1	Revision 2 (#5614) – Submitted to American Mineralogist
2	
3	Morphological and chemical evolution of corundum (ruby and sapphire):
4	crystal ontogeny reconstructed by EMPA, LA-ICP-MS and Cr ³⁺ Raman
5	mapping
6 7	ELENA S. SOROKINA ^{1,2} (CORRESPONDING AUTHOR, E-MAIL:
8	ELENA.SOROKINA@GIA.EDU), WOLFGANG HOFMEISTER ³ , TOBIAS
9	HÄGER ³ , REGINA MERTZ-KRAUS ³ , STEFAN BUHRE ³ , AND JOHN M.
10	SAUL ⁴
11	¹ Gemological Institute of America, 5355 Armada Dr, Carlsbad, California,
12	92008, United States of America;
13	² Fersman Mineralogical Museum of the Russian Academy of Sciences (RAS),
14	Leninskiy prosp., 18 b. 2, Moscow, 119071, Russia;
15	³ Institute for Geosciences of the Johannes Gutenberg-University Mainz (JGU),
16	JJBecher-Weg 21, D-55128 Mainz, Germany
17	⁴ Swala Gem Traders, Box 11063, Arusha, Tanzania
18	
19	ABSTRACT
20	The term "ontogeny", which is commonly used in biology, was introduced
21	into the earth sciences in 1961 to include the genesis and evolution of single

22 crystals and crystal aggregates. The term encompasses nucleation, growth, 23 alteration, and destruction. We present results of studies concerning the 24 ontogeny of natural corundum (rubies and sapphires), and the chemical and 25 morphological evolution of corundum crystals from deposits in Africa (Kenya, 26 Tanzania, Madagascar) and Southeast Asia (Vietnam). Trace-element 27 compositions indicative for different corundum habits were determined by rim-28 to-rim LA-ICP-MS and EMPA analyses. Raman spectroscopy was applied for 29 Cr^{3+} photoluminescence mapping. Results traced the development of corundum 30 crystals and the evolution of their chemistry and morphology, and helped to 31 clarify the geological processes within particular deposits. These variations of 32 corundum morphology are directly correlated with Cr and Fe contents and 33 varying P-T conditions that prevailed during crystal growth. Dipyramidal habits 34 combined with white color in corundum from two deposits in the Mangari area 35 in Kenya have Cr concentrations of $\sim 200 - 700 \,\mu\text{g/g}$ in crystals that grew under 36 high P-T conditions. Prismatic habit of bright red ruby crystals was linked to Cr 37 concentrations of $\geq 1500 \ \mu g/g$ in samples from Luc Yen (Vietnam) and Mangari 38 (Kenya), formed under lower P-T. Concentrations of Cr between 700–1500 39 µg/g are associated with pink color and combinations of different habits 40 (dipyramidal, prismatic, or dipyramidal-prismatic) in these samples. Contents 41 of Fe \sim 700 µg/g and Cr \sim 1200 µg/g in sapphire crystals from the Morogoro

42 area of Tanzania caused pink color that correlated with dipyramidal habit and 43 elongation along the c axis. Rhombohedral habit and blue-violet color were 44 observed at Cr ~600 μ g/g and Fe \geq 2000 μ g/g in sapphires from 45 Andranondambo in Madagascar, formed during the final stage of contact 46 metamorphism.

47 Keywords: Corundum, ruby, sapphire, ontogeny, evolution, genesis,
48 geochemistry, crystal morphology, Kenya, Tanzania, Madagascar, Vietnam.

50	''for a given body of certain form,
51	created according to the laws of Nature,
52	there are evidences within the body
53	disclosing the place and method of its creation''
54	Nicolai Stenonis, De solido (1669)
55	

INTRODUCTION

56

57 Corundum $-\alpha$ -Al₂O₃ - is a common minor component of metamorphic 58 rocks. Yet crystallization of its transparent varieties, ruby and sapphire, only 59 occurs in a few rock types depleted in silica and enriched in alumina (Giuliani 60 et al., 2007) in approximately 20 deposits worldwide (Hughes, 1997). Some of 61 the geological factors influencing corundum morphology have been studied by 62 Hartman (1962, 1980), Popov (1984) and Sunagawa (2003). However the prime 63 genetic question – how and why transparent corundum actually grows – is not 64 fully understood.

65 "Ontogeny" is used in biology to describe the developmental history of an 66 organism within its own lifetime. The term was introduced into the earth 67 sciences in 1961 by the Soviet mineralogist D.P. Grigor'ev to relate the genesis 68 and evolution of single crystals and crystal aggregates, specifically including 69 their *nucleation*, *growth*, *alteration*, and *destruction* stages (Grigor'ev, 1961, 1965). In the decades after Grigor'ev's publication, many researchers have 71 worked in the field of mineral ontogeny (e.g. Yushkin, 1977, 1985; Zhabin,

72 1979; Pirogov, 1985; Pavlishin et al., 1988; Prieto et al., 1992; Self and Hill, 73 2003; Sorokina, 2011; Alekseev and Marin, 2012; Sorokina et al., 2012 etc.). 74 Evolutionary direction in the proliferation of mineral species has been proposed 75 and discussed by Hazen et al. (2008) and Krivovichev (2013). 76 This article presents results on the evolution of morphology and changing 77 geochemistry of opaque and transparent corundum crystals during growth and 78 alteration for samples from five important deposits in Africa (Mangari area in 79 Kenya, Morogoro in Tanzania, and Andranondambo in Madagascar) and 80 Southeast Asia (Luc Yen in Vietnam). Rim-to-rim chemical analyses were 81 combined with Cr^{3+} photoluminescence mapping for corundum with visual

color zoning from Mangari. This allowed *in-situ* observations of the distribution of Cr^{3+} content within the mineral matrix.

84 In the past, rim-to-rim ion probe analyses on Scottish sapphires were 85 combined with cathodoluminescence in a study by Upton at al. (1999), and 86 color zoning in Myanmar rubies were investigated by electron microprobe 87 analysis (EMPA), Laser Ablation-Inductively Coupled Plasma-Mass 88 Spectrometry (LA-ICP-MS) and cathodoluminescence elemental mapping by 89 Harlow and Bender (2013), and by Zaw et al. (2015). However those studies 90 did not directly address corundum crystal habit. We determined concentrations 91 of trace elements V, Cr, Fe, Ti, Ga and Mg, which may associate with particular

92 crystal habits. Trace element results on Kenyan ruby (Acharya et al., 1997; 93 Mulmeister et al., 1998) were less detailed and less concerned with crystal 94 habits than this study. To the best of our knowledge, our work on corundum 95 from Kenya is new; for other deposits, we update geochemical data using a 96 combination of EMPA and LA-ICP-MS analyses. Chemical composition of 97 corundum during growth was correlated with the changes of crystallization 98 parameters (in particular, P-T conditions) obtained from the literature, thereby 99 allowing us to reconstruct the development of crystals.

100

MATERIALS AND METHODS

101 Transparent and opaque samples of naturally occurring corundum of 102 different colors and morphologies were selected along with their host rocks 103 from the collections of the Institute for Geosciences in the Johannes Gutenberg-104 University Mainz (Figure 1). Our samples came from a marble-hosted deposit 105 near Morogoro in Tanzania (2 samples), the Gitonga pit of the John Saul ruby 106 mine in the Mangari area of Kenya (9 samples), the Aqua ruby mine (formerly 107 part of the Penny Lane mine) also in the Mangari area (1 sample), the 108 Andranondambo skarn deposit of Madagascar (4 samples), the Luc Yen 109 marble-hosted primary deposit in Vietnam (2 samples), and a secondary 110 occurrence from the Luc Yen area (1 sample).

111 In order to study microscopic features of these corundum crystals, macro-112 and micro-scale observations were made using a Zeiss Stemi SV11 stereo zoom 113 microscope with a horizontal arrangement. Parts of rocks containing transparent 114 crystals of corundum (ruby and sapphire) were dissolved in 30 % HCl and 30 % 115 HF and/or mechanically crushed to separate the crystals from their matrix. 116 Representative corundum crystals were cut into plates perpendicular and 117 parallel to the c axis in order to facilitate the study of internal features appearing 118 in different crystallographic directions.

119 Rim-to-rim chemical profiles of corundum samples differently orientated 120 with respect to the *c* axis were investigated at the laboratories of the Johannes 121 Gutenberg-University Mainz using EMPA and LA-ICP-MS.

122 JEOL JXA 8200 electron microprobe in the wavelength-dispersive 123 detection mode was used in the following operating conditions: 20 kV 124 acceleration voltage, 20 nA beam current, 20 s peak counting times for Al; 80 s 125 for Si; 100 s for Ti, Cr, Mn and Fe; 200 s for V and Ga, with a spot size of 3 126 μm. Sets of natural and synthetic reference materials were used for calibration 127 and instrument-stability monitoring: Al₂O₃ for Al, Cr₂O₃ for Cr, Fe₂O₃ for Fe, 128 GaAs for Ga, MgO for Mg, MnTiO₃ for Mn and Ti, metallic V for V, and 129 wollastonite for Si. An overlap correction was applied for Ti > V and V > Cr. 130 The detection limits for measured elements varied for different analytical

131	sessions: Ti 60 µg/g,	V 118 – 446 µg/g	, Ga 132 – 472 µg/g,	Fe 74 – 76 µg/g, Cr

132 $220 - 370 \ \mu g/g$, Mn 58 $- 224 \ \mu g/g$ g, and Mg 90 $- 256 \ \mu g/g$.

133 LA-ICP-MS measurements were made along profiles situated parallel to the 134 EMPA profiles using an ESI NWR193 ArF Excimer Laser combined with an 135 Agilent 7500ce quadrupole-ICP-MS. Analyses were carried out with a spot size 136 of 70 µm at a repetition rate of 10 Hz and an energy density of approximately 137 3.0 J/cm². Warm-up/background time was 15 s, dwell time 30 s, and wash out 138 time 20 s. NIST SRM 612 was used as reference material for calibration, 139 applying the preferred values for NIST SRM 612 in the GeoReM database, 140 http://georem.mpch-mainz.gwdg.de/ (Jochum et al., 2005, 2011), as the "true" 141 concentrations in calculating the element values within the samples. 142 Additionally, we analyzed NIST SRM 610 and basaltic USGS BCR-2G as 143 quality control materials (QCM) several times during each analytical sequence. 144 The time-resolved signal was processed using the program GLITTER 4.4.1 (www.glitter-gemoc.com, Macquarie University, Sydney, Australia) using ²⁷Al 145 146 as the internal standard, applying the Al_2O_3 content previously determined by 147 EMPA for the corundum samples and the values reported in the GeoReM 148 database for the OCM. The measured concentrations for both OCM agree for 149 most elements within 15 % with the preferred values provided in the GeoReM 150 database. Measured average concentrations for Cr for BCR-2G are too low by

151	23 %. This larger discrepancy between measured and preferred values can be
152	attributed to isobaric interferences that cannot be resolved with the
153	instrumentation used (Jochum et al. 2012). For the QCM, the relative standard
154	deviation for the average concentrations determined was always <7%. Average
155	detection limits were calculated from measurements on the reference materials:
156	Mg 2.2 µg/g, Ti 3.8 µg/g, V 0.2 µg/g, Mn 1.0 µg/g, Ga 0.2 µg/g, Cr 3.2 µg/g.
157	Due to the large number of possible interferences on Fe in an argon-oxygen
158	atmosphere, concentrations for this element are reported only by EMPA data.
159	In order to monitor the distribution of chromium within Mangari corundum
160	crystals with visual color oscillatory zoning, Cr3+ luminescence mapping was
161	acquired. A confocal Raman Spectrometer (RS) made by Horiba Yobin Yvon
162	HR800 was coupled with an Olympus BX41 microscope and automatic XYZ-
163	stage with the mapping technique. Red helium-neon laser with $\lambda = 633$ nm
164	(polarized during the measurements) was used with a grating of 1800
165	grooves/mm. The confocal hole of 400 μm and the entrance slit of 100 μm
166	produce a resolution of 0.7 (blue) to 0.5 (red) cm ⁻¹ for an exposition time of 0.5
167	s with measured steps of 100 $\mu m.$ Magnification x50 was used for measured
168	range of 697.0 – 709.0 nm. Relative chromium contents were determined using
169	the peak-ratio of the n-line peak at about 701.55 nm with the side-band peak at

about 707.2 nm (Häger & Dung, 2000). The spectrometer was calibrated at
520.7 cm⁻¹ using Si as a reference.

172 LOCAL GEOLOGY

173 The corundum deposits in Luc Yen and Yen Bai areas of northern Vietnam 174 are located in the Lo Gam tectonic zone, on the northeastern side of the Red River shear zone (Hoang Quang et al., 1999; Pham Van et al., 2004 and 175 176 references therein). Crystallization took place along the retrograde metamorphic 177 path at 630 - 670 °C and 2.9 - 3.3 kbar (Garnier et al., 2005). Mineral 178 associations in samples from the primary Luc Yen marble-hosted deposit 179 include bright red ruby, fuchsite, blue micas, muscovite, and pyrrhotite, 180 cemented by well-formed calcite crystals. Elongate-prismatic ruby crystals with $z(22\overline{41}), \omega(14\ 14\ \overline{28}\ 3), n(22\overline{43}), c(0001), \text{ and } r(10\overline{11})$ faces are arranged 181 182 randomly in the host calcite matrix, sporadically intergrown with green and 183 blue micas (Fig. 1A). Dravite, phlogopite, rutile, spinel, edenite, and graphite 184 were also observed (Pham Van et al., 2004). Secondary Luc Yen deposits 185 consist of gravel in karst pockets and alluvial fans (Kane et al., 1991). Our 186 secondary samples include elongate-prismatic crystals of corundum with $z(22\overline{4}1), \omega$ (14 14 $\overline{28}$ 3), $n(22\overline{4}3), c(0001)$, and $r(10\overline{1}1)$ faces and elongate 187 dipyramidal crystals with c (0001) and ω (14 14 $\overline{28}$ 3) faces. Colors include 188 189 pink, purple to red, and yellowish-red. Such crystals are associated with

190 fuchsite, calcite relicts, and secondary clay minerals formed as a result of 191 calcite marble replacement. Cubic crystals of hematite replacing pyrite are also 192 present. Some of the ruby crystals are cemented in disorderly fashion to one 193 another by clay minerals forming masses resembling druse-like aggregates (Fig. 194 1B). Other researchers (e.g., Kane at al., 1991) also described blue and colorless 195 sapphires coexisting with rubies, as well as grey to brown dipyramidal 196 sapphires and "trapiche" rubies. Red, pink, and pale blue spinel, gem quality 197 multi-color tourmaline, and garnet are also found.

198 The sapphire deposit to the south of the village of Andranondambo 199 (Tranomaro area, Madagascar) is derived from metamorphic skarn-type 200 deposits in the high-grade granulite facies of the Proterozoic Tranomaro Group, 201 composed of metapelites, calc-silicates, and marbles interlayered with 202 leucocratic gneiss (Rakotondrazafy et al., 1996). Three different metamorphic 203 stages were reported by Rakotondrazafy, et al. (2008). Minerals formed during 204 the first stage, a metasomatic event with T \sim 850 °C and P \sim 5 kbar, included 205 meionite, spinel, thorianite, and corundum within a titanite-bearing matrix of 206 scapolite and diopside. The second stage, also metasomatic, was characterized 207 by T \sim 800 °C and P \sim 3–3.5 kbar, and produced pargasite, anorthite, calcite, 208 phlogopite, and hibonite. Retrograde metamorphism followed with the 209 formation of gem blue sapphires at T \sim 500 °C and P \sim 2 kbar within K-feldspar

veins crosscutting marbles. Our samples show small-grained calcite and dolomite, small grains of clinopyroxene, blue-violet sapphires with $r(10\overline{11})$ and $a(11\overline{20})$ faces, and some pink sapphire crystals (Fig. 1C).

213 Corundum (ruby) deposits in the Mangari area (John Saul, Aqua and Hard 214 Rock mines) in the southeastern part of Kenya's Tsavo West National Park 215 have a metasomatic genesis produced during complex desilication of 216 pegmatites and ultrabasites (Simonet, 2000, Simonet et al., 2008). According to 217 Mercier et al. (1999), the ruby-bearing rocks were formed under granulite facies 218 conditions (700-750 °C, 8-10.5 kbar) in deeper crust and subsequently brought 219 up to their present level by the ultrabasic bodies during their emplacement as 220 thrust sheets. Corundum mineralization occurs in micaceous pockets within 221 serpentinized ultrabasites and pegmatoid rock, as well as in veins crosscutting 222 the ultrabasites (Mercier et al., 1999). At the Aqua and Hard Rock mines, 223 transparent corundum in pockets is associated with phlogopite with lesser 224 muscovite, Mg-bearing chlorite, and Mg-bearing spinel. Corundum-bearing 225 veins are mainly composed of anorthite (An 95–98) and zoisite. At the John 226 Saul mine (which includes the Gitonga, Kimbo, Cowboy, and Main pits), 227 corundum occurs in lenses associated with plagioclase (An 18–26), muscovite, 228 Cr-bearing tourmaline, rutile, and graphite, and in layer-like pegmatite with plagioclase (An 14-29), K-feldspar, muscovite, phlogopite, Cr-bearing 229

230 tourmaline, pyrite, and graphite. Materials used in this study also included 231 samples from the Aqua mine with the mineralogical association of small-232 grained plagioclase (anorthite), corundum, and green mica (fuchsite) similar to 233 samples described by Mercier et al. (1999) for a corundum-bearing vein cutting 234 the ultrabasic body. Corundum crystals were zonal with different color. Transparent bright red rims of elongate-prismatic form with z ($22\overline{41}$), 235 $\omega(14 \ 14 \ \overline{28} \ 3)$, $n \ (22\overline{43})$, $c \ (0001)$, and $r \ (10\overline{11})$ faces are combined with 236 237 opaque white cores and intermediate areas with dipyramidal faces (Fig. 1E). 238 Gitonga pit samples came to the collection as single crystals, and as white 239 clayey masses with corundum crystals encased by kaolinite and iron oxides 240 (Fig. 1D). In these samples, we also observed small blue mica plates 241 intergrowing with ruby crystals, small rutile grains, and star-like graphite 242 aggregates.

Corundum crystals (rubies and pink sapphires) from Central Tanzania, near the town of *Morogoro*, were related to the Uluguru Mountains (Le Goff, 2004). Corundum mineralization occurred at the contacts of biotite gneiss with marble (Le Goff et al., 2008), with transparent red crystals (rubies) associated with spinel and sapphirine. Their formation is caused by high-grade regional metamorphism of a protolith of varied composition (Le Goff et al., 2004) at P \sim 7.7 kbar and T \sim 695 °C, assuming aH₂O = 1 (Alter et al., 1982). Our sample

is composed of elongate dipyramidal crystals of opaque pink sapphire with c(0001) and ω (14 14 $\overline{28}$ 3) faces intergrown with fine-grained feldspar, plates of biotite, rutile grains, and iron oxide minerals (fig. 1F).

253

RESULTS

254 **Optical microscopy**

255 Studied samples varied in color and have different internal features (Table 256 1). Transparent bright red material becomes visible in the marble-hosted 257 corundum from Luc Yen only after cutting plates parallel and perpendicular to 258 the c axis, but its distribution is not homogeneous and can vary from bright red to reddish-pink within a single sample. A parting along r(1011) faces is present 259 260 on these samples. Corundum crystals from the secondary deposit at Luc Yen 261 are fractured; their cores are transparent with bright red color and rims are 262 yellowish-red. In contrast, corundum crystals from the Mangari deposits in 263 Kenya (Aqua mine and the Gitonga pit of the John Saul mine) exhibit visual 264 oscillatory zoning even in unprepared samples: bright red transparent rims and 265 white-colored opaque cores are observable, with needle-like micro-inclusions 266 of rutile along growth faces in the intermediate area between rim and core. A pink corundum sample from the Morogoro area (Tanzania) is completely 267 268 opaque. The bright pink, blue-violet and grey-blue sapphires from

Andranondambo (Madagascar) are transparent and show parting along r (¹⁰¹¹)

- 270 faces.
- 271

272 Rim-to-rim LA-ICP-MS and EMPA traverses, and RS Cr³⁺ mapping

273 Changes of crystal chemistry and crystal morphology were observed in 274 corundum samples cut into plates orientated differently with respect to the *c* 275 axis. Determinations were made by rim-to-rim micro-chemical analyses using 276 EMPA and LA-ICP-MS with spacing of $800 - 1000 \mu$ m between spots (Table 277 1).

278 Differences in concentrations determined by the two methods were 279 relatively minor and are attributed to inhomogeneous element distribution in the 280 corundum matrix. EMPA and LA-ICP-MS profiles are offset by some µm and 281 the different beam diameters of EMPA (~3 μ m) and LA-ICP-MS (~70 μ m) 282 result in target larger areas for the LA-ICP-MS analyses. Differences in 283 operation conditions and their effects on concentrations obtained by EMPA and LA-ICP-MS were previously observed by Zaw et al., 2015. Due to the absence 284 285 of well-characterized reference materials with a corundum matrix, calibration of 286 the LA-ICP-MS measurements was performed using synthetic silicate glass 287 reference material. This non-matrix matched calibration influences the accuracy 288 of the determined element concentrations, as demonstrated, for instance, by the

289 deviation of Cr in BCR-2G from its preferred value. For the EMPA 290 measurements 2 sigma uncertainties of up to 20 % have to be considered for the 291 trace elements due to low concentrations and calibration using non-oxide 292 standards (e.g. GaAs for Ga). Differences in values for Cr (x1.25 to x1.7) and 293 for Ga (x1.4) – as determined by the two methods in several spots on samples 294 from Luc Yen, Morogoro, Gitonga pit, Aqua mine, and Andranondambo - can 295 be related to the reasons mentioned above, but in addition, the ablation of 296 inclusions in those samples is also a likely source of discrepancies, particularly 297 as regards Ti. LA-ICP-MS values for Ti in some spots measured on Luc Yen, 298 Morogoro, Gitonga pit, and Aqua mine corundums are 1.6 - 2.8 times higher 299 than their respective EMPA values, and up to 16 times higher in some points on 300 a Gitonga pit sample. This is attributed to the ablation of corundum material 301 containing titanium dioxide (rutile) micro-inclusions. Figure 2 shows visual 302 oscillatory zoning in Gitonga pit corundums caused by the distribution of 303 needle-like rutile micro-inclusions along the corundum growth faces.

304 Studies of corundum crystals from the Aqua mine and from the Gitonga pit, 305 both Mangari deposits (Kenya), have shown that the crystal habit changed from 306 dipyramidal nearly opaque cores with white color in the beginning of growth to 307 prismatic red transparent rims in the end. These changes during crystal growth 308 correspond to the increase of Cr concentration from around 200 μ g/g in core to

more than 1500 μ g/g in the rim (Fig. 2). Application of Cr³⁺ luminescence mapping allowed us to observe the zoning of Mangari corundum by the relative Cr³⁺ content within the mineral lattice (Fig. 2). This method is particularly useful in examining oscillatory zoned corundum from Mangari. Thus lower Cr³⁺ content has been observed in core area subsequently increasing towards the rim. These results correlate with Cr profiles obtained LA-ICP-MS measurements (Fig. 2 and Table 1).

The primary and secondary Luc Yen deposits produce transparent crystals with pink areas that have lower Cr concentrations ($\approx 1000 \ \mu g/g$) (Fig. 3) than their red areas ($\geq 1500 \ \mu g/g$). Such crystals, which are commonly prismatic, have a tendency to form twins (Fig. 3).

320 Our samples of pink sapphires from Morogoro were almost opaque. Their 321 Cr contents are approximately $500 - 700 \ \mu g/g$, with Fe values up to ~1200 322 $\ \mu g/g$.

323 The blue-violet sapphire samples from the Andranondambo region of 324 Madagascar are transparent with rhombohedral habit and have Fe 325 concentrations of more than 2000 μ g/g and Cr content up to 600 μ g/g (Table 1).

326

DISCUSSION

327 Changes in chemical composition and in crystal habit (external 328 morphology) occur during *crystal growth* in mineral ontogeny (Grigor'ev,

329 1965). Alteration is the next stage in the evolution of single crystals (Grigor'ev, 330 1965). Common alteration processes are crystal deformation (breaking, 331 fragmentation, etc.), chemical effects (dissolution, etching, formation of 332 pseudomorphs etc.), and recrystallization of primary materials (Grigor'ev and 333 Zhabin, 1975). During recrystallization, crystals are "cleaned" as crystal faces 334 are rounded and inclusions resorbed (Grigor'ev and Zhabin, 1975 and 335 references therein). Recrystallization is an important geological process as a 336 determinant of clarity (Grigor'ev, 1965).

337 Mangari: Samples from the two Mangari occurrences (Aqua mine and 338 Gitonga pit) had closely similar changes of habit during growth, with similar 339 evolution of their trace element chemistry, Cr concentration in particular, and 340 their color (Figs. 2 and 4). Zoned crystals have shown that habit varied from 341 dipyramidal with white color at the beginning of crystallization under higher P-342 T conditions, with the most rapid growth of n faces (Cr $\leq 200 \ \mu g/g$ by LA-ICP-343 MS), through pink with dipyramidal faces (Cr \approx 700–1500 µg/g), to red with 344 prismatic z and c faces (Cr >1500 μ g/g) growing the most rapidly in the final 345 growth stage at lower pressure and temperature. Zoning in these corundum 346 crystals commonly indicates three growth stages, though either fewer or more 347 may be apparent. Curved boundaries between these zones are caused by 348 dissolution before the start of renewed crystallization with different trace

element composition. From observations of specimens from various localities
in the area, we conclude that the crystallization of transparent ruby, which took
place under granulite facies conditions, occurred late in the polycyclic PanAfrican sequence, but that at least one episode of corundum crystallization must
have occurred still later (Saul, 2014).

354 Luc Yen: Pink zones with lower Cr concentration (~1000 μ g/g by EMPA; 355 ~900 μ g/g by LA-ICP-MS) in rubies from the Luc Yen deposits appear to have 356 had the most rapid growth on their *n* faces at the beginning of crystallization 357 under higher P-T conditions (Figs. 3 and 4). At Cr \geq 1500 µg/g, the most rapid 358 growth occurred on *a* faces with a tendency to form twinned crystals. Although 359 fine transparent rubies have been produced from Luc Yen, most crystals are full 360 of defects, including partings along r faces. Color variations from reddish-pink 361 to bright red are typical in these samples (Fig. 3). This color inhomogeneity and 362 the formation of twinned crystals correspond to specific aspects of mineral 363 alteration, infiltration in particular, during recrystallization along cracks and 364 fractures in the calcite marble (see Hoang Quang et al., 1999). In some samples 365 from the Luc Yen secondary deposit, ruby crystals appeared yellowish-red and 366 visually opaque (Fig. 1). Yet after plate preparation, the cores appeared 367 completely transparent with bright red color (Table 1 and Fig. 3). According to 368 the chemical data, Cr concentrations throughout the crystal are above 1500

 $\mu g/g$, similar to the Cr concentrations in Luc Yen rubies from primary deposits (Fig. 3). The yellowish-red color of these samples appeared close to the terminating crystal faces where micro-cracks had developed, permitting possible infill by goethite and other iron oxides that might account for the yellowish coloration.

374 **Morogoro**: The Fe concentration (up to about 700 μ g/g), along with Cr (up 375 to 1200 µg/g), in pink sapphires from Morogoro correlate with their 376 dipyramidal habit with elongation along the c axis. Rim-to-rim measurements 377 (Table 1) showed moderate variations in trace-element concentrations from the 378 beginning of growth (core) to the end (rim). This suggests that these crystals 379 started and continued their growth under similar conditions. Their formation 380 took place under granulite facies conditions (Le Goff et al., 2004) at P \sim 7.7 381 kbar and T ~ 695 °C (Alter et al., 1982). We observed many partings along r 382 crystal faces as evidence of high pressure/temperature conditions during their 383 growth (see Scheuplein and Gibbs, 1960). Neither of our Morogoro specimens, 384 both of which were pink corundum in feldspar-biotite gneiss, had undergone 385 recrystallization.

386 Andranondambo: The corundum (sapphires) from Andranondambo have 387 Fe contents above 2000 μ g/g with relatively low Cr (~600 μ g/g). Trace-element 388 concentration correlates with a rhombohedral habit with *r* and *a* faces (Fig. 4).

This transparent corundum may have been recrystallized, as were the transparent ruby crystals of Luc Yen. In Madagascar, this probably occurred very late along the retrograde metamorphic path in the course of a multistage process (see Rakotondrazafy et al., 2008). Nearly all corundum samples are full of partings along r faces caused by the high pressure/temperature conditions during growth (see Scheuplein & Gibbs, 1960).

395

IMPLICATIONS

Hartman (1962, 1980) proposed that the crystal habit of corundum is not solely determined by crystal structure, but also by environmental factors present during crystal growth. Our data show that during growth with decreasing pressure and temperature, the corundum chemistry changes, and that change correlates with crystal habit (Fig. 4). This correlation may be explained by:

401 1. the direct impact of Fe and Cr trace elements on the different rates at
402 which ions are taken up by different crystal faces during the growth. Such
403 differences alter surface energy relations, and produce changes in crystal habit,
404 as shown for rutile synthesized by the Verneuil process (Grigor'ev and Zhabin,
405 1975);

406 2. the impact of additional factors, which influenced changes in the407 corundum morphology, such as P, T and pH. With the changing of crystal habit,

selective absorption of trace elements by defined faces of corundum crystals
may affect continued growth and modifications (Chase, 1966).

The ontogeny of naturally-occurring transparent and opaque corundum from five important sources in Kenya, Tanzania, Madagascar, and Vietnam provides insights into their crystal growth in particular geological environments. A range of analytical micro-scale techniques (RS, EMPA and LA-ICP-MS) were applied in examining changes in trace element contents during crystal growth, and their possible effects on crystal shape.

416 The variations in corundum morphology are directly correlated with trace-417 element content and with varying P-T conditions that prevailed during growth. 418 Dipyramidal habit combined with white color in corundum from Mangari, 419 Kenya, showed Cr concentrations below 700 μ g/g and the growing under high 420 P-T conditions. In contrast, prismatic habit with bright red color were linked to 421 Cr concentrations $\geq 1500 \ \mu g/g$ in samples from Luc Yen, Vietnam, and those at 422 Mangari that formed under lower P-T. Concentrations of Cr between 700–1500 423 $\mu g/g$ are related to pink color and combinations of different crystal habits 424 (dipyramidal, prismatic, or dipyramidal-prismatic) in these samples. Contents 425 of Fe \sim 700 µg/g and Cr \sim 1200 µg/g in sapphire crystals from the Morogoro 426 area of Tanzania produced pink color that correlated with dipyramidal habit and 427 elongation along the c axis. Rhombohedral habit and blue-violet color were

428	observed	at	Cr	~500	µg/g	and	Fe	>2000	μg/	g in	sapp	hires	s from
429	Andranon	dam	bo i	in Mad	lagasca	r, foi	med	during	the	final	stage	of	contact
430	metamorp	hisn	n.										

This study leads the way for further testing of links between trace element
concentrations and crystal habits in corundum from other gem corundum
deposits.

- 434
- 435 ACKNOWLEDGMENTS

436 The authors thank the Centre of Gemstones Research of JGU for providing 437 of samples for investigations. The former Director Viktor K. Garanin and 438 colleague Dmitriy I. Belakovsky, Fersman Mineralogical Museum RAS, and 439 Delia Rösel, Freiberg Mining Academy and University of Technology 440 (Germany), provided helpful consultations on the results, which improved the 441 manuscript. The research was supported by the scholarship A-13-00099 of 442 German Academic Exchange Service (DAAD) and the Centre for Gemstones 443 Research of JGU.

- 444 **REFERENCES CITED**
- 445 Acharya, R., Burte, P.P., Nair, A., Reddy, A.V.R., and Manohar, S.B. (1997)
- 446 Multielement analysis of natural ruby samples by neutron activation using

- the single comparator method. Journal of Radioanalytical and Nuclear
 Chemistry, 220, 223 227
- 449 Alekseev, V.I., and Marin, Yu.B. (2012) Structural and geochemical
- 450 heterogeneity of natural crystals and microgeochemical line of research in
- 451 ontogeny of minerals. Geology of Ore Deposits, 54, 589 601
- Alter, R., Okrusch, M., and Bank, H. (1982) Corundum- and kyanite-bearing
 anatexites from the Precambrian of Tanzania. Lithos, 15, 191 197
- 454 Chase, A.B. (1966) Habit modification of corundum crystals grown from
- 455 molten PbF2-Bi2O3. Journal of the American Ceramic Society, 49, 233 456 236
- 457 Garnier, V., Ohnenstetter, D., Giuliani, G., Malusci, H., Deloule, E., Phan
- Vamm, L., and Hoang Quang, V. (2005) Age and significant of rubybearing marble from the Red River shear zone, Northern Vietnam. The
 Canadian Mineralogist, 43, 1315 1329
- 461 Giuliani, G., Ohnenstetter, D., Garnier, V., Fallick, A.E., Rakotondrazafy, M.,
- 462 and Schwarz, D. (2007) The geology and genesis of gem corundum
- deposits. In Geology of gem deposits, 23 78. Ed. by Lee A. Groat.
- 464 Mineralogical association of Canada, 37
- 465 Grigor'ev, D.P. (1961) The ontogeny of minerals, 284 p. University of L'vov
 466 publ. (in Russian)

- 467 Grigor'ev, D.P. (1965) The ontogeny of minerals, 250 p. Israel Program for
- 468 Scientific Translations
- 469 Grigor'ev, D.P., and Zhabin, A.G. (1975) Ontogeny of minerals, 340 p. Nauka
- 470 publ., Moscow (in Russian)
- 471 Häger, T., and Dung, P.T. (2000) Quantitative Fluoreszenz-Spektroskopie an
- 472 natürlichen und synthetischen Rubinen. Berichte der Deutschen
 473 Mineralogischen Gesellschaft. Beihefte zum European Journal of
 474 Mineralogischen 12 D ihr 152 (in Grand)
- 474 Mineralogy, 12, Beih. 1:72 (in German)
- 475 Harlow, G.E., and Bender, W. (2013) A study of ruby (corundum) from the
- 476 Mogok belt, Myanmar, searching for chemical fingerprints. American
 477 Mineralogist, 98, 1120 1132
- 478 Hartman, P. (1962) The structure morphology of corundum. Zapiski
 479 Vsesouznogo Mineralogicheskogo Obshestva (All-Union Mineralogical
 480 Society Proceedings), 91, 672 682
- 481 Hartman, P. (1980) The attachment energy as a habit controlling factor 3.
- 482 Application to corundum. Journal of Crystal Growth, 49, 157
- 483 Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T, Ferry, J.M., McCoy, J.,
- 484 Sverjensky, D.A., and Yang, H. (2008) Mineral evolution. American
- 485 Mineralogist, 93, 1693 1720

- 486 Hoang Quang, V., Giuliani, G., Phan Trong, T., Coget, P., France-Lanord, Ch.,
- 487 and Pham Van, L. (1999) Origin of ruby formation in Yen Bay Province.
- 488 Tap chi Dia Chat, Series B, 13 14, 118 123
- 489 Hughes, R.W. (1997) Ruby & Sapphire, 512 p. RRWH Publishing, Boulder,
- 490 CO
- Jochum, K.P., Nohl, U., Herwig, K., Lammel, E., Stoll, B., and Hofmann, A.W.
 (2005) GeoReM: a new geochemical database for reference materials and
- 493 isotopic standards, Geostandards and Geoanalitical Research, 29, 333 338
- 494 Jochum, K.P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob,
- 495 D.E., Stracke, A., Birbaum, K., Frick, D.A., Günther, D., and Enzweiler, J.
- 496 (2011) Determination of reference values for NIST SRM 610-617glasses
- 497 following ISO Guidelines. Geostandards and Geoanalytical Research, 35,
- 498 397-429
- 499 Jochum, K.P., Scholz, D., Stoll, B., Weis, U., Wilson, S.A., Yang, Q., Schwalb,
- 500 A., Brner, N., Jacob, D.E., and Andreae, M.O. (2012) Accurate trace 501 element analysis of speleothems and biogenic calcium carbonates by LA-
- 502 ICP-MS. Chemical Geology, 318–319, 31–44
- 503 Kane, R.E., McClure, S.F., Kammerling, R.C., Khoa, N.D., Mora, C., Repetto,
- 504 S., Khai, N.D., and Koivula J.I. (1991) Rubies and fancy sapphires from
- 505 Vietnam. Gems & Gemology, 27, 136 155

506	Krivovichev, S.V. (2013) Structural complexity of minerals: information
507	storage and processing in the mineral world. Mineralogical Magazine, 77,
508	275 - 326
509	Le Goff, E., Deschamps, Y., Muhongo, S., Cocherie, A., Milesi, J.P., Pinna, P.,
510	Msechu, M., and Msihili, A. (2004) The Tanzanian "Ruby Belt": structural,
511	petrological geochronological constraints within the Pan-African orogeny,
512	p. 259. Examples from the Morogoro and Mahenge Districts. 20^{th}
513	Colloquium of African Geology, Orleans, France
514	Le Goff, E., Deschamps, Y., Cocherie, A., Guerrot, C., and Ketto, D. (2008)
515	Structural, petrological and geochronological constraints of the Tanzanian
516	ruby belt, p. 133. 22ème Réunion des Sciences de la Terre Nancy, France
517	Mercier, A., Debat, P., and Saul J. (1999) Exotic origin of the ruby deposits of
518	the Mangari area in SE Kenya. Ore Geology Reviews, 14, 83 – 104;
519	Muhlmeister, S., Fritsch, E., Shigley, J.E., Devouard, B., and Laurs, B.M.
520	(1998) Separating natural and synthetic rubies on the basis of trace-element
521	chemistry. Gems and Gemology, 34, 80-101
522	Pavlishin, V.I., Yushkin, N.P., and Popov, V.A. (1988) Ontogenetic method in
523	mineralogy, 119 p. Naukova Dumka publ., Kiev (in Russian)

- 524 Pirogov, B.I. (1985) Ontogenetic method in understanding of technological
- 525 properties of minerals, pp. 22 30. In problems of mineral ontogeny.
- 526 Nauka, L'vov (in Russian)
- 527 Pham Van, L., Hoang Quang, V., Garnier, V., Giuliani, G., and Ohnenstetter, D.
- 528 (2004) Marble-hosted ruby from Vietnam. The Canadian gemmologist, 25,529 83-95
- 530 Popov, V.A. (1984) Practical crystal morphology of minerals, 190 p.
 531 Sverdlovsk: Academy of Sciences USSR (in Russian)
- 532 Prieto, M., Putnis, A., Arribas, J., and Fernandez-Diaz, L. (1992) Ontogeny of
- barite crystals grown in a porous medium. Mineralogical Magazine, 56, 587
 534 598
- 535 Rakotondrazafy, A.F.M., Moine, B., and Cuney, M. (1996) Mode of formation
- of hibonite (CaAl₁₂O₁₉) within the U-Th skarns from the granulites of S-E
- 537 Madagascar. Contributions to Mineralogy and Petrology, 123, 190 201
- 538 Rakotondrazafy, A.F.M., Giuliani, G., Ohnenstetter, D., Fallick, A.E.,
- 539 Rakotosamizanany, S., Andriamamonjy, A., Ralantoarison, Th.,
- 540 Razanatseheno, M., Offant, Y., Garnier, V., Maluski, H., Dunagre, Ch.,
- 541 Schwarz, D., and Ratrimo, V. (2008) Gem corundum deposits of
- 542 Madagascar: A review. Ore Geology Reviews, 34, 134 154

- 543 Saul, J.M. (2014) A geologist speculates: on gemstones, origin of gas and oil,
- 544 moonlike impact scars on the Earth, the emergence of animals and cancer,
- 545 149 p. Paris: Les 3 Colonnes
- 546 Scheuplein, R., and Gibbs, P. (1960) Surface structure in corundum: I, etching
- 547 of dislocations. Journal of the American Ceramic Society, 43, 458 472
- 548 Self, C.A., and Hill, C.A. (2003) How speleotherms grow: An introduction to
- ontogeny of cave minerals. Journal of Cave and Karst Studies, 65, 130 151
- 550 Simonet, C. (2000) Géologie des gisements de saphir et de rubis— L'exemple
- de la John Saul Ruby Mine, Mangare, Kenya, 349 p. Unpublished Ph.D.
 thesis, University of Nantes, France
- 553 Simonet, C., Fritsch, E., and Lasnier, B. (2008) A classification of gem
- corundum deposits aimed towards gem exploration. Ore Geology Reviews,
 34, 127–133
- Sorokina, E.S. (2011). Ontogeny and quality of gem ruby from the deposits of
 Central and South-East Asia, 128 p. Unpublished Ph.D. thesis, Fedorovsky
 All-Russian Research Institute of Mineral Resources, Moscow, Russia (in
 Russian)
- Sorokina, E.S., Ozhogina, E.G., Jacob, D.E., and Hofmeister, W. (2012) Some
 features of corundum ontogeny and the quality of ruby from Snezhnoe
 deposit, Tajikistan (the Eastern Pamirs). Zapiski Rossiiskogo

563	Mineralogicheskogo Obshchestva (Proceedings of the Russian
564	Mineralogical Society), 141,100-108 (in Russian)
565	Stenonis, N. (1669) De solido intra solidum naturaliter contento dissertationis
566	prodromus. Florentie: Ex Typographia sub Signo Stellæ (in Latin)
567	Sunagawa, I. (2003) Growth histories of mineral crystals as seen from their
568	morphological features. Crystal growth technology, pp. 1 - 23. Ed. by
569	Byrappa, K. & Ohachi, T.N.Y.: William Andrew Pub.; Berlin; N.Y.:
570	Springer
571	Upton, B.G.J., Hinton, R.W., Aspen, P., Finch, A., and Valley, J.W. (1999)
572	Megacrysts and associated xenoliths: evidence for migration of
573	geochemically enriched melts in the uppermost mantle beneath Scotland.
574	Journal of Petrology, 40, 935 - 956
575	Yushkin, N.P. (1977) Theory and methods of mineralogy, 291 p. Nauka publ.,
576	L'vov (in Russian)
577	Yushkin, N.P. (1985) Genetic methods of mineralogy and ontogeny of
578	minerals, pp. 3 - 9. In problems of mineral ontogeny. Nauka, L'vov (in
579	Russian)
580	Zaw, K., Sutherland, L., Yoi, T-F., Meffe, S., and Thu, K. (2015) Vanadium-
581	rich ruby and sapphire within Mogok Gemfield, Myanmar: Implications for
582	gem-color and genesis. Mineralium Deposita, 50, 25–39.

582

- 583 Zhabin, A.G. (1979) Ontogeny of minerals, 276 p. Aggregates. Nauka publ.,
- 584 Moscow (in Russian)

586 Fig. 1. Photographs of samples used in this study: A) ruby crystals in calcite 587 marble matrix, Luc Yen, Vietnam (sample size 10.0 x 13.4 cm); B) ruby-588 bearing rock from a secondary deposit near Luc Yen, Vietnam (sample size 589 10.0 x 14.5 cm); C) sapphire-bearing skarn from Andranondambo, Madagascar 590 (size of the largest blue sapphire crystal is 1.6 x 2.3 cm); D) ruby crystals from 591 Gitonga pit, John Saul mine, Mangari, Kenya (sizes of intermediate crystals 592 from left to right are 1.8 x 1.8 cm, 1.8 x 1.4 cm and 2.0 x 1.5 cm); E) ruby-593 bearing rock from the Aqua mine, Mangari, Kenya (sizes of ruby crystals are 594 0.8 x 0.5 cm and 0.3 x 0.4 cm); F) corundum crystals in K-feldspar-biotite 595 gneiss from the Morogoro area, Tanzania (sizes of sapphire crystals are 0.9 x 596 2.0 cm and 0.6 x 3.0 cm). Photographs by Elena S. Sorokina.

Fig. 2. Photomicrographs of corundums from the Gitonga pit (A; magnification is 12x) and the Aqua mine (D; magnification is 8x) in Kenya with oscillatory zonation traced along the growth lines (marked by dotted lines) parallel to *n* face in the core and *z* face in the rim, samples cut parallel to the c axis; their RS Cr^{3+} luminescence maps (B and F) and rim-to-rim Cr, V and Ga LA-ICP-MS scans with corresponding colors (C and G; dots represent the locations of measured spots from Table 1).

Fig. 3. Photomicrographs of corundums from primary (A; magnification is 6x)
and secondary (C; magnification is 10x) Luc Yen deposits in Vietnam with

606 parting traced along the growth lines (marked by dotted lines) parallel to n and 607 c faces in the core and the r face in the rim, samples cut parallel to the c axis; B. 608 and D. their EMPA rim-to-rim chemical profiles of Cr, Ti, V, Ga and Fe with 609 corresponding colors (dots represent the locations of measured spots from 610 Table 1).

Fig. 4. Diagram showing the correlation between the crystal habit (and color) of corundum from primary and secondary deposits at Luc Yen in Vietnam, the Mangari area of Kenya (Gitonga pit of the John Saul ruby mine, and the Aqua mine), and Morogoro area in Tanzania with PT-parameters of the growth environment, the X axis representing the contents of Fe (μ g/g) and Y axis is Cr values (μ g/g).

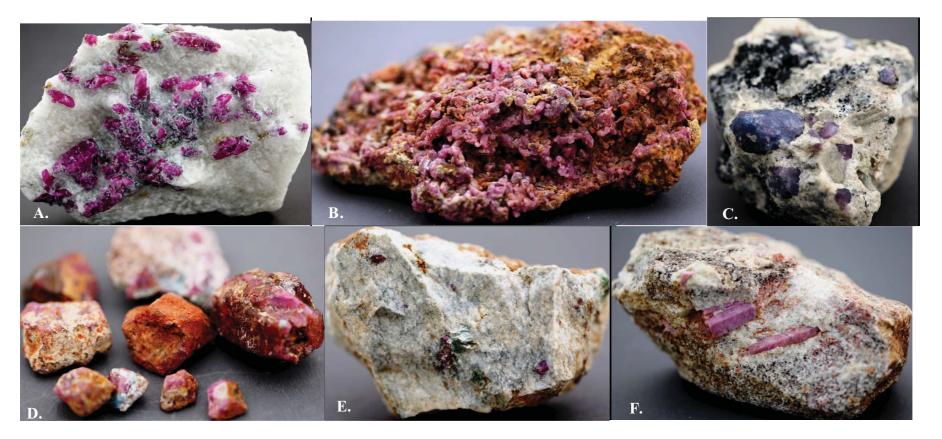
6	1	7	
6	1	8	

Rim-to-rim EMPA (top values) and LA-ICP-MS (bottom values) measurements (µg/g) of representative corundum samples

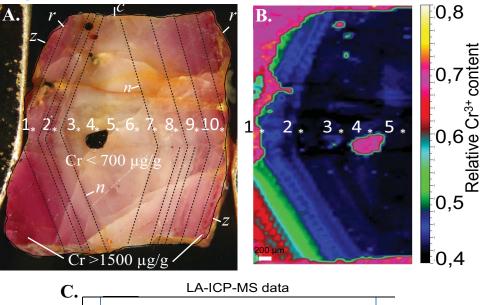
Table 1

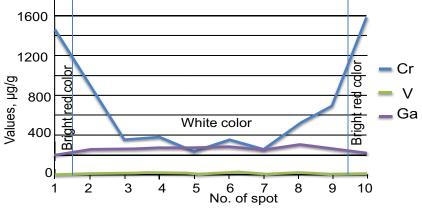
ur- ce	Picture of samples		Spacing	№ of		-					
Occur- rence	with location of spots	Habit	of spots	JNº 01 spot	Ti	V	Ga	Fe	Cr	Mg	
				1	bdl ¹	bdl	bdl	72	1182	bdl	
					22	34	75		1240	13	
				2	bdl	bdl	bdl	bdl	1048	bdl	
					bdl	30	92		880	19	
				3	bdl	bdl	bdl	bdl	1128	bdl	
	The second second				427	91	109		983	bdl	
				4	bdl	bdl	bdl	bdl	1143	bdl	
				_	281	58	77		836	18	
	102 15 20			5	bdl	bdl	bdl	bdl	1777	bdl	
	13	es		6	bdl	40	74	1 11	1519	bdl	
		fac		6	bdl bdl	bdl 44	bdl 83	bdl	1841 1532	bdl 20	
	Plate c axis, magnified 6x	d r		7	bdl	dbl	bdl	bdl	1 <i>552</i> 1651	bdl	
_		c an	930 µm	/	71	45	78	bui	1492	bdl	
nan		п, с		8	bdl	bdl	bdl	85	1913	bdl	
/ietı	letm	h <i>z</i> ,		0	27	48	66	05	1949	257	
n, V		wit		9	bdl	bdl	bdl	bdl	1904	bdl	
Luc Yen, Vietnam		utic		-	bdl	42	67		1367	bdl	
		Elongate-prismatic with z , n , c and r faces		10	84	bdl	bdl	bdl	1253	bdl	
					654	98	93		1455	35	
				11	bdl	bdl	bdl	bdl	1069	bdl	
					553	86	88		1367	40	
				12	bdl	bdl	bdl	bdl	1856	bdl	
						136	79	85		1639	bdl
				13	bdl	bdl	bdl	bdl	1149	bdl	
					30	30	73		1020	14	
				1	bdl	bdl	bdl	bdl	3228	bdl	
	1				76	39	79		3832	35	
	-3		880 µm	2	bdl	bdl	bdl	bdl	1926	bdl	
	and the second		οσο μιιι		65	58	89		1854	65	
				3	bdl	bdl	bdl	bdl	1091	bdl	
	Plate \perp c axis magnified 1,6x				26	49	86		1634	13	
am		ı, c	960 µm	1	bdl	bdl	bdl	167	1290	bdl	
ietn		Elongate-prismatic with z , n , c and r faces			-	-	-	-	-	-	
, C		/ith		2	bdl	bdl	164	194	1685	bdl	
IV)		ic w Ices			-	-	-	-	-	-	
nda		nat r fa		3	bdl	bdl	132	103	978	bdl	
eco		prismatic w and <i>r</i> faces			-	-	-	-	-	-	
n (s		te-p a		4	bdl	bdl	bdl	236	2471	bdl	
Yeı	9	nga		5	- 1.11	- 125	- L 11	-	-	- hal	
Luc Yen (secondary), Vietnam	Distalla avia	Elo		5	bdl bdl	135 37	bdl 63	140	2474 1809	bdl bdl	
I	Plate c axis, magnified 10x				Jui	51	05		1007	Jui	

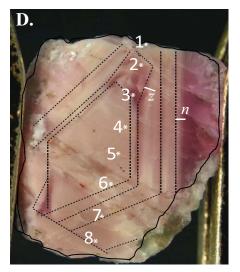
¹ bdl -measurement below the detection limit


	620 E i i i i i i i i i i i i i i i i i i						Table	1 conte	d	
-rence	Picture of samples with	Habit	Spacing	№ of						
Š Ŧ	location of spots		of spots	spot	Ti	V	Ga	Fe	Cr	Mg
				6	bdl	bdl	bdl	230	4055	bdl
					40	48	69		1803	18
В				7	bdl	bdl	bdl	131	1235	bdl
tna					54	45	68		1974	22
Vie				8	bdl	bdl	bdl	227	2454	bdl
), (bdl	44	69		1352	32
ary				9	bdl	bdl	bdl	186	3369	bdl
spue		_			-	-	-	-	-	-
secc	CONTRACTOR A		1080	1	bdl	bdl	bdl	bdl	774	bdl
s) u			μm		36	26	76		559	16
Ye				2	bdl	bdl	bdl	125	1052	bdl
Luc Yen (secondary), Vietnam	31				-	-	-	-	-	-
				3	bdl	bdl	174	148	4451	bdl
	Plate L c axis, magnified 25x				-	-	-	-	-	-
			870 µm	1	bdl	bdl	bdl	431	788	bdl
					40	47	91		787	38
				2	bdl	bdl	bdl	468	749	bdl
					59	45	96		850	46
	V-10 SOM			3	bdl	bdl	bdl	473	1040	bdl
	8* 9*				188	45	109		756	31
				4	bdl	bdl	bdl	486	778	bdl
					77	48	99		744	28
				5	bdl	bdl	bdl	476	1017	bdl
					1908	55	102		693	19
	134			6	bdl	bdl	bdl	620	883	bdl
	Plate c axis, magnified 6x	and ω faces			61	46	108		645	46
		fa		7	bdl	bdl	bdl	665	896	bdl
		d S			59	50	105		775	39
ia.		anc		8	bdl	bdl	bdl	729	940	bdl
an		ı c			90	47	106		755	40
anz		vitt		9	bdl	bdl	bdl	691	1084	bdl
Ë		ul w			78	40	89		806	61
OTO		uid ²		10	bdl	bdl	bdl	690	944	bdl
ogc		am			62	41	100		718	64
Morogoro, Tanzania		pyr		11	bdl	bdl	bdl	511	924	bd
Ζ		dij			76	49	112		1179	88
		ate		12	bdl	bdl	bdl	393	855	bd
		gu			64	46	96		697	56
		Elongate dipyramidal with c		13	bdl	bdl	bdl	531	910	bdl
				-	106	52	91		834	36
		_	860	1	bdl	bdl	bdl	669	649	bdl
			μm							
	1.				44	44	102		628	23
	and the second second			2	bdl	bdl	bdl	623	809	bdl
	7				32	39	94		769	30
				3	bdl	bdl	bdl	592	926	bdl
	and the second				33	42	106		709	51
				4	bdl	bdl	bdl	484	687	bdl
	Plate \perp c axis, magnified 10x				62	37	92		609	29

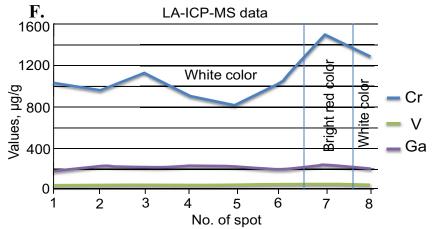
6	522				Table 1 contd						
Occur- rence	Picture of samples with location of spots	Habit	Spacing of spots	№ of spot	Ti	V	Ga	Fe	Cr	Mg	
			•	5	bdl	bdl	bdl	639	753	bdl	
				5	40	39	101	057		29	
									646		
				6	bdl	bdl	bdl	653	872	bd	
				7	bdl bdl	38 bdl	93 bdl	557	585 706	25 bd	
				/	40	36	97	337	700 586	32	
			820	1	540	bdl	266	bdl	793	bdl	
			μm	1	611	14	226	our	1002	63	
			·	2	251	bdl	319	bdl	803	bdl	
	and the second sec			2	4160	26	273	our	629	402	
		idal		3	bdl	bdl	333	bdl	539	bdl	
		ami		5	990	21	219	oui	397	88	
	*9	pyr		4	bdl	bdl	379	bdl	1333	bdl	
	and the second	e di			887	14	230	our	830	170	
		are		5	bdl	bdl	282	bdl	3080	bdl	
	Plate \perp c axis, magnified	ırea		C	349	17	228	0.41	1713	170	
	10x	te a		6	bdl	bdl	321	bdl	3767	bdl	
		sdia		-	383	20	242		2117	130	
		rme		7	212	bdl	256	bdl	1166	bdl	
		nte			461	13	215		1068	136	
		i pu		8	bdl	bdl	277	bdl	1446	bdl	
a		e ai			338	13	224		1298	124	
eny		c01		9	bdl	bdl	204	bdl	2786	bdl	
Gitonga pit, Kenya		- ces,			129	14	134		1946	155	
a pi	1	, fac	870µm	1	bdl	bdl	289	bdl	558	bdl	
igno;		' pu			811	17	279		476	136	
Gitc		<i>c</i> ai		2	bdl	bdl	175	122	346	bdl	
0	The second second	'n,			743	15	251		331	86	
		Ś		3	487	bdl	484	135	570	bdl	
		th z		4	784	19	290	1 11	422	143	
		wi		4	bdl 1334	bdl 18	318 271	bdl	495 426	bdl 173	
	11	atic		5	bdl	bdl	259	bdl	441	bdl	
	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNE	sm		5	1039	16	239	bui	282	212	
	Plate c axis, magnified 8x	-pri		6	bdl	bdl	257	bdl	385	bdl	
		gate		0	886	14	243	Jui	336	145	
		Rim is elongate-prismatic with z, ω , n, c and r faces, core and intermediate area are dipyramidal		7	bdl	bdl	344	bdl	664	bdl	
		s el			610	17	276		348	99	
		m i		8	bdl	bdl	284	bdl	523	bdl	
		Ri			762	14	231		378	576	
				9	bdl	bdl	183	bdl	913	bdl	
				10	201	14	231	1 11	475	89	
				10	bdl	bdl	270	bdl	827 742	bdl	
	523				928	16	247		742	171	

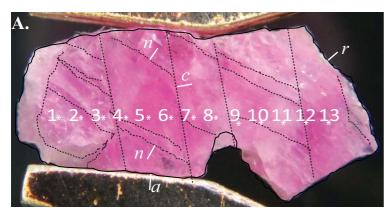

	27 Distance of some log with		с ·		Table 1 contd					
Occur- rence	Picture of samples with location of spots	Habit	Spacing of spots	№ of spot	Ti	V	Ga	Fe	Cr	Mg
rence				<u>- spor</u> 11	bdl	bdl	236	bdl	931	bdl
-			870 μm		293	14	213		569	118
			830	1	bdl	bdl	319	bdl	533	bdl
	all		μm –	2	bdl	bdl	391	bdl	452	bdl
			"a"	3	bdl	bdl	316	bdl	572	bdl
	10		profile	4	bdl	bdl	341	bdl	543	bdl
	b1.	lal	by EMPA	5	bdl	bdl	263	bdl	454	bdl
		mic		6	bdl	bdl	283	bdl	694 h.dl	bdl
a		yra		7 8	bdl bdl	bdl bdl	373 317	bdl bdl	bdl 246	bdl bdl
eny		dip		8 9	bdl	bdl	294	bdl	429	bdl
Ň		are		10	bdl	bdl	300	bdl	422	bdl
ı pit	Plate c axis, magnified 8x	rea		11	bdl	bdl	162	109	405	bdl
Gitonga pit, Kenya		te al	830	1	137	9	187	-	1383	79
jito		diat	μm	2	494	16	240	-	870	307
\cup		me	– "b"	3	1210	14	251	-	344	188
		ntei	profile by LA-	4	899	18	266	-	348	155
		i br	ICP-MS	5	862	15	257	-	215	283
		e ar		6	1323	17	275	-	322	267
		cor		7	1693	16	254	-	249	122
		es,		8	1441	18	282	-	478	338
		· fac		9	639	17	239	-	637	180
		/ pu		10	248	11	205	-	1482	119
		with z, ω, n, c and r faces, core and intermediate area are dipyramidal	800 µm	1	834	bdl	bdl	bdl	1378	bdl
	1 st	, <i>n</i> ,			712	18	152		1206	160
	i and re	2, 00		2	bdl	bdl	bdl	bdl	1439	bdl
		ith			4965	35	210		1508	374
				3	160	bdl	236	bdl	1106	bdl
a		nati			3128	36	185		1041	141
Aqua mine, Kenya		Rim is elongate-prismatic		4	bdl	bdl	333	105	1253	bdl
, K		e-pi			2128	27	203	100	823	114
iine		Igat		5	bdl	bdl	251	bdl	918	bdl
a n	Plate c axis, magnified 12x	elon		U	6876	30	212	our	912	698
√qu		is 6		6	1995	bdl	275	bdl	1654	bdl
1		Kim		0	1593	29	195	bui	1125	41
		щ		7	bdl	bdl	203	bdl	1286	bdl
				1	5266	31	205	bui	976	815
				8	bdl	bdl	362	bdl	1003	bdl
				0	3228	27	187	bui	1003	239
		<u>ц</u>	1000 µm	1	bdl	bdl	bdl	2473	bdl	bdl
Andranondambo	1*	Rhombohedral for blue-violet crystals with <i>r</i> and <i>a</i> faces	1000 pill	-	148	9	29		243	75
dan		dra olet with ace		2	bdl	bdl	bdl	2621	bdl	bdl
uou	-3	nombohedral fiblue-violet crystals with <i>r</i> and <i>a</i> faces		-	150	12	42	2021	301	81
draı	Plate c axis, magnified 12x	imb bluc ysti and		3	bdl	bdl	42 bdl	2422	bdl	bdl
An	i iuto lle axis, magimiteu 12x	cr cr		J	290	10	24	27 <i>122</i>	607	71
		-			290	10	24		007	/ 1


628						Table 1 contd					
Occur- rence	Picture of samples with location of spots	Habit	Spacing of spots	№ of spot	Ti	V	Ga	Fe	Cr	Mg	
Andranondambo, Madagascar	\mathbf{F}_{1}	intergrown with calcite	1100 µm	1	bdl	bdl	bdl	2738	332	bdl	
					152	11	42		343	98	
				2	bdl	bdl	bdl	2648	455	bdl	
					165	10	38		315	111	
				3	bdl	bdl	bdl	3014	330	bdl	
					537	11	34		230	82	
				4 5	bdl	bdl	bdl	2901	591	bdl	
					88	7	32		149	60	
					bdl	bdl	bdl	2532	223	bdl	
					81	7	33		bdl	46	


Figure 1




Figure 2



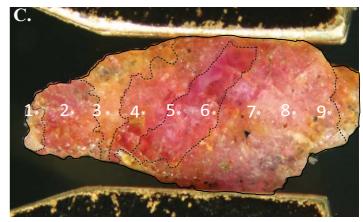


Figure 3

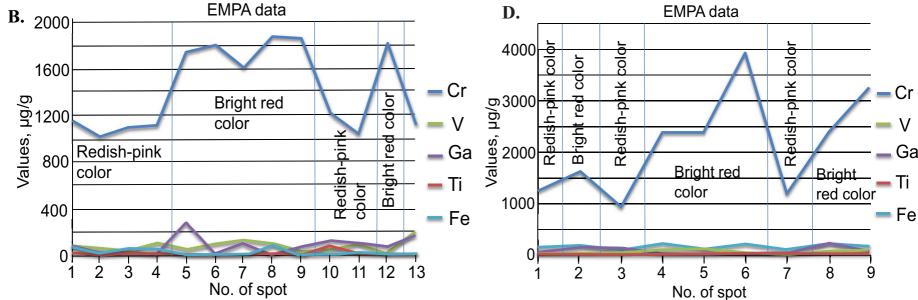
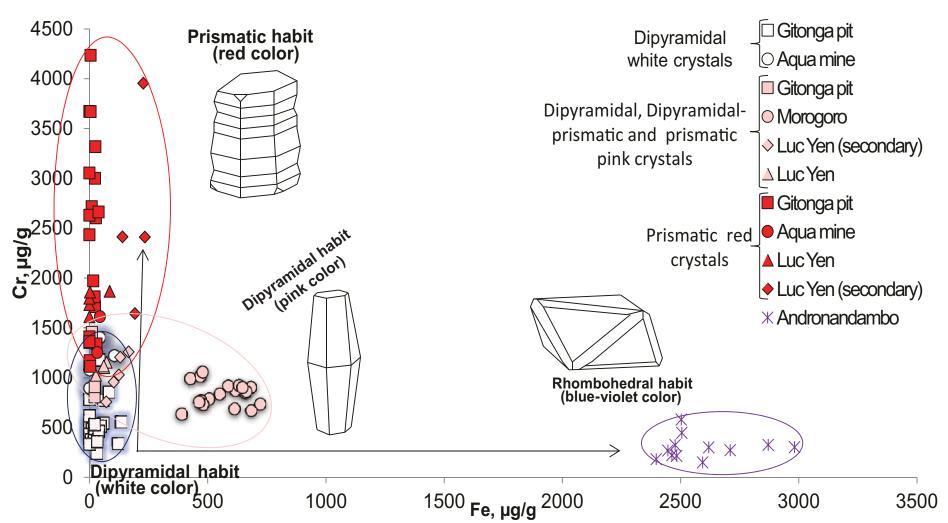



Figure 4

