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ABSTRACT 19 

The term “ontogeny”, which is commonly used in biology, was introduced 20 

into the earth sciences in 1961 to include the genesis and evolution of single 21 
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crystals and crystal aggregates. The term encompasses nucleation, growth, 22 

alteration, and destruction. We present results of studies concerning the 23 

ontogeny of natural corundum (rubies and sapphires), and the chemical and 24 

morphological evolution of corundum crystals from deposits in Africa (Kenya, 25 

Tanzania, Madagascar) and Southeast Asia (Vietnam). Trace-element 26 

compositions indicative for different corundum habits were determined by rim-27 

to-rim LA-ICP-MS and EMPA analyses. Raman spectroscopy was applied for 28 

Cr3+ photoluminescence mapping. Results traced the development of corundum 29 

crystals and the evolution of their chemistry and morphology, and helped to 30 

clarify the geological processes within particular deposits. These variations of 31 

corundum morphology are directly correlated with Cr and Fe contents and 32 

varying P-T conditions that prevailed during crystal growth. Dipyramidal habits 33 

combined with white color in corundum from two deposits in the Mangari area 34 

in Kenya have Cr concentrations of ~ 200 - 700 µg/g in crystals that grew under 35 

high P-T conditions. Prismatic habit of bright red ruby crystals was linked to Cr 36 

concentrations of ≥1500 µg/g in samples from Luc Yen (Vietnam) and Mangari 37 

(Kenya), formed under lower P-T. Concentrations of Cr between 700–1500 38 

µg/g are associated with pink color and combinations of different habits 39 

(dipyramidal, prismatic, or dipyramidal-prismatic) in these samples. Contents 40 

of Fe ~700 µg/g and Cr ~1200 µg/g in sapphire crystals from the Morogoro 41 
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area of Tanzania caused pink color that correlated with dipyramidal habit and 42 

elongation along the c axis. Rhombohedral habit and blue-violet color were 43 

observed at Cr ~600 µg/g and Fe ≥2000 µg/g in sapphires from 44 

Andranondambo in Madagascar, formed during the final stage of contact 45 

metamorphism. 46 

Keywords: Corundum, ruby, sapphire, ontogeny, evolution, genesis, 47 

geochemistry, crystal morphology, Kenya, Tanzania, Madagascar, Vietnam. 48 
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‘’...for a given body of certain form, 50 
created according to the laws of Nature,  51 

there are evidences within the body  52 
disclosing the place and method of its creation’’ 53 

Nicolai Stenonis, De solido... (1669) 54 
 55 

INTRODUCTION 56 

Corundum – α-Al2O3 – is a common minor component of metamorphic 57 

rocks. Yet crystallization of its transparent varieties, ruby and sapphire, only 58 

occurs in a few rock types depleted in silica and enriched in alumina (Giuliani 59 

et al., 2007) in approximately 20 deposits worldwide (Hughes, 1997). Some of 60 

the geological factors influencing corundum morphology have been studied by 61 

Hartman (1962, 1980), Popov (1984) and Sunagawa (2003). However the prime 62 

genetic question – how and why transparent corundum actually grows – is not 63 

fully understood. 64 

“Ontogeny” is used in biology to describe the developmental history of an 65 

organism within its own lifetime. The term was introduced into the earth 66 

sciences in 1961 by the Soviet mineralogist D.P. Grigor’ev to relate the genesis 67 

and evolution of single crystals and crystal aggregates, specifically including 68 

their nucleation, growth, alteration, and destruction stages (Grigor’ev, 1961, 69 

1965). In the decades after Grigor’ev’s publication, many researchers have 70 

worked in the field of mineral ontogeny (e.g. Yushkin, 1977, 1985; Zhabin, 71 
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1979; Pirogov, 1985; Pavlishin et al., 1988; Prieto et al., 1992; Self and Hill, 72 

2003; Sorokina, 2011; Alekseev and Marin, 2012; Sorokina et al., 2012 etc.). 73 

Evolutionary direction in the proliferation of mineral species has been proposed 74 

and discussed by Hazen et al. (2008) and Krivovichev (2013). 75 

This article presents results on the evolution of morphology and changing 76 

geochemistry of opaque and transparent corundum crystals during growth and 77 

alteration for samples from five important deposits in Africa (Mangari area in 78 

Kenya, Morogoro in Tanzania, and Andranondambo in Madagascar) and 79 

Southeast Asia (Luc Yen in Vietnam). Rim-to-rim chemical analyses were 80 

combined with Cr3+ photoluminescence mapping for corundum with visual 81 

color zoning from Mangari. This allowed in-situ observations of the distribution 82 

of Cr3+ content within the mineral matrix.  83 

In the past, rim-to-rim ion probe analyses on Scottish sapphires were 84 

combined with cathodoluminescence in a study by Upton at al. (1999), and 85 

color zoning in Myanmar rubies were investigated by electron microprobe 86 

analysis (EMPA), Laser Ablation-Inductively Coupled Plasma-Mass 87 

Spectrometry (LA-ICP-MS) and cathodoluminescence elemental mapping by 88 

Harlow and Bender (2013), and by Zaw et al. (2015). However those studies 89 

did not directly address corundum crystal habit. We determined concentrations 90 

of trace elements V, Cr, Fe, Ti, Ga and Mg, which may associate with particular 91 
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crystal habits. Trace element results on Kenyan ruby (Acharya et al., 1997; 92 

Mulmeister et al., 1998) were less detailed and less concerned with crystal 93 

habits than this study. To the best of our knowledge, our work on corundum 94 

from Kenya is new; for other deposits, we update geochemical data using a 95 

combination of EMPA and LA-ICP-MS analyses. Chemical composition of 96 

corundum during growth was correlated with the changes of crystallization 97 

parameters (in particular, P-T conditions) obtained from the literature, thereby 98 

allowing us to reconstruct the development of crystals. 99 

MATERIALS AND METHODS 100 

Transparent and opaque samples of naturally occurring corundum of 101 

different colors and morphologies were selected along with their host rocks 102 

from the collections of the Institute for Geosciences in the Johannes Gutenberg-103 

University Mainz (Figure 1). Our samples came from a marble-hosted deposit 104 

near Morogoro in Tanzania (2 samples), the Gitonga pit of the John Saul ruby 105 

mine in the Mangari area of Kenya (9 samples), the Aqua ruby mine (formerly 106 

part of the Penny Lane mine) also in the Mangari area (1 sample), the 107 

Andranondambo skarn deposit of Madagascar (4 samples), the Luc Yen 108 

marble-hosted primary deposit in Vietnam (2 samples), and a secondary 109 

occurrence from the Luc Yen area (1 sample).  110 
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In order to study microscopic features of these corundum crystals, macro- 111 

and micro-scale observations were made using a Zeiss Stemi SV11 stereo zoom 112 

microscope with a horizontal arrangement. Parts of rocks containing transparent 113 

crystals of corundum (ruby and sapphire) were dissolved in 30 % HCl and 30 % 114 

HF and/or mechanically crushed to separate the crystals from their matrix. 115 

Representative corundum crystals were cut into plates perpendicular and 116 

parallel to the c axis in order to facilitate the study of internal features appearing 117 

in different crystallographic directions. 118 

Rim-to-rim chemical profiles of corundum samples differently orientated 119 

with respect to the c axis were investigated at the laboratories of the Johannes 120 

Gutenberg-University Mainz using EMPA and LA-ICP-MS. 121 

JEOL JXA 8200 electron microprobe in the wavelength-dispersive 122 

detection mode was used in the following operating conditions: 20 kV 123 

acceleration voltage, 20 nA beam current, 20 s peak counting times for Al; 80 s 124 

for Si; 100 s for Ti, Cr, Mn and Fe; 200 s for V and Ga, with a spot size of 3 125 

µm. Sets of natural and synthetic reference materials were used for calibration 126 

and instrument-stability monitoring: Al2O3 for Al, Cr2O3 for Cr, Fe2O3 for Fe, 127 

GaAs for Ga, MgO for Mg, MnTiO3 for Mn and Ti, metallic V for V, and 128 

wollastonite for Si. An overlap correction was applied for Ti > V and V > Cr. 129 

The detection limits for measured elements varied for different analytical 130 
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sessions: Ti 60 µg/g, V 118 – 446 µg/g, Ga 132 – 472 µg/g, Fe 74 – 76 µg/g, Cr 131 

220 – 370 µg/g, Mn 58 – 224 µg/g g, and Mg 90 – 256 µg/g.  132 

LA-ICP-MS measurements were made along profiles situated parallel to the 133 

EMPA profiles using an ESI NWR193 ArF Excimer Laser combined with an 134 

Agilent 7500ce quadrupole-ICP-MS. Analyses were carried out with a spot size 135 

of 70 µm at a repetition rate of 10 Hz and an energy density of approximately 136 

3.0 J/cm2. Warm-up/background time was 15 s, dwell time 30 s, and wash out 137 

time 20 s. NIST SRM 612 was used as reference material for calibration, 138 

applying the preferred values for NIST SRM 612 in the GeoReM database, 139 

http://georem.mpch-mainz.gwdg.de/ (Jochum et al., 2005, 2011), as the “true” 140 

concentrations in calculating the element values within the samples. 141 

Additionally, we analyzed NIST SRM 610 and basaltic USGS BCR-2G as 142 

quality control materials (QCM) several times during each analytical sequence. 143 

The time-resolved signal was processed using the program GLITTER 4.4.1 144 

(www.glitter-gemoc.com, Macquarie University, Sydney, Australia) using 27Al 145 

as the internal standard, applying the Al2O3 content previously determined by 146 

EMPA for the corundum samples and the values reported in the GeoReM 147 

database for the QCM. The measured concentrations for both QCM agree for 148 

most elements within 15 % with the preferred values provided in the GeoReM 149 

database. Measured average concentrations for Cr for BCR-2G are too low by 150 
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23 %. This larger discrepancy between measured and preferred values can be 151 

attributed to isobaric interferences that cannot be resolved with the 152 

instrumentation used (Jochum et al. 2012). For the QCM, the relative standard 153 

deviation for the average concentrations determined was always <7%. Average 154 

detection limits were calculated from measurements on the reference materials: 155 

Mg 2.2 µg/g, Ti 3.8 µg/g, V 0.2 µg/g, Mn 1.0 µg/g, Ga 0.2 µg/g, Cr 3.2 µg/g. 156 

Due to the large number of possible interferences on Fe in an argon-oxygen 157 

atmosphere, concentrations for this element are reported only by EMPA data. 158 

In order to monitor the distribution of chromium within Mangari corundum 159 

crystals with visual color oscillatory zoning, Cr3+ luminescence mapping was 160 

acquired. A confocal Raman Spectrometer (RS) made by Horiba Yobin Yvon 161 

HR800 was coupled with an Olympus BX41 microscope and automatic XYZ-162 

stage with the mapping technique. Red helium-neon laser with λ = 633 nm 163 

(polarized during the measurements) was used with a grating of 1800 164 

grooves/mm. The confocal hole of 400 µm and the entrance slit of 100 µm 165 

produce a resolution of 0.7 (blue) to 0.5 (red) cm-1 for an exposition time of 0.5 166 

s with measured steps of 100 µm. Magnification x50 was used for measured 167 

range of 697.0 – 709.0 nm. Relative chromium contents were determined using 168 

the peak-ratio of the n-line peak at about 701.55 nm with the side-band peak at 169 
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about 707.2 nm (Häger & Dung, 2000). The spectrometer was calibrated at 170 

520.7 cm-1 using Si as a reference. 171 

LOCAL GEOLOGY 172 

The corundum deposits in Luc Yen and Yen Bai areas of northern Vietnam 173 

are located in the Lo Gam tectonic zone, on the northeastern side of the Red 174 

River shear zone (Hoang Quang et al., 1999; Pham Van et al., 2004 and 175 

references therein). Crystallization took place along the retrograde metamorphic 176 

path at 630 – 670 °C and 2.9 – 3.3 kbar (Garnier et al., 2005). Mineral 177 

associations in samples from the primary Luc Yen marble-hosted deposit 178 

include bright red ruby, fuchsite, blue micas, muscovite, and pyrrhotite, 179 

cemented by well-formed calcite crystals. Elongate-prismatic ruby crystals with 180 

z ( 1422 ), ω (14 14 28  3), n ( 3422 ), c (0001), and r ( 1110 ) faces are arranged 181 

randomly in the host calcite matrix, sporadically intergrown with green and 182 

blue micas (Fig. 1A). Dravite, phlogopite, rutile, spinel, edenite, and graphite 183 

were also observed (Pham Van et al., 2004). Secondary Luc Yen deposits 184 

consist of gravel in karst pockets and alluvial fans (Kane et al., 1991). Our 185 

secondary samples include elongate-prismatic crystals of corundum with          186 

z( 1422 ), ω (14 14 28  3), n ( 3422 ), c (0001), and r ( 1110 ) faces and elongate 187 

dipyramidal crystals with c (0001) and ω (14 14 28  3) faces. Colors include 188 

pink, purple to red, and yellowish-red. Such crystals are associated with 189 
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fuchsite, calcite relicts, and secondary clay minerals formed as a result of 190 

calcite marble replacement. Cubic crystals of hematite replacing pyrite are also 191 

present. Some of the ruby crystals are cemented in disorderly fashion to one 192 

another by clay minerals forming masses resembling druse-like aggregates (Fig. 193 

1B). Other researchers (e.g., Kane at al., 1991) also described blue and colorless 194 

sapphires coexisting with rubies, as well as grey to brown dipyramidal 195 

sapphires and “trapiche” rubies. Red, pink, and pale blue spinel, gem quality 196 

multi-color tourmaline, and garnet are also found. 197 

The sapphire deposit to the south of the village of Andranondambo 198 

(Tranomaro area, Madagascar) is derived from metamorphic skarn-type 199 

deposits in the high-grade granulite facies of the Proterozoic Tranomaro Group, 200 

composed of metapelites, calc-silicates, and marbles interlayered with 201 

leucocratic gneiss (Rakotondrazafy et al., 1996). Three different metamorphic 202 

stages were reported by Rakotondrazafy, et al. (2008). Minerals formed during 203 

the first stage, a metasomatic event with T ~850 ºC and P ~5 kbar, included 204 

meionite, spinel, thorianite, and corundum within a titanite-bearing matrix of 205 

scapolite and diopside. The second stage, also metasomatic, was characterized 206 

by T ~800 ºC and P ~3–3.5 kbar, and produced pargasite, anorthite, calcite, 207 

phlogopite, and hibonite. Retrograde metamorphism followed with the 208 

formation of gem blue sapphires at T~500 ºC and P ~2 kbar within K-feldspar 209 
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veins crosscutting marbles. Our samples show small-grained calcite and 210 

dolomite, small grains of clinopyroxene, blue-violet sapphires with r ( 1110 ) and 211 

a ( 0211 ) faces, and some pink sapphire crystals (Fig. 1C). 212 

Corundum (ruby) deposits in the Mangari area (John Saul, Aqua and Hard 213 

Rock mines) in the southeastern part of Kenya’s Tsavo West National Park 214 

have a metasomatic genesis produced during complex desilication of 215 

pegmatites and ultrabasites (Simonet, 2000, Simonet et al., 2008). According to 216 

Mercier et al. (1999), the ruby-bearing rocks were formed under granulite facies 217 

conditions (700–750 ºC, 8–10.5 kbar) in deeper crust and subsequently brought 218 

up to their present level by the ultrabasic bodies during their emplacement as 219 

thrust sheets. Corundum mineralization occurs in micaceous pockets within 220 

serpentinized ultrabasites and pegmatoid rock, as well as in veins crosscutting 221 

the ultrabasites (Mercier et al., 1999). At the Aqua and Hard Rock mines, 222 

transparent corundum in pockets is associated with phlogopite with lesser 223 

muscovite, Mg-bearing chlorite, and Mg-bearing spinel. Corundum-bearing 224 

veins are mainly composed of anorthite (An 95–98) and zoisite. At the John 225 

Saul mine (which includes the Gitonga, Kimbo, Cowboy, and Main pits), 226 

corundum occurs in lenses associated with plagioclase (An 18–26), muscovite, 227 

Cr-bearing tourmaline, rutile, and graphite, and in layer-like pegmatite with 228 

plagioclase (An 14–29), K-feldspar, muscovite, phlogopite, Cr-bearing 229 
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tourmaline, pyrite, and graphite. Materials used in this study also included 230 

samples from the Aqua mine with the mineralogical association of small-231 

grained plagioclase (anorthite), corundum, and green mica (fuchsite) similar to 232 

samples described by Mercier et al. (1999) for a corundum-bearing vein cutting 233 

the ultrabasic body. Corundum crystals were zonal with different color. 234 

Transparent bright red rims of elongate-prismatic form with z ( 1422 ),          235 

ω(14 14 28  3), n ( 3422 ), c (0001), and r ( 1110 ) faces are combined with 236 

opaque white cores and intermediate areas with dipyramidal faces (Fig. 1E). 237 

Gitonga pit samples came to the collection as single crystals, and as white 238 

clayey masses with corundum crystals encased by kaolinite and iron oxides 239 

(Fig. 1D). In these samples, we also observed small blue mica plates 240 

intergrowing with ruby crystals, small rutile grains, and star-like graphite 241 

aggregates. 242 

Corundum crystals (rubies and pink sapphires) from Central Tanzania, near 243 

the town of Morogoro, were related to the Uluguru Mountains (Le Goff, 2004). 244 

Corundum mineralization occurred at the contacts of biotite gneiss with marble 245 

(Le Goff et al., 2008), with transparent red crystals (rubies) associated with 246 

spinel and sapphirine. Their formation is caused by high-grade regional 247 

metamorphism of a protolith of varied composition (Le Goff et al., 2004) at P 248 

~7.7 kbar and T ~ 695 ºC, assuming aH2O = 1 (Alter et al., 1982). Our sample 249 
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is composed of elongate dipyramidal crystals of opaque pink sapphire with 250 

c(0001) and ω (14 14 28  3) faces intergrown with fine-grained feldspar, plates 251 

of biotite, rutile grains, and iron oxide minerals (fig. 1F). 252 

RESULTS 253 

Optical microscopy 254 

Studied samples varied in color and have different internal features (Table 255 

1). Transparent bright red material becomes visible in the marble-hosted 256 

corundum from Luc Yen only after cutting plates parallel and perpendicular to 257 

the c axis, but its distribution is not homogeneous and can vary from bright red 258 

to reddish-pink within a single sample. A parting along r ( 1110 ) faces is present 259 

on these samples. Corundum crystals from the secondary deposit at Luc Yen 260 

are fractured; their cores are transparent with bright red color and rims are 261 

yellowish-red. In contrast, corundum crystals from the Mangari deposits in 262 

Kenya (Aqua mine and the Gitonga pit of the John Saul mine) exhibit visual 263 

oscillatory zoning even in unprepared samples: bright red transparent rims and 264 

white-colored opaque cores are observable, with needle-like micro-inclusions 265 

of rutile along growth faces in the intermediate area between rim and core. A 266 

pink corundum sample from the Morogoro area (Tanzania) is completely 267 

opaque. The bright pink, blue-violet and grey-blue sapphires from 268 
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Andranondambo (Madagascar) are transparent and show parting along r ( 1110 ) 269 

faces. 270 

 271 

Rim-to-rim LA-ICP-MS and EMPA traverses, and RS Cr3+ mapping 272 

Changes of crystal chemistry and crystal morphology were observed in 273 

corundum samples cut into plates orientated differently with respect to the c 274 

axis. Determinations were made by rim-to-rim micro-chemical analyses using 275 

EMPA and LA-ICP-MS with spacing of 800 – 1000 µm between spots (Table 276 

1).  277 

Differences in concentrations determined by the two methods were 278 

relatively minor and are attributed to inhomogeneous element distribution in the 279 

corundum matrix. EMPA and LA-ICP-MS profiles are offset by some µm and 280 

the different beam diameters of EMPA (~3 µm) and LA-ICP-MS (~70µm) 281 

result in target larger areas for the LA-ICP-MS analyses. Differences in 282 

operation conditions and their effects on concentrations obtained by EMPA and 283 

LA-ICP-MS were previously observed by Zaw et al., 2015. Due to the absence 284 

of well-characterized reference materials with a corundum matrix, calibration of 285 

the LA-ICP-MS measurements was performed using synthetic silicate glass 286 

reference material. This non-matrix matched calibration influences the accuracy 287 

of the determined element concentrations, as demonstrated, for instance, by the 288 
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deviation of Cr in BCR-2G from its preferred value. For the EMPA 289 

measurements 2 sigma uncertainties of up to 20 % have to be considered for the 290 

trace elements due to low concentrations and calibration using non-oxide 291 

standards (e.g. GaAs for Ga). Differences in values for Cr (x1.25 to x1.7) and 292 

for Ga (x1.4) – as determined by the two methods in several spots on samples 293 

from Luc Yen, Morogoro, Gitonga pit, Aqua mine, and Andranondambo – can 294 

be related to the reasons mentioned above, but in addition, the ablation of 295 

inclusions in those samples is also a likely source of discrepancies, particularly 296 

as regards Ti. LA-ICP-MS values for Ti in some spots measured on Luc Yen, 297 

Morogoro, Gitonga pit, and Aqua mine corundums are 1.6 – 2.8 times higher 298 

than their respective EMPA values, and up to 16 times higher in some points on 299 

a Gitonga pit sample. This is attributed to the ablation of corundum material 300 

containing titanium dioxide (rutile) micro-inclusions. Figure 2 shows visual 301 

oscillatory zoning in Gitonga pit corundums caused by the distribution of 302 

needle-like rutile micro-inclusions along the corundum growth faces. 303 

Studies of corundum crystals from the Aqua mine and from the Gitonga pit, 304 

both Mangari deposits (Kenya), have shown that the crystal habit changed from 305 

dipyramidal nearly opaque cores with white color in the beginning of growth to 306 

prismatic red transparent rims in the end. These changes during crystal growth 307 

correspond to the increase of Cr concentration from around 200 µg/g in core to 308 
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more than 1500 µg/g in the rim (Fig. 2). Application of Cr3+ luminescence 309 

mapping allowed us to observe the zoning of Mangari corundum by the relative 310 

Cr3+ content within the mineral lattice (Fig. 2). This method is particularly 311 

useful in examining oscillatory zoned corundum from Mangari. Thus lower 312 

Cr3+ content has been observed in core area subsequently increasing towards 313 

the rim. These results correlate with Cr profiles obtained LA-ICP-MS 314 

measurements (Fig. 2 and Table 1). 315 

The primary and secondary Luc Yen deposits produce transparent crystals 316 

with pink areas that have lower Cr concentrations (≈1000 µg/g) (Fig. 3) than 317 

their red areas (≥1500 µg/g). Such crystals, which are commonly prismatic, 318 

have a tendency to form twins (Fig. 3).  319 

Our samples of pink sapphires from Morogoro were almost opaque. Their 320 

Cr contents are approximately 500 – 700 µg/g, with Fe values up to ~1200 321 

µg/g. 322 

The blue-violet sapphire samples from the Andranondambo region of 323 

Madagascar are transparent with rhombohedral habit and have Fe 324 

concentrations of more than 2000 µg/g and Cr content up to 600 µg/g (Table 1). 325 

DISCUSSION 326 

Changes in chemical composition and in crystal habit (external 327 

morphology) occur during crystal growth in mineral ontogeny (Grigor’ev, 328 
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1965). Alteration is the next stage in the evolution of single crystals (Grigor’ev, 329 

1965). Common alteration processes are crystal deformation (breaking, 330 

fragmentation, etc.), chemical effects (dissolution, etching, formation of 331 

pseudomorphs etc.), and recrystallization of primary materials (Grigor’ev and 332 

Zhabin, 1975). During recrystallization, crystals are “cleaned” as crystal faces 333 

are rounded and inclusions resorbed (Grigor’ev and Zhabin, 1975 and 334 

references therein). Recrystallization is an important geological process as a 335 

determinant of clarity (Grigor’ev, 1965). 336 

Mangari: Samples from the two Mangari occurrences (Aqua mine and 337 

Gitonga pit) had closely similar changes of habit during growth, with similar 338 

evolution of their trace element chemistry, Cr concentration in particular, and 339 

their color (Figs. 2 and 4). Zoned crystals have shown that habit varied from 340 

dipyramidal with white color at the beginning of crystallization under higher P-341 

T conditions, with the most rapid growth of n faces (Cr ≤200 µg/g by LA-ICP-342 

MS), through pink with dipyramidal faces (Cr ≈ 700–1500 µg/g), to red with 343 

prismatic z and c faces (Cr >1500 µg/g) growing the most rapidly in the final 344 

growth stage at lower pressure and temperature. Zoning in these corundum 345 

crystals commonly indicates three growth stages, though either fewer or more 346 

may be apparent. Curved boundaries between these zones are caused by 347 

dissolution before the start of renewed crystallization with different trace 348 
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element composition. From observations of specimens from various localities 349 

in the area, we conclude that the crystallization of transparent ruby, which took 350 

place under granulite facies conditions, occurred late in the polycyclic Pan-351 

African sequence, but that at least one episode of corundum crystallization must 352 

have occurred still later (Saul, 2014).  353 

Luc Yen: Pink zones with lower Cr concentration (~1000 µg/g by EMPA; 354 

~900 µg/g by LA-ICP-MS) in rubies from the Luc Yen deposits appear to have 355 

had the most rapid growth on their n faces at the beginning of crystallization 356 

under higher P-T conditions (Figs. 3 and 4). At Cr ≥1500 µg/g, the most rapid 357 

growth occurred on a faces with a tendency to form twinned crystals. Although 358 

fine transparent rubies have been produced from Luc Yen, most crystals are full 359 

of defects, including partings along r faces. Color variations from reddish-pink 360 

to bright red are typical in these samples (Fig. 3). This color inhomogeneity and 361 

the formation of twinned crystals correspond to specific aspects of mineral 362 

alteration, infiltration in particular, during recrystallization along cracks and 363 

fractures in the calcite marble (see Hoang Quang et al., 1999). In some samples 364 

from the Luc Yen secondary deposit, ruby crystals appeared yellowish-red and 365 

visually opaque (Fig. 1). Yet after plate preparation, the cores appeared 366 

completely transparent with bright red color (Table 1 and Fig. 3). According to 367 

the chemical data, Cr concentrations throughout the crystal are above 1500 368 
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µg/g, similar to the Cr concentrations in Luc Yen rubies from primary deposits 369 

(Fig. 3). The yellowish-red color of these samples appeared close to the 370 

terminating crystal faces where micro-cracks had developed, permitting 371 

possible infill by goethite and other iron oxides that might account for the 372 

yellowish coloration. 373 

Morogoro: The Fe concentration (up to about 700 µg/g), along with Cr (up 374 

to 1200 µg/g), in pink sapphires from Morogoro correlate with their 375 

dipyramidal habit with elongation along the c axis. Rim-to-rim measurements 376 

(Table 1) showed moderate variations in trace-element concentrations from the 377 

beginning of growth (core) to the end (rim). This suggests that these crystals 378 

started and continued their growth under similar conditions. Their formation 379 

took place under granulite facies conditions (Le Goff et al., 2004) at P ~7.7 380 

kbar and T ~ 695 ºC (Alter et al., 1982). We observed many partings along r 381 

crystal faces as evidence of high pressure/temperature conditions during their 382 

growth (see Scheuplein and Gibbs, 1960). Neither of our Morogoro specimens, 383 

both of which were pink corundum in feldspar-biotite gneiss, had undergone 384 

recrystallization. 385 

Andranondambo: The corundum (sapphires) from Andranondambo have 386 

Fe contents above 2000 µg/g with relatively low Cr (~600 µg/g). Trace-element 387 

concentration correlates with a rhombohedral habit with r and a faces (Fig. 4). 388 
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This transparent corundum may have been recrystallized, as were the 389 

transparent ruby crystals of Luc Yen. In Madagascar, this probably occurred 390 

very late along the retrograde metamorphic path in the course of a multistage 391 

process (see Rakotondrazafy et al., 2008). Nearly all corundum samples are full 392 

of partings along r faces caused by the high pressure/temperature conditions 393 

during growth (see Scheuplein & Gibbs, 1960). 394 

IMPLICATIONS 395 

Hartman (1962, 1980) proposed that the crystal habit of corundum is not 396 

solely determined by crystal structure, but also by environmental factors present 397 

during crystal growth. Our data show that during growth with decreasing 398 

pressure and temperature, the corundum chemistry changes, and that change 399 

correlates with crystal habit (Fig. 4). This correlation may be explained by: 400 

1. the direct impact of Fe and Cr trace elements on the different rates at 401 

which ions are taken up by different crystal faces during the growth. Such 402 

differences alter surface energy relations, and produce changes in crystal habit, 403 

as shown for rutile synthesized by the Verneuil process (Grigor’ev and Zhabin, 404 

1975); 405 

2. the impact of additional factors, which influenced changes in the 406 

corundum morphology, such as P, T and pH. With the changing of crystal habit, 407 
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selective absorption of trace elements by defined faces of corundum crystals 408 

may affect continued growth and modifications (Chase, 1966).  409 

The ontogeny of naturally-occurring transparent and opaque corundum 410 

from five important sources in Kenya, Tanzania, Madagascar, and Vietnam 411 

provides insights into their crystal growth in particular geological 412 

environments. A range of analytical micro-scale techniques (RS, EMPA and 413 

LA-ICP-MS) were applied in examining changes in trace element contents 414 

during crystal growth, and their possible effects on crystal shape. 415 

The variations in corundum morphology are directly correlated with trace-416 

element content and with varying P-T conditions that prevailed during growth. 417 

Dipyramidal habit combined with white color in corundum from Mangari, 418 

Kenya, showed Cr concentrations below 700 µg/g and the growing under high 419 

P-T conditions. In contrast, prismatic habit with bright red color were linked to 420 

Cr concentrations ≥1500 µg/g in samples from Luc Yen, Vietnam, and those at 421 

Mangari that formed under lower P-T. Concentrations of Cr between 700–1500 422 

µg/g are related to pink color and combinations of different crystal habits 423 

(dipyramidal, prismatic, or dipyramidal-prismatic) in these samples. Contents 424 

of Fe ~700 µg/g and Cr ~1200 µg/g in sapphire crystals from the Morogoro 425 

area of Tanzania produced pink color that correlated with dipyramidal habit and 426 

elongation along the c axis. Rhombohedral habit and blue-violet color were 427 
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observed at Cr ~500 µg/g and Fe >2000 µg/g in sapphires from 428 

Andranondambo in Madagascar, formed during the final stage of contact 429 

metamorphism. 430 

This study leads the way for further testing of links between trace element 431 

concentrations and crystal habits in corundum from other gem corundum 432 

deposits. 433 
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Fig. 1. Photographs of samples used in this study: A) ruby crystals in calcite 586 

marble matrix, Luc Yen, Vietnam (sample size 10.0 x 13.4 cm); B) ruby-587 

bearing rock from a secondary deposit near Luc Yen, Vietnam (sample size 588 

10.0 x 14.5 cm); C) sapphire-bearing skarn from Andranondambo, Madagascar 589 

(size of the largest blue sapphire crystal is 1.6 x 2.3 cm); D) ruby crystals from 590 

Gitonga pit, John Saul mine, Mangari, Kenya (sizes of intermediate crystals 591 

from left to right are 1.8 x 1.8 cm, 1.8 x 1.4 cm and 2.0 x 1.5 cm); E) ruby-592 

bearing rock from the Aqua mine, Mangari, Kenya (sizes of ruby crystals are 593 

0.8 x 0.5 cm and 0.3 x 0.4 cm); F) corundum crystals in K-feldspar-biotite 594 

gneiss from the Morogoro area, Tanzania (sizes of sapphire crystals are 0.9 x 595 

2.0 cm and 0.6 x 3.0 cm). Photographs by Elena S. Sorokina. 596 

Fig. 2. Photomicrographs of corundums from the Gitonga pit (A; magnification 597 

is 12x) and the Aqua mine (D; magnification is 8x) in Kenya with oscillatory 598 

zonation traced along the growth lines (marked by dotted lines) parallel to n 599 

face in the core and z face in the rim, samples cut parallel to the c axis; their RS 600 

Cr3+ luminescence maps (B and F) and rim-to-rim Cr, V and Ga LA-ICP-MS 601 

scans with corresponding colors (C and G; dots represent the locations of 602 

measured spots from Table 1). 603 

Fig. 3. Photomicrographs of corundums from primary (A; magnification is 6x) 604 

and secondary (C; magnification is 10x) Luc Yen deposits in Vietnam with 605 
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parting traced along the growth lines (marked by dotted lines) parallel to n and 606 

c faces in the core and the r face in the rim, samples cut parallel to the c axis; B. 607 

and D. their EMPA rim-to-rim chemical profiles of Cr, Ti, V, Ga and Fe with 608 

corresponding colors (dots represent the locations of measured spots from 609 

Table 1). 610 

Fig. 4. Diagram showing the correlation between the crystal habit (and color) of 611 

corundum from primary and secondary deposits at Luc Yen in Vietnam, the 612 

Mangari area of Kenya (Gitonga pit of the John Saul ruby mine, and the Aqua 613 

mine), and Morogoro area in Tanzania with PT-parameters of the growth 614 

environment, the X axis representing the contents of Fe (µg/g) and Y axis is Cr 615 

values (µg/g). 616 
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Table 1 617 
Rim-to-rim EMPA (top values) and LA-ICP-MS (bottom values) 618 

measurements (µg/g) of representative corundum samples 619 
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Table 1 contd 620 
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Table 1 contd 622 
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Table 1 contd 628 
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Picture of samples with location 
of spots Habit Spacing 

of spots 
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