1	
2	
3 4	Hydroxyl, Cl, and F Partitioning Between High-Silica Rhyolitic Melts-Apatite-Fluid(s) at 50-200 MPa and 700-1000 °C
5	
6	REVISION 2
7	
8	
9	
10 11	JAMES D. WEBSTER ¹ , BETH A. GOLDOFF ¹ , RYAN N. FLESCH ² , PATRICIA A. NADEAU ³ , ZACHARY W. SILBERT ⁴
12	
13 14 15 16 17 18 19 20 21 22 23 24 25 26	 ¹Department of Earth and Planetary Sciences American Museum of Natural History Central Park West at 79th Street New York, NY 10024-5192, USA ²Department of Geology College of William and Mary P.O. Box 8795 Williamsburg, VA 23187-8795, USA ³Department of Geological Sciences Salem State University 352 Lafayette Street Salem, MA 01970 USA
27 28 29	⁴ 2 Sutton Place Ossining NY 10562, USA
30	
31	Submitted to the American Mineralogist February 29, 2016
32	First revised version resubmitted July 5, 2016 and second revised version on 21 July 2016
33	
34	

2

35 ABSTRACT

36 Hydrothermal experiments were conducted with fluid- and apatite-saturated, high-silica 37 rhyolitic melts at ca. 700 - 1000 °C and 50 and 200 MPa to determine the distribution of 38 H₂O/OH, Cl, and F between melt, apatite, aqueous vapor, brine, or vapor plus brine. One to 39 three micron-diameter seed grains of fluorapatite were added to starting charges to serve as 40 apatite nucleation sites. CaHPO₄ and Ca(OH)₂ were used to stimulate apatite crystallization, 41 and temperature was cycled daily, ± 10 to ± 15 °C, to promote growth of relatively equant 42 apatite crystals large enough for electron probe microanalysis (EPMA). The experiments were 43 conducted with gold capsules and run in cold-seal pressure vessels on a hydrothermal line and 44 an internally heated gas pressure vessel for durations of 165 to 1149 hours.

45 The run-product glasses were analyzed by EPMA and Fourier Transform Infrared 46 Spectroscopy, apatites by EPMA, and most fluid phases by chloridometer; Cl contents of fluids 47 were also estimated by mass balance calculations. The fluids contained 0.3 to 39 wt% Cl at run 48 conditions. Most experiments were conducted at 50 MPa, and these glasses contain 0.02 to 0.42 49 wt% Cl, 1.8 to 3.1 wt% H₂O, and 0.01 to 0.19 wt% F. The molar $(Al_2O_3/CaO+Na_2O+K_2O = CaO+Na_2O+K_2O)$ 50 A/CNK) and molar (Na₂O/Na₂O+K₂O = N/NK) ratios of the 50 MPa glasses range from 0.88 to 51 1.04 and 0.48 to 0.68, respectively, and straddle the A/CNK and N/NK of the starting glass 52 (0.99 and 0.59, respectively). The measured wt% Cl and F in the 50-MPa apatites range from 0.14 to 3.8 (X_{Cl}^{apat} of 0.02 to 0.56) and 0.32 to 2.4 (X_{F}^{apat} of 0.08 to 0.63), respectively. 53 Stoichiometrically constrained X_{OH}^{apat} ranges from 0.14 to 0.7. 54

Partition and exchange coefficients were determined for OH, Cl, and F distribution between apatite and melt \pm fluids. The distribution of these volatile components varies with pressure and melt and apatite compositions. The exchange of F and Cl between apatite and

58 melt, for example, fluctuates with the Si, P, Mg, Na, Ce, Fe, and $S \pm Ca$ contents of the apatite 59 and with the molar A/CNK and N/NK ratios of the melts. Water and hydroxyl exchange 60 between experimental apatite and melt was also investigated. It is determined empirically that the: $(X_{H2O}^{\text{melt}}/X_{Cl}^{\text{melt}}) = ((-19.66) + (39.13)*(X_{OH}^{\text{apat}})/(X_{Cl}^{\text{apat}}))$ for felsic melts at 50 to 200 61 62 MPa, having molar A/CNK ratios between 0.88 and 1.1, N/NK ratios > 0.55, and containing ca. 63 2 - 6 wt% H₂O. The apatites are characterized by per formula unit (6 > Si/Mg > 0.3). We test 64 this relationship by comparing H₂O contents measured in melt inclusions from Augustine 65 volcano, Alaska, with calculated H₂O concentrations of apatites from 9 samples from 7 of its 66 felsic eruptive units. The results for both approaches are consistent within precision for 6 of the 67 samples.

68 The empirical volatile exchange relationships determined for melt-apatite, melt-fluid, 69 and apatite-fluid pairs are applicable to a variety of magmatic systems. One implication of this 70 study is that the H₂O concentrations of felsic melts may be calculated from apatite compositions 71 for volcanic systems involving equilibrium between these phases at 50 to 200 MPa, if estimates 72 for the Cl contents of the melts are available. This approach, however, will require additional 73 experimentation and testing. The compositions of igneous apatites could also provide 74 fundamental constraints on the concentrations of H₂O and other volatiles in mineralizing 75 plutonic systems for which melt inclusions are small, rare and/or crystallized. Magmatic 76 apatites may also support assessment of H₂O concentrations in melts derived from melt 77 inclusion compositions.

78 **Keywords:** apatite, melt, fluids, hydroxyl, chlorine, fluorine.

79 INTRODUCTION

4

80 Apatite is Earth's most abundant, naturally occurring phosphate mineral, but in most 81 magmatic rocks it is present only as a trace mineral. Despite this, it follows that the ubiquitous 82 crystallization of apatite has important bearing on trace-element behavior during magma 83 evolution since apatite incorporates REEs and other trace metals. Apatite also incorporates F, 84 Cl, OH, S, and C in its structure. If the concentrations of these fugitive volatile components are 85 retained in igneous apatite as magmas crystallize and/or erupt, then analyses of apatite 86 chemistry can provide crucial constraints on the raw concentrations, fugacities, and the overall 87 behaviors of these volatiles in magmas and coexisting fluids. Thus, apatite has been applied as 88 a still-developing geochemical tool to monitor magmatic volatile behavior during melt and fluid 89 evolution and to provide constraints on how volatiles partition between apatite, fluids, and melts 90 as magmas ascend through the crust, cool, and crystallize.

91 Of particular importance is that the OH contents of apatite are a function of the 92 concentrations and thermodynamic behavior of H₂O in coexisting melts (Mathez and Webster 93 2005; Webster et al. 2012). These relationships have received particular attention through 94 recent efforts to determine magmatic H₂O concentrations in terrestrial and extraterrestrial 95 basaltic magmas (Patiño and Douce 2006; McCubbin et al. 2010a,b; Greenwood et al. 2011; 96 Patiño et al. 2011; Vander Kaaden et al. 2012; Gross et al. 2013; Sarafian et al. 2013; Tartese et 97 al. 2013, 2014; Barnes et al. 2014; McCubbin et al. 2014; Boyce et al. 2014; McCubbin and 98 Jones 2015; Stock et al. 2016; McCubbin et al. 2016). As the primary magmatic volatile 99 component, H₂O is fundamentally important because it controls melting processes in the crust 100 and mantle, melt viscosity, the capacity of magma to ascend and flow, the explosivity of 101 eruptions, and the deposition of a variety of metallic magmatic-hydrothermal ores. It follows

that improved constraints on the ranges in magmatic H₂O concentrations are crucial for
 interpreting magmatic, eruptive, and mineralizing processes.

104 Prior research on H₂O and other magmatic volatiles has been based, largely, on analyses of 105 silicate melt (glass) inclusions (MI), but these samples of melt are subject to a host of potential 106 complications including loss of H_2 and/or H_2O via diffusion through host crystals (Audetat and 107 Lowenstern 2014). Magmatic apatite entrapped in other phenocrysts, on the other hand, is less 108 susceptible to these problems. Volatile diffusion through apatite, for example, is sufficiently 109 slow such that apatite is better at retaining accurate information on magmatic volatiles (Brenan 110 1994; Piccoli and Candela 2002). Moreover, MI occur only rarely in plutonic rocks. When 111 present, they are typically crystallized so they must be rehomogenized to glass prior to analysis 112 for H₂O and other volatile components. The rehomogenization process can pose problems 113 regarding H₂O retention in the melt during heating. Plutons, however, do contain apatites that 114 preserve evidence of magma volatiles. This geochemical study of felsic melts (Table 1) 115 investigates experimental and modeling relations that are useful for estimating H_2O and $Cl \pm F$ 116 in felsic melts. The results are useful for comparison with volatiles from MI data, and with 117 further development may also prove beneficial for computing H₂O concentrations in granitic 118 plutons mineralized with Cu, Mo, Au, and other metals.

119 **METHODS**

120 Experimental

121 All hydrothermal experiments were conducted at fluid(s)-saturated conditions, and the 122 calculated fluid(s)/melt mass ratios varied from ca. 0.2 - 0.5 at run conditions. The capsules 123 were loaded with approximately 30 to 60 mg of natural rhyolitic glass powder, \leq 5 mg of 124 Durango apatite seeds, \leq 5 mg of CaHPO₄, < 3 mg of Ca(OH)₂, \leq 8 mg of an aqueous 2 molar

125 HCl solution, ≤ 7 mg of an aqueous NaCl plus KCl plus HCl solution, ≤ 10 mg of NaCl plus 126 KCl salts, and ≤ 10 mg of distilled deionized H₂O (Table 2). Two experimental charges also 127 included $\leq 5 \text{ mg}$ of aqueous H₃PO₄ solution. The component concentrations in the starting 128 charges were varied to generate apatite grains with a range of F, Cl, and OH contents (Tables 2 129 and 3). In contrast, the mixtures and solutions of NaCl, KCl, and HCl were used to maintain the 130 molar A/CNK (Al₂O₃/CaO+Na₂O+K₂O) and N/NK (Na₂O/Na₂O+K₂O) ratios of the melts 131 within more modest ranges. The experiments were conducted in Au capsules with external 132 diameters of 3 to 5 mm (wall thickness of 0.13 mm). The capsules were crimped shut, welded 133 with a tungsten-tipped arc welder, weighed, and stored in a drying oven at 115 °C for a 134 minimum of 1 hour before being reweighed to check for loss of volatile components (i.e., via 135 open or leaking capsules).

136 Fine apatite seed grains were prepared from a purified mineral separate of the Durango, 137 apatite (Durango, Mexico) (Jarosewich et al. 1980) by hand crushing to fragment sizes of 10 to 138 30 µm in diameter in an agate mortar and pestle. These fragments were further ground in a 139 McCrone micronizing mill (using sintered alumina grinding elements) to generate ultra-fine 1 to 140 3 µm diameter seeds. The final grinding process generated shredded apatite grain exteriors with 141 highly reactive surface areas. The Ca and P concentrations of the starting charges were 142 supplemented by addition of CaHPO₄ and Ca(OH)₂ \pm H₃PO₄ to stimulate growth of new apatite 143 on the Durango apatite seeds.

The experiments were conducted in an internally heated pressure vessel (IHPV) and in Rene 41 cold seal (CS) pressure vessels at the American Museum of Natural History (AMNH) using the techniques of Doherty et al. (2014). Run temperatures and pressures were monitored using chromel-alumel thermocouples and factory-calibrated bourdon tube gauges. The temperatures

were initially held constant for ca. 72 hours, and subsequently, temperature was cycled daily within \pm 10 to \pm 15 °C of the reported run temperature. The runs were concluded by holding the temperature constant (at run temperatures) for the final 48 to 72 hours. This procedure was employed to assist in the growth of apatite phenocrysts large enough for analysis by EPMA. The IHPV runs were quenched from run temperature to below the predicted glass transition temperature within 20 seconds. The CS experiments were quenched to the glass transition temperature within < 40 seconds.

155 Experimental f_{O2} was controlled by the intrinsic f_{H2} of the CS pressure vessels, their nickel 156 alloy (Rene 41) filler rods, and the f_{H2} of the IHPV as well as by the water activity of each 157 charge. We did not intentionally buffer f_{O2} with either H₂-emitting solid buffer assemblages or 158 a Shaw membrane. The ambient f_{O2} buffering capacity of the IHPV is approximately equivalent 159 to that of the Mn_{1-x}O-Mn₃O₄ solid oxygen buffer for runs with an a_{H2O} of one (Mathez and 160 Webster 2005). As most IHPV runs had an $a_{H2O} \le 1$ and the run temperatures are different from 161 the IHPV test conditions, the f_{O2} of these runs was less than that of the Mn_{1-x}O-Mn₃O₄ buffer at 162 run conditions. Previously, this IHPV has been demonstrated to provide a range in f_{02} of NNO 163 to NNO + 2 log units (Webster et al. 2009; Webster et al. 2011) for run conditions and a_{H2O} 164 similar to those of the present study. The CS pressure vessels were controlled at an f_{O2} 165 marginally \geq of the NNO solid oxygen buffer with a_{H2O} near unity.

166 Analytical

167 **EPMA.** The glass and apatite compositions were measured with wavelength-dispersive 168 spectrometry using a Cameca SX-100 electron microprobe (EPMA) at the AMNH (Table 3). 169 Experimentally generated and natural apatites were analyzed for F, Cl, Na, Fe, Ti, Si, Mn, S, 170 Mg, Ca, Al, and P \pm K, Ce, Sr, and Ba, and the standard materials used include MgF₂ for F,

8

boracite for Cl, berlinite for P, wollastonite for Ca, and barite for S. All elements were analyzed
using a 15 kV voltage and 20 nA cup (beam) current except for F, Cl, K, and Na for which a 10
kV and 4 nA cup current were used. Count times were 20 seconds for P, Ca, Ti, Fe, Si, Mg, Al,
S, Sr, Ce, Ba, and Mn; and 30 seconds for F, Na, Cl, and K. All analyses were conducted using
a 4 to 6 µm diameter beam. Four to twelve apatite grains were analyzed for each set of run
products.

Most analyses involved movement of the apatite under the electron beam. Stationary 177 178 analyses were avoided when possible because they can be problematic (Stormer et al. 1993; 179 Goldoff et al. 2012; Stock et al. 2015) given that the X-ray intensities of the primary 180 constituents of apatite (i.e., F, Cl, P, and Ca) vary with extended exposure time to an electron 181 beam. Hence, we searched for apatite grains larger than 10 µm in small dimension and moved 182 these samples under the defocussed electron beam during analyses. We also attempted to 183 analyze apatite grains oriented perpendicular to their c-axis, as X-ray intensities for F and Cl 184 have been shown to be most stable at this orientation (Goldoff et al. 2012). This analytical 185 objective was not always achieved however. The averages reported in this study include a few 186 analyses conducted at or near orientations of the beam parallel to the apatite axis and some 187 stationary analyses. Goldoff et al. (2012) also determined that the measured X-ray intensities of 188 F and Cl are comparatively more stable for OH-poor apatite for intermediate composition (non 189 F- or Cl-end member) apatites at the analytical conditions used herein, and nearly all apatites 190 analyzed contain sub-equal mole fractions of F, OH, and Cl.

191 The Durango apatite was analyzed 24 times during the course of this investigation to test 192 analytical accuracy and monitor changes in results from analytical session to session. The 193 EPMA analyses return 3.34±0.07 wt% F, 0.42±0.04 wt% Cl, 54.26±0.36 wt% CaO, 40.43±0.44 194 wt% P_2O_5 , and 0.34 ± 0.08 wt% SO_2 . For comparison, wet-chemical analyses indicate that this 195 apatite contains 3.53, 0.41, 54.02, 40.78, and 0.30 wt% (Jarosewich et al. 1980) of these 196 constituents, respectively.

197 The glasses were analyzed for Na₂O, K₂O, FeO, SiO₂, and F in the first instrument pass 198 using an electron beam accelerating potential of 15 kV and a 2 nA cup current. Al₂O₃, TiO₂, 199 CaO, MgO, MnO, P₂O₅, Cl, and SO₂ \pm SrO and Ce₂O₃ were analyzed in the second instrument 200 pass using an accelerating potential of 15 kV and 10 nA cup current. Both beam conditions 201 included use of a 5 μ m, defocussed spot. The glasses were continually moved under the 202 electron beam to minimize alkali and/or F migration or loss.

203 A high-silica rhyolite glass, the Big Southern Buttes obsidian, was analyzed 36 times 204 during the course of this investigation (Table 1). EPMA returns of 0.22±0.10 wt% F and 205 0.199±0.01 wt% Cl compare to wet-chemical analyses of 0.31 and 0.2 wt% (Macdonald et al. 206 1992) for these constituents, respectively. These analyses also provide relative precisions about 207 the mean values. The 1- σ precisions are > 150 rel% for MgO, P₂O₅, and SO₂ analyses of these 208 trace constituents. The 1- σ precisions range from 30 - 60 rel% for F, TiO₂, and MnO. The 1- σ 209 precisions are 15 rel% for CaO, 10 rel% for Na₂O and FeO, 6 rel% for Cl, 3 rel% for K₂O, 2 210 rel% for Al₂O₃, and 0.8 rel% for SiO₂.

FTIR. The H₂O concentrations of the run-product glasses, containing minimal to no crystals and/or vesicles, were measured with Fourier Transform Infrared Spectroscopy (FTIR) at the AMNH (Table 3). Glass chips were doubly polished to wafers with thicknesses of 70 to 327 μ m (with a range of $\leq 5 \mu$ m in an individual wafer), that supported transmission of the IR beam between the rare crystals and vesicles while maintaining a beam size of $> 5000 \mu$ m² (some areas

10

were 100 x 100 μ m). Wafer thicknesses were determined using a Mitutoyo digitometer with a precision of $\pm 2 \mu$ m.

218 FTIR measurements to determine the total H₂O concentrations in glass wafers were made 219 using a Thermo Nicolet Nexus 670 FTIR with a continuum microscope by Thermo Spectra-220 Tech at room temperature in transmittance mode. Nitrogen gas was passed at a rate of 15 L/min 221 to minimize potential H and C contamination. Spectra were collected in both the mid- and near-IR regions (400 to 8500 cm⁻¹) at a resolution of 4 cm⁻¹ using a KBr beam splitter, a MCT/A 222 223 detector cooled by liquid N₂, and a globar source. Four hundred scans were performed for each 224 spectrum, and a background spectrum was taken after each analysis. Four analyses were 225 averaged to determine the homogeneity of the glass and to confirm that each analysis was taken without significant contribution from crystals or vesicles. The IR absorptions of the 4500 cm⁻¹ 226 and 5200 cm⁻¹ (OH⁻ and molecular H₂O, respectively) peaks were measured and then converted 227 228 to concentrations of molecular water and hydroxyl ion using the Beer-Lambert Law as modified 229 by Nowak and Behrens (1995) (see Mandeville et al. (2002) for details). The concentrations 230 were combined to give total H₂O contents. The extinction coefficients, $\varepsilon_{5200} = 1.79$ and $\varepsilon_{4500} =$ 1.56 L/mol•cm of Nowak and Behrens (1995), were used. The 2350 cm⁻¹ peak for molecular 231 232 CO₂ was also monitored to determine the level of carbon contamination of these runs, and all 233 runs save two contain < 25 ppm CO₂. The glasses of experiments CS-15-05C and CS-15-04C 234 contain 122 ppm and 52 ppm CO₂, respectively.

Determining Cl concentrations of fluids and constraints on fluid phase equilibria. The run products include a saline aqueous liquid, variably vesicular glass, as well as salts and aluminosilicate-dominated materials that precipitated from the liquid during the quench. The terminology *fluid or fluid phase(s)* is used, generically, to describe the aqueous phase or phases

11

239 at run conditions. The fluids from these experiments involved low-density vapor, higher-240 density brine (saline liquid), or coexisting vapor and brine. We could not constrain which fluid 241 phases were stable at our run conditions, but the analogue system NaCl-H₂O (Bodnar et al. 242 1985) indicates that vapor and brine coexist with as little as 1 wt% NaCl equivalent (i.e., 0.6 243 wt% Cl) in the bulk integrated fluids at 50 MPa and 800 – 900 °C. Application of these 244 observations indicates that most of our 50 MPa experiments involved vapor and brine, because all but 5 of our runs contained at least 1 wt% Cl in the fluid(s) (Table 3). For experiments 245 246 involving both vapor and brine, the reported Cl concentrations represent those in the bulk-247 integrated vapor plus brine.

248 The Cl concentrations of the quenched liquids of all but 10 of the run products were 249 measured with a Buchler chloridometer. After quenching the experiments, the capsules were 250 cleaned, weighed, and punctured. The punctured capsules were soaked in 500 to 2000 mg of 251 distilled and deionized H₂O to dilute and dissolve all chloride salts that precipitated from the 252 fluids during the quench. The open capsules were soaked for 4 to 28 days prior to fluid 253 sampling and analysis, and afterward, were heated at 115 °C and reweighed. The recorded mass 254 change (before and after the soak-and-heat process) represents the mass of run-product liquid 255 with or without guenched salts that dissolved in the distilled, deionized H₂O during soaking. 256 The diluted fluids were sampled with 10 μ l capillary tubes and analyzed for chloride ions with a 257 Buchler chloridometer using methods of Webster et al. (2009). The measured chloride values 258 were corrected for the dilution factors associated with the post-run soaking of the capsules in 259 distilled and deionized water. Based on replicate analyses of a standard aqueous NaCl solution 260 containing 3.5 wt% Cl, conducted for the duration of this study, the chloridometer returns a 1σ 261 precision of 3.8 rel%.

12

262 The masses of melt, fluid, and apatite and the Cl concentrations of all of the bulk fluids at 263 run conditions were calculated using mass balance. The melt mass was computed by 264 accounting for the increase in melt mass due to dissolution of H₂O, Cl, Ca, and P (from 265 solutions and salts added at the start of each experimental run) into the molten rock powders and 266 for the reduction in melt mass resulting from mineral crystallization. The mass of apatite was 267 calculated from the total mass of P added which was obtained by summing the added masses of 268 apatite seeds, CaHPO₄ salt, dilute phosphoric acid solution, and the trace amount in the glass 269 powders, less the mass of P dissolved in the melt. The mass of P sequestered by the fluid(s) of 270 our runs is negligible based on experimental results of Antignano and Manning (2008) 271 demonstrating that the P concentrations of such fluids saturated in apatite are low. The quantity 272 of fluid was computed from the total mass of the starting charge less the melt mass at run 273 conditions. In order to compute the Cl contents of the fluids (Figure 1), the concentrations of Cl 274 in and the computed masses of melt and apatite were used to estimate the masses of Cl 275 sequestered by melt and apatite. The Cl concentrations of the fluid(s) were computed from the 276 total mass of Cl in the starting charge of the experiment, less that contained in the melt and 277 apatite. This approach also assumes that every two moles of Cl are chemically associated with 278 one mole each of Na and K having an averaged cation mass of 31.

We report and apply the chloridometer data as representative of the Cl contents of most fluid(s) at run conditions (Table 3). For those 10 other run-product liquids not directly analyzed, we apply the calculated Cl concentrations. Excluding the single outlier, the computed and measured Cl concentrations are mutually consistent within the associated precision (Figure 1). The measured concentrations of Cl in the fluids vary from 0.4 to 39 wt%, and the computed Cl contents range from 0.3 to 39 wt%.

13

Error analysis. The reported precisions for the measured concentrations of components in melt, fluid (i.e., Cl by chloridometer), and apatite are simple 1 σ standard deviations about the average compositions. All other reported precisions were determined by standard error propagation methods (Table 3).

289 **RESULTS**

290 Observations on Run Products and Attainment of Equilibrium

291 All glasses are vesicular and contain apatite (Table 2). Most of the glasses also contain 292 minor abundances of iron oxides, and a small number contain trace clinopyroxene \pm plagioclase 293 \pm a wollastonite-like Ca- and Si-dominated phase. Most solid run products contain > 90 vol% 294 glass. The glasses contain three textural varieties of apatite crystals including fine-grained 295 acicular crystals too small for EPMA, clusters of anhedral crystals generally $< 5 \mu m$ in 296 diameter, and subhedral crystals ranging from <5 to rarely 50 μ m in diameter. The first two 297 forms of apatite occur intimately embedded in glass, and are comparable to those observed in 298 experiments of Doherty et al. (2014). The final textural variety of apatite occurs as crystals fully 299 or partially embedded in glass, as crystals within vesicles, or as free crystals (devoid of contact 300 with glass). Apatites analyzed by EPMA for this study were the third (subhedral) textural 301 variety. Specifically, these crystals are $> 10 \mu m$ in diameter. All apatites were largely to fully 302 embedded in glass. These apatites are interpreted to have grown sufficiently slowly from the P-303 bearing starting melt compositions and to have attained equilibrium with melt and fluid(s). This 304 is because crystal growth was limited by the relatively slow diffusion of P (Wolf and London 305 1994; Baker 2008) through the highly polymerized rhyolitic melts.

306 Melts. The molar A/CNK and N/NK ratios of the natural starting glass are 0.99 and 0.59 (Table

307 1), respectively, but the components were exchanged between melt, fluid(s), and apatite during

the course of the runs. As a consequence, the molar A/CNK ratio of the ca. 50 MPa melts vary
from 0.88 to 1.04. Most, however, range from 0.95 to 0.99. Molar N/NK ratios of these melts
range from 0.48 to 0.68, but most are restricted to 0.55 to 0.6.

Run-product glass compositions indicate that the ca. 50 MPa melts dissolved 1.8 to 3.1 wt% H₂O, 0.03 to 0.48 wt% Cl, 0.01 to 0.19 wt% F, and \leq 0.01 wt% SO₂. In several following plots, we have computed the (maximum) Cl solubility (Webster et al. 2015) for each melt (i.e., for melts saturated in brine or vapor plus brine, at equilibrium). We have also normalized the measured Cl contents to these Cl solubilities, in order to reduce dispersion in the experimental results.

317 Apatites. The apatites contain variable halogen and hydroxyl contents as well as differing 318 concentrations of Na, Fe, Ce, Mg, Ca, P, and Si (Table 3). Hydroxyl concentrations range from 319 0.5 to 2.5 wt%, Cl from 0.14 to 3.8 wt%, and F from 0.32 to 2.2 wt%. These values correspond to X_{OH}^{apat} of 0.14 to 0.7, X_{CI}^{apat} of 0.02 to 0.56, and X_{F}^{apat} of 0.08 to 0.59. The X_{OH}^{apat} was 320 321 calculated with the method of Piccoli and Candela (2002) which involves the assumption that 322 the hydroxyl site is filled dominantly by F, Cl, and OH. Thus, the molar occupancies in this site 323 are assumed to sum to unity or near unity. Relationships involving the cations are addressed 324 below.

325 **DISCUSSION**

326 Melt compositional relations

The H_2O , F, and Cl concentrations in the melts vary due to exchange of F, OH, and Cl between the F-rich Durango starting apatite, the melt, and the fluids. The H_2O and Cl contents also change as a function of the fluid phase relations in the runs.

330	The concentrations of H ₂ O in most fluid(s)-saturated rhyolitic melts at 50 MPa exhibit little
331	change with increasing Cl in the melts even though the Cl contents of the accompanying fluids
332	vary from < 1 to 39 wt% (Figure 2A,B). In fact, all but two of the ca. 50 MPa and 850 °C melts
333	are consistent with an average H_2O content of 2.71±0.18 wt%. This value agrees well with
334	modeled H ₂ O solubilities of 2.78 wt% (Ghiorso and Gualda 2015), 2.6 wt% (Newman and
335	Lowenstern 2002), and 2.69 wt% (Moore et al. 1998) for rhyolitic melts at 50 MPa and 850 °C.
336	It might be expected that the H ₂ O contents of the melts should decrease as increasing quantities
337	of NaCl and KCl, with lesser HCl, were added to the experiments. Diluting the H_2O in the
338	fluid(s), by addition of chlorides, decreases H_2O concentrations in fluids which might also
339	decrease the H_2O concentrations of the coexisting melts at equilibrium. It is noteworthy that the
340	two 50 MPa melts containing the maximum recorded Cl contents (e.g., 0.35 wt%) do exhibit
341	reduced H ₂ O contents (Fig. 2A). Likewise, the H ₂ O contents of the four 200 MPa runs also
342	remain relatively fixed at 5.68 \pm 0.15 wt% as the Cl concentrations of these melts increase
343	through a range of 0.2 wt% and the coexisting fluids increase from 4 to 7.6 wt%.

344 These observations can be interpreted by considering the solubility behavior of Cl in these 345 melts and the relevant phase relations of vapor and brine. The relationship showing relatively 346 fixed H₂O contents of melts with increasing Cl in the melt and fluid(s) system has been 347 observed previously with haplogranite (Webster 1992), topaz rhyolite (Webster and Rebbert 348 1998), phonolite (Webster et al. 2014), and andesite (Botcharnikov et al. 2006; 2007) melts. It 349 reflects strongly non-ideal mixing behavior between H₂O and the chloride species that are 350 dissolved in the fluid(s) with associated effects on volatile dissolution in coexisting melts 351 (Shinohara 1994; Lowenstern 1994; Signorelli and Carroll 2000; Webster and Mandeville 352 2007). In this regard, H₂O and dissolved alkali chloride species in aqueous hydrothermal

16

353 solutions mix non-ideally within and near the vapor-brine solvus in pressure-temperature-354 composition space (Bodnar et al. 1985; Dreisner and Heinrich 2007). The dissolution behavior 355 of Cl in melt is also relevant. The abscissa of Figure 2B expresses the Cl contents of melt as the 356 measured Cl concentration normalized to the modeled solubility of Cl for the specific 357 temperature, pressure, and composition of each melt. With values of the (measured Cl/modeled 358 Cl) ratio <1, the melt is saturated in a Cl-bearing vapor. However, with increasing Cl in the 359 system, there is a break in slope at values of the (measured Cl/modeled Cl) ratio of unity where 360 the melt is in equilibrium with either brine only (along the vertical curve in Fig. 2B) or brine 361 plus vapor (at the intersection of the vertical and horizontal curves) and the melt contains its 362 maximum possible Cl content. At the condition of two fluid phases, changes in the Cl or H_2O 363 concentrations of the bulk system cause changes in the ratio of vapor to brine while the Cl or 364 H_2O concentrations of the melt are fixed. It is only along the vertical curve that the H_2O 365 concentration of the melt is free to vary.

366 Apatite compositional relations

367 Major and minor components, in addition to OH, F, and Cl, can vary significantly within the 368 experimental apatites, and several of the mechanisms of trace-component incorporation within 369 apatite involve coupled substitutions. Magnesium and Na correlate positively with Cl (Figure 370 3A); whereas, S, Si (Figure 3B), Ca, and F correlate negatively with Cl. Additionally, Ca, S, 371 and Si associate positively with F and Na, Fe, and Mg correlate negatively with F. The positive 372 Ca-F relations are consistent with the structure-based interpretations of natural apatites from 373 Utah of Hughes et al. (2015), and the Na-Cl correlation may simply reflect the fact that NaCl 374 was the dominant salt used in adding Cl to the experimental charges (Table 2). Some 375 relationships shown by our experimental charges are consistent with prior studies on cation

17

376 sequestration by apatite and with covariations of these cations with halogen and hydroxyl 377 substitutions in apatite. For example, the observation that the Mg contents of apatite are higher 378 in Cl-bearing apatite and lower in apatites with relatively higher F contents is consistent with 379 prior studies on Mg incorporation in apatite (Pan and Fleet 2002). Specifically, Ca replacement 380 by Mg correlates with OH replacement of F as well as Cl as observed previously by (Patel 381 1980). Tacker (2004) reports that Mn preferentially orders with OH. Likewise, higher Mn 382 contents in apatite correlate with increasing (Cl/F) (Pan and Fleet 2002). Fleet et al. (2000) 383 observed previously that:

$$REE^{3+} + Na^{+} = 2Ca^{2+}.$$
 (1)

This geochemical association is supported by the compositions of these experimental apatites as (Ce + Na) substitute for Ca (Fig. 3C). In addition, the substitution of Ce for Ca in the apatites also correlates with changes in the halogen occupancy on the hydroxyl site:

$$388 \qquad 2REE^{3+} + Cl^{-} = 3Ca^{2+} + F^{-}.$$
 (2)

389 The co-substitution of S and Si in apatites correlates with decreasing P (Fig. 3D), consistent 390 with:

$$SO_4^{2-} + SiO_4^{4-} = 2 PO_4^{3-}$$
(3)

of Peng et al. (1997) and Pan and Fleet (2002). Sulfur incorporation in these apatites also
correlates with increasing Na:

394
$$SO_4^{2-} + Na^+ = PO_4^{3-} + Ca^{2+}$$
 (4)

as observed previously by Peng et al. (1997) and Pan and Fleet (2002).

Fluid composition relations

The concentrations of Cl, Na, Mg, and P increase and those of Si and F in apatite decrease with increasing Cl in the coexisting fluid phase(s). Moreover, the per formula unit (pfu) (S+Si) and (Ce+Si) in apatite increase with increasing Cl contents in the fluid(s). The Cl contents of the melt increase with increasing Cl in the fluid(s).

401 **F Partitioning**

402 Although not displayed graphically herein, the F concentrations of apatite appear to 403 correlate positively with the F contents of coexisting melts. This observation is not statistically 404 valid, however, because of the large errors associated with the EPMA analysis of F in the F-405 poor, run-product glasses.

406 Cl Partitioning

407 Fluids(s)/Melts. Chlorine partitions in favor of fluid(s) relative to melts, but Cl partitioning at 408 50 MPa is complicated by the non-ideal mixing and dissolution behaviors of H₂O and Cl in the 409 pseudo-system: rhyolitic melt-apatite-vapor±brine. Figure 4A shows that the Cl concentrations 410 of most melts increase with increasing Cl in the fluid(s), but the data indicate significant 411 dispersion when displayed in this fashion. Consequently, the data have been recast with the Cl 412 in fluid(s) plotted against the (measured Cl/ modeled Cl) melt ratio and with additional data for 413 apatite-free experiments involving haplogranitic melts included in Figure 4B. Here, the 414 partitioning behavior is more apparent. With $\leq 3 \text{ wt}\%$ Cl in the fluid(s) and for (measured Cl/ 415 modeled Cl) melt ratios < 0.9, the Cl content of the melts rises rapidly with increasing Cl in the 416 system whereas the Cl concentrations in the fluid(s) increase minimally. Conversely with 417 continued addition of Cl, there is a break in slope and the (measured Cl/modeled Cl) approaches 418 unity in the melt and remains at or near this value while the Cl in the fluid(s) increases

419 significantly because the melt has dissolved its maximum concentration of Cl. Any additional 420 Cl added to the system is consumed by fluid(s) and coexisting apatite as discussed below. In 421 summary, this behavior is consistent with vapor-melt-apatite-only conditions for those runs with 422 \leq 3 wt% Cl in the fluid(s) and (measured Cl/modeled Cl) ratios < 0.9. It is also consistent with 423 brine-melt-apatite±vapor conditions where (measured Cl/modeled Cl) ratios of the melt are at or 424 near unity as shown previously in the prior experimental studies of Webster (1992), Shinohara 425 (1994), Lowenstern (1994), Webster and Rebbert (1998), Signorelli and Carroll (2000), 426 Botcharnikov et al. (2006, 2007), Webster and Mandeville (2007), and Webster et al. (2014) at 427 shallow crustal pressures and magmatic temperatures. It is noteworthy that the runs conducted 428 at 1000 °C and 50 MPa and at 1000 °C and 100 MPa and are consistent, within estimated 429 precision, with the majority of the other 50 MPa runs that were conducted at ca. 850 °C 430 implying that pressure and temperature can vary through this range with only minimal 431 consequences for Cl distribution between fluid(s) and melt. However, the 200 MPa data 432 indicate that Cl partitions more strongly in favor of the fluid(s) at higher pressure. This has also 433 been observed previously with felsic melts (Webster 1992). The (wt% Cl in fluid[s]/wt% Cl in 434 melt) Nernstian partition coefficients vary from 1.7 to 163 at ca. 50 MPa.

435 **Apatite/Melts.** Chlorine partitions strongly in favor of apatite relative to these felsic melts, and 436 the partitioning behavior shows higher concentrations in both phases as the Cl content of the 437 system increases, which is consistent with prior experimental results (Doherty et al. 2014). 438 Figure 5A displays the $(X_{Cl}^{apat}/X_{OH}^{apat})$ ratio versus the (measured Cl/modeled Cl) ratio for the 439 melts. Here, we have marked out the two runs that experienced a slower, non-isobaric quench 440 by labeling them as SQ in this figure.

20

Our experiments show that the $(X_{Cl}^{apat}/X_{OH}^{apat})$ ratio increases at a relatively modest rate as 441 442 Cl is initially added to the system (with the lowest concentrations of Cl in apatite and melt) and 443 as the (measured Cl/modeled Cl) ratio in the melt increases to values less than but approaching 444 unity. With continued addition of Cl to the system, the (measured Cl/modeled Cl) ratio in melt is fixed near unity after the break in the slope, and henceforth the $(X_{Cl}^{apat}/X_{OH}^{apat})$ ratio increases 445 dramatically because the melt has dissolved its maximum solubility of Cl. This behavior is 446 447 similar, to a first order, to that observed for Cl partitioning between fluid(s) and these melts 448 (Fig. 4B).

Our results involving the high-silica rhyolitic melt are compared (Figure 5B) with prior experiments employing a rhyodacitic melt and conducted at 50 MPa and 850 to 950 °C (Doherty et al. 2014). The two data sets are consistent, within the propagated precision, for low and high concentrations of Cl in the melt, for rhyodacitic to rhyolitic melts with a molar A/CNK ratio of 0.88 to 1.05.

454 **Apatite/fluid(s).** Chlorine partitions in favor of the fluid(s) relative to apatite with Nernstian $D_{Cl}^{apat/fluids}$ ranging from 0.05 to 1.8 for all experiments of this study with most values less than 455 unity. For comparison, Kusebauch et al. (2015) determined D_{Cl}^{apat/fluids} of ca. 2.3 for melt-456 457 absent, volatile-exchange experiments with apatite and fluid at 400 to 700 °C and 200 MPa and Webster et al. (2009) observed D_{Cl}^{apat/fluids} of 0.02 to 0.11 for fluids and apatites saturated in 458 459 rhyodacitic melts at ca. 900 °C and 200 MPa. Moreover, the bulk of our 50 MPa experiments are consistent with increasing $(X_{Cl}^{apat}/X_{OH}^{apat})$ with increasing $X_{Cl}^{fluid(s)}/X_{OH}^{fluid(s)}$ (Figure 6). For 460 50 MPa melts with molar A/CNK ratio of 0.9 to 1.05 and N/NK ratio of 0.53 to 0.68, this 461 462 partitioning behavior is expressed empirically by:

463
$$\frac{X_{Cl}^{apat}}{X_{OH}^{apat}} = 1.701 + 0.506 \times \log \frac{X_{Cl}^{fluids}}{X_{H_2O}^{fluids}}$$
(5)

464 where the mole fractions of the volatile components in the fluid(s) are defined in the appendix.

465 H₂O/OH Partitioning and Exchange

466 **Apatite/melt.** All runs exhibit molar Nernstian partition coefficients for the distribution of OH 467 and H₂O between apatite and melt that are near unity. Values of $D_{XOH}^{apat/melt}$ range from 0.7 to 468 1.4 for all but the two cold seal runs that quenched slowly and non-isobarically. Most of these 469 experiments are consistent with OH and H₂O partitioning slightly in favor of apatite at 50 to 200 470 MPa and 850 to 1000 °C.

471 Recent research has shown that the use of Nernst-style partition coefficients for the essential 472 structural components F, Cl, and OH in apatite is not optimal for calculating the volatile contents of melts because these compositionally simple partition coefficients (e.g., $D_{Cl}^{apat-melt} =$ 473 474 concentration of Cl in apatite/concentration of Cl in melt) for any one of these volatiles may 475 vary with the abundances of the others (Boyce et al. 2014; see summary in McCubbin et al. 2015). To avoid this compositional interdependence of the components in the hydroxyl site of 476 477 apatite, McCubbin et al. (2015) recommend the application of two volatiles in apatite rather 478 than one as is done with simple Nernst-style partition coefficients. Using this approach, two 479 volatiles in apatites can be applied in exchange coefficients (i.e., K_d) such as for example:

480
$$K_{d_{OH-Cl}}^{apat-melt} = \frac{X_{Cl}^{melt} * X_{OH}^{apat}}{X_{OH}^{melt} * X_{Cl}^{apat}}$$
(6)

481 that are based on representative exchange equilibria like:

482
$$X_{OH}^{melt} + X_{Cl}^{apat} = X_{Cl}^{melt} + X_{OH}^{apat}.$$
 (7)

We have adopted this approach to generate exchange coefficients for F, Cl, and OH (Fig. 7). Given that water dissolves in melts as $(OH)^{-}$ as well as molecular H₂O, we use $(OH)^{-}$ in melt to represent the OH/H₂O components in melt that participate in such exchange reactions.

The majority of the $K_{dOH-F}^{apat-felsicmelt}$, $K_{dOH-Cl}^{apat-felsicmelt}$, and $K_{dCl-F}^{apat-felsicmelt}$ values of this 486 487 study are less than unity and range from ca. 0.002 to 0.08, 0.02 to 0.22, and 0.01 to 3.8, respectively. Interestingly, McCubbin et al. (2015) studied exchange equilibria involving 488 apatite and iron-rich basaltic melt at 1 to 1.2 GPa and 950 to 1000°C, and determined K_{dOH-F}^{apat-} 489 basalticmelt, K_{dOH-Cl} apat-basalticmelt, and K_{dCl-F} apat-basalticmelt values that vary from 0.012 to 0.016, 0.018 490 491 to 0.09, and 0.17 to 0.3, respectively. It is remarkable that these ranges overlap reasonably well 492 with those of our runs given the strong differences in fluid phase relations, pressure, and melt 493 composition of the two experimental studies and that our runs involved significant non-ideal 494 mixing behavior for H₂O and Cl.

The influence of melt composition, however, can be significant for exchange reactions like 495 496 these. Prior experimental work has shown that apatite-melt and apatite-fluid volatile 497 partitioning behavior varies with melt composition and, in particular, with changes in the molar 498 A/CNK (Mathez and Webster 2005; Webster et al. 2009; Doherty et al. 2014). This influence is 499 likewise shown by some of the exchange coefficients (Fig. 7). For example, the $K_{dCl-F}^{apat-melt}$ 500 increases and the K_{dOH-Cl}^{apat-melt} decreases with the molar (A/CNK)/(N/NK) ratio of these felsic 501 melts. Here, the molar A/CNK ratio has a larger influence than the N/NK ratio in this relationship. The apparent weak increase in the K_{dOH-F}^{apat-melt}, however, is not statistically 502 503 The propagated errors associated with these exchange coefficients are quite significant. 504 significant (i.e., exceeding 100 rel%) due to the inherent imprecision in measuring the F 505 contents of such low-F melts with accuracy. To this point, we have applied larger symbols for 506 those runs involving relatively lower propagated imprecisions on the K_d values (i.e., values < 100 rel%). These data points demonstrate that the relations involving $K_{dCl-F}^{apat-melt}$ and K_{dOH-} 507 508 ^{apat-melt} and melt composition are statistically valid if we consider the anomalous point for run 509 CS-15-06 (i.e., the run with the lowest value of (A/CNK)/(N/NK)) as an outlier. More experimental data are required to confirm these apparent relations, but it does appear that the K_d 510 511 values are not strictly constant for the ranges in melt composition, pressure, and temperature of 512 this study given the strongly non-ideal mixing behavior for Cl and H₂O in vapor-brine systems. 513 These relationships further indicate that the application of exchange coefficients must involve 514 compositional matching of the melts for interpreting natural systems with experimental data. Moreover, given the apparent lack of constancy for K_{dCl-F}^{apat-melt} and K_{dOH-Cl}^{apat-melt} under the 515 516 experimental conditions of this investigation, we do not use these exchange coefficients but rather we apply ratios of $(X_{OH}^{apat}/X_{Cl}^{apat})$ and $(X_{F}^{apat}/X_{Cl}^{apat})$ in the data interpretation that 517 518 follows.

519 To investigate the partitioning of H₂O/OH between apatite and melts, for example, the 520 exchange coefficients and equilibria expressed in equations (6) and (7) have been rearranged to 521 provide equations that support the calculation of H₂O concentrations in apatite-saturated felsic melts. We plot the $(X_{H2O}^{melt}/X_{Cl}^{melt})$ versus the $(X_{OH}^{apat})/(X_{Cl}^{apat})$ in Figure 8 (A,B). This plot 522 523 distinguishes apatites based on their Si and Mg contents for felsic melts with restricted 524 compositional parameters. For apatite-saturated rhyolitic melts characterized by A/CNK ratios 525 between 0.88 to 1.1 and N/NK ratios > 0.55, empirical fits to the data are expressed by the 526 equation:

527
$$(X_{\rm H2O}^{\rm melt}/X_{\rm Cl}^{\rm melt}) = ((-2.86) + (16.18)^{*}(X_{\rm OH}^{\rm apat})/(X_{\rm Cl}^{\rm apat}))$$
(8)

with an $R^2=0.94$. Equation (8) bears on apatites with pfu Si/Mg ratios > 6. For similar melts coexisting with apatites having pfu (6 > Si/Mg > 0.3) the empirically based relation is:

530
$$(X_{H2O}^{melt}/X_{Cl}^{melt}) = ((-21.99) + (41.48)*(X_{OH}^{apat})/(X_{Cl}^{apat}))$$
 (9)

with an R²=0.89. Regarding the relationships involving apatite volatile components and their trace cation contents, it has been noted previously that Si in apatite correlates positively with F and that Mg correlates positively with Cl while F and Cl are anti-correlated. This is consistent with the observation that the (Si/Mg) pfu ratio varies with the distribution of Cl and OH between apatite and melt as seen in Figure 8.

To expand the applicability of these relations in pressure-temperature-composition space, we have added results from several experiments involving apatites having pfu (6 > Si/Mg > 0.3) in equilibrium with rhyodacitic melts at 200 (Webster et al. 2009) and 50 MPa (Doherty et al. 2014) to generate:

540
$$(X_{H2O}^{melt}/X_{Cl}^{melt}) = ((-19.66) + (39.13)*(X_{OH}^{apat})/(X_{Cl}^{apat}))$$
 (10)

with an $R^2=0.88$. One can rearrange and solve equations (9) and (10) for X_{H2O}^{melt} , but this approach requires an estimate for the X_{Cl}^{melt} which is calculated with equations provided in the appendix.

544 APPLICATION OF THESE DATA

545 Constraining the H₂O concentrations of eruptive and plutonic felsic magmas has important 546 implications for aluminosilicate melting temperatures, melt viscosity, and bulk magma rheology 547 as well as for their role in processes of volcanism, magmatic-hydrothermal mineralization, and 548 magma evolution. Compositions of silicate MI have been used to estimate the concentrations

25

549 of H_2O and other volatile components in magmas, but some MI are fraught with complications 550 including volatile leakage along cracks or host cleavage, diffusive loss of H_2O and H_2 through 551 the host mineral, and/or sequestration of H_2O and CO_2 from melt or glass into the shrinkage or 552 vapor bubbles (Audetat and Lowenstern 2014; Moore et al. 2015; Wallace et al. 2015; Esposito 553 et al. 2016).

554 The compositions of igneous apatite have been employed to determine concentrations of 555 H_2O_2 , F, Cl, S (and CO₂) in melts and magmatic fluids at the times or stages of apatite 556 crystallization (Candela 1986; Brenan 1993; Piccoli and Candela 1994; Marks et al. 2012). Prior 557 apatite-based research has, for example, led to estimates of magmatic H₂O concentrations for 558 basaltic systems (McCubbin et al. 2010a; Vander Kaaden et al. 2012, Gross et al. 2013; Boyce 559 et al. 2014; McCubbin and Jones 2015). Regarding the use of apatite compositions as a 560 geochemical tool, equation (5) supports the estimation of Cl contents in magmatic fluids and 561 equations (8), (9), and (10) provide a basis for calculating the H_2O contents in felsic melts 562 supporting plutonic and volcanic processes. It is important to bear in mind that these relations 563 apply to specific ranges in the molar A/CNK and N/NK ratios of the experimental melts and to 564 experimental apatites with specific ranges in F, Cl, and OH abundances (Figure 9A) and minor-565 to trace-element Si and Mg contents. As demonstrated below, applications of these equations 566 should be restricted to igneous apatites and melts having compositions similar to those of this 567 investigation.

568 Constraining volatile components in magmas of Augustine volcano, Alaska

Augustine volcano is located approximately 290 km southwest of Anchorage and is one of many island-arc stratovolcanoes in the Aleutian island chain of southern Alaska. Augustine was built from numerous prehistoric eruptive deposits (ash and other tephra, lava, and lahar

572 materials) and similar materials from the 7 historic eruptions of the past 200 years. Low K_2O_1 573 calc-alkaline magmas containing elevated volatile abundances (Johnston 1978) and particularly 574 Cl-enriched gases (Symonds et al. 1990) are typical of Augustine's eruptions. Felsic to 575 intermediate SiO₂ content MI contained by Augustine phenocrysts are volatile enriched with up 576 to 8 wt% H₂O, 0.14 wt% CO₂, 0.78 wt% Cl, 0.1 wt% S, and 0.4 wt% F (Roman et al. 2006; 577 Tappen et al. 2009; Webster et al. 2010; Nadeau et al. 2015; Webster unpublished data). 578 Geochemical relationships involving these volatile components in MI and apatites (Webster et 579 al. 2010; Nadeau et al. 2015) imply that most Augustine magmas contained Cl-bearing to Cl-580 enriched fluids that exsolved well prior to eruption (i.e., these magmas were fluid saturated in 581 the shallow, and potentially, in the middle crust).

582 To test the relationship expressed by equation (10), we apply published data on the H_2O and 583 Cl concentrations of MI in pyroxene, plagioclase, and/or amphibole or quartz phenocrysts from 584 4 prehistoric eruptions (i.e., 2100 annum before present (a.b.p.), 1700 a.b.p., 1400 a.b.p., and 585 1000 a.b.p.), phenocrysts erupted in the 1986 and 2006 eruptions (Tappen et al. 2009; Webster 586 et al. 2010), and phenocrysts erupted with a massive Pleistocene pumiceous rhyolite (Nadeau et 587 al. 2015). The averaged molar A/CNK ratios of these felsic MI range from 0.96 to 1.03 which 588 is consistent with the range of 0.88 to 1.1 from the felsic experimental melts. The molar N/NK 589 ratios of the MI, however, range from 0.73 to 0.82 and exceed those of the experimental melts 590 (i.e. ranging from 0.55 to 0.61 for runs involved in the generation of equation (10)); we apply 591 them nevertheless. We also use analytical data on the mole fractions of OH, F, and Cl in apatite 592 grains from these same eruptive units (Fig. 9B, Table 4) to estimate the H_2O concentrations of 593 the magmas involved in these specific eruptions. Most of the analyzed apatites occur as 594 inclusions within pyroxene, plagioclase, iron-titanium oxide, and amphibole phenocrysts, and a

few occur as small individual phenocrysts in the matrix glass. The average pfu (Si/Mg) ratios of apatites from Augustine range from 0.31 to 0.88 which is consistent with the range of 6 >(Si/Mg) > 0.3 for the experimental apatites providing the empirical basis for equation (10).

The Cl concentrations of those MI which have also been analyzed for H₂O are converted to values of X_{Cl}^{melt} (see appendix), and the X_{Cl}^{melt} values are fed into equation (10) along with the averaged X_{OH}^{apat} and the X_{Cl}^{apat} values of the Augustine apatites from each sample. As detailed in the appendix, an initial estimate of the mass of H₂O in the melt is required to calculate the X_{Cl}^{melt} , and this value is subsequently changed iteratively until the calculated wt% H₂O in the melt provides a H₂O content equivalent to that of the estimated iterative value

604 Apparent H₂O concentrations calculated from the averaged apatite data are compared with 605 the measured averages of the H₂O contents of the MI for the 9 samples of these 7 units in Figure 606 10. Before evaluation of the data, it should be kept in mind that a comparison like this assumes 607 that the apatite grains grew and maintained equilibrium with felsic fractions of Augustine melts 608 while the felsic MI were being entrapped in other phenocrysts. It also involves the assumption 609 that the average Cl and H₂O contents of the melts and the average F and Cl contents of the 610 apatites (recall that the OH contents of apatites are calculated from the measured F and Cl 611 concentrations by difference) reflect the volatile exchange processes linking these phases during 612 magma evolution. It is noteworthy that the 1- σ spread in the precision of the measured H₂O concentrations of MI from units erupted 1400 and 1000 years before present is ca. ± 2 wt%, 613 614 because these MI represent a large range in pressures as the Augustine magmas ascended through the shallow crust (Tappen et al. 2009). For example, the measured H₂O contents of the 615 MI erupted ca. 1000 a.b.p. range from 1.6 to 7.6 wt%, and those in MI that erupted 1400 a.b.p. 616 617 range from 2 to 8 wt%. It is clear that application of data like these, for such a comparison, is not ideal. Conversely, the measured range in H_2O is much smaller for MI erupted during the Pleistocene (i.e. the yellow pumice), 1700 a.b.p., in 1986 and again in 2006. Each of these samples demonstrates a strong and statistically significant agreement between measured and calculated H_2O concentrations. The cause for the lack of agreement for the two other Pleistocene samples is not known.

623 IMPLICATIONS

This study provides new experimental data and insights into the partitioning and exchange of F, Cl, and OH/H₂O between aqueous fluids, apatite, and felsic aluminosilicate melts at ca. 700 to 1000 °C and 50 to 200 MPa. The determined relationships bear on magma evolution, fluid exsolution, and the potential for mineralization in felsic plutons.

The experimental apatites are generally subequal in their F, OH, and Cl contents, and hence, contain a significant contribution from OH. The melts contain trace to minor concentrations of F, 1.8 to 3.1 wt% H₂O, and trace levels of Cl up to values equivalent to brine-saturated felsic melts. Volatile distribution between these phases is observed to vary with pressure and the molar A/CNK and N/NK ratios of the melts, as well as the Si, P, Mg, Ce, Na, S, Fe, and \pm Ca concentrations of the apatites.

The experimental volatile exchange relationships determined for melt-apatite, melt-fluid, and apatite-fluid pairs are potentially applicable to a variety of magmatic systems. Of particular interest is that the H_2O concentrations of felsic melts may be calculated from apatite compositions for magmatic systems involving equilibrium between these phases at 50 to 200 MPa, if estimates for the Cl contents of the melts are available and if the apatites are large enough for EPMA. With further development, this approach may prove to be highly useful for verifying the H_2O concentrations of eruptive magmas as constrained from MI. For example,

29

641 our comparison of H₂O concentrations measured in silicate melt inclusions from 7 eruptive 642 units of Augustine volcano, Alaska, with apparent H₂O contents calculated from apatite 643 compositions indicates reasonable agreement for 4 of the units. This application, however, also 644 points to the need for valid information on the timing of apatite crystallization, on the 645 equilibration of apatite with melt with or without fluid, and on the potential for late-stage 646 reaction and/or re-equilibration of apatite and other phases. The compositions of igneous 647 apatites should also provide fundamental constraints on the concentrations of H₂O and other 648 volatiles in mineralizing plutonic systems for which MI are rare and typically crystallized (i.e., 649 MI that are difficult to locate, prepare, and analyze).

650 In our assessment, these initial results are promising and indicate that additional 651 experimentation is required to expand the ranges of the experimental apatite compositions to 652 better fill the OH-F-Cl compositional space (Fig. 9A). Additional experiments for near end-653 member F-, Cl-, and OH-rich apatites, for example, are needed. Moreover, future experiments 654 should cover a broader range in crustal pressures and work to better constrain the importance of 655 melt composition on the exchanges of these volatile components between melt and apatite. 656 Additionally, the role of other key magmatic volatile components, including CO₂ and reduced 657 and oxidized S species in the fluids, should be investigated. Finally with regard to equilibrium 658 during volatile exchange, future comparative testing would best involve either MI entrapped 659 within apatite phenocrysts and/or MI and apatites co-entrapped within the same growth zones of 660 other phenocrysts. Presumably, equilibration of apatite and melt would be better constrained in 661 the latter two situations.

662 ACKNOWLEDGEMENTS

663	We appreciate di	scussions on	apatite-melt	thermodynamic	relations	with Philip	o Piccoli,	Francis
-----	------------------	--------------	--------------	---------------	-----------	-------------	------------	---------

- 664 McCubbin, and Jeremy Boyce, and detailed reviews by D. Harlov and two anonymous referees.
- 665 This research was supported by NSF awards EAR-0836741 and EAR-1219484 to JDW.
- 666 Synthetic apatites used as microprobe standards were provided by Daniel Harlov.

667

668 **REFERENCES**

- Aiuppa, A., Baker, D., and Webster, J.D. (2009) Halogens in volcanic systems. Chemical
 Geology, 263, 1-18, doi:10.1016/j.chemgeo.2008.10.005.
- Antignano, A., and Manning, C. E. (2008) Fluorapatite solubility in H₂O and H₂O–NaCl at 700
 to 900 °C and 0.7 to 2.0 GPa. Chemical Geology, 251, 112-119.
- Audetat, A., and Lowenstern, J.B. (2014) Melt inclusions. In Holland, H.D., Turekian, K.K.
 (eds.) Geochemistry of Mineral Deposits, Treatise on Geochemistry (second edition),
 13, 143-173, DOI: 10.1016/B978-0-08-095975-7.01106-2.
- Baker, D.R. (2008) The fidelity of melt inclusions as records of melt composition.
 Contributions to Mineralogy and Petrology, 156, 377-395.
- Barnes, J.J., Tartese, R., Anand, M., McCubbin, F.M., Franchi, I.A., Starkey, N.A., and Russell,
 S.S. (2014) The origin of water in the primitive Moon as revealed by the lunar highlands
 samples. Earth and Planetary Science Letters, 390, 244-252.
- Bodnar, R.J., Burnham, C.W., and Sterner, S.M. (1985) Synthetic fluid inclusions in natural
 quartz, III: determination of phase equilibrium properties in the system H₂O-NaCl to
 1000°C and 1500 bars. Geochimica et Cosmochimica Acta, 49, 1861-1873.
- Botcharnikov, R.E., Behrens, H., and Holtz, F. (2006) Solubility and speciation of C-O-H fluids
 in andesitic melt at T =1100°C and P=200 and 500 MPa. Chemical Geology, 229, 125143.
- Botcharnikov, R.E., Holtz, F., and Behrens, H. (2007) The effect of CO₂ on the solubility of
 H₂O-Cl fluids in andesitic melt. European Journal of Mineralogy, 19, 671-680.
- Boyce, J.W., and Hervig, R. (2008) Magmatic degassing histories from apatite volatile
 stratigraphy. Geology, 36, 63-66, doi: 10.1130/G24184A.1.
- Boyce, J.W., Tomlinson, S.M., McCubbin, F.M., Greenwood, J.P., and Treiman, A.H. (2014)
 The lunar apatite paradox. Science, 344, 400-402.
- Boyce, J.W., Liu, Y., Rossman, G.R., Guan, Y., Eiler, J.M., Stolper, E.M., and Taylor, L.A.
 (2010) Lunar apatite with terrestrial volatile abundances. Nature, 466, 466-470.
- Brenan, J. M. (1993) Partitioning of fluorine and chlorine between apatite and aqueous fluids at
 high pressure and temperature: Implications for the F and Cl content of high P-T fluids.
 Earth and Planetary Science Letters, 117(1–2), 251-263
- Brenan, J.M. (1994) Kinetics of fluorine, chlorine and hydroxyl exchange in fluorapatite.
 Chemical Geology, 110, 195-210.
- Candela, P.A. (1986) Toward a thermodynamic model for the halogens in magmatic systems:
 An application to melt-vapor-apatite equilibria. Chemical Geology, 57, 289-301.
- Doherty, A., Webster, J.D. Goldoff, B., and Piccoli, P. (2014) Partitioning behavior of chlorine
 and fluorine in felsic melt-fluid(s)-apatite systems at 50 MPa and 850–950 °C.
 Chemical Geology, 384, 94-111, doi:10.1016/j.chemgeo.2014.06.023.
- 705Dreisner, T., and Heinrich, C.A. (2007) The system H2O-NaCl. Part I: Correlation formulae for706phase relations in temperature-pressure-composition space from 0 to 1000°C, 0 to 5000707bar, and 0 to 1 X_{NaCl} . Geochimica et Cosmochimica Acta, 71, 4880-4901.

- Esposito, R., Lamadrid, H.M., Redi, D., Steele-MacInnis, M., Bodnar, R.J., Manning, C.E., De
 Vivo, B., Cannatelli, C., Lima, A. (2016) Detection of liquid H₂O in vapor bubbles in
 reheated melt inclusions: Implications for magmatic fluid composition and volatile
 budgets of magmas. American Mineralogist, 101, 1691-1695.
- Fleet, M.E., Liu X., and Pan Y. (2000) Site preference of rare earth elements in hydroxylapatite
 [Ca₁₀(PO₄)₆(OH)₂]. Journal of Solid State Chemistry 149, 391-398.
- Ghiorso, M.S. and Gualda, G.A.R. (2015) An H₂O-CO₂ mixed fluid saturation model
 compatible with rhyolite-MELTS. Contributions to Mineralogy and Petrology, 169, 53 716
- Goldoff, B., Webster, J.D., and Harlov, D. (2012) Characterization of fluor-chlorapatites by
 electron probe microanalysis with a focus on time-dependent intensity variation of
 halogens. American Mineralogist, 97, 1103-1115, doi: 10.2138/am.2012.3812.
- Greenwood, J.P., Itoh, S., Sakamoto, N., Warren, P., Taylor, L. and Yurimoto, H. (2011)
 Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon.
 Nature Geoscience, 4, 79-82.
- Gross, J., Filiberto, J., and Bell, A.S. (2013) Water in the martian interior: Evidence for
 terrestrial MORB mantle-like volatile contents from hydroxyl-rich apatite in olivinephyric shergottite NWA 62345. Earth and Planetary Science Letters, 369-370, 120-128.
- Hughes, J.M., Heffernan, K.M., Goldoff, B., and Nekvasil, H. (2015) Cl-rich fluorapatite,
 devoid of OH, from the Three Peaks area, Utah: the first reported structure of natural Clrich fluorapatite. The Canadian Mineralogist, doi:10.3749/canmin.1400014.
- Huppert, H., Sparks, R., and Turner, J. (1982) Effects of volatiles on mixing in calc-alkaline
 magma systems. Nature (London), 297, 554-557, doi:10.1038/297554a0.
- Jarosewich, E., Nelen, J. A., and Norberg, J. A. (1980) Reference samples for electron
 microprobe analysis. Geostandards Newsletter 4(1), 43-47.
- Kusebauch, C., John, T., Whitehouse, M.J., Klemme, S., and Putnis, A. (2015) Distribution of
 halogens between fluid and apatite during fluid-mediated replacement processes.
 Geochimica et Cosmochimica Acta, 170, 225-246.
- Lowenstern, J.B. (1994) Chlorine, fluid immiscibility, and degassing in peralkaline magmas
 from Pantelleria, Italy. American Mineralogist, 79, 353-369.
- Macdonald, R., Smith, R.L., and Thomas, J.E. (1992) Chemistry of the subalkalic silicic
 obsidians. US Geological Survey Professional Paper, 1523, 214 p.
- Mandeville, C.M., Webster, J.D., Rutherford, M.J., Taylor, B.E., Timbal, A., and Faure, K.
 (2002) Determination of molar absorptivities for infrared absorption bands of H₂O in andesitic glasses. American Mineralogist, 87, 813-821.
- Marks, M. A. W., Wenzel, T., Whitehouse, M. J., Loose, M., Zack, T., Barth, M., Worgard, L.,
 Krasz, V., Eby, G. N., Stosnach, H., and Markl, G. (2012) The volatile inventory (F, Cl,
 Br, S, C) of magmatic apatite: An integrated analytical approach. Chemical Geology,
 291, 241-255.

Mathez, E. A., and Webster, J. D. (2005) Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid. Geochimica et Cosmochimica Acta, 69(5), 1275-1286.

- McCubbin, F.M., and Jones, R.H. (2015) Extraterrestrial apatite: planetary geochemistry to
 astrobiology. Elements, 11, 183-188.
- McCubbin, F.M., Steele, A., Hauri, E.H., Nekvasil, H., Yamashita, S., and Hemley, F.J. (2010a)
 Nominally hydrous magmatism on the Moon. Proceedings of the National Academy of
 Sciences, 107, 11223-11228.
- McCubbin, F.M., Steele, A., Nekvasil, H., Schnieders, A., Rose, T., Fries, M., Carpenter, P.K.,
 and Jolliff, B.L. (2010b) Detection of structurally bound hydroxyl in fluorapatite from
 Apollo mare basalt 15058,128 using TOF-SIMS. American Mineralogist, 95, 11411150.
- McCubbin, F.M., Boyce, J.W., Srinivasan, P., Santos, A.R., Elardo, S.M., Filiberto, J., Steele,
 A., and Shearer, C.K. (2016) Heterogeneous distribution of H₂O in the martian interior:
 Implications for the abundance of H2O in depleted and enriched mantle sources.
 Meteoritics & Planetary Science, In Press.
- McCubbin, F.M., Vander Kaaden, K.E., Tartese, R., Whitson, E.S., Anand, M., Franchi, I.A.,
 Mikhail, S., Ustunisik, G., Hauri, E.H., Wang, J., and Boyce, J.W. (2014) Apatite-melt
 partitioning in basaltic magmas: The importance of exchange equilibria and the
 incompatibility of the OH component in halogen-rich apatite. 45th Lunar and Planetary
 Science Conference, abs. 2741.
- Moore, G., Vennemann, T., and Carmichael, I.S.E. (1998) An empirical model for the solubility
 of H₂O in magmas to 3 kilobars. American Mineralogist, 83, 36-42.
- Moore, L.R., Gazel, E., Tuohy, R., Lloyd, A.D., Esposito, R., Steele-MacInnis, M., Hauri, E.H.,
 Wallace, P.J., Plank, T., and Bodnar, R.J. (2015) Bubbles matter: An assessment of the
 contribution of vapor bubbles to melt inclusion volatile budgets. American Mineralogist,
 100, 806-823.
- Nadeau, P.A., Webster, J.D., Mandeville, C.W., Goldoff, B.A., Shimizu, N., and Monteleone,
 B. (2015) A glimpse into Augustine volcano's pre-glacial past: insight from a massive
 rhyolite deposit. Journal of Volcanology and Geothermal Research, 304, 304-323.
- Newman, S., and Lowenstern, J. B. (2002) VolatileCalc: A silicate melt-H₂O-CO₂ solution
 model written in visual basic for excel. Computers & Geosciences, 28, 597-604.
- Nowak, M., and Behrens, H. (1995) The speciation of water in haplogranitic glasses and melts
 determined by in situ near-infrared spectroscopy. Geochimica et Cosmochimica Acta,
 59, 3345-3450.
- Pan, Y., and Fleet, M. (2002) "Compositions of apatite-group minerals: Substitution mechanisms and controlling factors." In M.J. Kohn, J. Rakovan, and J.M. Hughes, Eds.,
 Phosphates - Geochemical, Geobiological, and Materials Importance, 48, p.13-49.
 <u>Reviews in Mineralogy and Geochemistry, Mineralogical Society of America</u>, Chantilly, Virginia.
- Patel, P.N. (1980) Magnesium calcium hydroxylapatite solid solutions. Journal of Inorganic
 Nuclear Chemistry, 42, 1129-1132.
- Patiño Douce, A.E., and Roden, M.F. (2006) Apatite as a probe of halogen and water fugacities
 in the terrestrial planets. Geochimica et Cosmochimica Acta, 70, 3173-3196.
- Patiño Douce, A.E., Roden, M.F., Chaumba, J., Fleisher, C., and Yogodzinski, G. (2011)

- Compositional variability of terrestrial mantle apatites, thermodynamic modeling of
 apatite volatile contents, and the halogen and water budgets of planetary mantles.
 Chemical Geology, 288, 14-31.
- Peng, G.Y., Luhr, J.F., and McGee, J.J. (1997) Factors controlling sulfur concentrations in volcanic apatite. American Mineralogist, 82, 1210-1224.
- Piccoli, P.M. (1992). Apatite chemistry in felsic magmatic systems." PhD dissertation,
 University of Maryland, College Park, Maryland.
- Piccoli, P. M., and Candela, P. A. (2002) Apatite in igneous systems. In M.J. Kohn, J. Rakovan,
 and J.M. Hughes, Eds., Phosphates Geochemical, Geobiological, and Materials
 Importance, 48, p.255-292. Reviews in Mineralogy and Geochemistry, Mineralogical
 Society of America, Chantilly, Virginia.
- Roman, D. C., Cashman, K. V., Gardner, C. A., Wallace, P. A., and Donovan, J. J. (2006)
 Storage and interaction of compositionally heterogeneous magmas from the 1986
 eruption of Augustine volcano, Alaska. Bulletin of Volcanology, 68, 240-254.
- Sarafian, A.R., Roden, M.F. and Patino-Douce, A.E. (2013) The volatile content of Vesta:
 Clues from apatite in eucrites. Meteoritics & Planetary Science, 48, 2135-2154.
- Schmidt, B.C., and Behrens, H. (2008) Water solubility in phonolite melts: Influence of melt
 composition and temperature. Chemical Geology, 256, 259-268.
- Shinohara, H. (1994) Exsolution of immiscible vapor and liquid phases from a crystallizing
 silicate melt: implications for chlorine and metal transport. Geochimica et
 Cosmochimica Acta, 58, 5215-5221.
- Shinohara, H., Ilyama, J.T., and Matsuo, S. (1989) Partition of chlorine compounds between
 silicate melt and hydrothermal solutions: Partition of NaCl-KCl. Geochimica et
 Cosmochimica Acta, 53, 2617-2630.
- Signorelli, S., and Carroll, M.R. (2000) Solubility and fluid-melt partitioning of Cl in hydrous
 phonolite melts. Geochimica et Cosmochimica Acta, 64, 2851-2862.
- Stock, M.J., Humphreys, M.C.S., Smith, V.C., Johnson, R.D., and Pyle, D.M. (2015) Apatite as
 magmatic volatile probe: quantifying the mechanisms and rates of EPMA-induced
 halogen migration. American Mineralogist, 100, 281-293.
- Stock, M.J., Humphreys, M.C.S., Smith, V.C., Isaia, R., and Pyle, D.M. (2016) Late-stage
 volatile saturation as a potential trigger for explosive volcanic eruptions. Nature
 Geoscience, DOI: 10.1038.NGEO2639.
- Stormer, J.C., Pierson, M.L., and Tacker, R.C. (1993) Variation of F and Cl X-ray intensity due
 to anisotropic diffusion in apatite during electron microprobe analysis. American
 Mineralogist, 78, 641–648.
- Symonds, R.B., Rose, W.I., Gerlach, T.M., Briggs, P.H., and Harmon, R.S. (1990) Evaluation
 of gases, condensates, and SO₂ emissions from Augustine volcano, Alaska: the
 degassing of a Cl-rich volcanic system. Bulletin Volcanology, 52(5), 355–374.
- Tacker, R.C. (2004) Hydroxyl ordering in igneous apatite. American Mineralogist, 89, 1411 1421.
- Tappen, C., Webster, J., Mandeville, C., and Roderick, D. (2009) Petrology and geochemistry

- of ca. 2100–1000 a.b.p. magmas of Augustine volcano, Alaska, based on analysis of
 prehistoric pumiceous tephra. Journal of Volcanology and Geothermal Research, 183,
 42-62, doi: 10.1016/j.jvolgeores.2009.03.007.
- Tartese, R., Anand, M., Barnes, J.J., Starkey, N.A., Franchi, I.A., and Sano, Y. (2013) The
 abundance, distribution, and isotopic composition of hydrogen in the Moon as revealed
 by basaltic lunar samples: implications for the volatile inventory of the Moon.
 Geochimica et Cosmochimica Acta, 122, 58-74.
- Tartese, R., Anand, M., McCubbin, F.M., Elardo, S.M., Shearer, C.K., and Franchi, I.A. (2014)
 Apatites in lunar KREEP basalts: The missing link to understanding the H isotope
 systematics of the Moon. Geology 42, 363-366.
- Vander Kaaden, K.E., McCubbin, F.M., Whitson, E.S., Hauri, E.H., and Wang, J. (2012)
 Partitioning of F, Cl, and H₂O between apatite and a synthetic Shergottite liquid (QUE
 94201) at 1.0 GPa and 990-1000°C. 43rd Lunar and Planetary Science Conference, abs.
 1247.
- Wallace, P.J., Kamenetsky, V.S., and Cervantes, P. (2015) Melt inclusion CO₂ contents,
 pressures of olivine crystallization, and the problem of shrinkage bubbles. American
 Mineralogist, 100, 787-794.
- Webster, J.D. (1992) Water solubility and chlorine partitioning in Cl-rich granitic systems:
 Effects of melt composition at 2 kbar and 800°C. Geochimica et Cosmochimica Acta,
 56, 679-687.
- Webster, J.D., and Mandeville, C.W. (2007) Fluid immiscibility in volcanic systems. In: A.
 Leibscher, C. Heinrich, eds., Fluid-Fluid Equilibria in the Crust, Reviews in Mineralogy
 and Geochemistry, 65, 313-362.
- Webster, J.D., and Rebbert C.R. (1998) Experimental investigation of H₂O and Cl solubilities in
 F-enriched silicate liquids: implications for volatile saturation of topaz rhyolite magmas.
 Contributions to Mineralogy and Petrology, 132, 198-207.
- Webster, J.D., Tappen, C., and Mandeville, C. (2009) Partitioning behavior of chlorine and
 fluorine in the system apatite-melt-fluid; II, Felsic silicate systems at 200 MPa.
 Geochimica et Cosmochimica Acta, 73, 559-581, doi:10.1016/j.gca.2008.10.034.
- Webster, J.D., Mandeville, C., Goldoff, B., Coombs, M., and Tappen, C. (2010) Augustine
 Volcano; the influence of volatile components in magmas erupted A.D. 2006 to 2,100
 years before present. U.S. Geological Survey Professional Paper, 383-423.
- Webster, J.D., Goldoff, B., and Shimizu, N. (2011) COHS fluids and granitic magma: how S
 partitions and modifies CO₂ concentrations of fluid-saturated felsic melt at 200 MPa.
 Contributions to Mineralogy and Petrology, 162, 849-865.
- Webster, J.D., Piccoli, P., and Goldoff, B.A. (2012) Resolving histories of magmatic volatiles in
 fluids and silicate melts as a function of pressure, temperature, and melt composition
 through apatite geochemistry (abs.). EOS, V21D-02.
- Webster, J.D., Sintoni, M.F., Goldoff, B., De Vivo, B., and Shimizu, N. (2014) C-O-H-S-Cl-F
 volatile component solubilities and partitioning in phonolitic-trachytic melts and
 aqueous-carbonic vapor ± saline liquid at 200 MPa. Journal of Petrology 55(11), 22172248.
- Webster, J.D., Vetere, F., Botcharnikov, R.E., Goldoff, B., McBirney, A., and Doherty, A.L.
 (2015) Experimental and modeled chlorine solubilities in aluminosilicate melts at 1 to

36

- 876 7000 bars and 700 to 1250°C: Applications to magmas of Augustine Volcano, Alaska.
 877 American Mineralogist, 100, 522-535.
- Wolf, M.B., and London, D. (1994) Apatite dissolution into peraluminous haplogranitic melts:
 An experimental study of solubilities and mechanisms. Geochimica et Cosmochimica
 Acta, 58, 4127-4145.

881

882 FIGURE CAPTIONS

- Plot comparing the Cl concentrations of aqueous run-product liquids measured by chloridometer with Cl concentrations of fluids (vapor, brine, or integrated vapor plus brine) calculated by mass balance for run conditions. See text for description of methods used.
 Solid curve is the 1:1 line. Red circles designate 200 MPa and 748 - 775 °C, green diamonds designate ca. 50 MP and 850 °C, and blue squares designate 50 MPa and 1000 °C runs. The reason for the outlier, noted with the question mark, is unknown.
- 889 2. Plots comparing the measured H_2O versus measured Cl concentrations of fluid- and apatite-890 saturated melts (A) and (measured Cl content/modeled Cl solubility) ratios of melts (B). At 891 200 MPa, the bold, solid horizontal curve displays H_2O and Cl contents where silicate melt is stable with vapor. The bold vertical curves designate melt plus brine stabilities for the 892 893 maximum Cl solubility in the most primitive melt (solid curve) and the minimum Cl 894 solubility for most felsic (most evolved) melt (dashed curve). The intersection point of the 895 bold vertical and horizontal curves is where melt, vapor, and brine are stable. Phase 896 relations are equivalent for 50 MPa conditions (fine curves). In (B) all of the vertical curves 897 overlap at unity for the (measured Cl content of melts/modeled Cl solubility in melts) ratio. 898 Chlorine solubility computed using the model of Webster et al. (2015). Symbols are the 899 same as in Figure 1.
- 900 3. Plots comparing pfu contents of (A) Na (circles) and Mg (squares) versus Cl; (B) Si (circles)
 901 and S (diamonds) versus Cl; (C) (Ce+Na) versus (Ca+Ca); and (D) (S+Si) versus (P+P) of
 902 run product apatites for ca. 50 MPa and 850 °C experiments.
- 903 4. Plots comparing the Cl concentrations of fluid(s) versus the measured Cl concentrations of 904 apatite-saturated melts (A) and the (measured Cl content/modeled Cl solubility) ratio of 905 melts (B). In (A), the data show significant dispersion as a function of pressure, 906 temperature, and subtle differences in melt composition (see text for discussion). 907 Nevertheless the Cl concentrations of the felsic melts increase rapidly with increasing Cl 908 contents in the fluid(s). In (B), the dispersion of Cl concentrations in the melt is reduced for 909 all 50 MPa runs by normalizing to the computed Cl solubility of the melts accounting for 910 differences in temperature and melt composition. These data show definitive increases in 911 the (measured Cl content/modeled Cl solubility) ratio of the melts with increasing Cl in the 912 fluid(s). With the (measured Cl content/modeled Cl solubility) ratio of the melts at unity, all 913 additional excess Cl partitions in favor of the fluid(s) and apatite (see Fig. 5) as the melt 914 contains its maximum Cl solubility. Symbols are the same as in Figure 1, except the violet triangles represent 100 MPa and 1000 °C runs of this study and the black circles designate 915 916 apatite-free Cl partitioning experiments for felsic melts at 50 MPa and 910 to 930 °C of 917 (Webster and Rebbert 1998). The 50 MPa Cl partitioning results of this study are highly 918 consistent with those of Webster and Rebbert (1998). Chlorine solubility computed using 919 the model of Webster et al. (2015).
- 9205. Plots comparing the $(X_{Cl}^{apat}/X_{OH}^{apat})$ ratio versus the (measured Cl content/modeled Cl921solubility) ratio of the melts for this investigation (A) and this study in comparison with922similar experiments involving rhyodacitic melts of Doherty et al. (2014) (B). With923increasing Cl in the system, both the $(X_{Cl}^{apat}/X_{OH}^{apat})$ and the (measured Cl content/modeled924Cl solubility) ratios increase, until the (measured Cl content/modeled Cl solubility) ratio of925the melts achieves unity and all additional excess Cl partitions in favor of apatites and the

fluid(s) because the melt contains its maximum Cl solubility. Plot (B) shows that the
exchange of Cl and OH between apatite and the high-silica rhyolitic melts of this study is
consistent with that involving the rhyodacitic melts of Doherty et al. (2014) – all at 50 MPa.
Symbols are the same as in Figure 4, except that the green lozenge symbols designate
experiments for felsic melts at 900 to 920 °C (Doherty et al. 2014). Chlorine solubility is
computed using the model of Webster et al. (2015). Symbols labeled SQ represent
experimental charges that experienced a slow, non-isobaric quench.

933 6. Plot displaying the exchange of Cl and OH (or H₂O) between apatite and fluids, expressed as the (X_{Cl}^{apat}/X_{OH}^{apat}) ratio versus the (X_{Cl}^{fluid(s)}/X_{H2O}^{fluid(s)}) ratio for runs at 50 MPa. The exchange relationship is linear and near vertical up to values of the (X_{Cl}^{apat}/X_{OH}^{apat}) ratio of ca. 0.8. With increasing Cl content in the system, the slope of the exchange relation decreases. Symbols are the same as in Figure 4.

- 7. Plots showing the $K_{dCl-F}^{apat-melt}$ (circles), $K_{dOH-Cl}^{apat-melt}$ (squares), and $K_{dOH-F}^{apat-melt}$ (triangles) 938 939 (see text for definition of these exchange coefficients) versus the molar (A/CNK)/(N/NK) 940 ratio for the experiments from this study. We apply larger symbols to highlight those 941 experiments involving relatively lower propagated imprecisions on the exchange coefficients that are less than 100 rel%. These highlighted data demonstrate statistically 942 valid increasing $K_{dCI-F}^{apat-melt}$ and decreasing $K_{dOH-CI}^{apat-melt}$ with changing melt composition 943 If the anomalous run with the lowest molar and pressure-temperature conditions. 944 (A/CNK)/(N/NK) ratio (identified with a question mark) is treated as an outlier, then the 945 946 statistical significance of these relations increases. See text for discussion.
- 8. Plots displaying the $(X_{H2O}^{melt}/X_{Cl}^{melt})$ ratio versus the $(X_{OH}^{apat})/(X_{Cl}^{apat})$ ratio for runs with rhyolitic melts (A) and those for rhyodacitic and rhyolitic melts at 50 to 200 MPa that empirically support equation (10) (B). All melts have 0.88 < A/CNK < 1.1 and N/NK >0.55. The apatites are distinguished by pfu (Si/Mg) ratios > 6 (squares fit by dashed curve) and with (6 > Si/Mg > 0.3) (triangles fit by solid curve). Data for rhyolitic runs are from this study and those for rhyodacitic runs are from Webster et al. (2009) for 200 MPa and Doherty et al. (2014) for 50 MPa.
- 954 9. Plot displaying the averaged mole fractions of F, OH, and Cl for the experimental apatites of 955 this study, Webster et al. (2009), and Doherty et al. (2014) used to generate equation (10) 956 (A), and the averaged compositions of natural apatites from 9 samples representing 7 957 different eruptive units of Augustine volcano, Alaska (B). Symbols in (A) are the same as 958 in Figure 1. The downward-pointing triangle represents 50 MPa run of Doherty et al. 959 (2014). The upward-pointing triangles represent 200 MPa data of Webster et al. (2009). 960 Symbols in (B) include right-pointing triangle = sample AUJW004 erupted 2006; diamond 961 = sample from the 1986 eruption; square = prehistoric tephra erupted ca. 1000 years before present (a.b.p.); upward-pointing triangle = prehistoric tephra erupted ca. 1700 a.b.p.; 962 downward-pointing triangle = prehistoric tephra erupted ca. 2100 a.b.p.; filled rectangle = 963 964 prehistoric tephra erupted ca. 1400 a.b.p.; open rectangle = massive Pleistocene flow-965 banded rhyolite; open circle = massive Pleistocene white pumice; and filled circle = massive 966 Pleistocene vellow pumice. The black curves outlining the data in (A) indicate the compositional region of applicability for equation (10) based on the error-propagated spread 967 968 in mole fractions of OH, F, and Cl in the apatite data, and for (B) outline the error-969 propagated spread in natural apatite compositional variability.

39

970 10. Plot comparing the average measured concentrations of H_2O in felsic silicate melt inclusions 971 versus the H₂O concentrations in melt calculated from averaged apatite compositions from 9 972 samples representing 7 eruptive units of Augustine volcano, Alaska. Accounting for the 1- σ 973 standard deviations for the measured H_2O in the melt inclusions and the propagated errors 974 associated with the calculated H_2O contents from the apatite compositions, the two 975 estimates of H₂O concentrations in these melts are mutually consistent for 6 of the samples. 976 See text for discussion. The symbols are as follows: downward-pointing triangle = sample 977 AUJW004 erupted 2006; circle = sample of the 1986 eruption; filled diamond = prehistoric 978 tephra erupted ca. 1000 years before present (a.b.p.); square = prehistoric tephra erupted ca. 979 1700 a.b.p.; lozenge-shaped symbol = prehistoric tephra erupted ca. 2100 a.b.p.; upwardpointing filled triangle = prehistoric tephra erupted ca. 1400 a.b.p.; half-filled diamond = 980 981 massive Pleistocene flow-banded rhyolite; half-filled square = massive Pleistocene white 982 pumice; and half-filled triangle = massive Pleistocene yellow pumice. Sources of the melt 983 inclusion data include 2100 to 1000 a.b.p. tephra (Tappen et al. 2009), the 1986 and 2006 984 eruptions (Webster et al. 2010), and the massive Pleistocene pumices (Nadeau et al. 2015).

985

- 986 APPENDIX
- 987 The mole fraction of H_2O in the fluid(s) is calculated with the equation:

988
$$X_{H_2O}^{fluids} = \frac{\frac{mass_{H_2O}^{fluids}}{18}}{\frac{mass_{H_2O}^{fluids}}{18} + \frac{mass_{Cl}^{fluids}}{35.453} + \frac{mass_{NaK}^{fluids}}{31}}$$
(I)

and the mole fraction of Cl in the fluid(s) is calculated with the equation:

990
$$X_{Cl}^{fluid} = \frac{\frac{mass_{Cl}^{fluids}}{35.453}}{\frac{mass_{H2O}^{fluids}}{18} + \frac{mass_{Cl}^{fluids}}{35.453} + \frac{mass_{NaK}^{fluids}}{31}}$$
(II)

recalling that the mass of 31 accounts for the moles of Cl that are chemically associated with an assumed equimolar quantity of Na and K (i.e., their averaged mass). Similarly, the X_{H2O}^{melt} and X_{Cl}^{melt} are calculated, respectively, with the equations:

994
$$X_{H_2O}^{melt} = \frac{\frac{mass_{H_2O}^{melt}}{18}}{\frac{mass_{H_2O}^{melt}}{18} + \frac{mass_{Cl}^{melt}}{35.453} + \frac{mass_{volatile-freemelt}^{melt}}{265}}$$
(III)

995 and:

$$X_{Cl}^{melt} = \frac{\frac{mass_{Cl}^{melt}}{35.453} - 996}{\frac{mass_{Cl}^{melt}}{35.453} + \frac{mass_{H_2O}^{melt}}{18} + \frac{mass_{volatile-freemelt}^{melt}}{265}$$
(IV)

998

Rearranging allows one to calculate the wt% H₂O in the melt with equation (V):

1000
$$wt\% H_2O \text{ in melt} = \frac{18 * X_{H_2O}^{\text{melt}} * \left[\left(\frac{wt\% Cl \text{ in melt}}{35.45} \right) + \left(\frac{(100 - inputwt\% H_2O \text{ in melt} - wt\% Cl \text{ in melt})}{265} \right) \right]}{1 - X_{H_2O}^{\text{melt}}}$$
(V)

1001

1002 This approach, however, requires the input of an initial estimate of the mass of H_2O in the melt 1003 (i.e., to estimate the *inputwt%* H_2O *in melt*) in order to solve equations (IV) and (V). It requires 1004 that this mass of H_2O in the melt be modified, iteratively, until its estimated equivalent 1005 concentration, i.e., ([mass of H_2O in melt/mass of melt]*100) ratio corresponds to the final H_2O 1006 concentration determined using the equation (V).

1007

1008

Figure 2A

Figure 2B

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 3A

(Ca + Ca) contents (pfu) of apatites

Figure 3C

D. 0.2 0 11.25 11.3 11.35 11.4 11.45 11.5 11.55 11.6 11.65 (P + P) contents (pfu) of apatites

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Concentration (wt%) of CI in rhyolitic melts

Figure 4A

Figure 4B

Figure 5A

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 5B

Figure 6

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 8A

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 8B

Figure 9A

Figure 9B

Figure 10

Table 1

Compositions of rhyolitic starting obsidians, obsidian-apatite mixes, and natural apatite used in runs.

(wt%)	Los Posos Rhyolite (LPR) ^{a,b}	LPA-1 mix ^c	LPA-2 mix ^d	F-bearing rhyolite ^e	Durango apatite ^f
SiO ₂	76.49	75.96	74.33	70.71	0.34
TiO ₂	0.10	0.10	0.10	0.26	0.043
Al_2O_3	12.59	12.50	12.24	12.35	bd
MgO	0.06	0.06	0.06	0.17	0.01
MnO	0.06	0.06	0.06	0.04	0.01
CaO	0.31	0.68	1.83	0.77	54.02
FeO	0.88	0.87	0.85	1.01	0.06
Na_2O	4.34	4.31	4.22	3.28	0.23
K_2O	4.59	4.56	4.46	5.19	0.01
P_2O_5	0.01	0.29	1.16	0.02	40.78
SO_2	0.003	0.005	0.011	nd	0.30
BaO	0.05	0.05	0.05	0.01	0.0002
SrO	0.0005	0.001	0.002	nd	0.07
Ce_2O_3	0.011	0.015	0.026	0.02	0.52
F	0.08	0.10	0.18	0.18	3.53
Cl	0.12	0.12	0.13	0.065	0.41
Total	99.69	99.68	99.71	94.08	100.33
A/CNK ^g	0.99	0.94	0.81	0.99	nd
N/NK ^h	0.59	0.59	0.59	0.49	nd

^aAnalysis of natural Los Posos rhyolite powder by colorimetry, XRF, and INAA (Macdonald et al. 1992).

^bAnalysis of natural Los Posos rhyolite, fused to glass at elevated temperature and pressure prior to analysis by EPMA (this study).

^cMixture of 99.3 wt.% LPR and 0.69 wt% Durango apatite seeds.

^dMixture of 97.17 wt.% LPR and 2.83 wt% Durango apatite seeds.

^eSample TM-61a provided by Eric Christiansen and used for apatite-deficient runs.

^fBulk analysis by wet chemistry (Jarosewich et al. 1980); with TiO₂, BaO, and Ce₂O₃ by LA-ICPMS (Marks et al. 2012).

nd = data not determined; bd=below EPMA detection limit.

^gMolar (Al₂O₃/Na₂O+CaO+K₂O).

^hMolar (Na₂O/Na₂O+K₂O).

Table 2

Experimental run conditions, materials added to starting charges, and phases present at run conditions.

Run I.D.	T ^a (°C)	P (MPa)	Duration (hrs)	Starting silicates ^b	Added salts and solutions ^c	Stable phases at end of run ^d	Notes
1-12-05A	1000	101	286	LPA-1 + apat	NaCl:KCl + H ₃ PO ₄ solution + CaHPO ₄ + Ca(OH) ₂ + DD H ₂ O	glass, apat, salts, aqliq, pyr	
1-12-05B	1000	101	286	LPA-1 + apat	NaCl:KCl + H ₃ PO ₄ solution + CaHPO ₄ + Ca(OH) ₂ + DD H ₂ O	glass, apat, salts, aqliq, FeOx	
CS-14-18A	850	49	1008	LPA-1 + apat	HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂ + DD H ₂ O	glass, apat, salts, aqliq	
CS-14-18B	850	49	1008	LPA-1 + apat	NaCl:KCl + HCl solution + CaHPO ₄ + Ca(OH) ₂ +	glass, apat, salts, aqliq	
CS-14-18C	850	49	1008	LPA-1 + apat	HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂	glass, apat, salts, aqliq	
CS-14-18D	850	49	1008	LPA-1 + apat	HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂ + DD H ₂ O	glass, apat, salts, aqliq	
CS-15-01B ^a	702	49.5	767	LPA-1 + apat	NaCl:KCl + HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂	glass, apat, salts, aqliq, plag, qtz, FeOx	Trace glass
CS-15-02 ^a	843	49.5	575	LPA-1 + apat	HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂ + DD H ₂ O	glass, apat, salts, aqliq, cpx	
CS-15-03 ^a	844	49	844	LPA-1 + apat	HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂ + DD H ₂ O	glass, apat, salts, aqliq	
CS-15-04A ^a	844	49.5	579	LPA-1 + apat	NaCl:KCl + HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂ + DD H ₂ O	glass, apat, salts, aqliq, cpx, FeOx	
CS-15-04B ^a	844	49.5	579	LPA-1 + apat	NaCl:KCl + HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂ + DD H ₂ O	glass, apat, salts, aqliq, FeOx	
CS-15-04C ^a	844	49.5	579	LPA-1 + apat	NaCl:KCl + HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂	glass, apat, salts, aqliq, FeOx	
CS-15-05A ^a	862	51	858	LPA-1 + apat	HCl:NaCl:KCl solution + CaHPO ₄ + Ca(OH) ₂ + DD H ₂ O	glass, apat, salts, aqliq, qtz, FeOx	
CS-15-05B ^a	862	51	858	LPA-1 + apat	HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂ + DD H ₂ O	glass, apat, salts, aqliq, qtz	
CS-15-05C ^a	862	51	858	LPA-1 + apat	NaCl:KCl + HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂ + DD H ₂ O	glass, apat, salts, aqliq	
CS-15-05D ^a	862	51	858	LPA-1 + apat	HCl:NaCl:KCl solution + CaHPO ₄ + Ca(OH) ₂ + DD H_2O	glass, apat, salts, aqliq, qtz	
CS-15-06ª	850	49.5	679	LPA-1 + apat	NaCl + HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂ + DD H_2O	glass, apat, salts, aqliq, FeOx	
CS-15-07 ^a	844	49.5	795	LPA-1 + apat	NaCl + HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂	glass, apat, salts, aqliq, FeOx	
CS-15-09A ^{a,e}	850	49	670	LPA-1 + apat	$CaHPO_4 + Ca(OH)_2 + DD H_2O$	glass, apat, salts, aqliq, CaSi	Slow, non-isobaric quench
CS-15-09B ^{a,e}	850	49	670	LPA-1 + apat	$CaHPO_4 + Ca(OH)_2 + DD H_2O$	glass, apat, salts, aqliq, CaSi	Slow, non-isobaric quench
CS-15-16A ^a	853	50	936	LPA-2 + apat	$CaHPO_4 + Ca(OH)_2 + DD H_2O$	glass, apat, salts, aqliq, FeOx, CaSi	· •
1-15-14A ^a	995	50	792	LPA-2 + apat	NaCl + NaCl:KCl + HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂ + DD H ₂ O	glass, apat, salts, aqliq, FeOx	
1-15-14B ^a	995	50	792	LPA-2 + apat	HCl:NaCl:KCl solution + CaHPO ₄ + Ca(OH) ₂ + DD H_2O	glass, apat, salts, aqliq, FeOx	
CS-15-18 ^a	722	49	1149	LPA-2 + apat	NaCl:KCl + HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂	glass, apat, salts, aqliq, FeOx	
1-15-10A ^a	775	203	478	LPA-2 + apat	HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂ + DD H ₂ O	glass, apat, salts, aqliq, cpx	
1-15-10B ^a	775	203	478	LPA-2 + apat	HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂ + DD H ₂ O	glass, apat, salts, aqliq, cpx	
1-15-13A ^a	748	202	603	LPA-2 + apat	HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂ + DD H ₂ O	glass, apat, salts, aqliq	
1-15-13B ^a	748	202	603	LPA-2 + apat	HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂ + DD H ₂ O	glass, apat, salts, aqliq	
CS-14-17Bf	868	51	165	LPA-1 + apat	HCI:NaCI:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂	glass, salts, aqliq, plag, µm-sized apat	No analyzable apatite
CS-14-17Cf	868	51	165	LPA-1 + apat	HCl:NaCl:KCl solution + HCl solution + CaHPO ₄ + Ca(OH) ₂ + DD H ₂ O	glass, salts, aqliq, cpx, µm-sized apat	No analyzable apatite
CS-14-17Df	868	51	165	LPA-1 + apat	NaCl:KCl + HCl solution + CaHPO ₄ + Ca(OH) ₂	glass, salts, aqliq, plag, µm-sized apat	No analyzable apatite
1-95-9E	930	50	624	TM-61a	NaCl:KCl + DD H ₂ O	glass, salts, aqliq, µm-sized apat	No analyzable apatite
1-95-9F	930	50	624	TM-61a	NaCl:KCl + DD H ₂ O	glass, salts, aqliq, µm-sized apat	No analyzable apatite
1-95-9B	930	50	624	TM-61a	NaCl:KCl	glass, salts, aqliq, µm-sized apat	No analyzable apatite
1-95-9D	930	50	624	TM-61a	NaCl:KCl + DD H ₂ O	glass, salts, aqliq, µm-sized apat	No analyzable apatite
1-95-9C	930	50	624	TM-61a	NaCl:KCl + DD H ₂ O	glass, salts, aqliq, µm-sized apat	No analyzable apatite
1-95-10F	901	49	288	TM-61a	NaCl:KCl + DD H ₂ O	glass, salts, aqliq, µm-sized apat	No analyzable apatite

Runs with "CS-" prefix were conducted in cold seal pressure vessels and runs with "1-" prefix in internally heated pressure vessel.

^aTemperature held constant at run temperature for initial 72 hours, cycled \pm 10-15°C daily afterward, and temperature held constant at run temperature for final 48-72 hours. ^bStarting silicate glass or glass-apatite mixtures used (see Table 1 for compositions).

^cLPA-1 mix, LPA-2 mix, apat = 1-3 μ m-diameter Durango apatite seeds, DD H₂O = distilled and deionized H₂O. All solutions involved distilled and deionized H₂O. ^dPhases in run product at conclusion of experiment: apat = apatite, plag = plagioclase, FeOx = iron (± titanium) oxides, cpx = clinopyroxene, CaSi – high-Ca aluminosilicate phase, salts = residual soluble salts, and aqliq = aqueous liquid.

^eRun experienced slow, non-isobaric (uncontrolled) quench.

^fPremature, slow, non isobaric quench and apatite too small to analyze

Experimental Run	1-12-05A	1-12-05B	CS-14-18A	CS-14-18B	CS-14-18C
Melt (wt%)					
SiO2	72.32 + 1.12	72.98 ± 0.68	74.30 ± 0.32	74.00 ± 0.86	74.18 ± 0.52
TiO ₂	0.11 ± 0.02	0.12 ± 0.02	0.09 ± 0.03	0.09 ± 0.03	0.12 ± 0.02
Al ₂ O ₂	12.37 ± 0.24	12.13 ± 0.25	12.37 ± 0.08	12.35 ± 0.1	12.14 ± 0.12
MgO	0.07 ± 0.01	0.07 ± 0.01	0.05 ± 0.01	0.06 ± 0.01	0.05 ± 0.01
CaO	0.95 ± 0.24	1.03 ± 0.06	0.02 ± 0.01 0.43 ± 0.14	0.27 ± 0.02	0.14 ± 0.02
MnO	0.93 ± 0.21 0.04 ± 0.01	0.04 ± 0.03	0.13 ± 0.11 0.02 ± 0.03	0.27 ± 0.02 0.03 ± 0.02	0.02 ± 0.02
FeO	0.01 ± 0.01	0.80 ± 0.03	0.02 ± 0.03 0.76 ± 0.14	0.03 ± 0.02 0.47 ± 0.15	0.02 ± 0.02 0.41 ± 0.07
Na ₂ O	4.18 ± 0.12	4.07 ± 0.12	4.27 ± 0.14	3.61 ± 0.13	4.25 ± 0.31
K ₂ O	4.10 ± 0.13 5 72 ± 0.18	4.07 ± 0.12 5.08 ± 0.15	4.27 ± 0.23 4.39 ± 0.08	5.61 ± 0.14	4.23 ± 0.31 4.41 ± 0.14
R ₂ O	0.01 ± 0.01	0.02 ± 0.01	0.01 ± 0.02	0.02 ± 0.02	4.41 ± 0.14 0.07 ± 0.03
SO.	0.01 ± 0.01	0.02 ± 0.01 0.001 ± 0.002	0.01 ± 0.02 0.001 ± 0.001	0.02 ± 0.02	0.009 ± 0.005
502 F	0.002 ± 0.004	0.001 ± 0.002	0.001 ± 0.001	0.005 ± 0.004	bdl
	0.008 ± 0.01	0.11 ± 0.12 0.48 ± 0.01	0.03 ± 0.01	0.13 ± 0.02 0.31 ± 0.01	0.30 ± 0.01
Total	0.42 ± 0.02	0.48 ± 0.01	07.12	0.51 ± 0.01	06.14
	97.11	90.94	97.12	90.98	90.14
$H_2O, FIIR$	Nd 0.84	Nd	2.22	2.81	2.72
A/CNK ²	0.84	0.86	0.99	0.99	1.01
N/NK"	0.53	0.55	0.60	0.49	0.59
Cl solubility in melt	0.46	0.47	0.35	0.30	0.29
Experimental Run	1-12-05A	1-12-05B	CS-14-18A	CS-14-18B	CS-14-18C
Apatite (wt%)					
SiO ₂	0.51 ± 0.22	0.49 ± 0.12	0.41 ± 0.16	0.24 ± 0.18	0.45 ± 0.19
TiO ₂	0.01 ± 0.01	0.01 ± 0.01	0	0.01 ± 0.01	0.01 ± 0.01
Al_2O_3	0.01 ± 0.01	0.02 ± 0.01	0.09 ± 0.08	0.03 ± 0.03	0.11 ± 0.11
MgO	0.01 ± 0.01	0.02 ± 0.01	0.03 ± 0.02	0.10 ± 0.03	0.13 ± 0.05
CaO	54.00 ± 0.38	53.60 ± 0.72	54.1 ± 0.3	54.2 ± 0.35	53.1 ± 0.54
MnO	0.03 ± 0.02	0.01 ± 0.01	0.03 ± 0.03	0.05 ± 0.03	0.07 ± 0.02
FeO	0.06 ± 0.02	0.07 ± 0.02	0.13 ± 0.07	0.09 ± 0.04	0.26 ± 0.06
Na ₂ O	0.15 ± 0.08	0.37 ± 0.33	0.25 ± 0.15	0.14 ± 0.12	0.44 ± 0.14
K ₂ O	0.05 ± 0.03	0.08 ± 0.02	0.09 ± 0.03	0.04 ± 0.06	0.09 ± 0.04
P_2O_5	40.48 ± 0.24	40.36 ± 0.35	40.24 ± 0.76	40.18 ± 0.35	39.83 ± 0.64
F	1.96 ± 0.29	1.55 ± 0.30	1.46 ± 0.37	1.49 ± 0.09	1.57 ± 0.19
Cl	$1.16\pm\ 0.12$	1.38 ± 0.25	1.81 ± 0.14	2.45 ± 0.23	2.13 ± 0.23
SO_2	0.01 ± 0.01	$0.01 \hspace{0.1 cm} \pm \hspace{0.1 cm} 0.01 \hspace{0.1 cm}$	0.19 ± 0.10	0.06 ± 0.10	0.23 ± 0.11
BaO	0.03 ± 0.03	0.03 ± 0.03	0.03 ± 0.03	0.02 ± 0.02	0.03 ± 0.03
Ce_2O_3	0.66 ± 0.09	0.43 ± 0.11	0.42 ± 0.21	0.21 ± 0.17	0.53 ± 0.08
SrO	Nd	Nd	Nd	Nd	Nd
Total	99.47	98.87	99.31	99.32	98.99
X_{Cl}^{apat} b	0.17	0.20	0.27	0.34	0.31
X_F^{apat} b	0.52	0.41	0.39	0.42	0.42
X_{OH}^{apat} b	0.31	0.39	0.34	0.24	0.27
Wt% Cl in fluid(s)	9.5	9.0	3.7	12.8	9.1
Exchange Coefficients					
KdCl-F	0.012	0.21	0.29	0.74	0.33
KdOH-Cl	0.13	0.15	0.11	0.039	0.048
apat-felsicmelt	0.0016	0.032	0.03	0.029	0.016
Partition Coefficients					
D _{Cl} ^{apat/mt}	2.8	2.9	5.1	7.5	7.1
D _{XOH} ^{apat/mt}	1.0	1.2	1.4	0.81	0.94
D _{Cl} ^{fluid(s)/mt}	22.6	18.8	10.4	41.2	30.4
D _{Cl} ^{apat /fluid(s)}	0.12	0.15	0.49	0.18	0.23
$D_F^{apat/mt}$	245	14.1	18.3	10.5	22.4

Table 3 – Compositions (in wt% and mole fraction) of melt (i.e., glass), bulk fluid, and apatite at run conditions.

Experimental Run	CS-14-18D	CS-15-01B	CS-15-02	CS-15-03	CS-15-04A
Melt (wt%)					
SiO ₂	73.83 ± 0.56	Insufficient	74.5 ± 0.38	74.1 ± 0.26	74.90 ± 0.28
TiO ₂	0.07 ± 0.02	Glass	0.06 ± 0.04	0.1 ± 0.04	0.09 ± 0.04
Al ₂ O ₃	12.31 ± 0.19		12.20 ± 0.14	12.30 ± 0.14	12.20 ± 0.08
MgO	0.05 ± 0.005		0.05 ± 0.02	0.08 ± 0.02	0.08 ± 0.02
CaO	0.45 ± 0.09		0.10 ± 0.05	0.20 ± 0.08	0.08 ± 0.03
MnO	0.04 ± 0.03		0.02 ± 0.02	0.01 ± 0.01	0.01 ± 0.01
FeO	0.78 ± 0.08		0.77 ± 0.14	0.83 ± 0.14	0.75 ± 0.06
Na ₂ O	4.18 ± 0.12		4.63 ± 0.05	4.52 ± 0.12	4.30 ± 0.08
K ₂ O	4.44 ± 0.19		4.54 ± 0.15	4.60 ± 0.11	5.27 ± 0.23
P ₂ O ₅	0.04 ± 0.03		0.02 ± 0.02	0.11 ± 0.26	0.05 ± 0.06
SO ₂	0.008 ± 0.006		0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.01
F	0.16 ± 0.02		0.04 ± 0.02	0.01 ± 0.02	0.02 ± 0.02
Cl	0.31 ± 0.01		0.24 ± 0.01	0.29 ± 0.01	0.28 ± 0.01
Total	96.65		97.18	97.15	98.04
H ₂ O. FTIR	2.82		2.54	2.82	2.51
A/CNK ^a	0.98		0.96	0.96	0.94
N/NK ^a	0.59		0.61	0.60	0.55
Cl solubility in melt	0.36		0.33	0.34	0.32
Experimental Run	CS-14-18D	CS-15-01B	CS-15-02	CS-15-03	CS-15-04A
Apatite (wt%)					
SiO ₂	0.46 ± 0.27	0.38 ± 0.16	0.26 ± 0.13	0.32 ± 0.25	0.21 ± 0.04
TiO ₂	0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.01
Al_2O_3	0.04 ± 0.05	0.04 ± 0.06	0.01 ± 0.01	0.03 ± 0.05	0.01 ± 0.01
MgO	0.06 ± 0.03	0.04 ± 0.05	0.28 ± 0.05	0.21 ± 0.10	0.24 ± 0.09
CaO	53.7 ± 0.61	54.80 ± 0.25	54.41 ± 0.97	54.50 ± 1.86	53.66 ± 1.21
MnO	0.06 ± 0.07	0.01 ± 0.02	0.05 ± 0.05	0.28 ± 0.12	0.16 ± 0.17
FeO	0.12 ± 0.07	0.21 ± 0.30	0.19 ± 0.01	0.38 ± 0.22	0.24 ± 0.13
Na ₂ O	0.28 ± 0.17	0.29 ± 0.12	0.35 ± 0.08	0.40 ± 0.28	0.42 ± 0.16
K ₂ O	0.13 ± 0.13	0.14 ± 0.06	0.14 ± 0.03	0.09 ± 0.01	0.11 ± 0.02
P_2O_5	40.02 ± 0.48	40.52 ± 0.25	40.64 ± 0.57	39.83 ± 1.57	40.55 ± 0.38
F	1.93 ± 0.35	2.38 ± 0.23	1.40 ± 0.29	1.41 ± 0.29	0.58 ± 0.18
Cl	1.51 ± 0.35	1.52 ± 0.58	2.03 ± 0.56	1.76 ± 0.25	3.19 ± 0.41
SO_2	0.22 ± 0.12	0.19 ± 0.15	0.09 ± 0.11	0.03 ± 0.05	0.01 ± 0.01
BaO	0.01 ± 0.03	0.02 ± 0.03	0.01 ± 0.01	0.03 ± 0.03	0.02 ± 0.03
Ce_2O_3	0.37 ± 0.27	0.12 ± 0.16	0.30 ± 0.23	0.08 ± 0.12	0.42 ± 0.25
SrO	Nd	Nd	Nd	Nd	Nd
Total	99.30	100.93	100.74	99.36	99.75
X_{Cl}^{apat} b	0.22	0.22	0.30	0.26	0.47
X_F^{apat} b	0.51	0.63	0.37	0.38	0.15
X_{OH}^{apat} b	0.27	0.15	0.33	0.36	0.38
Wt% Cl in fluid(s)	2.3	14.4	1.1	0.97	15.8
Exchange Coefficients					
$K_{dCl-F}^{apat-felsicmelt}$	0.42	Nd	0.25	0.044	0.40
KdOH-Cl apat-felsicmelt	0.07	Nd	0.053	0.074	0.045
$K_{dOH-F}^{apat-felsicmelt}$	0.03	Nd	0.013	0.0033	0.018
Partition Coefficients					
D _{Cl} ^{apat/mt}	4.9	Nd	8.5	6.1	11.4
$D_{\rm XOH}^{\rm apat/mt}$	0.89	Nd	1.2	1.2	1.4
$D_{Cl}^{fluid(s)/mt}$	7.5	Nd	4.8	3.3	56.4
D _{Cl} ^{apat /fluid(s)}	0.65	0.11	1.8	1.8	0.20
$D_F^{apat/mt}$	12.1	Nd	35	141	29

Experimental Run	CS-15-04B	CS-15-04C	CS-15-05A	CS-15-05B	CS-15-05C
Melt (wt%)					
SiO ₂	74.3 ± 0.38	75.20 ± 0.53	74.63 ± 0.29	75.04 ± 0.11	74.77 ± 0.15
TiO ₂	0.08 ± 0.05	0.07 ± 0.03	0.09 + 0.03	0.10 ± 0.02	0.06 ± 0.02
Al ₂ O ₃	12.20 ± 0.23	11.80 ± 0.19	12.06 ± 0.09	12.22 ± 0.13	11.98 ± 0.09
MgO	0.04 + 0.02	0.04 ± 0.01	0.05 ± 0.01	0.06 ± 0.02	0.05 ± 0.01
CaO	0.03 ± 0.01	0.07 ± 0.06	0.28 ± 0.15	0.28 ± 0.08	0.09 ± 0.02
MnO	0.02 ± 0.02	0.02 ± 0.01	0.02 ± 0.02	Bdl	0.02 ± 0.01
FeO	0.45 ± 0.20	0.21 ± 0.08	0.76 ± 0.05	0.75 ± 0.15	0.75 ± 0.11
Na ₂ O	3.71 ± 0.43	3.45 ± 0.16	4.16 ± 0.21	4.48 ± 0.07	4.13 ± 0.26
K ₂ O	5.97 ± 0.48	5.75 ± 0.17	4.52 ± 0.08	4.57 ± 0.10	4.99 ± 0.05
P ₂ O ₅	0.16 ± 0.02	0.11 ± 0.03	0.04 + 0.02	0.04 ± 0.02	0.05 ± 0.03
SO ₂	0.01 ± 0.02	0.01 ± 0.01	0.009 ± 0.004	0.008 ± 0.007	0.008 ± 0.005
F	0.01 ± 0.01	0.05 ± 0.03	0.13 ± 0.04	0.07 ± 0.03	0.05 ± 0.01
Cl	0.24 ± 0.02	0.24 ± 0.02	0.19 ± 0.02	0.17 ± 0.01	0.29 ± 0.01
Total	97.28	97.21	96.95	97.78	97.22
H ₂ O, FTIR	2.58	2.62	3.11	2.99	2.82
A/CNK ^a	0.97	0.95	0.99	0.95	0.97
N/NK ^a	0.49	0.48	0.58	0.60	0.56
Cl solubility in melt	0.27	0.27	0.34	0.35	0.30
Apatite (wt%)					
Experimental Run	CS-15-04B	CS-15-04C	CS-15-05A	CS-15-05B	CS-15-05C
SiO ₂	0.15 ± 0.09	0.27 ± 0.18	0.51 ± 0.15	0.36 ± 0.06	0.42 ± 0.07
TiO ₂	0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.01	0.002 ± 0.003
Al_2O_3	0.03 ± 0.03	0.02 ± 0.01	0.03 ± 0.02	0.003 ± 0.003	0.02 ± 0.03
MgO	0.38 ± 0.04	0.34 ± 0.05	0.05 ± 0.01	0.05 ± 0.03	0.15 ± 0.07
CaO	53.82 ± 0.79	52.70 ± 0.79	53.53 ± 0.47	53.48 ± 0.35	52.28 ± 0.99
MnO	0.06 ± 0.02	0.18 ± 0.02	0.05 ± 0.01	0.03 ± 0.02	0.10 ± 0.08
FeO	0.21 ± 0.05	1.20 ± 0.23	0.19 ± 0.16	0.12 ± 0.06	0.21 ± 0.09
Na ₂ O	0.59 ± 0.04	0.74 ± 0.24	0.23 ± 0.07	0.21 ± 0.03	0.43 ± 0.25
K ₂ O	0.11 ± 0.05	0.09 ± 0.04	0.13 ± 0.03	0.08 ± 0.01	0.12 ± 0.05
P_2O_5	41.55 ± 0.41	41.02 ± 0.79	39.29 ± 0.37	40.20 ± 0.27	39.89 ± 1.01
F	0.40 ± 0.07	0.32 ± 0.05	1.82 ± 0.18	1.89 ± 0.15	1.03 ± 0.20
Cl	3.70 ± 0.48	3.82 ± 0.33	1.32 ± 0.28	1.39 ± 0.17	2.48 ± 0.40
SO_2	0.01 ± 0.01	0.01 ± 0.01	0.29 ± 0.10	0.30 ± 0.04	0.13 ± 0.11
BaO	0.01 ± 0.01	0.02 ± 0.04	0.02 ± 0.03	0.02 ± 0.03	0.01 ± 0.01
Ce_2O_3	0.02 ± 0.02	0.11 ± 0.14	0.53 ± 0.06	0.51 ± 0.06	0.64 ± 0.18
SrO	Nd	Nd	0.05 ± 0.04	0.03 ± 0.02	0.05 ± 0.02
Total	101.20	101.73	97.69	98.55	98.00
X_{Cl}^{apat} b	0.54	0.56	0.19	0.20	0.36
X_{F}^{apat} b	0.11	0.08	0.48	0.50	0.27
Apparent X_{OH}^{apat}	0.36	0.36	0.32	0.30	0.36
Wt% Cl in fluid(s)	30.1	39.2	0.7	0.3	8.7
Exchange Coefficients					
$K_{dCl-F}^{apat-felsicmelt}$	0.40	2.6	0.51	0.31	0.40
KdOH-Cl apat-felsicmelt	0.03	0.029	0.051	0.042	0.052
$K_{dOH-F}^{apat-felsicmelt}$	0.012	0.077	0.026	0.013	0.021
Partition Coefficients					
$D_{\rm Cl}^{apat/mt}$	15.4	15.9	6.9	8.1	8.5
D _{XOH} ^{apat/mt}	1.3	1.3	1.0	0.95	1.2
$D_{Cl}^{fluid(s)/mt}$	125	163	3.7	1.7	30
D _{Cl} ^{apat /fluid(s)}	0.12	0.097	1.9	4.8	0.28
D _F ^{apat/mt}	40	6.3	14	27	22

Meit (vrt%) SiO ₇ 75.11 = 0.26 74.95 ± 0.67 74.75 ± 0.40 74.55 ± 0.66 74.38 ± 0.43 TiO2 0.06 ± 0.03 0.08 ± 0.03 0.07 ± 0.03 0.02 ± 0.01 0.05 ± 0.01 MgO 0.05 ± 0.01 0.04 ± 0.02 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 MgO 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.02 0.02 ± 0.02 0.01 ± 0.02 CaO 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.02 0.02 ± 0.02 0.03 ± 0.02 NayO 4.35 ± 0.13 5.25 ± 0.13 5.17 ± 0.15 3.56 ± 0.27 4.05 ± 0.16 KyO 4.45 ± 0.07 3.78 ± 0.07 3.71 ± 0.02 4.67 ± 0.04 4.97 ± 0.12 PyOs 0.03 ± 0.03 0.26 ± 0.08 0.03 ± 0.007 0.03 ± 0.007 0.03 ± 0.007 0.03 ± 0.007 0.03 ± 0.007 0.03 ± 0.007 0.03 ± 0.007 0.03 ± 0.02 0.03 ± 0.007 0.005 ± 0.011 0.01 ± 0.01 0.009 ± 0.007 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 0.03 ± 0.02 <th>Experimental Run</th> <th>CS-15-05D</th> <th>CS-15-06</th> <th>CS-15-07</th> <th>CS-15-09A</th> <th>CS-15-09B</th>	Experimental Run	CS-15-05D	CS-15-06	CS-15-07	CS-15-09A	CS-15-09B
SiO ₂ 75.11 ± 0.26 74.96 ± 0.67 74.75 ± 0.40 74.55 ± 0.66 74.38 ± 0.43 TiO ₂ 0.06 ± 0.03 0.08 ± 0.03 0.07 ± 0.03 0.02 ± 0.01 0.05 ± 0.01 MgO 0.05 ± 0.01 0.04 ± 0.02 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 CaO 0.10 ± 0.03 0.04 ± 0.02 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 MaO 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.02 0.02 ± 0.02 0.01 ± 0.02 NayO 4.35 ± 0.13 5.25 ± 0.13 5.17 ± 0.15 3.56 ± 0.27 4.05 ± 0.01 SQ 0.003 ± 0.04 0.06 ± 0.01 0.01 ± 0.01 0.009 ± 0.07 0.003 ± 0.03 SQ 0.003 ± 0.04 0.06 ± 0.01 0.01 ± 0.01 0.03 ± 0.03 0.02 ± 0.01 0.03 ± 0.03 CI 0.10 ± 0.01 0.30 ± 0.02 0.03 ± 0.04 0.06 ± 0.03 0.01 ± 0.01 0.03 ± 0.06 CI 0.10 ± 0.01 0.30 ± 0.06 0.03 ± 0.06 0.03 ± 0.04 0.004 ± 0.003 CI 0.06 ± 0.03 0.11 ± 0.02	Melt (wt%)					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SiO ₂	75.11 ± 0.26	74.96 ± 0.67	74.75 ± 0.40	74.55 ± 0.66	74.38 ± 0.43
Ab.0; 12.06 ± 0.15 12.17 ± 0.17 12.15 ± 0.12 11.91 ± 0.15 12.06 ± 0.10 MgO 0.05 ± 0.01 0.04 ± 0.02 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 CaO 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.02 0.02 ± 0.02 0.01 ± 0.02 FeO 0.82 ± 0.08 0.30 ± 0.07 0.43 ± 0.12 0.79 ± 0.09 0.80 ± 0.07 NacO 4.35 ± 0.07 3.78 ± 0.07 3.71 ± 0.15 3.55 ± 0.27 4.05 ± 0.12 P.O; 0.03 ± 0.03 0.02 ± 0.01 0.03 ± 0.03 0.02 ± 0.01 0.03 ± 0.03 SO; 0.003 ± 0.03 0.02 0.03 ± 0.01 0.03 ± 0.02 0.33 ± 0.07 Total 97.21 97.31 96.92 96.53 0.95 N/K* 0.60 0.68 0.68 0.54 0.05 ± 0.05 Cloubling in melt 0.32 0.32 0.33 0.35 0.34 0.01 ± 0.01 MapO 0.01 ± 0.01 0.01 ± 0.01	TiO ₂	0.06 ± 0.03	0.08 ± 0.03	0.07 ± 0.03	0.02 ± 0.01	0.05 ± 0.03
NgO 0.05 ± 0.01 0.04 ± 0.02 0.05 ± 0.01 0.06 ± 0.01 0.05 ± 0.01 CaO 0.10 ± 0.03 0.04 ± 0.04 0.16 ± 0.05 0.02 ± 0.04 0.35 ± 0.01 MaO 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.02 0.02 ± 0.02 0.02 ± 0.02 0.01 ± 0.02 FeO 0.82 ± 0.08 0.30 ± 0.07 0.43 ± 0.12 0.79 ± 0.09 0.80 ± 0.07 NatO 4.45 ± 0.07 3.78 ± 0.07 3.71 ± 0.02 4.67 ± 0.04 4.97 ± 0.12 P(O 0.03 ± 0.03 0.26 ± 0.08 0.03 ± 0.03 0.02 ± 0.01 0.03 ± 0.03 SO2 0.003 ± 0.03 0.26 ± 0.03 0.01 ± 0.01 0.009 ± 0.02 0.03 ± 0.001 Total 97.21 97.31 96.92 96.33 96.86 H(O, FTR 2.44 2.74 2.62 3.7 3.22 ACNK ⁴ 0.99 0.95 0.95 0.99 0.95 NNK ⁴ 0.60 0.32 ± 0.32 0.33 ± 0.33 0.33 ± 0.33 <td>Al₂O₃</td> <td>12.06 ± 0.15</td> <td>12.17 ± 0.17</td> <td>12.15 ± 0.12</td> <td>11.91 ± 0.15</td> <td>12.06 ± 0.10</td>	Al ₂ O ₃	12.06 ± 0.15	12.17 ± 0.17	12.15 ± 0.12	11.91 ± 0.15	12.06 ± 0.10
CaO 0.10 ± 0.03 0.04 ± 0.04 0.16 ± 0.05 0.62 ± 0.04 0.35 ± 0.06 MnO 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.02 0.02 ± 0.02 0.01 ± 0.02 FeO 0.82 ± 0.08 0.30 ± 0.07 0.43 ± 0.12 0.79 ± 0.09 0.80 ± 0.07 Na;O 4.45 ± 0.07 3.78 ± 0.07 3.71 ± 0.02 4.67 ± 0.04 4.97 ± 0.12 PoO 0.03 ± 0.03 0.03 ± 0.03 0.03 ± 0.03 0.02 ± 0.07 0.005 ± 0.026 SO2 0.005 ± 0.03 0.11 ± 0.02 0.99 ± 0.02 0.03 ± 0.03 0.03 ± 0.02 Cl 0.06 ± 0.03 0.11 ± 0.02 0.99 ± 0.02 0.03 ± 0.01 0.04 ± 0.02 Cl 0.10 ± 0.01 0.32 ± 0.32 0.32 0.32 0.32 0.32 ACNK ^A 0.99 0.95 0.95 0.99 0.95 NNK ^A 0.60 0.68 0.68 0.54 0.55 Cl subbility in melt 0.32 0.32 ± 0.11 0.47 ± 0.27 $0.80 $	MgO	0.05 ± 0.01	0.04 ± 0.02	0.05 ± 0.01	0.06 ± 0.01	0.05 ± 0.01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CaO	0.10 ± 0.03	0.04 ± 0.04	0.16 ± 0.05	0.62 ± 0.04	0.35 ± 0.06
FeO 0.82 ± 0.08 0.30 ± 0.07 0.43 ± 0.12 0.79 ± 0.09 0.80 ± 0.07 NayO 4.35 ± 0.13 5.25 ± 0.13 5.17 ± 0.15 3.56 ± 0.27 4.05 ± 0.16 KO 4.45 ± 0.07 3.78 ± 0.07 3.71 ± 0.02 4.67 ± 0.04 4.97 ± 0.12 PoS 0.03 ± 0.03 0.02 ± 0.004 0.006 ± 0.01 0.012 ± 0.01 0.002 ± 0.007 0.005 ± 0.006 F 0.06 ± 0.03 0.11 ± 0.02 0.09 ± 0.02 0.03 ± 0.04 0.04 ± 0.02 C1 0.10 ± 0.01 0.30 ± 0.02 0.31 ± 0.01 0.04 ± 0.02 0.01 ± 0.01 MCNK ⁴ 0.99 0.95 0.95 0.99 0.95 NNK ⁴ 0.60 0.68 0.68 0.54 0.55 C1 stolubility in melt 0.32 0.32 0.33 0.35 0.34 SiO 0.42 ± 0.05 0.29 ± 0.11 0.47 ± 0.27 0.80 ± 0.23 0.84 ± 0.13 TiO 0.01 ± 0.01 0.01 ± 0.01 0.03 ± 0.06 0	MnO	0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.02	0.02 ± 0.02	0.01 ± 0.02
Na;O 4.35 ± 0.13 5.25 ± 0.13 5.17 ± 0.15 3.56 ± 0.27 4.05 ± 0.16 KQO 4.45 ± 0.07 3.78 ± 0.07 3.71 ± 0.02 4.67 ± 0.04 4.97 ± 0.12 P_Os 0.03 ± 0.03 0.26 ± 0.08 0.03 ± 0.03 0.02 ± 0.01 0.03 ± 0.03 SO2 0.003 ± 0.004 0.006 ± 0.01 0.01 ± 0.01 0.009 ± 0.02 0.03 ± 0.04 0.04 ± 0.02 Cl 0.10 ± 0.01 0.30 ± 0.02 0.31 ± 0.01 0.04 ± 0.02 0.03 ± 0.01 Total 97.211 97.31 96.92 96.33 96.86 H_2O, FTIR 2.44 2.74 2.62 3.7 3.2 A/CNK ⁴ 0.99 0.95 0.99 0.95 0.99 0.95 NNK ^a 0.60 0.68 0.68 0.64 0.05 0.21 SiO_2 0.01 ± 0.01 0.04 ± 0.03 0.03 ± 0.06 0.01 ± 0.01 0.01 ± 0.01 Additic (wf s) Sio_2 0.31 ± 0.05 0.33 ± 0.06 <td>FeO</td> <td>0.82 ± 0.08</td> <td>0.30 ± 0.07</td> <td>0.43 ± 0.12</td> <td>0.79 ± 0.09</td> <td>0.80 ± 0.07</td>	FeO	0.82 ± 0.08	0.30 ± 0.07	0.43 ± 0.12	0.79 ± 0.09	0.80 ± 0.07
K20 4.45 ± 0.07 3.78 ± 0.07 3.71 ± 0.02 4.67 ± 0.04 4.97 ± 0.12 P20s 0.03 ± 0.03 0.26 ± 0.08 0.03 ± 0.03 0.02 ± 0.01 0.009 ± 0.007 0.005 ± 0.006 F 0.06 ± 0.03 0.11 ± 0.02 0.09 ± 0.02 0.03 ± 0.04 0.04 ± 0.01 0.03 ± 0.04 CI 0.10 ± 0.01 0.30 ± 0.02 0.31 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 Total 97.21 97.31 96.92 96.33 96.68 H20, FTIR 2.44 2.74 2.62 3.7 3.2 ACNK ⁴ 0.99 0.95 0.95 0.99 0.95 NNK ⁸ 0.60 0.68 0.64 0.55 0.21 C1 solubility in meth 0.32 0.32 0.33 0.33 0.33 0.34 SiO2 0.42 ± 0.05 0.29 ± 0.11 0.47 ± 0.27 0.80 ± 0.23 0.84 ± 0.13 TiO2 0.01 ± 0.01 0.01 ± 0.01 0.03 ± 0.03 0.002	Na ₂ O	4.35 ± 0.13	5.25 ± 0.13	5.17 ± 0.15	3.56 ± 0.27	4.05 ± 0.16
P_2O_5 0.03 ± 0.03 0.26 ± 0.08 0.03 ± 0.03 0.02 ± 0.01 0.03 ± 0.03 SO2 0.003 ± 0.004 0.002 0.03 ± 0.02 0.03 ± 0.007 0.005 ± 0.006 F 0.06 ± 0.03 0.11 ± 0.02 0.03 ± 0.02 0.03 ± 0.01 0.04 ± 0.01 Cl 0.10 ± 0.01 0.30 ± 0.02 0.33 ± 0.01 0.04 ± 0.01 0.33 ± 0.01 Total 97.21 97.31 96.92 96.33 96.86 H_2O, FTIR 2.44 2.74 2.62 3.7 3.2 ACNK ⁴ 0.60 0.68 0.68 0.54 0.55 C1 solubility in melt 0.32 0.32 0.33 0.33 0.35 0.34 Apatite (wt%) 0.01 ± 0.01 MgO 0.08 ± 0.06 0.32 ± 0.40 0.03 ± 0.40 0.12 ± 0.03 0.34 ± 0.43 0.32 ± 0.42 MgO 0.07 ± 0.06 0.32 ± 0.40 <t< td=""><td>K₂O</td><td>4.45 ± 0.07</td><td>3.78 ± 0.07</td><td>3.71 ± 0.02</td><td>4.67 ± 0.04</td><td>4.97 ± 0.12</td></t<>	K ₂ O	4.45 ± 0.07	3.78 ± 0.07	3.71 ± 0.02	4.67 ± 0.04	4.97 ± 0.12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P ₂ O ₅	0.03 ± 0.03	0.26 ± 0.08	0.03 ± 0.03	0.02 ± 0.01	0.03 ± 0.03
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SO ₂	0.003 ± 0.004	0.006 ± 0.01	0.01 ± 0.01	0.009 ± 0.007	0.005 ± 0.006
Cl 0.10 ± 0.01 0.30 ± 0.02 0.31 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 Total 97.21 97.31 96.92 96.33 96.86 H_2O, FTIR 2.44 2.74 2.62 3.7 3.2 A'CNK ⁴ 0.99 0.95 0.95 0.99 0.95 A'NK ⁴ 0.60 0.68 0.68 0.54 0.55 Cl solubility in melt 0.32 0.32 0.33 0.35 0.34 Experimental Run CS-15-05D CS-15-06 CS-15-07 CS-15-07 0.80 ± 0.23 0.84 ± 0.13 TiO_ 0.01 ± 0.01 0.004 ± 0.003 0.003 ± 0.06 0.12 ± 0.03 0.03 ± 0.04 0.001 ± 0.01 MgO 0.01 ± 0.01 0.01 ± 0.01 0.03 ± 0.04 0.02 ± 0.02 0.10 ± 0.01 MgO 0.07 ± 0.06 0.33 ± 0.04 0.02 ± 0.01 0.01 ± 0.01 0.02 ± 0.02 FeO 0.22 ± 0.17 0.27 ± 0.04 0.08 ± 0.02 0.02 ± 0.02 0.02 ± 0.02 MaO	F	0.06 ± 0.03	0.11 ± 0.02	0.09 ± 0.02	0.03 ± 0.04	0.04 ± 0.02
Total 97.21 97.31 96.92 96.33 96.86 H ₂ O, FTIR 2.44 2.74 2.62 3.7 3.2 A/CNK ^a 0.99 0.95 0.95 0.99 0.95 N/NK ^a 0.60 0.68 0.68 0.54 0.55 C1 solubility in melt 0.32 0.32 0.33 0.35 0.34 Experimental Run CS-15-05D CS-15-06 CS-15-07 CS-15-09A CS-15-09B Apatite (wt%) 0.01 ± 0.01 0.042 ± 0.03 0.003 ± 0.06 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.03 ± 0.06 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.02	Cl	0.10 ± 0.01	0.30 ± 0.02	0.31 ± 0.01	0.04 ± 0.01	0.03 ± 0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total	97.21	97.31	96.92	96.33	96.86
ACNK ^a 0.99 0.95 0.95 0.99 0.95 N/NK ^a 0.60 0.68 0.68 0.54 0.55 Cl solubility in melt 0.32 0.32 0.33 0.35 0.34 Experimental Run CS-15-05D CS-15-07 CS-15-09A CS-15-09B SiO2 0.42 \pm 0.05 0.29 \pm 0.11 0.47 \pm 0.27 0.80 \pm 0.23 0.84 \pm 0.13 TiO2 0.01 \pm 0.01 0.004 \pm 0.03 0.036 \pm 0.06 0.12 \pm 0.03 0.03 \pm 0.04 0.01 \pm 0.01 0.01 \pm 0.01 AlgO 0.88 \pm 0.69 53.27 \pm 0.39 54.96 \pm 0.88 55.86 \pm 0.17 MnO 0.07 \pm 0.06 0.13 \pm 0.04 0.02 \pm 0.01 0.01 \pm 0.02 0.02 FeO 0.22 \pm 0.04 0.08 \pm 0.02 0.12 \pm 0.06 0.03 \pm 0.04 0.02 \pm 0.02 0.02 \pm 0.02 Na ₂ O 0.26 \pm 0.06 0.55 \pm 0.10 0.31 \pm 0.05 0.02 \pm 0.02 0.02 \pm 0.02 K ₂ O 0.10 \pm 0.05 0.06 \pm 0.55 0.10 0.31 \pm 0.05 0.02 \pm 0.02<	H ₂ O, FTIR	2.44	2.74	2.62	3.7	3.2
N/KR ⁴ 0.60 0.68 0.68 0.54 0.55 Cl solubility in melt 0.32 0.32 0.33 0.35 0.34 Experimental Run CS 15-05D CS 15-06D CS 15-07 CS 15-09A CS 15-09B Apatite (wt%) SiO ₂ 0.01 ± 0.01 0.004 ± 0.003 0.003 ± 0.06 0.01 ± 0.01 0.01 ± 0.01 Algo 0.01 ± 0.01 0.01 ± 0.01 0.03 ± 0.04 0.19 ± 0.04 0.001 ± 0.01 MgO 0.08 ± 0.06 0.30 ± 0.06 0.12 ± 0.03 0.03 ± 0.02 0.10 ± 0.05 Cao 53.19 ± 0.59 52.03 ± 0.69 53.27 ± 0.39 54.96 ± 0.88 55.86 ± 0.17 MnO 0.07 ± 0.06 0.13 ± 0.04 0.02 ± 0.01 0.01 ± 0.01 0.02 ± 0.02 FeO 0.22 ± 0.17 0.27 ± 0.04 0.08 ± 0.02 0.12 ± 0.06 0.03 ± 0.00 Na ₂ O 0.26 ± 0.06 0.55 ± 0.10 0.09 ± 0.05 0.002 ± 0.02 0.02 ± 0.02 K ₂ O 0.10 ± 0.03 0.06 ± 0.03 0.04 ± 0.01 0.06 ± 0.08 0.03 ± 0.03 0.	A/CNK ^a	0.99	0.95	0.95	0.99	0.95
Cli solubility in melt 0.32 0.32 0.33 0.35 0.34 Experimental Run Apatite (wt%) CS-15-05D CS-15-06 CS-15-07 CS-15-09A CS-15-09B SiO2 0.42 \pm 0.05 0.29 \pm 0.11 0.47 \pm 0.27 0.80 \pm 0.23 0.84 \pm 0.01 SiO2 0.01 \pm 0.01 0.004 \pm 0.003 0.003 \pm 0.06 0.11 \pm 0.01 0.01 \pm 0.01 MiO 0.01 \pm 0.01 0.01 \pm 0.01 0.03 \pm 0.06 0.12 \pm 0.03 0.03 \pm 0.02 0.10 \pm 0.01 MnO 0.07 \pm 0.06 0.13 \pm 0.04 0.02 \pm 0.01 0.01 \pm 0.01 0.02 \pm 0.02 Na2O 0.26 \pm 0.06 0.55 \pm 0.10 0.31 \pm 0.05 0.02 \pm 0.02 0.02 \pm 0.02 KgO 0.10 \pm 0.03 0.08 \pm 0.01 0.09 \pm 0.05 0.003 \pm 0.04 0.01 \pm 0.01 P2Os 40.14 \pm 0.65 40.60 \pm 0.41 40.17 \pm 0.81 38.78 \pm 1.50 39.40 \pm 0.01 SO2 0.28 \pm 0.04 0.06 \pm 0.08 0.23 \pm 0.04 0.06 \pm 0.04 0.04 \pm 0.07 SO2 0.28 \pm 0.03 <	N/NK ^a	0.60	0.68	0.68	0.54	0.55
Experimental Run Apatite (wt%) CS-15-05D CS-15-06 CS-15-07 CS-15-09A CS-15-09B SiQ 0.42 ± 0.05 0.29 ± 0.11 0.47 ± 0.27 0.80 ± 0.23 0.84 ± 0.13 TiQ 0.01 ± 0.01 0.004 ± 0.003 0.003 ± 0.006 0.01 ± 0.01 0.01 ± 0.01 Al ₂ O ₃ 0.01 ± 0.01 0.01 ± 0.01 0.03 ± 0.04 0.19 ± 0.04 0.001 ± 0.01 MgO 0.08 ± 0.06 0.30 ± 0.06 0.12 ± 0.03 0.03 ± 0.02 0.10 ± 0.05 CaO 53.19 ± 0.59 52.03 ± 0.69 53.27 ± 0.39 54.96 ± 0.88 55.86 ± 0.17 MnO 0.07 ± 0.06 0.13 ± 0.04 0.02 ± 0.01 0.01 ± 0.05 0.02 ± 0.02 FeO 0.22 ± 0.17 0.27 ± 0.04 0.08 ± 0.02 0.02 ± 0.02	Cl solubility in melt	0.32	0.32	0.33	0.35	0.34
Apatite (wt%) SiO2 0.42 ± 0.05 0.29 ± 0.11 0.47 ± 0.27 0.80 ± 0.23 0.84 ± 0.13 TiO2 0.01 ± 0.01 0.004 ± 0.003 0.003 ± 0.006 0.01 ± 0.01 0.01 ± 0.01 MgO 0.08 ± 0.06 0.30 ± 0.06 0.12 ± 0.03 0.03 ± 0.02 0.10 ± 0.01 MgO 0.08 ± 0.06 0.30 ± 0.06 0.12 ± 0.03 0.03 ± 0.02 0.10 ± 0.05 CaO 53.19 ± 0.59 52.03 ± 0.69 53.27 ± 0.39 54.96 ± 0.88 55.86 ± 0.17 MnO 0.07 ± 0.06 0.13 ± 0.04 0.02 ± 0.01 0.01 ± 0.01 0.02 ± 0.02 FeO 0.22 ± 0.17 0.27 ± 0.04 0.08 ± 0.02 0.12 ± 0.06 0.03 ± 0.03 Na2O 0.26 ± 0.06 0.55 ± 0.10 0.31 ± 0.05 0.02 ± 0.02 0.02 ± 0.02 K2O 0.10 ± 0.03 0.08 ± 0.01 0.09 ± 0.05 0.003 ± 0.004 0.01 ± 0.01 F2O 2.02 ± 0.13 0.46 ± 0.11 0.14 ± 0.03 0.40 ± 0.07 0.32 ± 0.12 0.34 ± 0.07 <td>Experimental Run</td> <td>CS-15-05D</td> <td>CS-15-06</td> <td>CS-15-07</td> <td>CS-15-09A</td> <td>CS-15-09B</td>	Experimental Run	CS-15-05D	CS-15-06	CS-15-07	CS-15-09A	CS-15-09B
	Apatite (wt%)					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SiO ₂	0.42 ± 0.05	0.29 ± 0.11	0.47 ± 0.27	0.80 ± 0.23	0.84 ± 0.13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TiO ₂	0.01 ± 0.01	0.004 ± 0.003	0.003 ± 0.006	0.01 ± 0.01	0.01 ± 0.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Al ₂ O ₃	0.01 ± 0.01	0.01 ± 0.01	0.03 ± 0.04	0.19 ± 0.04	0.001 ± 0.001
$ \begin{array}{c} \begin{array}{c} GO \\ GO \\ FeO \\ FeO \\ O \\ O \\ O \\ C \\ FeO \\ O \\ O \\ C \\ $	MgO	0.08 ± 0.06	0.30 ± 0.06	0.12 ± 0.03	0.03 ± 0.02	0.10 ± 0.05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CaO	53.19 ± 0.59	52.03 ± 0.69	53.27 ± 0.39	54.96 ± 0.88	55.86 ± 0.17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MnO	0.07 + 0.06	0.13 ± 0.04	0.02 ± 0.01	0.01 ± 0.01	0.02 + 0.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	FeO	0.22 ± 0.17	0.27 ± 0.04	0.08 ± 0.02	0.12 ± 0.06	0.03 ± 0.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Na ₂ O	0.26 ± 0.06	0.55 ± 0.10	0.31 ± 0.05	0.02 ± 0.02	0.02 + 0.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K ₂ O	0.10 ± 0.03	0.08 ± 0.01	0.09 ± 0.05	0.003 ± 0.004	0.01 + 0.01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	P ₂ O ₅	40.14 ± 0.65	40.60 ± 0.41	40.17 ± 0.81	38.78 ± 1.50	39.40 ± 0.01
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F	1.80 ± 0.50	0.66 ± 0.12	1.62 ± 0.04	1.06 ± 0.26	0.89 ± 0.13
SO2 0.28 ± 0.04 0.06 ± 0.08 0.23 ± 0.12 0.37 ± 0.06 0.05 ± 0.02 BaO 0.01 ± 0.02 0.01 ± 0.01 0.06 ± 0.05 0.32 ± 0.03 0.01 ± 0.01 Ce ₂ O ₃ 0.49 ± 0.05 0.56 ± 0.13 0.49 ± 0.07 0.39 ± 0.27 0.02 ± 0.03 SrO 0.05 ± 0.03 0.04 ± 0.02 0.03 ± 0.02 0.03 ± 0.03 0.02 ± 0.01 Total 98.33 99.09 98.91 96.74 97.66 X _{C1} ^{apal} b 0.19 0.53 0.30 0.02 ± 0.01 Total 98.33 99.09 98.91 96.74 97.66 X _{C1} ^{apal} b 0.48 0.18 0.43 0.28 0.24 Apparent X _{OH} ^{apatb} 0.48 0.18 0.43 0.28 0.24 Apparent X _{OH} ^{apatfelsicmelt} 0.33 0.29 0.27 0.70 0.70 Wt% C1 in fluid(s) 0.6 28.4 9.2 1.4 4.3 Exchange Coefficients K _{GC14} ^{apat-felsicmelt} 0.033 0.031 0.054 0.22 <td< td=""><td>Cl</td><td>1.00 ± 0.00 1.31 ± 0.30</td><td>3.60 ± 0.09</td><td>2.04 ± 0.11</td><td>0.14 ± 0.03</td><td>0.40 ± 0.07</td></td<>	Cl	1.00 ± 0.00 1.31 ± 0.30	3.60 ± 0.09	2.04 ± 0.11	0.14 ± 0.03	0.40 ± 0.07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SO ₂	0.28 ± 0.04	0.06 ± 0.08	0.23 ± 0.12	0.37 ± 0.06	0.05 ± 0.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BaO	0.20 ± 0.01	0.00 ± 0.00	0.25 ± 0.12 0.06 ± 0.05	0.03 ± 0.03	0.03 ± 0.02 0.01 ± 0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ce ₂ O ₂	0.49 ± 0.05	0.56 ± 0.13	0.49 ± 0.07	0.39 ± 0.27	0.02 ± 0.03
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SrO	0.05 ± 0.03	0.04 ± 0.02	0.03 ± 0.02	0.03 ± 0.03	0.02 ± 0.01
No. No. No. No. No. No. X_{Cl}^{apatb} 0.19 0.53 0.30 0.02 0.06 X_{F}^{apatb} 0.48 0.18 0.43 0.28 0.24 Apparent X_{OH}^{apatb} 0.33 0.29 0.27 0.70 0.70 Wt% Cl in fluid(s) 0.6 28.4 9.2 1.4 4.3 Exchange Coefficients K KdCl-F 0.016 0.054 0.22 0.076 K_dOH-F ^{apat-felsicmelt} 0.016 0.064 0.02 0.025 0.048 Partition Coefficients D D 0.11 0.63 0.43 0.22 0.076 DC1 ^{apat/mt} 0.016 0.064 0.02 0.025 0.048 0.048 Partition Coefficients D D 0.13 0.96 2.4 2.7 DC1 ^{apat/mt} 1.2 1.03 0.96 2.4 2.7 DC1 ^{diud(s/mt} 6.5 95.2 29.9 38 145 DC1 ^{apat/mt} 0.13 0.22 0.1 0.09	Total	98.33	99.09	98.91	96.74	97.66
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X apatb	0.19	0.53	0.30	0.02	0.06
$A_{\rm p}$ original original <thori< th=""> original ori</thori<>	$\mathbf{X}_{r}^{apat}\mathbf{b}$	0.48	0.18	0.43	0.28	0.24
Applicht X_{OH} 0.05 0.12 0.12 0.13 0.13 Wt% Cl in fluid(s) 0.6 28.4 9.2 1.4 4.3 Exchange Coefficients KdC1+ ^a 0.47 2.07 0.38 0.11 0.63 KdC1+ ^a 0.033 0.031 0.054 0.22 0.076 KdOH-Ci apat-felsicmelt 0.016 0.064 0.02 0.025 0.048 Partition Coefficients D _{Cl} ^{apat/fult} 13.8 12.0 6.6 3.9 13.6 D _{Cl} ^{apat/mt} 1.2 1.03 0.96 2.4 2.7 D _{Cl} ^{apat/mt} 6.5 95.2 29.9 38 145 D _{Cl} ^{apat/mt} 30 6 18 35.3 22.2	Apparent X _{ou} ^{apat} ^b	0.33	0.29	0.27	0.70	0.70
Exchange Coefficients Image: Stress of the index	Wt% Cl in fluid(s)	0.6	28.4	9.2	14	4.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Exchange Coefficients	0.0	20.1	7.2	1.1	
Hactor District Structure District Structure </td <td>K apat-felsicmelt</td> <td>0.47</td> <td>2.07</td> <td>0.38</td> <td>0.11</td> <td>0.63</td>	K apat-felsicmelt	0.47	2.07	0.38	0.11	0.63
Radical Agent felsionelt 0.055 0.051 0.051 0.021 0.021 0.016 Partition Coefficients D _{Cl} ^{apat/mt} 13.8 12.0 6.6 3.9 13.6 D _{XOH} ^{apat/mt} 1.2 1.03 0.96 2.4 2.7 D _{Cl} ^{apat/mt} 6.5 95.2 29.9 38 145 D _{Cl} ^{apat/mt} 30 6 18 35.3 22.2	K tou cu apat-felsicmelt	0.033	0.031	0.054	0.22	0.076
Particino Coefficients 0.010 0.001 0.02 0.020 0.020 $D_{Cl}^{apat/mt}$ 13.8 12.0 6.6 3.9 13.6 $D_{XOH}^{apat/mt}$ 1.2 1.03 0.96 2.4 2.7 $D_{Cl}^{fluid(s)/mt}$ 6.5 95.2 29.9 38 145 $D_{Cl}^{apat/fluid(s)}$ 2.1 0.13 0.22 0.1 0.09 $D_{p}^{apat/mt}$ 30 6 18 35.3 22.2	K tour apat-felsicmelt	0.016	0.064	0.02	0.025	0.048
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Partition Coefficients	0.010	0.001	0.02	0.023	0.010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D _{Cl} ^{apat/mt}	13.8	12.0	6.6	3.9	13.6
$D_{Cl}^{fluid(s)/mt}$ 6.5 95.2 29.9 38 145 $D_{Cl}^{apat/fluid(s)}$ 2.1 0.13 0.22 0.1 0.09 $D_{p}^{apat/mt}$ 30 6 18 35.3 22.2	Dxou ^{apat/mt}	1.2	1.03	0.96	2.4	2.7
$D_{Cl}^{apat/fluid(s)}$ 2.1 0.13 0.22 0.1 0.09 $D_{Fl}^{apat/fluid(s)}$ 30 6 18 35.3 22.2	D _{cl} ^{fluid(s)/mt}	6.5	95.2	29.9	38	145
$D_{\rm F}^{\rm pat/mt}$ 30 6 18 35.3 22.2	D _{Cl} ^{apat /fluid(s)}	2.1	0.13	0.22	0.1	0.09
	D _F ^{apat/mt}	30	6	18	35.3	22.2

Experimental Run	CS-15-16A	1-15-144	1-15-14B	CS-15-18	1-15-10A ^c
Melt (wt%)	00 10 1011	1 10 1 11	1 10 112		1 10 1011
SiO	74.81 ± 0.13	74.06 ± 0.83	75.33 ± 0.33	73.7 ± 0.23	71.68 ± 0.12
510 ₂	74.81 ± 0.13	0.06 ± 0.03	15.55 ± 0.55	13.7 ± 0.23	71.08 ± 0.12
	0.04 ± 0.04	0.00 ± 0.03	0.00 ± 0.00	0.07 ± 0.01	0.07 ± 0.02 11.72 ± 0.07
M_2O_3	12.30 ± 0.08	12.40 ± 0.13	12.37 ± 0.08	12.22 ± 0.27	11.72 ± 0.07
MgO G-O	0.03 ± 0.01	0.00 ± 0.01	0.03 ± 0.01	0.00 ± 0.01	0.03 ± 0.01
CaO MaO	0.70 ± 0.12	0.48 ± 0.11	0.54 ± 0.03	0.23 ± 0.15	2.07 ± 0.04
	0.03 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.03 ± 0.01	0.02 ± 0.02
FeU	0.99 ± 0.14	1.02 ± 0.02	1.02 ± 0.13	0.7 ± 0.05	0.64 ± 0.09
Na ₂ O	3.89 ± 0.09	4.47 ± 0.37	3.86 ± 0.14	4.68 ± 0.22	3.63 ± 0.10
K ₂ O	4.66 ± 0.05	4.34 ± 0.18	4.42 ± 0.08	5.35 ± 0.14	3.38 ± 0.04
P_2O_5	0.03 ± 0.03	0.10 ± 0.03	0.17 ± 0.03	0.06 ± 0.07	0.08 ± 0.06
SO_2	0.004 ± 0.002	0.003 ± 0.005	0.004 ± 0.002	0.005 ± 0.004	0.003 ± 0.004
F	0.19 ± 0.07	0.06 ± 0.04	0.05 ± 0.07	0.05 ± 0.04	0.10 ± 0.02
Cl	0.11 ± 0.01	0.42 ± 0.01	0.09 ± 0.01	0.36 ± 0.01	0.32 ± 0.01
Total	97.86	97.50	98.20	97.46	93.74
H ₂ O, FTIR	2.9	2.35	2.3	2.54	5.76
A/CNK ^a	0.97	0.96	1.04	0.88	0.87
N/NK ^a	0.56	0.61	0.57	0.57	0.62
Cl solubility in melt	0.40	0.39	0.37	0.35	0.62
Experimental Run	CS-15-16A	1-15-14A	1-15-14B	CS-15-18	1-15-10A ^c
Apatite (wt%)					
SiO ₂	1.02 ± 0.31	0.26 ± 0.14	0.18 ± 0.02	0.16 ± 0.07	1.53 ± 0.16
TiO ₂	0.01 ± 0.01	0.003 ± 0.005	0.01 ± 0.01	0.003 ± 0.007	0.01 ± 0.005
Al_2O_3	0.05 ± 0.03	0.003 ± 0.01	0.12 ± 0.1	0.003 ± 0.004	0.27 ± 0.10
MgO	0.12 ± 0.01	0.13 ± 0.01	0.18 ± 0.02	0.13 ± 0.03	0.09 ± 0.06
CaO	53.67 ± 0.79	54.33 ± 0.73	54.72 ± 1.3	54.33 ± 0.30	53.40 ± 0.36
MnO	0.01 ± 0.02	0.03 ± 0.03	0.22 ± 0.03	0.03 ± 0.03	0.03 ± 0.02
FeO	0.19 ± 0.15	0.13 ± 0.03	0.39 ± 0.07	0.13 ± 0.04	0.26 ± 0.06
Na ₂ O	0.07 ± 0.04	0.18 ± 0.08	0.11 ± 0.05	0.18 ± 0.04	0.20 ± 0.06
K ₂ O	0.03 ± 0.02	0.09 ± 0.03	0.05 ± 0.02	0.09 ± 0.03	0.13 ± 0.03
P_2O_5	40.21 ± 0.77	41.10 ± 0.40	40.48 ± 1.12	41.10 ± 0.25	39.80 ± 0.61
F	2.21 ± 0.11	1.90 ± 0.06	1.74 ± 0.15	1.90 ± 0.07	2.00 ± 0.09
Cl	0.64 ± 0.09	1.72 ± 0.09	1.24 ± 0.04	1.72 ± 0.15	0.86 ± 0.27
SO ₂	0.07 ± 0.10	0.006 ± 0.01	0.001 ± 0.01	0.006 ± 0.004	0.03 ± 0.004
BaO	0.01 ± 0.01	0.01 ± 0.01	0.02 ± 0.03	0.01 ± 0.02	0.01 ± 0.03
Ce ₂ O ₂	0.02 ± 0.02	0.26 ± 0.23	0.03 ± 0.07	0.26 ± 0.08	0.05 ± 0.03
SrO	0.04 ± 0.02	0.03 ± 0.02	0.05 ± 0.02	0.03 ± 0.02	0.02 ± 0.01
Total	98.29	100.00	99.36	99.99	98.29
X apatb	0.09	0.25	0.18	0.25	0.13
$\mathbf{x}_{-apat}\mathbf{b}$	0.59	0.51	0.46	0.51	0.53
Apparant V apatb	0.32	0.24	0.40	0.24	0.34
Wt% Cl in fluid(s)	0.52	4.2	0.30	34.2	7.6
Evolution Coofficients	0.02	4.2	0.40	34.2	7.0
k apat-felsicmelt	0.50	0.14	0.30	0.13	0.14
V apat-felsicmelt	0.067	0.14	0.39	0.15	0.14
NdOH-Cl apat-felsicmelt	0.007	0.000	0.036	0.096	0.074
N _{dOH-F}	0.034	0.012	0.013	0.015	0.010
p apat/mt	57	4.1	12.0	4.0	2.9
D _{Cl} '	5./	4.1	13.9	4.8	2.8
D _{XOH} fluid(s)/mt	1.0	0.9	1.4	1.2	0.7
D_{Cl} = apat /fluid(s)	5.5	10.0	4.0	96.2	17.8
D _{Cl} ^{arat/mt}	1.04	0.41	3.4	0.05	0.09
$D_{\rm F}^{\mu_{\rm F} \mu_{\rm F} \mu_{\rm F}}$	11.6	30.7	36.4	38	20

Experimental Run	1-15-10B	1-15-13A	1-15-13B	CS-14-17B ^c	CS-14-17C ^c
Melt (wt%)					
SiO ₂	71.89 ± 0.18	73.32 ± 0.68	73.87 ± 0.30	74.01 ± 0.92	73.25 ± 0.68
TiO ₂	0.08 ± 0.01	0.08 ± 0.04	0.08 ± 0.05	0.08 ± 0.04	0.07 ± 0.01
Al ₂ O ₂	11.70 ± 0.02	12.29 ± 0.17	12.25 ± 0.21	11.90 ± 0.36	11.60 ± 0.23
MgO	0.04 ± 0.01	0.06 ± 0.01	0.09 ± 0.01	0.06 ± 0.01	0.02 ± 0.01
CaO	1.17 ± 0.05	0.29 ± 0.03	0.05 ± 0.01 0.45 ± 0.11	0.00 ± 0.01 0.32 ± 0.03	0.02 ± 0.01 0.02 ± 0.02
MnO	0.04 ± 0.01	0.01 ± 0.01	0.43 ± 0.11	0.02 ± 0.03	0.02 ± 0.02
FeO	0.04 ± 0.01 0.77 ± 0.06	0.39 ± 0.06	0.01 ± 0.01 0.70 ± 0.11	0.02 ± 0.02	0.02 ± 0.05 0.70 ± 0.06
Na ₂ O	3.78 ± 0.02	3.34 ± 0.18	3.56 ± 0.05	0.52 ± 0.05	4.01 ± 0.30
K ₂ O	3.91 ± 0.02	4.00 ± 0.06	4.01 ± 0.03	4.32 ± 0.10	4.01 ± 0.00
R ₂ Or	0.005 ± 0.006	0.11 ± 0.10	0.09 ± 0.08	4.55 ± 0.10 0.02 + 0.03	4.00 ± 0.07
SO2	6.005 ± 0.000	0.004 ± 0.01	0.09 ± 0.00	0.02 ± 0.05	0.05 ± 0.04
50 <u>2</u> F	0.18 ± 0.02	0.19 ± 0.07	0.002 ± 0.001	0.002 ± 0.004	0.003 ± 0.000
I ¹	0.13 ± 0.02 0.23 ± 0.01	0.19 ± 0.07 0.14 ± 0.01	0.10 ± 0.04	0.02 ± 0.04	0.03 ± 0.01
Total	0.23 ± 0.01	94.23	0.18 ± 0.01	0.51 ± 0.01	0.21 ± 0.02
	5 95	5 59	5 52	95.91 Nd	95.15 Nd
$\Pi_2 O, \Gamma \Pi K$	5.65	1 10	1.11	1 N U	Nu 0.07
A/CNK	0.93	0.56	1.11	0.99	0.97
N/NK ²	0.60	0.30	0.57	0.59	0.55
CI solubility in melt	0.51	0.34	0.40	0.32	0.29
Experimental Run	1-15-10B	1-15-13A	1-15-13B	CS-14-17B	CS-14-17C
Apatite (wt%)		0.00 + 0.00	0.10 0.01		
SiO ₂		0.20 ± 0.20	0.12 ± 0.01		
		0.01 ± 0.01	bdl		
Al_2O_3		0.01 ± 0.01	0.02 ± 0.03		
MgO		0.50 ± 0.26	0.14 ± 0.02		
CaO		52.60 ± 1.06	53.30 ± 0.36		
MnO		0.23 ± 0.08	0.25 ± 0.04		
FeO		1.1 ± 0.48	0.81 ± 0.10		
Na ₂ O		0.14 ± 0.05	0.14 ± 0.07		
K_2O		0.04 ± 0.04	0.04 ± 0.01		
P_2O_5		40.80 ± 0.30	41.50 ± 0.20		
F		0.89 ± 0.05	0.76 ± 0.04		
Cl		2.38 ± 0.22	2.09 ± 0.15		
SO_2		0.01 ± 0.01	0.01 ± 0.01		
BaO		0.01 ± 0.01	0.02 ± 0.02		
Ce_2O_3		0.04 ± 0.04	0.07 ± 0.02		
SrO		0.10 ± 0.03	0.06 ± 0.02		
Total		99.01	99.27		
X_{Cl}^{apat}		0.35	0.31		
${\rm X_F}^{ m apat}^{ m b}$		0.24	0.20		
Apparent X _{OH} ^{apat} ^b		0.41	0.49		
Wt% Cl in fluid(s)	4.0	5.7	4.2	9.5	2.8
Exchange Coefficients					
$K_{dCl-F}^{apat-felsicmelt}$	Nd	3.77	2.6	Nd	Nd
$K_{dOH-Cl}^{apat-felsicmelt}$	Nd	0.015	0.026	Nd	Nd
KdOH-F	Nd	0.058	0.067	Nd	Nd
Partition Coefficients					
${\rm D_{Cl}}^{\rm apat/mt}$	Nd	16.7	11.9	Nd	Nd
D _{XOH} ^{apat/mt}	Nd	0.89	1.1	Nd	Nd
$D_{Cl}^{fluid(s)/mt}$	17.8	39.9	23.9	31.1	13.7
D _{Cl} ^{apat /fluid(s)}	Nd	0.42	0.50	Nd	Nd
${\rm D_F}^{\rm apat/mt}$	Nd	4.6	4.8	Nd	Nd

Experimental Run	CS-14-17D ^c	1-95-9E ^d	1-95-9F ^d	1-95-9B ^d	1-95-9D ^d
Melt (wt%)					
SiO ₂	74.57 ± 0.16	74.59	72.34	75.23	73.2
TiO ₂	0.12 ± 0.02	0.22	0.24	0.31	0.25
Al ₂ O ₃	11.94 ± 0.22	12.49	12.3	12.74	12.24
MgO	0.04 ± 0.02	0.14	0.15	0.13	0.14
CaO	0.15 ± 0.11	0.71	0.33	0.62	0.32
MnO	0.03 ± 0.02	0.05	0.03	0.08	0.02
FeO	0.34 ± 0.08	1.1	0.81	0.97	0.81
Na ₂ O	3.45 ± 0.18	3.53	3.33	3.27	3.44
K ₂ O	5.74 ± 0.09	5.32	7.63	5.24	6.89
P_2O_5	0.09 ± 0.02	0.02	0.01	0.01	0.01
SO_2	0.005 ± 0.009	Nd	Nd	Nd	Nd
F	0.03 ± 0.02	0.13	0.14	0.08	0.10
Cl	0.25 ± 0.01	0.33 ± 0.02	0.32 ± 0.04	0.02 ± 0.01	0.35 ± 0.01
Total	96.75	98.63	97.63	98.72	97.76
H ₂ O, FTIR	Nd	Nd	Nd	Nd	Nd
A/CNK ^a	0.98	0.97	0.86	1.05	0.89
N/NK ^a	0.48	0.50	0.40	0.49	0.43
Cl solubility in melt	0.27	0.36	0.41	0.36	0.38
Experimental Run	CS-14-17D ^c	1-95-9E ^d	1-95-9F ^d	1-95-9B ^d	1-95-9D ^d
Apatite (wt%)					
SiO ₂		No apatite	No apatite	No apatite	No apatite
TiO ₂					
Al_2O_3					
MgO					
CaO					
MnO					
FeO					
Na ₂ O					
K ₂ O					
P_2O_5					
F					
Cl					
SO_2					
BaO					
Ce_2O_3					
SrO					
Total					
X_{Cl}^{apat}	Nd				
X_F^{apat} b	Nd				
Apparent X_{OH}^{apat}	Nd				
Wt% Cl in fluid(s)	18.3	45	6	16	0.5
Partition Coefficient					
D _{Cl} ^{fluid(s)/mt}	74.6	138.5	18.2	49.8	25

Experimental Run	1-95-9C ^d	1-95-10F ^d
Melt (wt%)		
SiO ₂	73.2	72.63
TiO ₂	0.25	0.22
Al_2O_3	12.24	12.11
MgO	0.13	0.14
CaO	0.32	0.66
MnO	0.02	0.03
FeO	0.81	1.01
Na ₂ O	3.44	3.45
K ₂ O	6.89	5.54
P_2O_5	0.01	0.01
SO_2	Nd	Nd
F	0.10	0.18
Cl	$0.35{\pm}0.03$	0.37 ± 0.01
Total	97.76	96.35
H ₂ O, FTIR	Nd	Nd
A/CNK ^a	0.89	0.94
N/NK ^a	0.43	0.49
Cl solubility in melt	0.35	0.40
Experimental Run	1-95-9C ^d	1-95-10F ^d
Apatite (wt%)		
SiO ₂	No apatite	No apatite
TiO ₂		
Al_2O_3		
MgO		
CaO		
MnO		
FeO		
Na ₂ O		
K ₂ O		
P_2O_5		
F		
Cl		
SO_2		
BaO		
Ce ₂ O ₃		
SrO		
Total		
X_{Cl}^{apat} b		
X_F^{apat} b		
Apparent X _{OH} ^{apat} ^b		
Wt% Cl in fluid(s)	36	27
Partition Coefficient		
D _{CI} ^{fluid(s)/mt}	103	73

Note: Runs with "CS-" prefix were conducted in cold seal vessels and runs with "1-" prefix involved internally heated pressure vessel. D_{XOH} = partition coefficient for OH ion on molar basis; all other partition coefficients D_i calculated on a wt% basis. Exchange coefficients defined in text. Reported errors are 1 sigma deviations.

Nd = data not determined; bdl = below detection limit.

^aMolar ratios of $(Al_2O_3/Na_2O+CaO+K_2O)$ and (Na_2O/Na_2O+K_2O) of melt.

^bMole fractions of volatile components in apatite determined via Piccoli and Candela (2002) (apparent X_{OH}^{apat} computed by difference).

^cApatite grains too small for accurate EMPA.

^dLow-phosphorus, apatite-deficient runs.

Table 4. Average compositions of Augustine volcano, Alaska, apatites.

Apatite	Yellow	White	Flow-	2100 a.b.p.°	1700 a.b.p.	1400 a.b.p.	1000 a.b.p.	1986	2016
Constituent	Pleistocene	Pleistocene	banded	(16)	(9)	(11)	(4)	(2)	sample
(wt%)	rhyolite ^a	rhyolite	Pleistocene						JW004
	(15) ^b	(25)	rhyolite (49)						(6)
SiO ₂	0.13 ± 0.03	0.15 ± 0.10	0.18 ± 0.10	0.18 ± 0.08	0.18±0.12	0.09 ± 0.05	0.11±0.09	0.19±0.11	0.28±0.11
TiO ₂	0.01 ± 0.02	0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.02	0.01 ± 0.02	0.01 ± 0.02	0.03 ± 0.02	0.002 ± 0.003	0.07 ± 0.09
Al_2O_3	0	0.006 ± 0.02	0.002 ± 0.009	0.001 ± 0.002	0.01 ± 0.01	0.01 ± 0.02	0.02 ± 0.05	0.04 ± 0.05	0.005 ± 0.008
MgO	0.23 ± 0.01	0.22 ± 0.01	0.22 ± 0.01	0.22 ± 0.08	0.20 ± 0.04	0.21±0.02	0.27±0.06	0.20 ± 0.01	0.24 ± 0.02
CaO	53.71±0.33	53.78±0.71	53.99±0.51	53.22±0.84	53.36±0.78	53.79±0.74	53.12±0.29	51.92±0.51	53.17±0.69
MnO	0.39 ± 0.02	0.38 ± 0.03	0.36 ± 0.06	0.17 ± 0.04	0.16±0.05	0.16±0.07	0.15±0.06	0.14 ± 0.02	0.12 ± 0.02
FeO	0.50 ± 0.08	0.52 ± 0.09	0.52 ± 0.13	0.99 ± 0.27	0.68±0.26	0.62 ± 0.23	1.19±0.35	0.76±0.65	0.98 ± 0.40
Na ₂ O	$0.14{\pm}0.06$	0.13 ± 0.05	0.16±0.17	0.16 ± 0.05	0.16±0.05	0.10 ± 0.06	0.15±0.03	$0.19{\pm}0.08$	0.18 ± 0.04
P_2O_5	41.14±0.31	40.98±0.75	41.20±0.33	40.41±0.52	40.19±0.62	40.74 ± 0.28	40.43±1.0	39.53±0.53	40.15±0.34
F	1.01 ± 0.15	0.99±0.16	0.96±0.16	1.12 ± 0.17	1.11±0.14	1.19±0.30	1.32 ± 0.09	1.46 ± 0.03	1.42 ± 0.17
Cl	$1.94{\pm}0.09$	1.98 ± 0.10	1.87 ± 0.20	2.03 ± 0.38	2.44±0.22	2.34±0.17	2.34±0.22	2.24 ± 0.08	2.18 ± 0.09
SO_2	0.22 ± 0.05	0.25 ± 0.18	0.23 ± 0.08	0.20 ± 0.10	0.27±0.10	0.20 ± 0.05	0.27±0.05	0.35±0.19	0.27±0.11
TOTAL	99.43	99.41	99.70	98.71	98.77	99.46	99.40	97.02	100.91
$^{\rm d}{ m X_{Cl}}^{ m apat}$	0.28 ± 0.01	0.29±0.01	0.27±0.03	0.30 ± 0.06	0.35 ± 0.03	0.34 ± 0.02	0.34 ± 0.03	0.33±0.03	0.32±0.01
$^{d}X_{F}^{apat}$	0.27 ± 0.04	0.26 ± 0.04	0.25 ± 0.04	0.30 ± 0.08	0.30 ± 0.04	0.32 ± 0.08	0.35 ± 0.02	0.39 ± 0.02	0.38 ± 0.05
$^{d}X_{OH}^{a pat}$	0.45 ± 0.05	0.45 ± 0.05	0.47 ± 0.07	0.40 ± 0.08	0.35 ± 0.4	0.34 ± 0.08	0.31 ± 0.03	0.28 ± 0.03	0.32 ± 0.06
$(Si/Mg)^{e}$	0.38	0.46	0.55	0.56	0.6	0.31	0.32	0.67	0.77

^aAge (a.b.p. = approximate years before present) or year of eruption.

^bNumber of analyzed apatites (n). ^ca.b.p. = approximate years since eruption. ^d X_i^{apat} calculated with method of Piccoli and Candela (2002). ^ePer formula unit cation ratio of Si to Mg.