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Abstract 

In this work, we modelled the structure, the compressional behavior and the physical properties of 

topaz over six different fluorine contents and a wide range of pressure, using a quantum mechanical 

approach based on periodic boundary conditions. We adopted the density functional theory using 

the B3LYP functional and all-electron Gaussian-type orbitals basis sets. An atomic level description 

of the athermal (T = 0 K) pressure-induced structural modification of topaz is provided. From the 

compression results we obtained the athermal bulk modulus (KT0), its first derivative (K’) and the 

athermal volume at zero pressure (V0) by a third-order Birch-Murnaghan equation fit. The results 

show that KT0 increases with fluorine content. The compressional pattern is anisotropic, as observed 

by the axial compressibility and second-order elastic constants calculations. We observed that the 

compression involves three different mechanism, polyhedral contraction, polyhedral tilting and 

hydrogen bonding, all of them influenced, with different extent, by the fluorine content in topaz. 

Recent experimental results obtained by single-crystal X-ray and neutron diffraction of specific 

topaz compositions are in very good agreement with our simulations, which further extend the 

knowledge of the structural and elastic properties of topaz over a wider range of fluorine content. 
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Introduction 

Topaz is an orthosilicate mineral with ideal formula Al2SiO4(F,OH)2, which is usually found as an 

accessory mineral in fluoride-rich granitic rocks related to pneumatolithic/hydrothermal events and 

in rocks formed in ultrahigh pressure conditions, or in detrital sediments related to areas of acid 

intrusive rocks (Pichavant and Manning, 1984; Taylor and Fallick, 1997; Alberico et al., 2003). The 

crystal structure of topaz was firstly solved by Alston and West (1928) and Pauling (1928); more 

recent studies were focused on solid solution crystal-chemistry of the Al2SiO4F2–Al2SiO4(OH)2 

series (Wunder et al., 1999; Alberico et al., 2003; Chen et al., 2005; Gatta et al., 2006b). In these 

studies it was shown that natural topaz samples with F:(F,OH) ratio > 1.5 usually crystallize in 

space group Pbnm, with one independent H-site, but synthetic topaz, Al2SiO4(OH)2, displays two 

non-equivalent H-sites. According to the work of Northrup et al. (1994), synthetic topaz belongs to 

space group Pbn21, while more recent results of Chen et al. (2005) and Komatsu et al. (2008) 

suggested space group Pbnm.  

Due to its composition, topaz is considered one of the major carriers of fluorine and hydroxyl 

groups, thus playing an important role in the H2O and F cycles in geological environments. This is 

particularly true in subduction zones, and in volcanism related to the overlaying subduction wedge.  

Topaz is also very appreciated for its mechanical properties, for example, it is used to create 

abrasives, grindstones, sharpening stones and scouring powders, because of its pronounced hardness 

(Gatta et al., 2014). This property is due to the high stability at high pressure and temperature. 

Furthermore, worth to be remembered that topaz is a gemstone, whose optical properties and 

hardness are employed to assess its quality. 

For both geological and industrial reasons, many experimental studies were carried out by high-

pressure investigations to depict the mechanical stability of topaz. The behavior of natural topaz at 

high pressure up to 6 GPa was described by Komatsu et al. (2003), and by Gatta et al. (2006a), up to 

10.6 GPa, both of them using in situ single-crystal X-ray diffraction. A more recent high-pressure 

experiment up to 7.5 GPa on synthetic topaz was performed by Komatsu et al. (2008) by neutron 



	 3 

powder diffraction. Among these works there is a slight disagreement between the elastic 

properties. The bulk modulus at specific temperature (KT0) obtained with a third-order Birch-

Murnaghan equation of state (Birch, 1947), BM3, was 154 GPa in the work of Komatsu et al. 

(2003), while it was 164 GPa in the one of Gatta et al. (2006a). This difference may resides on both 

the different crystal chemistry [Al2SiO4(OH)0.43F1.57 and Al2SiO4(OH)0.25F1.75, respectively] and the 

first derivative of the bulk modulus (K’), that was kept fixed to 4 by Komatsu and co-workers 

(2003). However, both studies evinced no phase transition or change of the compressional behavior 

within the P-range investigated, even if in the work of Gatta et al. (2006a) the P-derivative of KT0 

(K’ = 2.9) suggested a deformational configuration that precedes a phase transition. Very recently, 

Gatta and co-workers (Gatta et al., 2014) extended their investigation up to 45 GPa, finding BM3 

parameters KT0 = 158 GPa and K’ = 3.3, in good agreement with previous mechanical data (Gatta et 

al., 2006a). However, the authors suggested a possible phase transition at higher pressure (i.e., P in 

excess of GPa) because of the value of K’ < 4. 

Despite the presence of some works on the elastic properties of natural and synthetic topaz, none 

of them proposed to correlate them with the value of the F:OH ratio in the structure. It is known that 

the physical, structural and thermodynamic properties of topaz are controlled by the hydroxyl 

content (Akizuki et al., 1979; Barton, 1982; Barton et al., 1982; Tsareva et al., 1992). In natural 

samples, it is often difficult to find extensive OH substitutions, which depend on the mineral 

formation environment (Zhang et al., 2002), but it is possible to obtain synthetic fully hydrated 

topaz end-members at ca. 7 GPa (Wunder et al., 1993). In order to explore the effects of different 

F:OH ratios on topaz structural and mechanical properties and to gain a better understanding of the 

compressional behavior of topaz, we undertook a quantum-mechanical simulations of topaz models 

with different fluorine content up to very high-pressures (50 GPa). Furthermore, the quantum 

mechanical approach will investigate the first derivative of bulk modulus that, as mentioned above, 

is still a subject to be clarified. 
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Computational Details 

This study was conducted by first principle simulations on periodic systems, using the 

CRYSTAL09 code (Dovesi et al., 2009), which implements the Hartree–Fock and Kohn–Sham 

self-consistent field method. The graphical drawings have been carried out with the molecular 

graphics software MOLDRAW (Ugliengo et al., 1993) and VESTA (Momma and Izumi, 2011). 

The calculations have been performed within the Density Functional Theory, using the hybrid 

exchange functional (B3LYP), which is composed by the Becke three-parameters (Becke, 1993) 

and the Lee, Yang and Parr (Lee et al., 1988) gradient-corrected correlation functionals. The 

exchange–correlation contribution is calculated over a grid of points and is the result of a numerical 

integration of the electron density and its gradient. To improve the accuracy/computational costs 

ratio for geometry optimizations, a 75 points × 974 angular points pruned grid (XLGRID keyword) 

obtained from the Gauss–Legendre quadrature and Lebedev schemes (Prencipe et al., 2004) was 

used. The values of the tolerances that control the Coulomb and exchange series are the default 

provided by CRYSTAL09, but we increased the pseudo-overlap parameter from 12 to 14 (Dovesi et 

al., 2009) to stabilize the self-consistent behavior during unit-cell deformations. The Hamiltonian 

matrix has been diagonalized (Monkhorst and Pack, 1976) using a shrinking factor (IS) = 4 (Dovesi 

et al., 2009), that leads to a 4×4×4 k-mesh and 36 k-points.  

Within the CRYSTAL code, multi-electron wave functions are described by linear combination 

of crystalline orbitals (CO), expanded in terms of Gaussian-type orbital (GTO) basis sets. The basis 

sets have been previously optimized by various authors for their investigations of similar structures. 

For all the calculations, oxygen has been described by a 8-411d11G basis sets (Ulian et al., 2013b; 

Ulian et al., 2014b; Valenzano et al., 2006), aluminum atoms by a 8-511d1G basis set (Catti et al., 

1994), silicon by a 88-31G* (Nada et al., 1996; Ulian et al., 2014a) and fluorine atoms by a 7-311G 
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basis set (Nada et al., 1993). Hydrogen was described by a standard 3-1p1G basis set with p 

polarization function exponent of 1.1 Bohr-1, which was employed in previous simulations of urea 

crystals (Gatti et al., 1994) and phyllosilicates (Ulian et al., 2013a; Ulian et al., 2014a; Ulian and 

Valdrè, 2015b; Ulian and Valdrè, 2015c). The chosen hydrogen atom basis set allows accurate 

calculations of hydrogen atoms in molecular and crystal structures and it is well balanced with the 

other atomic basis sets used in topaz structures. 

Lattice constants and internal coordinates have been optimized within the same run using the 

analytical gradient method for the atomic positions and a numerical gradient for the unit-cell 

parameters. The Hessian matrix is upgraded with the BFGS algorithm (Broyden, 1970a; Broyden, 

1970b; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). The tolerances for the maximum allowed 

gradient and the maximum atomic displacement for considering the geometry as converged have 

been set to 6·10-5 hartree bohr–1 and 12·10-5 bohr, respectively. These values are stricter than the 

default ones provided by CRYSTAL09 (Dovesi et al., 2009), because mechanical properties 

evaluations require the structure in analysis as close as possible to the structure corresponding to the 

minimum of the potential energy. 

 

Results and discussion 

Effect of fluorine on the topaz structure 

The rationale of the modelling of F content in topaz can be summarized as follows. We created the 

basic topaz structural model (lattice parameters, Si, Al and O positions) from recent experimental 

X-Ray diffraction results by Gatta et al. (2006b). Topaz unit cell presents four unit formulas of 

Al2SiO4(F,OH)2 (Z = 4), resulting in eight sites that can be occupied by either hydroxyl groups or 

by fluorine. This feature would allow to simulate several models that present different F:OH ratios. 

We decided to model six different topaz unit cells with different F:OH ratio, reported as follows: 

1. F:OH ratio = 0:2 – model labeled as T-F0H8 (symmetry Pbnm and Pbn21, Fig.1a) 
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2. F:OH ratio = 0.5:1.5 – model labeled as T-F2H6 (symmetry P1, Fig.1b) 

3. F:OH ratio = 1:1 – model labeled as T-F4H4 (symmetry Pbn21 and P1, Fig.1c) 

4. F:OH ratio = 1.5:0.5 – model labeled as T-F6H2 (symmetry P1, Fig.1d) 

5. F:OH ratio = 1.75:0.25 – model labeled as T-F7H1 (symmetry P1, Fig.1e) 

6. F:OH ratio = 2:0 – model labeled as T-F8H0 (symmetry Pbnm, Fig.1f) 

In quantum mechanical solid solution modelling, end-members usually have the highest 

symmetry, whereas intermediate compositions belong to space groups with the same or lower 

symmetry. This happens because high-symmetry operators could create unphysical replica of atoms 

in the unit cells and it is not possible to consider atomic partial occupancies. Other reasons of the 

space group assigned to each model are explained below. 

We optimized the geometry of the topaz models (lattice and atomic coordinates) within the DFT 

method explained in the computational section. For the sake of clarity, lattice parameters, 

crystallographic volume (Vcc) and density are reported in Table 1, alongside data from diffraction 

experiments taken from literature.  

The first concern was about the full-hydroxyl topaz space group (model T-F0H8) for the 

controversy in literature of the model. Fully hydroxylated topaz unit cell contains two hydrogen 

sites, namely H1 and H2, which have to be investigated because they can deeply affect the mineral  

stability and structure. We considered three possible hydrogen configurations in T-F0H8 model: H1 

– H1, H1 – H2 and H2 – H2. The first and the last belongs to Pbnm space group (7 irreducible 

atoms in the unit cell), whereas H1 – H2 configuration can be described by Pbn21 space group (11 

irreducible atoms in the unit cell). Each described model with different hydrogen configuration and 

has been created and optimized to find out which one is energetically the most stable. The results 

are reported in Table 2. The three configurations have many differences in lattice parameters due to 

the hydrogen position. It can be observed that the models with 100% occupancy of H1 and H2 sites 

are less stable than the one with half H1 sites and half H2 sites. In H1 – H1 configuration there is a 

quite small H --- H distance (~2Å), which results in hydrogen atom repulsion and, then, 
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destabilization of the structure. On the opposite, the hydrogen atom distance is higher in H2 – H2 

configuration, but there is a shorter H --- Al distance. In addition, the H2 – H2 configuration is not 

maintained during optimization, as the structure spontaneously evolves toward the H1 – H1 

configuration because of the symmetry constrain (the result reported in Table 2 represents a 

situation similar to a saddle point in the potential energy surface of the hydrogen configurations). 

According to our results, the full-hydroxyl topaz is more stable with H1 and H2 sites with 50% 

occupancy each, with H --- H distance of about 2.3 Å. This structure loses the mirror plane 

operator, lowering its symmetry from Pbnm to Pbn21, in agreement with the results of Northrup et 

al. (1994). From now on, discussion on model T-F0H8 will be made on the model with H1 – H2 

configuration. 

For model T-F8H0, fully fluorinated topaz, we employed the space group Pbnm (6 irreducible 

atoms in the unit cell) because it was previously assigned by experimental XRD redacted (Gatta et 

al., 2006b). For all other structures, we performed an initial analysis of configurations (D'Arco et 

al., 2013; Mustapha et al., 2013) to find the OH-/F- substitution locations that maximizes the 

internal symmetry. Only the T-F4H4 model, where half sites are occupied by fluorine and half by 

hydroxyl groups, presents a high-symmetry configuration related to space group Pbn21. We 

investigated this crystal configuration, optimizing the structure with both high (Pbn21) and low (P1) 

symmetry, finding almost no differences between the results obtained with the different space 

groups for both structure and equation of state (see below). When symmetry constraints are 

removed, there is a negligible reduction of unit cell axes (max –0.02%) and volume (–0.04%), but 

angular values are very close to 90° (variations of max 9 · 10-5 degrees). The energy difference 

between the two structures is again below experimental uncertainties (EPbn21 – EP1 = 1.6 kJ/mol). 

We decided to employ the Pbn21 space group for model T-F4H4 in order to keep consistency with 

the other crystal structures. As done for the T-F0H8 model, the occupancy of both H1 and H2 sites 

has been considered. However, we found that the H2 site is not stable, with the hydrogen atom 

moving to the H1 site.  
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Atomic fractional coordinates for the topaz structures with internal order, T-F0H8 (Pbn21), T-

F4H4 (Pbn21) and T-F8H0 (Pbnm) are presented in Table 3, alongside experimental diffraction data 

from Northrup et al. (1994). It can be observed a very good agreement in the atomic disposition in 

the unit cell.    

All the remaining models, T-F2H6, T-F6H8 and T-F7H1, were simulated without any internal 

symmetry (space group P1) because of the reduction of the internal order in the model unit cells. It 

is worth to be remembered that single-crystal XRD refinements usually reports structures with 

partial atomic occupancies and the hydrogen atom positions are not easily determined. Regarding 

the occupancy of H1 and H2 sites, we found that in T-F2H6 model the half occupancy is favored, as 

in T-F0H8 structure, but in the other two models the most stable hydrogen configuration is H1. Our 

simulations clarify that in F-rich topaz (F:OH ratio ≥ 50%) only H1 site is occupied, as H2 is not 

stable.  

Starting from the fully-hydroxilic topaz model, it can be observed that increasing the fluorine 

content affects the topaz internal structure. In Fig. 2 we reported the topaz unit cell volume (a), 

relative axial variations (b) and mineral density (c) as a function of F content per unit formula. The 

unit cell volume monotonically reduces as fluorine atoms substitute hydroxyl groups (Fig. 2a) and 

the density monotonically increases (Fig. 2c), but it can be observed that the unit cell contraction is 

not linear. Considering the axis lengths relatively to the full hydroxyl model (see Fig. 2b), the 

simulations showed a subtle interplay that regulates the final cell volume. The a parameter always 

shrinks as the F:OH ratio is shifted to fluorine (max -1.6%). The b- and c-axis have a low decrease 

until F:OH ratio 1:1, then the b parameter linearly decreases of about 1% the starting value and the 

c lattice parameter increases of about +0.4%. Overall, the initial contraction of the a lattice 

parameter almost compensates the b- and c-axis variations, which explains the almost monotonic 

contraction of the topaz unit cell. Compared to the previous analysis of Alberico et al. (2003), we 

find a good agreement with their correlation of fluorine content versus lattice parameters. In the 

cited work, 33 reported data were fitted by least-square procedure to obtain regression lines of cell 
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edges variations as a function of F content. The authors found a linear relationship regarding both a 

and b cell parameters, but the c-axis lacks this correlation because this cell edge seems to be 

constant with increasing fluorine content. This observation was explained by the F(O) --- F(O) 

contact, which influences mostly the c lattice parameter. Our results provide further details in the 

region that was not covered by the work of Alberico et al. (2003) because of the lack of 

experimental data regarding topaz structures with fluorine content between 0.0 and 0.5. Regarding 

the internal geometry, fluorine atoms reduce both the distortion index of Al(O,F)6 groups (see the 

definition of distortion index by Baur (1974)) and the octahedron volume because of the shrinking 

of the Al – (O,F) bonds. 

In T-F0H8 model we found that the hydroxyl group in H1 site (O4 – H1, see Table 3 and Fig. 1) 

establishes a hydrogen bond with the oxygen O1 of the other OH group (O4 – H1 --- O1) at 

distance 2.26 Å. The OH group in H2 site establishes two hydrogen bonds with the oxygen atom of 

the H1 site (2.17 Å) and the oxygen atom of the SiO4 tetrahedron bridging two Al2O4(OH)2 

octahedrons (1.88 Å). This result is in good agreement with the theoretical prediction made by 

Churakov and Wunder (2004), where the authors employed the generalized gradient approximation 

(GGA) functional BLYP and atomic basis sets with pseudopotentials to investigate the proton 

position in the end-member Al2SiO4(OH)2 topaz. Unfortunately, in that work only atomic 

coordinates were relaxed, while lattice parameters were fixed to the experimental refinement values, 

because of the tendency of GGA functionals to overestimate unit-cell volumes. To our knowledge, 

no other theoretical works on topaz structure are present in literature. In T-F4H4 model (space 

group Pbn21), where there is only one non-equivalent hydroxyl group per unit-cell, the O5 – H1 --- 

O2 distance is greater (2.2 Å) and the hydrogen bonding is weaker than the O4 – H1 --- O1 one in 

T-F0H8 model (see Fig. 1). In general, topaz structures that have hydroxyl groups in their unit cell 

presents at least one H-bond for each hydroxyl group. 

Our results for models T-F7H1 [Al2SiO4F1.75(OH)0.25, P1] and T-F0H8 [Al2SiO4(OH)2, Pbnm] 

are in good agreement with experimental ones, obtained by in situ single-crystal diffraction 
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experiments on Al2SiO4(OH)0.25F1.75 (Gatta et al., 2006b) and Al2SiO4(OH)(OD) (Komatsu et al., 

2008), respectively, both belonging to the Pbnm space group. Atomic fractional coordinates 

satisfactorily match those reported by the authors in their works. We observe in our theoretical data 

a unit cell volume greater (of about 3%) than that observed from diffraction results. This effect is 

due to the computational approach, where the B3LYP functional generally overestimates unit cell 

volumes of about this percentage. 

 

Topaz compression  

We adopted the methods proposed by Perger (2010) to describe the compressional behavior of 

topaz within the periodic boundary conditions used in our simulations. The first step of this 

procedure is considering different unit-cell volumes of the crystal structures, smaller than the 

equilibrium geometry volume. Then, the second step requires an optimization of the internal 

coordinates and lattice parameters for each selected volume, keeping that unit-cell volume constant. 

This procedure is known as “symmetry preserving, variable cell-shape structure relaxation” (Kiefer 

et al., 2001; Ottonello et al., 2009; Ulian et al., 2014a; Ulian and Valdrè, 2015a; Ulian and Valdrè, 

2015c). In our simulations the topaz structures were geometrically optimized at several volumes 

between the equilibrium geometry, Veq, and 80% · Veq, with a step of 1% Veq. Volumes and lattice 

parameters from this operation are reported in Table 3 for each simulated topaz structure, whereas 

all the atomic positions can be found in the crystallographic information framework (CIF) data file. 

From the geometry optimizations, the total energy E (Ha, Hartree – atomic unit of energy, 1 Ha = 

4.35974434·10−18 J) at constant volume V (Å3) at each volume for the different topaz models was 

calculated and the energy vs volume dependence, E(V), is well described by a 3rd-order polynomial 

equation. In Figure 3a plots of the ΔE = E(V) – E(Veq) versus volume for the different topaz models 

are reported. The static pressure (Pst) values for each selected volume can be obtained from the first 

derivative of the E(V) function, according to: 



	 11 

0
st

T

EP
V =

∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠
    (1) 

A graphical representation of the relative compression, defined as V/V0 (here V0 is the equilibrium 

geometry), as a function of Pst for all the different topaz models is shown in Figure 3b. From the 

plot, it is possible to note that the pressure versus volume trend is monotonic, without any abrupt 

changes that would indicate variations in the mineral internal stability.  These pressure values are 

labelled as Pst in each table because atomic vibrational energy was not taken into account. This is 

also called “athermal” condition, because it is like studying “frozen” atoms at absolute zero (0 K). 

Again, there is a very good agreement between the simulated compression of models T-F7H1 

[Al2SiO4F1.75(OH)0.25] and T-F0H8 [Al2SiO4(OH)2] in the 0 – 10 GPa range with the results of 

Gatta et al. (2006b) and Komatsu and co-workers (2003) referring to the same mineral composition, 

respectively (see Figure 3c). In the pressure range considered, the two models have very similar 

compressional behavior, whereas the fully hydrated topaz (T-F0H8) and model T-F6H2 exhibit a 

slightly softer nature. However, at higher pressure (15 – 50 GPa, see Figure 3d) T-F0H8 seems to 

increase its stiffness compared to the more fluorinated structures. Above 45 GPa, the models with F 

content > 6 atoms show very similar mechanical behavior.  

In order to obtain the topaz bulk moduli at 0 K (K0), its pressure first derivative (K’)  and the 

volume at zero pressure (V0), we fitted the volume vs. Pst data for each structure using a third-order 

finite strain isothermal Birch-Murnaghan Equation of State (III-BM EOS) (Birch, 1947). The III-

BM EOS is defined as:  

  ( )( )7 3 5 3 2 3
0 0

3 31 4 ' 1
2 4III BM TP K K Pη η η− − −

−
⎧ ⎫⎡ ⎤= − − − − +⎨ ⎬⎣ ⎦ ⎩ ⎭

    (2)
 

where η = V/V0 and P0 is the reference pressure (P0 = 0.0 GPa). The fitting was made by a least-

square procedure using the EOS-FIT5.2 software (Angel, 2001). The refined elastic parameters are 

reported in Table 4. We also investigated T-F4H4 model in absence of internal symmetry (P1), 

founding K0 = 161 ± 3 GPa, K’ = 3.4 ± 0.4 and V0 = 357.7 ± 0.8 Å3, whereas employing space 
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group Pbn21 the III-BM results are K0 = 165 ± 3 GPa, K’ = 3.4 ± 0.4 and V0 = 357.6 ± 0.9 Å3. This 

small difference between the results calculated with and without internal symmetry arises from the 

obtained relaxation energy of the model unit cell, which is reflected on the pressure for each volume 

calculated. The low-symmetry T-F4H4 model is slightly more stable that the high-symmetry one 

because of the absence of any constraint to the relaxation process, and this explains the lower bulk 

modulus found for the P1 structure. However, we observed that there are negligible variations on 

the atomic positions in the unit cell, even at very high pressures, and this allows considering the two 

results comparable. 

Fig.4 shows the monotonic evolution of the relative compression of topaz lattice parameters with 

pressure. The graph indicates that the deformation is slightly anisotropic for each model at ca. 50 

GPa, with a and c cell parameters shrank of about 8% the initial size, while the b one is reduced by 

about 6% at the same pressure.  Very interesting features may be evinced by making a comparison 

between the different models. On one hand, fluorine content negligibly influence both b- and c-axis 

compressional behaviors, as the lattice parameters almost reach the same relative compressional 

value of 0.96 and 0.92 at ca. 50 GPa, respectively. On the other hand, lattice parameter a behaves 

similarly to the c one in T-F0H8, T-F7H1 and T-F8H0 models, but it seems stiffer in the other 

structures. In order to describe the observed anisotropy, we calculated the axial bulk moduli with a 

linear III-BM EOS fit of the lattice parameters values at different pressures. The obtained refined 

data for the a, b and c axis are reported in Table 4. The axial compressibilities, described as β = 

1/3K0, are in ratio β(a): β(b): β(c) 1.218 : 2.010 for T-F0H8; 1.345 : 2.071 for T-F2H6; 1.651 : 

2.008 for T-F4H4; 1.651 : 1.776 for T-F6H2; 1.590 : 1.624 for T-F7H1 and 1.576 : 1.513 for T-

F8H0. It is worth noting that increasing the fluorine content in topaz results in an increase of the 

β(a) / β(c) ratio (from 0.60 in T-F0H8 model to 1.04 in T-F8H0 one), which means that a- and c-

axis compressibilities become similar by increasing the F content. 

The atomic-scale compression mechanism can be better understood from the internal geometry 

variations at different pressures. When no pressure is imposed on the topaz model, we observed a 
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monotonic reduction of the unit cell volume by augmenting the fluorine content, because F atoms 

reduce the Al-octahedron volumes due to its higher electronegativity than oxygen atoms. Our 

simulations show that the unit-cell volume reduction is anisotropic, with the a-axis shrinking almost 

monotonically, b lattice parameter remains almost constant until half sites occupied by F then it 

reduces and c-axis showing opposite length variations than the b-axis (see Fig.2b).   

For what concerns topaz behavior under pressure, as also reported by Gatta et al. (2006a), the 

mineral responds to mechanical compression by polyhedral contraction and tilting. We reported 

specific bond lengths, bond angles and polyhedral volumes in Table 5 that have been analyzed in 

details. Increasing pressure causes the reduction of Al-O and Si-O bond lengths, with shrinking of 

about 6% and 4% above 50 GPa, respectively. The first effect related to the mechanical 

compression is, consequently, Al octahedrons and Si tetrahedrons volumes contraction by 15% and 

11%, respectively, at the highest pressure explored. We noted that the distortion index of the 

Al(O,F)6 octahedron was reduced by about 50% from 0 to 50 GPa, while the index of SiO4 

tetrahedron raised by about 30%. In agreement with the work of Gatta et al. (2006a), it is possible to 

observe along the [100] direction an alternation of tetrahedra and octahedra in the topaz structure, 

with highly compressible “weak zones” where there are no Si tetrahedra. Then, topaz compression 

along the c-axis (i.e., perpendicularly to the “weak zones”) results more favored than along the 

other directions. However, the Al(O,F)6 polyhedral contraction is reduced by increasing the fluorine 

content, and this gives rise to the second compression mechanism, namely the polyhedral tilting. 

This effect is very pronounced, as can be observed by the	Al-(O,F)-Al angles. The Al(O,F)6 tilt at 

the maximum pressure investigated is about 5%, 8% and 10% in T-F0H8, T-F4H4 and T-F8H0, 

respectively.  

Our simulations suggest that both compression responses, polyhedral contraction and tilting, are 

affected by the fluorine content. The fluorine ions that substitute OH groups induce a reduction of 

the Al(O,F)6 internal bond lengths, thus polyhedral volumes shrank. 
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A third effect is related to the hydrogen bonding scheme in the topaz structure. In all topaz 

models that contain OH in the unit cell, we observed a negligible variation of the O – H bond length 

(-0.8% and -0.6%, respectively) at ca. 50 GPa. Mean H-O-Al angle was almost constant with 

pressure in Al2SiO4(OH)2 (T-F0H8) structure, while in Al2SiO4F(OH) (T-F4H4) it increased by 

about 5%. This angular variation probably arises because of the high electronegativity of fluorine, 

which attracts the hydrogen atom of the OH group. It is also worth remembering that in the low-F 

content topaz models each hydroxyl group establishes two hydrogen bond with SiO4 tetrahedra 

(with H-bond cutoff distance at 2.2 Å). We observed that by increasing pressure, in each topaz 

model that contains OH group, a bifurcated H bond is established for H1 sites, one with an oxygen 

atom from SiO4 tetrahedron and one with another oxygen atom or with a fluorine atom of the Al-

octahedron, and a trifurcated bond is established for the H2 sites, two with silica tetrahedra and one 

with Al-octahedron. Our observations about the formation of hydrogen bonds are in good 

agreement with the results reported by Komatsu et al. (2008) for the Al2SiO4(OD)2 end member 

topaz, albeit the authors considered a bonding scheme based on the O---O distances.  

In this work we firstly investigated the different effects of fluorine content on the physical-

chemical properties of topaz and our results give a general vision of the system. In this sense our 

data extend those reported by Gatta et al. (2014) and by Komatsu et al. (2003, 2008) that refer only 

to topaz samples of composition Al2SiO4F1.75(OH)0.25, Al2SiO4F1.57(OH)0.43 and Al2SiO4(OD)2  

respectively. For the sake of brevity and conciseness, we limited this study to the athermal limit 

properties of topaz. The vibrational properties and thermodynamic data of topaz phases would be 

subject of a subsequent paper (part 2) to extend the knowledge of this complex solid-solution 

mineral. 

 

Topaz elastic constant tensor 

We also calculated the elastic constants of the considered topaz models because they are important 

mechanical quantities that can be used for geomechanical and technological applications of topaz. 



	 15 

These quantities are rarely reported in literature for minerals and simulated data can help filling this 

gap and could be useful to the interested reader. 

The second-order elastic constants (SOEC) are calculated using stress-strain relationships based 

on total energy calculations through a Taylor expansion in terms of the strain components truncated 

at the second order: 

( ) ( )0, ...
2
VE V E V V Cα α αβ α β

α αβ

ε σ ε ε ε= + + +∑ ∑ ,    (3) 

where σ is the stress, ε is the strain, C are the second order elastic constants and V0 is the volume at 

equilibrium. Note that we used the Voigt's notation (Nye, 1957), where , 1,2,3,...6α β = . The 

adiabatic SOEC are related to the strain second derivatives of the total energy E according to:  

2

0

1 EC
Vαβ

α βε ε
∂

=
∂ ∂

    (4) 

Their discrete values may be calculated by imposing a certain amount of strain ε along the 

crystallographic direction corresponding to the component of the dynamical matrix. The evaluation 

of elastic constants for an arbitrary crystal then requires to accurately calculate derivatives of the 

total energy as a function of crystal deformation. To facilitate the calculation of the different energy 

vs strain curves and the SOEC, a fully automated numerical procedure was implemented in the 

CRYSTAL code, under the keyword ELASTCON. Briefly, the proposed algorithm uses the 

optimized structure and its space group to determine the necessary deformations in order to 

calculate the various elastic constants. For further details on the ELASTCON method we suggest 

the reader to refer to the work of Perger et al. (2009). The algorithm was used with good results in 

the calculation of the thermo-chemical and thermo-physical properties of BaTiO3, rutile TiO2 and 

talc (Narejo and Perger, 2010; Narejo and Perger, 2011; Ottonello et al., 2010; Ulian et al., 2014a). 

In the present work, we chose to run the calculation with three points of displacement and a step of 

0.010 Å, the default figure given by the code. 
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We report in Table 6 the second order elastic constant tensor C of the different topaz models, 

calculated at zero pressure and in athermal conditions (values are in GPa). From literature, the only 

available elastic constants data regards the full fluorinated topaz (Al2SiO4F2), reported in the 

experimental work of Haussuhl (1993). The simulated results of T-F8H0 model (Al2SiO4F2) are in 

very good agreement with the experimental ones (also reported in Table 6), with only small 

deviations. Unfortunately, to the authors’ knowledge, no other experimental or theoretical results 

are currently available for the other solid solutions.  

The bulk (K) and shear (µ) moduli are related to the elements of the elastic constant tensor. For 

any crystal system, the bounds for bulk modulus (upper =ΚV; lower = ΚR) and shear modulus (upper 

= µV; lower = µR) are given by the Voigt and Reuss equations (Nye, 1957): 

( ) ( )11 22 33 12 13 231 9 2VK C C C C C C⎡ ⎤= + + + + +⎣ ⎦     (5) 

( )
1

11 22 33 12 13 232RK S S S S S S
−

⎡ ⎤= + + + + +⎣ ⎦     (6) 

( ) ( ) ( )11 22 33 44 55 66 12 13 231 15 3V C C C C C C C C Cµ ⎡ ⎤= + + + + + − + +⎣ ⎦     (7) 

( ) ( )11 22 33 12 13 23 44 55 66

15
4 3R S S S S S S S S S

µ =
⎡ ⎤+ + − + + + + +⎣ ⎦

    (8) 

where [ ] [ ] 1S C −
=  , the compliance tensor, is the inverse of SOEC tensor C.  

In topaz there is a small difference between the upper and lower bounds for both bulk and shear 

moduli, ca. 4 GPa and 2 GPa, respectively, because of the observed anisotropy. It is known that 

both bulk and shear moduli fall between the two bounds, according to the Voigt-Reuss-Hill 

averaging method (Hill, 1952): 

( )( )1 2VRH V RK K K= +     (9) 

( )( )1 2VRH V Rµ µ µ= +     (10) 

where VRHK  and VRHµ  are the Voigt-Reuss-Hill averages of the bulk and shear moduli, 

respectively. 
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In general, there is a quite good accordance between KT0 data calculated from BM3 equation of 

state and KR from elastic constants. It can be observed a systematic shift between the two results 

with absolute variations in the 3 – 7 % range. This means that there is an adequate self-consistency 

of the proposed simulation methods. All the other values for all the models are reported in Table 6. 

With these data, it is possible to estimate the Young's modulus, E, using the following expression: 

9
3

VRH VRH

VRH VRH

KE
K

µ
µ

=
+

    (11) 

The isotropic Voigt-Reuss-Hill average gives the mean shear and longitudinal wave velocities for 

hypothetical topaz aggregates with random crystallographic preferred orientation, as 

s VRHν µ ρ=     (12) 

4 3
3

VRH VRH
p

K µ
ν

ρ
+

=     (13) 

where ρ is the density of the crystal. The νp/νs ratio is 1.7 for the six considered models. 

 

Implications 

The knowledge of the structural and mechanical properties of topaz are important for several 

reasons that may attract the interest of many scientists in various and different research fields.  

First of all, topaz is a mineral characterized by F/OH substitutions and here we present data that 

shows the correlation between the hydroxyl/fluoride content and the structure-properties 

relationships. This kind of analysis is important for several Earth materials that present hydroxyl 

groups, such as hydroxylapatite, and where the substitution of these groups show a dramatic change 

in their properties. We provided a detailed description of both atomic structure and bonding 

environment, which could potentially lead to a better understanding of the underlying crystal 

chemistry that leads to the property changes. 

Secondly, topaz occurs as accessory mineral in F-rich granitic rocks at the latest stage of the magma 

crystallization, often related to the formation of pneumatolithic/hydrothermal deposits, or in rock 
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formations that experience ultra-high-pressure metamorphism. Natural topaz samples usually 

contains about 30% of the F sites occupied by hydroxyls, and only in some very rare cases OH-

dominant members have been described. Almost nothing is known for other F:OH ratios in topaz 

solid solution, and in this paper we tried to fill this gap. Even though topaz is an accessory mineral, 

it is one of the major carriers of F/OH in rocks with granitic origin and thus warrants a detailed 

study of its high-pressure and high-temperature behavior, if we want to understand the water and 

fluorine cycles in geological environments, such as subduction zones, and the volcanism in the 

overlying subduction wedge. The chemical, structural and mechanical properties, alongside 

thermodynamic ones, are of utmost importance for the interpretation of both phase equilibria and 

the pressure-temperature rock forming conditions, in particular in the subduction zones. The elastic 

parameters (i.e., the bulk modulus and the compressional scheme) obtained in this study are in good 

agreement with previous data reported in literature. Despite the exploration of the compressional 

behavior of topaz above 50 GPa, the bulk modulus P-derivative is confirmed to be lower than 4. No 

evidence of phase transition or change in the compressional behavior of topaz was observed within 

the P-range investigated here. 

Thirdly, topaz is an appreciated gemstone for its hardness, durability and optical properties and 

gemologist may find very useful detailed cross-correlated data on chemical, structural and 

mechanical properties of this gemstone. It is known that some imperial topaz gemstones can be 

difficultly distinguished from citrine, a yellowish variety of quartz and, furthermore, white topaz is 

commonly used as diamond simulant. Furthermore, topaz exhibits a very pronounced hardness (H8, 

Mohs’ scale), which allows considering it as a “ceramic material” and leads to a series of industrial 

applications (for example, manufacture of grindstones, sharpening stones and scouring powders). 

For all these reasons, geological, gemological and industrial applications of this mineral would 

benefit from an extensive study of its cross-correlated intrinsic properties. 

Finally, the last but not the least, this quantum mechanical approach to solve solid solution in 

minerals is one of the first and few that has been employed. This paper demonstrates that chemical, 
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structural, mechanical and in future thermodynamic data can be obtained for solid solutions in 

minerals. These results are extremely useful and attractive for mineralogists and petrologists 

interested in thermodynamic properties of topaz, information that can not be, in some cases, 

available from experimental methods because of the lack of specific samples and complex 

instrumentations. 
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LIST OF TABLES 
 
Table 1. Experimental and theoretical refinement of different topaz structures 
 
 
 T-F0H8 T-F2H6 T-F4H4 T-F6H2 T-F7H1 T-F8H0 XRD1 Neutron 

Diffraction2 
Symmetry Pbn21 P1 Pbn21 P1 P1 Pbnm Pbnm Pbnm 
a (Å) 4.7808 4.7521 4.7215 4.7095 4.7051 4.7021 4.6601 4.7279 
b (Å) 8.9792 8.9681 8.9643 8.9159 8.8932 8.8703 8.8260 8.9269 
c (Å) 8.4900 8.4854 8.4721 8.4903 8.4971 8.5031 8.3778 8.4214 
Vcc (Å3) 364.5 361.6 358.6 356.5 355.5 354.7 344.6 355.4 

Density (g/cm3) 3.279 3.326 3.370 3.410 3.429 3.444 - - 
1Results by Gatta et al. (2006b) – Al2SiO4(OH)0.25F1.75; 2Results by Komatsu et al. (2008)  – Al2SiO4(OH)(OD), where 
D is a deuterium atom. 
	
 
Table 2. Results of the geometry optimization of T-F0H8 models with different hydrogen 
configurations. 
 
Configuration ΔE (kJ/mol) a (Å) b (Å) c (Å) V (Å3) 
H1 - H1 20.09 4.70681 9.02970 8.62742 366.67 
H1 - H2 0.00 4.78079 8.97916 8.49003 364.46 
H2 - H2* 50.92 4.76698 8.92043 8.63186 367.06 
Notes: data with asterisk (*) are related to a probable saddle point, not a local minima.  
	
 
  



	 27 

Table 3. B3LYP atomic fractional coordinates in the symmetric topaz structures (T-F0H8, T-F4H4 
and T-F8H0). 
	
 

   
     

 DFT – present work  Experimental data 
Model Atom x/a y/b z/c  Atom x/a y/b z/c 
T-F0H8a Al1 0.9006 0.1377 0.0790  Al 0.9050 0.1321 0.0798 
 Al2 0.4053 0.3720 0.9194      
 H1 0.0361 0.2284 0.8279      
 H2 0.4311 0.1732 0.0808  H1 0.4430 0.1990 0.0880 
 O1 0.7912 0.5278 0.2487  O1 0.7104 0.0262 0.2500 
 O2 0.4516 0.7577 0.2464  O2 0.4439 0.7561 0.2500 
 O3 0.7915 0.0108 0.9053      
 O4 0.2826 0.4979 0.0939  O3 0.2100 0.9929 0.0943 
 O5 0.9240 0.7470 0.0645  OH 0.5906 0.2507 0.0659 
 O6 0.4087 0.7520 0.9341      
 Si1 0.4022 0.9413 0.2500  Si 0.4019 0.9405 0.2500 

          
T-F4H4 Al1 0.9034 0.1308 0.0794      
 Al2 0.4106 0.3685 0.9180      
 F1 0.4003 0.7478 0.9401      
 H1 0.4989 0.2517 0.1625      
 O1 0.7945 0.5326 0.2520      
 O2 0.4474 0.7564 0.2492      
 O3 0.7926 0.0116 0.9054      
 O4 0.2878 0.4905 0.0929      
 O5 0.9028 0.7533 0.0631      
 Si1 0.4012 0.9413 0.2503      

          
T-F8H0a Al1 0.9013 0.1297 0.0838  Al 0.9030 0.1309 0.0828 
 F1 0.8972 0.7526 0.0512  F 0.5982 0.2525 0.0561 
 O1 0.6989 0.0334 0.2500  O1 0.7034 0.0321 0.2500 
 O2 0.4625 0.7554 0.2500  O2 0.4577 0.7560 0.2500 
 O3 0.2067 0.9877 0.0933  O3 0.2102 0.9892 0.0924 
 Si1 0.3951 0.9392 0.2500  Si 0.3972 0.9404 0.2500 
Experimental data for Al2SiO4(OH)2 and Al2SiO4F2 are taken from Northrup et al. (1994) 
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Table 4. Calculated elastic parameters, bulk (K0) and axial moduli (K0(a), K0(b) and K0(c)), their 
first derivatives (K’) and corresponding zero-pressure (V0, a0, b0 and c0) values. 
	

 
T-F0H8 T-F2H6 T-F4H4 T-F6H2 T-F7H1 T-F8H0 XRD 

K0 (GPa) 145(3) 163(3) 165(3) 151(3) 164(3) 168(3) 158(6) 
K' 4.2(5) 3.4(4) 3.4(4) 3.6(5) 3.0(4) 3.0(4) 3.3(4) 
V0 (Å3) 365.4(9) 360.8(8) 357.6(8) 357.2(9) 355.0(8) 354.0(8) - 

        
K0 (a) (GPa) 165(3) 174(3) 152(3) 134(3) 144(3) 144(3) 146(5) 
K'(a) 3.6(4) 3.0(4) 3.8(5) 3.9(5) 3.3(4) 3.4(4) 4.6(3) 
a0 (Å) 4.785(5) 4.748(3) 4.717(4) 4.714(6) 4.703(4) 4.700(6) - 

        
K0 (b) (GPa) 201(4) 234(4) 251(4) 222(4) 229(4) 227(4) 220(4) 
K'(b) 3.7(5) 2.4(5) 2.0(4) 2.9(5) 2.5(5) 2.5(4) 2.6(3) 
b0 (Å) 8.985(5) 8.963(5) 8.958(5) 8.919(6) 8.888(5) 8.863(7) - 

        
K0 (c) (GPa) 100(3) 113(3) 125(4) 125(3) 141(3) 150(3) 132(4) 
K'(c) 4.8(5) 4.1(5) 3.9(4) 3.7(4) 3.0(3) 2.9(4) 3.3(3) 
c0 (Å) 8.503(10) 8.481(9) 8.466(9) 8.499(10) 8.493(7) 8.498(10) - 
Notes: XRD values are from the experimental work of Gatta et al. (2014) – Al2SiO4(OH)0.25F1.75 
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Table 5.	Bond lengths (Å), polyhedral volumes (Å3) and bond angles (°) in the different topaz 
models at selected pressures. 
	
 P1 P2 P3 P4 P5 
T-F0H8      
Pressure (GPa) 0.7 7.0 18.9 34.3 52.7 
< Al – O > 1.9167 1.8949 1.8660 1.8372 1.8077 
< Al–(O,F)–Al> 138.9 136.7 133.9 131.6 129.6 
< V (Al-octah) > 9.3068 9.0083 8.6160 8.2302 7.8436 
< Si – O > 1.6660 1.6533 1.6359 1.6180 1.5998 
< V (Si-tetrah) > 2.3672 2.3142 2.2429 2.1709 2.0995 
< H – O > 0.9658 0.9668 0.9679 0.9695 0.9713 
< H–O–Al> 105.7 105.8 105.9 105.9 105.9 

      
T-F2H6      
Pressure (GPa) 1.1 6.9 19.0 34.0 51.5 
< Al – O > 1.9027 1.8842 1.8563 1.8283 1.7997 
< Al–(O,F)–Al> 143.5 140.6 136.5 133.0 130.4 
< V (Al-octah) > 9.1086 8.8554 8.4831 8.1146 7.7435 
< Si – O > 1.6613 1.6508 1.6334 1.6158 1.5978 
< V (Si-tetrah) > 2.3476 2.3040 2.2324 2.1613 2.0897 
< H – O > 0.9620 0.9642 0.9646 0.9651 0.9653 
< H–O–Al> 108.7 108.0 108.3 108.7 108.9 

      
T-F4H4      
Pressure (GPa) 1.1 9.2 22.1 37.8 52.2 
< Al – (F,O) > 1.8964 1.8740 1.8464 1.8187 1.7907 
< Al–(O,F)–Al > 142.5 139.7 136.3 133.4 131.1 
< V (Al-octah) > 9.0066 8.7082 8.3466 7.9879 7.6313 
< Si – O > 1.6622 1.6479 1.6303 1.6120 1.5940 
< V (Si-tetrah) > 2.3527 2.2931 2.2205 2.1464 2.0754 
< H – O > 0.9615 0.9615 0.9608 0.9583 0.9555 
< H–O–Al> 109.6 110.8 112.3 113.6 114.6 

      
T-F6H2      
Pressure (GPa) 1.1 6.9 19.0 34.0 51.5 
< Al – O > 1.8867 1.8597 1.8368 1.8058 1.7848 
< Al–(O,F)–Al> 147.1 143.1 139.6 135.0 132.2 
< V (Al-octah) > 8.8565 8.5047 8.2122 7.8195 7.5558 
< Si – O > 1.6609 1.6431 1.6278 1.6069 1.5930 
< V (Si-tetrah) > 2.3479 2.2737 2.2104 2.1258 2.0700 
< H – O > 0.9616 0.9611 0.9605 0.9589 0.9571 
< H–O–Al> 109.3 110.7 112.0 113.6 114.4 

      
T-F7H1      
Pressure (GPa) 1.1 6.9 19.0 34.0 51.5 
< Al – O > 1.8799 1.8632 1.8364 1.8056 1.7849 
< Al–(O,F)–Al> 147.7 145.1 140.8 135.9 133.1 
< V (Al-octah) > 8.7630 8.5460 8.2043 7.8161 7.5571 
< Si – O > 1.6557 1.6446 1.6269 1.6062 1.5927 
< V (Si-tetrah) > 2.3270 2.2809 2.2083 2.1241 2.0698 
< H – O > 0.9609 0.9607 0.9602 0.9582 0.9562 
< H–O–Al> 110.8 111.7 113.1 114.7 115.4 
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T-F8H0      
Pressure (GPa) 1.2 9.4 22.1 37.1 50.6 
<Al – (F,O)> 1.8758 1.8533 1.8270 1.7995 1.7764 
< Al–(O,F)–Al > 148.6 145.3 141.1 137.9 133.7 
< V (Al-octah) > 8.6941 8.4057 8.0755 7.7319 7.4505 
<Si – O> 1.6587 1.6434 1.6250 1.6042 1.5896 
< V (Si-tetrah) > 2.3402 2.2769 2.2015 2.1187 2.0594 
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Table 6. Calculated elastic constants (GPa), bulk (K), shear (µ) and Young’s (E) moduli in GPa and 
mean shear and longitudinal wave velocities (νs and νl, respectively) in km/s at 0 GPa for the 
different topaz models. 
 
SOEC Component T-F0H8 T-F2H6 T-F4H4 T-F6H2 T-F7H1 T-F8H0 Exp. 
C11 302.30 285.07 259.50 267.36 269.04 270.31 278.5(5) 
C12 104.74 111.97 119.40 118.25 117.91 119.41 120.4(2) 
C13 78.32 75.543 79.27 78.14 79.71 81.01 80.6(1) 
C22 340.94 343.05 342.94 337.48 334.14 331.07 344.8(6) 
C23 77.04 79.19 79.86 80.55 80.49 81.21 80.3(1) 
C33 229.79 245.49 256.02 278.44 288.70 295.98 292.5(5) 
C44 102.69 103.76 104.59 104.16 103.78 103.47 108.6(8) 
C55 111.34 115.61 122.23 125.16 126.63 127.88 132.9(8) 
C66 123.90 126.16 127.47 127.04 126.86 126.32 130.3(8) 

        
KV 154.80 156.33 157.28 159.68 160.90 162.29 - 
KR 149.12 151.50 153.03 156.96 158.89 160.68 - 
KVRH 151.96 153.92 155.15 158.32 159.89 161.49 - 
µV 108.45 109.56 109.52 111.69 112.37 112.58 - 
µR 106.61 107.46 106.55 109.27 109.95 110.13 - 
µVRH 107.53 108.51 108.03 110.48 111.16 111.36 - 
EVRH 261.02 263.59 263.05 268.90 270.74 271.64 - 
νs 5.73 5.71 5.66 5.69 5.69 5.69 - 
νp 9.73 9.71 9.67 9.71 9.73 9.74 - 
Eperimental data taken from the work of Haussuhl (1993) – Al2SiO4F2. 
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FIGURE CAPTIONS 
 
Figure 1. Polyhedral models of (a) T-F0H8, (b) T-F2H6, (c) T-F4H4, (d) T-F6H2, (e) T-F7H1 and 
(f) T-F8H0 structures as seen from the [100] direction. In the symmetric structures (a, c and f) the 
irreducible atoms are labelled. 
	
Figure 2. (a) Topaz unit cell volume as a function of fluorine content. (b) Relative axial variations 
related to the fluorine content. (c) Topaz density as a function of fluorine content. 
 
Figure 3. (a) ΔE (Ha) vs Volume (Å3) plot for the different topaz models. (b) Plot of topaz relative 
compression as a function of pressure, for the different F contents, together with previous 
experimental results (Gatta et al., 2014; Gatta et al., 2006a; Komatsu et al., 2003). (c,d) Zoom of the 
black-boxed and red-boxed highlighted section of (b), respectively.  
 
Figure 4. Relative axial compression (l/l0) of the different topaz models, as a function of pressure. 
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