and Planetary Interiors, 76, 17-34.

Composition		Sample	P (GPa)	Valence	Spin	QS	Reference
				state	State	(mm/s)	
Fe-bearing	$(Mg_{0.94}Fe_{0.06})SiO_3$	Single crystal	0-85	Fe ²⁺	HS	1.6-4.0	This study
				Fe ²⁺	HS	1.5-2.4	
				Fe ³⁺	HS	0.4-0.5	
	$(Mg_{0.9}Fe_{0.1})SiO_3$	Powder	42-75	Fe ²⁺	HS	3.37-3.39	Jackson et al. (2005)
				Fe ²⁺	HS	2.74-2.79	
				Fe ³⁺		1.15-1.47	
	(Mg _{0.95} Fe _{0.05})SiO ₃	Powder	0-120	Fe ²⁺	HS	1.89-3.51	Jackson et al. (2005)
				Fe ²⁺	HS	1.59-2.75	
				Fe ³⁺		0.57-1.63	
	(Mg _{0.88} Fe _{0.12})SiO ₃	Powder	0-120	Fe ²⁺	HS	1.8-3.5	McCammon et al. (2008)
				Fe ²⁺	IS	3.2-4.1	
				Fe ³⁺	HS	0.6-1.5	
	(Mg _{0.6} Fe _{0.4})SiO ₃	Powder	110	Fe ²⁺	IS	4.18	Lin et al. (2008)
				Fe ²⁺	IS	3.98	
	(Mg _{0.82} Fe _{0.18})SiO ₃	Powder	120-130	Fe ²⁺	IS	4.4	McCammon et al. (2010)
				Fe ²⁺	LS	0-0.7	
	MgSiO ₃ +10 mol.% Fe ₂ O ₃	Powder	40-136	Fe ³⁺	HS	0.5-1	Catalli et al. (2010)
				Fe ³⁺	LS	2.8-3.6	
	(Mg _{0.88} Fe _{0.12})SiO ₃	Powder	30-80	Fe ²⁺	IS	3.9-4.2	Narygina et al. (2010)
				Fe ²⁺	HS	2-2.7	
				Fe ³⁺	HS	0.5-1.5	
	(Mg _{0.75} Fe _{0.25})SiO ₃	Powder	135	Fe ²⁺	IS	4.1	Mao et al. (2011)
				Fe ³⁺	LS	2.99	
				Fe ³⁺	LS	1.84	
	$(Mg_{0.9}Fe_{0.1})SiO_3$	Powder	0-120	Fe ²⁺	HS	1.82-4.1	Lin et al. (2012)
				Fe ²⁺	HS	1.54-3.1	
				Fe ³⁺	HS	0.65-2	
	(Mg061Fe038Ca001)SiO3	Powder	126	Fe ²⁺	HS	4.18	Dorfman et al. (2015)
	(20.01 - 0.56 - 0.01) 5			Fe ²⁺	HS	3.15	
(Fe Al)-bearing	Mga 00Fea 12Ala 11Sia 00O2	Single crystal	4-130	Fe ²⁺	HS	2.9-3.4	This study
(1 0,1 1) 00001111g	1126.901 00.121 10.11010.9003	Single of John	1 100	Fe ²⁺	HS	17-19	The study
				Fe ³⁺	HS	0.7-0.9	
	$(Mg_{0.08}Fe_{0.09})(Si_{0.04}Al_{0.10})O_{2}$	Powder	12-100	Fe ²⁺	115	2 4-3 45	Lietal (2006)
	(1150.881 00.09)(010.941 110.10)(05	Towder	12 100	Fe ²⁺		2.11-2.75	El el ul. (2000)
				Fe ³⁺		0 54-0 74	
	Mga as Featra Alton Strand	Pourdor	25.05	Fo ³⁺	16	3 2 9	Catalli at al. (2011)
	1vig0.881 c0.13Al0.11510.88O3	rowder	23-93	Fe ³⁺	10	3-3.0 2 1 2 2	Catain et äl. (2011)
				ге-	L2	2.1-2.3	
				Fest	HS	0.6-1.3	

900 Table 1. Mössbauer spectroscopy results of bridgmanite at high pressures

902 **Figure caption**

903	Figure 1. Representative synchrotron Mössbauer spectra and modeled energy spectra
904	of Bm6 at high pressures and 300 K. Red circles: experimental spectra; black lines:
905	modeled spectra using CONUSS program (Sturhahn 2000). Left panel: sample spectra;
906	middle panel: spectra of sample plus stainless steel; right panel: energy spectra
907	calculated from the fits in the left panel; blue line: doublet 1; red line: doublet 2; green
908	line: doublet 3.

909

910	Figure 2. Representative synchrotron Mössbauer spectra and modeled energy spectra
911	of Al-Bm11 at high pressures and 300 K. Red circles: experimental spectra; black
912	lines: modeled spectra using CONUSS program (Sturhahn 2000). Left panel: sample
913	spectra; middle panel: spectra of sample plus stainless steel; right panel: modeled
914	energy spectra with assigned doublets calculated from the fits in the left panel. Blue:
915	doublet 1; red: doublet 2; green: doublet 3.
916	

Figure 4. Pressure-volume relationships of bridgmanite at 300 K. Red: Bm6; green
circles: Al-Bm11; blue line: MgSiO₃ (Boffa Ballaran et al. 2012); circles: data from

924	the first run; diamonds: data from the second run. Corresponding lines represent the
925	fits using the 3 rd order Birch-Murnaghan equation to the experimental results. Inserted
926	figure shows the variation of the unit-cell volume of Bm6 and Al-Bm11, respectively,
927	using Mg-Bm as the reference. Uncertainties are smaller than symbols when not
928	shown.
929	
930	Figure 5. Error ellipses of K_{0T} - K_{0T} ' for Bm6 and Al-Bm11 at the 1- σ level. Red: Bm6;
931	green: Al-Bm11; blue: Mg-Bm (Boffa Ballaran et al. 2012).
932	
932 933	Figure 6. Octahedral bond length ([B-X]), octahedral tilting angles (ϕ), and Shear
932 933 934	Figure 6. Octahedral bond length ([<i>B-X</i>]), octahedral tilting angles (ϕ), and Shear strain component (<i>e</i> ₄) of bridgmanite at high pressures and 300 K. (a). octahedral bond
932933934935	Figure 6. Octahedral bond length ([<i>B-X</i>]), octahedral tilting angles (ϕ), and Shear strain component (<i>e</i> ₄) of bridgmanite at high pressures and 300 K. (a). octahedral bond length, [<i>B-X</i>]; (b). octahedral tilting angles, ϕ ; (c). shear strain component, <i>e</i> ₄ . Red
 932 933 934 935 936 	Figure 6. Octahedral bond length ([<i>B</i> - <i>X</i>]), octahedral tilting angles (ϕ), and Shear strain component (e_4) of bridgmanite at high pressures and 300 K. (a). octahedral bond length, [<i>B</i> - <i>X</i>]; (b). octahedral tilting angles, ϕ ; (c). shear strain component, e_4 . Red solid circles and line: Bm6; green solid circles and line: Al-Bm11; blue open circles
 932 933 934 935 936 937 	Figure 6. Octahedral bond length ([<i>B-X</i>]), octahedral tilting angles (ϕ), and Shear strain component (e_4) of bridgmanite at high pressures and 300 K. (a). octahedral bond length, [<i>B-X</i>]; (b). octahedral tilting angles, ϕ ; (c). shear strain component, e_4 . Red solid circles and line: Bm6; green solid circles and line: Al-Bm11; blue open circles and line: Bm4 (Boffa Ballaran et al. 2012); orange open circles and line: Al-Bm41
 932 933 934 935 936 937 938 	Figure 6. Octahedral bond length ([<i>B-X</i>]), octahedral tilting angles (ϕ), and Shear strain component (e_4) of bridgmanite at high pressures and 300 K. (a). octahedral bond length, [<i>B-X</i>]; (b). octahedral tilting angles, ϕ ; (c). shear strain component, e_4 . Red solid circles and line: Bm6; green solid circles and line: Al-Bm11; blue open circles and line: Bm4 (Boffa Ballaran et al. 2012); orange open circles and line: Al-Bm41 (Boffa Ballaran et al. 2012). Solid lines are shown for readers to follow the trend with
 932 933 934 935 936 937 938 939 	Figure 6. Octahedral bond length ([<i>B</i> - <i>X</i>]), octahedral tilting angles (ϕ), and Shear strain component (<i>e</i> ₄) of bridgmanite at high pressures and 300 K. (a). octahedral bond length, [<i>B</i> - <i>X</i>]; (b). octahedral tilting angles, ϕ ; (c). shear strain component, <i>e</i> ₄ . Red solid circles and line: Bm6; green solid circles and line: Al-Bm11; blue open circles and line: Bm4 (Boffa Ballaran et al. 2012); orange open circles and line: Al-Bm41 (Boffa Ballaran et al. 2012). Solid lines are shown for readers to follow the trend with increasing pressure.

Figure 7. Density (ρ_0) and bulk modulus (K_{0T}) of bridgmanite at ambient conditions. (a). ρ_0 ; (b). K_{0T} . Red: Fe-bearing bridgmanite; blue: (Fe,Al)-bridgmanite; open symbols: results from polycrystalline bridgmanite samples (Andrault et al. 2001; Catalli et al. 2010; Catalli et al. 2011; Dorfman et al. 2013; Lundin et al. 2008; Mao et al. 1991); solid symbols: results from single-crystal bridgmanite samples (This

- study; Boffa Ballaran et al. 2012; Saikia et al. 2009); stars: our Bm6 and Al-Bm11.
 Errors are smaller than symbols when not shown.
- 948

949	Figure 8. Confidence ellipses of the bulk modulus (K_{0T}) and its pressure derivative
950	(K_{0T}) of bridgmanite at ambient conditions at the 1- σ level using literature data. Solid
951	lines: Fe-bearing bridgmanite; dashed lines: (Fe,Al)-bridgmanite; Blue: Bm4 (Boffa
952	Ballaran et al. 2012); green: Bm5 (Andrault et al. 2001); orange: Bm9 (Lundin et al.
953	2008); light blue: Bm9 (Dorfman et al. 2013); yellow: Bm10 (Mao et al. 1991);
954	magenta: Bm15 (Lundin et al. 2008); red: Al- Bm5 (Andrault et al. 2001); black: Al-
955	Bm13 (Catalli et al. 2011); olive: Al- Bm15 (Nishio-Hamane et al. 2009).
955 956	Bm13 (Catalli et al. 2011); olive: Al- Bm15 (Nishio-Hamane et al. 2009).
955 956 957	Bm13 (Catalli et al. 2011); olive: Al- Bm15 (Nishio-Hamane et al. 2009). Figure 9. Variation of density $(\Delta \rho / \rho)$ and bulk sound velocity $(\Delta V_{\Phi} / V_{\Phi})$ of bridgmanite
955 956 957 958	Bm13 (Catalli et al. 2011); olive: Al- Bm15 (Nishio-Hamane et al. 2009). Figure 9. Variation of density $(\Delta \rho / \rho)$ and bulk sound velocity $(\Delta V_{\Phi} / V_{\Phi})$ of bridgmanite at lower-mantle pressures and 300 K using Al-Bm10 as the reference. (a). $\Delta \rho / \rho$; (b).
955 956 957 958 959	Bm13 (Catalli et al. 2011); olive: Al- Bm15 (Nishio-Hamane et al. 2009). Figure 9. Variation of density $(\Delta \rho / \rho)$ and bulk sound velocity $(\Delta V_{\Phi} / V_{\Phi})$ of bridgmanite at lower-mantle pressures and 300 K using Al-Bm10 as the reference. (a). $\Delta \rho / \rho$; (b). $\Delta V_{\Phi} / V_{\Phi}$. Red: (Mg _{0.8} Fe _{0.2})(Al _{0.2} Si _{0.8})O ₃ -bridgmanite; blue: (Mg _{0.8} Fe _{0.2})(Al _{0.1} Si _{0.9})O ₃ -
955 956 957 958 959 960	Bm13 (Catalli et al. 2011); olive: Al- Bm15 (Nishio-Hamane et al. 2009). Figure 9. Variation of density $(\Delta \rho / \rho)$ and bulk sound velocity $(\Delta V_{\Phi} / V_{\Phi})$ of bridgmanite at lower-mantle pressures and 300 K using Al-Bm10 as the reference. (a). $\Delta \rho / \rho$; (b). $\Delta V_{\Phi} / V_{\Phi}$. Red: (Mg _{0.8} Fe _{0.2})(Al _{0.2} Si _{0.8})O ₃ -bridgmanite; blue: (Mg _{0.8} Fe _{0.2})(Al _{0.1} Si _{0.9})O ₃ - bridgmanite; grey: (Mg _{0.9} Fe _{0.1})(Al _{0.1} Si _{0.9})O ₃ -bridgmanite.

