Electron diffraction determination of 11.5 Å and HySo structures: candidate water carriers to the Upper Mantle

Mauro Gemmi¹, Marco Merlini², Lukáš Palatinus³, Patrizia Fumagalli², Michael Hanfland⁴

¹Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza S. Silvestro 12, 56127 Pisa, Italy.
²Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, Via Botticelli 23, 20133 Milano, Italy.
³Institute of Physics of the AS CR, Na Slovance 2, Prague, Czech Republic.
⁴ESRF, The European Synchrotron Radiation Facility, 71, avenue des Martyrs, 38000 Grenoble, France

Corresponding author:
Mauro Gemmi
Center for Nanotechnology Innovation@NEST,
Istituto Italiano di Tecnologia,
Piazza S. Silvestro 12, 56127 Pisa, Italy.
E-mail: mauro.gemmi@iit.it

Abstract

The dehydration reactions of minerals in subduction zones strongly control geological processes, such as arc volcanism, earthquakes, serpentinization or geochemical transport of incompatible elements. In aluminium-bearing systems, chlorite is considered the most important hydrous phase at the top of the subducting plate, and significant amount of water is released after its decomposition. However, the dehydration mechanism is not fully understood, and additional hydrates are stabilized by the presence of Al beyond the stability field of chlorite. We applied here a cutting-edge analytical approach to characterize the experimental rocks synthesized at the high pressures and temperatures matching with deep subduction conditions in the upper mantle. Fast electron diffraction tomography and high resolution synchrotron X-ray diffraction allowed the identification and the successful structure solution of two new hydrous phases formed as dehydration product of chlorite. The 11.5 Å phase, Mg₆Al(OH)₇(SiO₄)₂, is a hydrous layer structure. It presents incomplete
tetrahedral sheets and face-sharing magnesium and aluminium octahedra. The structure has a higher Mg/Si ratio compared to chlorite, and a significantly higher density ($\rho_0=2.93$ g/cm3) and bulk modulus ($K_0=108.3(8)$ GPa), and it incorporates 13 wt% of water. The HySo phase, Mg$_3$Al(OH)$_3$(Si$_2$O$_7$), is a dense layered sorosilicate, ($\rho_0=3.13$ g/cm3 and $K_0=120.6(6)$ GPa) with an average water content of 8.5 wt%. These phases indicate that water release process is highly complex, and may proceed with multistep dehydration, involving these layer structures whose features well match the high shear zones present at the slab-mantle wedge interface.

Keywords: Subduction, MASH system, electron diffraction tomography
Introduction

The knowledge of upper mantle mineralogy is necessary for the understanding of geophysical, petrological and geochemical processes occurring at inaccessible depths within the Earth (Fumagalli and Klemme 2015). Subsolidus phase relations at subduction zones are of particular interest as they involve hydrates as major characters of the deep water cycle of our planet.

In the past decades a significant effort was devoted to the recognition of hydrous phases in several compositional systems from the most simple (MgO-SiO$_2$-H$_2$O, - MSH, MgO, Al$_2$O$_3$, SiO$_2$- H$_2$O - MASH) to more complex chemical systems approaching natural bulk rocks of mainly mafic and ultramafic affinities expected to be representative of the input lithologies likely subducted.

The MSH system has been widely used as a reference for the hydrated mantle and the identification of a bunch of hydrous phases, called dense hydrous magnesium silicates - DHMS (Ohtani et al. 2000, Angel et al. 2001) stable beyond the serpentine and talc stability fields enrolled them as relevant water carriers at depth exceeding 100-150 km, e.g. phase A (Bose and Ganguly 1995) or 10 Å phase (Fumagalli et al. 2001). The MASH system has been widely used as a proxy not only of hydrated mantle rocks but also for hybrid rocks formed as a result of mass transfer at slab-mantle interface in subduction environments. Chlorite is the major relevant hydrate that has been extensively investigated in the MASH system as the major water carrier at mantle depth. Several additional Al-bearing hydrous phases of the MASH system and in more complex peridotite systems are stable beyond its stability field, e.g. the HAPY phase and the 11.5Å phase (Fumagalli et al. 2014), or the Al-bearing 10Å phase (Fumagalli and Poli 2005) and more recently it was claimed a new Al-bearing hydrous phase (called 23 Å) stable beyond the stability field of phase A (Cai et al. 2015). The stability field of hydrous phases is traditionally investigated by high-pressure experiments. While extensive technological innovation leads to significantly improved efficiency in generating high and ultra high pressure by means of solid media type multi anvil apparatus, the
obtained run products consist necessarily of nano-grained multi-phase materials, often of inaccessible size for conventional X-ray techniques. The complete characterization of high pressure charges (i.e. identification and structure determination of all phases present in the sample) is however desirable as a complete knowledge of all the potential candidate phases stable at variable pressures, temperatures and chemical compositions. This information may provide a valuable reference database, extremely useful for a full mineralogical and petrological understanding of the inner of our planet. In this process, the crystal structure determination of unknown phases stabilized at non-ambient condition experiments plays a primary role, and it is the first step to be pursued experimentally. This task can be particularly problematic if the sample is formed by single crystals of several phases having volume smaller than 10 μm3, the most common case in high pressure experiments, when only X-ray powder diffraction (XRPD) analysis can be applied. XRPD is successfully used for the identification of known phases, but in the case of unknown structures the superposition of the scattering coming from different phases hampers a proper identification of the new ones. There is therefore a need to optimize alternative experimental methods and protocols for structural analysis.

The discovery of the HAPY phase, $\text{Mg}_{2.1}\text{Al}_{0.9}(\text{OH})_{2}\text{Al}_{0.9}\text{Si}_{1.1}\text{O}_{6}$, (Gemmi et al. 2011) during a systematic investigation of high pressure experimental runs in the chlorite compositional system paved the route towards a method which combines EMPA and XRPD analyses with the unconventional electron diffraction tomography method (Kolb et al. 2007) which however was not yet optimized for routine analysis. The mineralogical information provided extremely new insights into water release mechanism at subduction zones and called for further investigations on chlorite (Fumagalli et al. 2014) and HAPY stability in a variable range of pressure and temperatures (table S1), providing materials containing new products. To investigate these new materials a completely new methodology for a fast electron diffraction screening was ad hoc developed.

The application of this methodology to the aforementioned materials resulted in the structural determination of two new hydrous phases, $\text{Mg}_6\text{Al(OH)}_7(\text{SiO}_4)_2$ and $\text{Mg}_3\text{Al(OH)}_3(\text{Si}_2\text{O}_7)$, both
observed as decomposition product of chlorite. The successful structure determination was achieved with a new protocol for electron diffraction analysis, combined with dynamical crystal structure refinement. This very recently developed technique (Palatinus et al. 2015a) allows a full structure refinement by electron diffraction, with accuracy comparable to XRD data. Both new phases have layered structures, with hitherto unknown topologies. Mg₆Al(OH)₇(SiO₄)₂ in particular can host 13 wt% of water and its possible occurrence in a wide pressure and temperature range reveals that the water recycling down to the transition zone through solid mineral carriers is a probable and very effective mechanism.

Materials and Methods

High pressure synthesis

High pressure synthesis was performed at the Dipartimento di Scienze della Terra in Milano, Italy, with a Walker type multianvil apparatus (Fumagalli and Poli 2005) using tungsten carbide cubes of 32 mm edge length and 17 mm truncation edge length (TEL); pressure cell was made of prefabricated MgO octahedra (containing 5 wt% of Cr₂O₃) with a 25 mm edge length (25M) and pyrophyllite gaskets. Pressure uncertainties, which largely depend on the accuracy of the calibrant reaction, were assumed to be 3%. Temperature was measured by S-type thermocouples and was considered accurate to 20 °C without taking into account any effect of pressure on the e.m.f. of the thermocouple.

In order to promote the synthesis at subsolidus conditions, a gel with the required MgO:Al₂O₃:SiO₂ molar proportions (Hamilton and Henderson 1968) has been prepared using tetraethylorthosilicate (TEOS) as silica source, pure Mg- and Al- nitric solutions. The gold capsule (outer diameter of 3.0 mm, length of 5 mm) was welded after being loaded with 10 mg of gel and 20 wt% of distilled water to achieve fluid saturated conditions, in the possible presence of chlorite minerals.

In the table 1 the synthesis conditions of the samples relevant for this study are summarized. The experiments were performed in the system Cr₂O₃–MgO–Al₂O₃–SiO₂–H₂O. Starting from a Cr-clinochlore composition, Mg₅(Al,Cr)₂Si₃O₁₀(OH)₈, two different bulk compositions were prepared:
bulk A with \(\text{Cr}/(\text{Cr} + \text{Al}) = 0.075\) and bulk B with \(\text{Cr}/(\text{Cr} + \text{Al}) = 0.25\). The bulk JO lies on the join pyrope–phase A in the MASH system, with a composition of \(\text{SiO}_2\) 31.25 wt % \(\text{Al}_2\text{O}_3\) 12.5 wt % and \(\text{MgO}\) 56.25 wt % reflecting the preliminary composition of 11.5 Å phase detected in run A8. All the details of synthesis protocols are reported in Fumagalli et al. (2014).

The run products were preliminary characterized by electron microprobe (JEOL JXA 8200) to check the mineral chemistry and the visible sample texture.

X-ray diffraction

The high resolution and in-situ high pressure X-ray powder diffraction were performed at the synchrotron ID09A beamline at ESRF, Grenoble, France (Merlini and Hanfland 2013). The standard beamline setup was used, with monochromatic beam with wavelength of 0.415 Å and flat panel Mar555 detector. High-resolution X-ray powder diffraction analysis was performed using 100x100x100 \(\mu\text{m}^3\) fragments separated from the inner part of the experimental capsule, close to the portion analysed by microprobe and glued to a glass fiber or contained in a glass capillary. Data reduction and analysis was performed with Fit2D and GSAS software. The integrated powder patterns were fitted with the standard Rietveld procedure, using the crystallographic model of forsterite, pyrope clinoenstatite, guyanaite from literature, and the model for the 11.5 Å and HySo phase as result from the refinement against electron diffraction. The multiphase nature of all the samples, prevented any structural refinement, and only profile and lattice parameters were optimized. The Rietveld analysis approach provided also a quantitative estimation of the crystalline phases.

The high pressure experiments were performed using polycrystalline material in a membrane type DAC and methanol:ethanol mixture as pressure transmitting media. 17 pressure points were collected in the range 0–6 GPa. The extracted lattice parameters and volume were used for EoS fitting, with a 2\(^{nd}\) order Birch-Murnaghan equation of state with \(K’=4\) (supplementary information).

Electron diffraction
Electron diffraction has been carried out at the Center for Nanotechnology Innovation@NEST on a Zeiss Libra120 operating at 120 kV equipped with an in-column omega filter for energy filtered imaging and a Nanomegas Digistar P1000 device for precession electron diffraction. Samples for electron diffraction were prepared by mild grinding of few milligrams of material recovered from the high pressure capsule on an agate mortar. The powder was then suspended in 2-propanol and a drop of the suspension was deposited on a carbon coated copper grid.

All the electron diffraction data have been collected in electron diffraction tomography mode. In this experimental modality the transmission electron microscope works as a single crystal electron diffractometer collecting a sequence of electron diffraction patterns while the crystal is tilted around the goniometer axis.

In the fast electron diffraction tomography (fEDT) mode, used for phase screening, the patterns are collected during the crystal rotation by recording an automatic sequence of frames with the CCD (Gemmi et al. 2015).

In the precession assisted EDT mode (PEDT), used for structure solution, the patterns are collected in precession mode (Vincent and Midgley 1994; Mugnaioli et al. 2009) manually by rotating the crystal in step of 1° and after each rotation, if necessary, the crystal is recentered under the electron beam. fEDT is fast but can cover only a limited angular range, usually around 40°, for stability limitation of the sample holder; PEDT is slower but the wider reciprocal space coverage and the quasi-kinematical character of the recorded intensities make PEDT intensities suitable for structure solution (Kolb et al. 2011).

PEDT data sets have been successfully used in the field of mineralogy and petrology for solving the crystal structure of several new minerals, such as charoite, vaterite, sarrabusite, widenmannite, cyanotrichite (Rozhdestvenskaya et al. 2010, Mugnaioli et al. 2012; Gemmi et al. 2012; Plášil et al. 2014, Ventutti et al. 2015), a high pressure polymorph of magnetite (Koch-Müller et al. 2014) and the HAPY phase – another high pressure phase of the MASH system (Gemmi et al. 2011). Details
of the all the fEDT and PED data collections can be found in the supplementary (table S1) and in
table 2.

The data analysis of the fEDT and PEDT data collections have been performed with the software
PETS (Palatinus 2011), while VESTA (Momma and Izumi 2011) has been used for the three
dimensional visualization of the reciprocal space.

Dynamical refinement

Electrons strongly interact with matter and dynamical scattering occurs already in the smallest
nanoparticles. For an accurate refinement of crystal structure against electron diffraction data
kinematical diffraction theory is not sufficiently accurate and dynamical diffraction theory must be
used. A method for the structure refinement against PEDT data has been developed and
implemented in the computer program Jana2006 (Palatinus et al. 2013, Palatinus et al. 2015a,
Palatinus et al. 2015b, Petříček et al. 2014). Application of this method does not require a separate
diffraction experiment and standard PEDT data may be used. The key difference is that for each
frame in the data collection the diffracted intensities are calculated separately using the dynamical
diffraction theory. For this calculation, exact orientation of the frame with respect to the incoming
beam must be known as well as the thickness of the crystal. Determination of these parameters is
thus a part of the refinement process.

Another specialty of the dynamical refinement is the necessity to decide, which diffracted beams
are considered close enough to the Bragg condition to be taken into account in a particular frame. A
number of parameters were designed for this purpose (Palatinus et al. 2015a):

- g_{max}: longest reciprocal lattice vector considered in the computation
- S_g^{max}(matrix): maximum excitation error for a reflection included in the computation of the
calculated diffraction intensities
- S_g^{max}(refine): maximum excitation error for a reflection whose experimental intensity is
considered in the least square procedure.
- \(R_{\text{sg}}^{\text{max}} \): it is specific to precessed data. It is the maximum ratio, accepted for a reflection to be considered in the refinement procedure, between the excitation error and the amplitude of the precession motion at the angle of the considered reflection. Its value, when smaller than 1, excludes from the refinement those reflections that are not properly sampled by the precession of the Ewald sphere.

Their influence on the structure refinement was thoroughly analyzed and their optimal values found on test structures using the criteria of both lower figure of merits and closer distance with the reference structures (Palatinus et al. 2015b). We used the recommended parameters in the refinement of the sorosilicate structure and their values can be found in table 2.

The dynamical refinement leads to a more accurate and more reliable structure model. Moreover, it allows the refinement of partial site occupancies and detection of partially occupied positions in the difference Fourier map. In the sorosilicate structure this refinement allowed the detection of partially occupied tetrahedral sites and thus a construction of a chemically and crystallographically coherent structure model. The improvement in the quality of the refinement over the kinematical refinement is demonstrated also in the improvement of all key figures of merit (see table 2).

Results

A procedure for phase screening of a synthetic microcrystalline rock

The identification of all the phases present in a polycrystalline run charge passes through a complete chemical and crystallographic characterization of the sample. In the case of a multi-phase sample with individual crystals of small size (i.e. \(<10 \mu m^3\) in volume), there is the need to probe the sample with the highest available spatial resolution. The standard chemical characterization of the bulk sample (directly on the experimental charges) is usually performed with energy or wavelength dispersive spectrometry (EDS or WDS) in an electron microprobe (EMPA) or in a scanning transmission electron microscope (SEM). The crystallographic investigation is carried out through laboratory or synchrotron radiation powder x-ray diffraction (PXRD) on a grained fraction of the
recovered sample. A chemical analysis that does not match with the chemical composition of phases expected in the sample or/and the appearance of unknown diffraction peaks whose indexing is problematic are both possible signals of unknown crystal phases, but are not conclusive. A non-matching chemical composition can be due to mixed chemical analysis caused by the lack of spatial resolution in the electron probe available; unindexed diffraction peaks cannot be interpreted without a unit cell determination that in case of multiphase samples is strongly hampered by peak overlapping.

To solve the problem a single crystal diffraction technique able to collect diffraction patterns from single grains of small size (<1 μm) is required and electron diffraction is a perfect candidate: it can be performed on crystals as small as a few tens of nanometers and it can be supported during the investigation by EDS spectroscopy. However, its use for phase screening of a powder sample requires establishing a fast procedure for the unit cell determination, which allows the investigation of several crystals in a single experimental session. Very recently a fast version of the so called electron diffraction tomography method (fEDT) has been proposed, in which a sequence of electron diffraction patterns covering an angular range of reciprocal space wide enough for the unit cell determination is collected for every crystal in less than 2 minutes (Gemmi et al. 2015). Once a phase having an unknown unit cell has been identified, the searching procedure can stop and its crystal structure can be further investigated using the standard precession-assisted electron diffraction tomography, PEDT (Mugnaioli et al. 2009), in which the sequence of electron diffraction patterns collected on the crystal is extended to the maximum angular range available (e.g. 90° to 120°). Due to the peculiar diffraction geometry of PEDT (random crystallographic orientation, beam precession), the PEDT intensities are quasi-kinematical and can be used for ab initio structure solution using methods based on kinematical scattering, like direct methods or charge flipping.

We can therefore define a procedure based on three main phases for the full determination of unknown crystal phases.
A prescreening phase, via chemical analysis on an electron probe (SEM or EMPA) and PXRD, which identifies candidate samples hosting new phases through unusual chemical compositions and/or unindexed diffraction peaks in PXRD.

- An identification phase, in which fEDT identifies all the crystalline phases present in the candidate samples through the determination of their unit cells.

- A solution phase, in which the structure of crystal grains identified by their unusual unit cell as new phase candidates, is determined through PEDT analysis.

We report here the application of this procedure to the identification and structure determination of two new high-pressure phases in the MASH system.

New phases in chlorite system at deep subduction conditions

During a series of experiments designed for studying the influence of Cr in the high-pressure stability of chlorite (Fumagalli et al. 2014) we detected an indication of unknown phases through WDS/EDS EMPA analyses. Run conditions, together with starting bulk compositions and phase assemblages of experiments investigated in the present study are reported in Table 1. It is worth noting that a 4-phases assemblage and a 3-phases assemblages are in agreement with the Gibbs’ phase rule for a 5 components system (Cr-MASH) and a 4 components system (MASH) respectively. Further experimental details can be found in the supplementary material. Several points analyses gave a composition highly rich in magnesium with a Mg:Al:Si atomic ratio close to 6:1:2 and a water content of 14-15 wt%. PXRD analysis supported the possible discovery of a new phase. The anomalous chemical composition was always associated with the presence of a diffraction peak corresponding to an interplanar distance of 11.5 Å, from which the name of 11.5 Å phase for the candidate new phase. The presence of the 11.5 Å peak was detected in two different experiments at 6.5 GPa and 700 °C (table 1) and it was always associated with other phases, therefore PXRD was not effective for its structure determination. The fEDT screening on these samples allowed immediately to identify all the phases detected by PXRD (pyrope, forsterite, guyanaite) plus magnesite (see table S1), which is a product of the carbonatation of brucite due to a
long exposure of the sample to air. The TEM sample was observed after 2 years from its deposition.

The fEDT screening is very effective and can be carried out on small crystals (<500nm), not necessarily isolated as demonstrated by the two aggregates displayed in fig. 1.

In addition to known phases fEDT detected also a disordered phase which exhibits a 11.5 Å periodicity and has the characteristic features of a layered silicate: a strong streaking along the direction corresponding to the longest periodicity (11.5 Å); the plane normal to this direction that has the geometry of a phyllosilicate building module (a rectangular centered lattice with parameters a=8.9 Å and b=5.1 Å, fig. 2a and 2b); a streaking behavior in the sections of the reciprocal space normal to those directions that in case of a mica structure would correspond to [010] and [110] respectively (fig. 2c and 2d), that is characteristic of a stacking disorder in a mica polytype (Kogure and Nespolo 1999, Fregola et al. 2009).

In order to find an ordered polytype we started a survey of systematic observations on the sample JO1 in which the concentration of the 11.5 Å phase was the highest. After several TEM sessions we found a crystal that in a bright field image was showing an area of few hundred nm apparently free of defects (fig. S1). The three dimensional reconstruction of the reciprocal space from data collected in this area revealed a scattering almost free from streaking with sharp spots and allowed a reliable unit cell determination (fig. 3). The extracted monoclinic unit cell can index most of the diffraction lines in high resolution PXRD.

The fEDT screening for an ordered 11.5 Å phase in JO1 sample revealed also the presence of a second phase having a chemical composition with a Mg:Al:Si atomic ratio close to 3:1:2 and whose unit cell was surprisingly not matching any known mineral in the MASH system. fEDT applied to few grains of this phase revealed that it is monoclinic and its lattice was able to index the remaining diffraction lines in PXRD pattern of the JO1 sample. This unit cell can also successfully explain some unindexed diffraction peaks observed in the other two syntheses with a Cr-enriched chlorite bulk composition at 6.0 GP, 650°C and 6.5 GPa, 700 °C (table 1). The structure determination of the two newly identified phases is described in the following two sections.
The ordered 11.5 Å phase is C-centered monoclinic with $a=9.012(1)$ Å $b=5.201(1)$ Å $c=23.202(5)$ Å $\beta=97.8^\circ(1)$ (as refined by PXRD), and the reflections are compatible with a $C1c1$ extinction symbol. Depending on the presence of the inversion center the possible space groups are Cc or $C2/c$. We solved the structure with direct methods, with SIR2011 (Burla et al. 2012) and charge flipping, with Superflip (Palatinus and Chapuis 2007) and in both cases we obtained a reliable model in $C2/c$. The final model refined with Jana2006 (kinematical refinement) is displayed in fig. 3. The data collection parameters and the figure of merits of the refinements are reported in table 2. The atomic positions after kinematical refinement are reported in the supplementary (table S2).

The hypothesis of the structure as a stacking sequence of tetrahedral and octahedral layers is correct, but it does not correspond to any known silicate. The basic stacking sequence consists of T-O-T-like groups connected by a double di-octahedral layer of face sharing octahedra (O-O). In the T-O-T-like module the octahedral layer is tri-octahedral (i.e. talc-like), while the T layer is incomplete and formed by isolated tetrahedra, since only one out of three tetrahedral sites is occupied. One unit cell consists of a sequence of two different T-O-T/O-O blocks, which differ by the way in which the second T-layer is stacked onto the O-layer. Cation ordering arises in the O-layers with one octahedron of the T-O-T group having an average cation oxygen distance smaller than 2 Å compatible with a full Al occupancy, while all the others octahedral sites have a larger cation-oxygen distance compatible with a Mg occupancy (table S2).

Making the assumption of tetrahedral sites being fully occupied by Si, we obtain for the phase the chemical formula $\text{Mg}_6\text{Al(OH)}_7(\text{SiO}_4)_2$, in which the number of OH is determined from the electroneutrality. This requires that all the oxygen atoms except for those belonging to SiO_4 groups are hydroxyls: the oxygen layer shared by the face sharing octahedra is an OH layer and 2/3 of the oxygen in the O-layer of the T-O-T group are hydroxyls. On the basis of the derived chemical formula the water content should be 13.2 wt%, very close to the measured WDS value of 14-15
wt% (table S5). The density of Mg$_6$Al(OH)$_7$(SiO$_4$)$_2$ at ambient conditions is noticeably high, 2.93 g/cm3.

The mechanism that controls the stacking disorder can be easily understood by observing that the low tetrahedral density in the T-layer offers a variability in which the tetrahedra of the second T-layer connect to the O-layers in a T-O-T block. Depending on which of the three possible tetrahedral sites is occupied, the center of the tetrahedra in each second T-layer can be shifted along [1,1,0], [1-1,0] or [0,1,0] with respect to the tetrahedra of the first layer. In the observed ordered form of 11.5 Å phase we have an alternating shift along [1,1,0] and [1,-1,0] in two successive T-O-T blocks, which is responsible for the doubling of the unit cell along c (fig. S2). In the nomenclature of layered polytypes the ordered 11.5 Å phase is a 2M$_2$ polytype. In the case of the most common disordered phase the stacking sequence in the T-O-T layers is random with different shifts in every second T-layer, a mechanism well known in disordered layered silicates. A high resolution image taken in orientation [110], in which the different shifts of the T layers can be distinguished, confirms this interpretation. A comparison with a simulation based on the ordered model shows that the shift of the T-layer in two successive T-O-T modules varies in an irregular way (fig. 5). A further confirmation of the correctness of the model comes from Rietveld refinement which allows a perfect fit of high-resolution X-ray powder diffraction pattern of JO1 sample (fig. 6).

HySo - Mg$_3$Al(OH)$_3$(Si$_2$O$_7$) crystal structure: a new hydrous sorosilicate

The unit cell determination from fEDT of the second phase, results in a monoclinic C-centered unit cell with parameters $a=9.150(1)$ Å $b=14.74(1)$ Å $c=5.071(5)$ Å $\beta=98.30^\circ(5)$ (as refined by PXRD). This phase has sharp diffraction peaks, and PEDT analysis does not show any additional extinction condition to the centering, giving an extinction symbol of $C1-1$ compatible with $C2$, Cm and $C2/m$ space groups (fig. 7).

The crystal structure was solved with direct methods, with SIR2011 (Burla et al. 2012) and a chemically sound solution was achieved only in the centrosymmetric space group $C2/m$ (see table S3). The ab-initio structural model obtained with PEDT data indicates that the new phase is a
sorosilicate (fig. 8a, 8b). The main building blocks are octahedral layers hosting Mg and Al parallel to the b-c plane, connected along a by stripes of isolated Si_2O_7^- groups running parallel to c direction. In each stripe the tetrahedral apical oxygens point all in the same direction (positive or negative a direction), which is reversed in nearby stripes. In the octahedral layer all the octahedral sites are occupied except those two that sit below the Si_2O_7^- groups which connect two consecutive layers. If we consider that the tetrahedral sites are fully occupied by Si, and if we further take into account the measured Mg:Al ratio of 1:3, the multiplicity of the octahedral sites and the electroneutrality constraint, we obtain for the new phase the chemical formula $\text{Mg}_3\text{Al}(\text{OH})_3(\text{Si}_2\text{O}_7^-)$, which implies that all oxygen sites but those coordinated to a tetrahedral site are occupied by OH groups. The sorosilicate is therefore hydrous from which the name HySo. The derived structural model can reproduce the intensity observed in XRPD patterns (fig. 6) and allows, through a Rietveld refinement and together with the 11.5 Å phase model, a quantitative estimation of the crystalline phases present in the samples in which it arises (fig. S5-S7, table S6).

Although chemically coherent, this represents an average model which does not fit perfectly the PEDT data. In fact the M5 octahedral site, which shows a quite distorted coordination with two long cation oxygen distances of 2.4 Å, is not retrieved in all structure solutions with different PEDT data sets (we have collected 7 PEDT data sets on different crystals, see supplementary, table S3), and when it is detected, its electron density is very low, indicating a possible partially occupied site. By applying a refinement procedure which takes into account dynamical scattering (see materials and methods), the partial occupancy of the M5 sites is confirmed and a difference Fourier map shows previously undetected tetrahedral sites (fig. 8c). These tetrahedral sites (T-sites), T2, T3, are too close to the M5 and M4 octahedra respectively, therefore they can be occupied only if the corresponding octahedron is empty. From chemical considerations on the electroneutrality of the chemical formula and from the multiplicity of the different sites, the chemical formula of the defective compound becomes $(\text{Mg}_{3+0.5x}\text{T}_2+x\text{T}_3\text{Al})(\text{OH})_{3-x}\text{T}_2-2x\text{T}_3\text{O}_x\text{T}_2+2x\text{T}_3(\text{Si}_2\text{O}_7^-)$, where x_{T_2}, x_{T_3} are the occupancies of T_2 and T_3 respectively (see supplementary for a detailed derivation). The formation
of a defective structure involves a release of water and an incorporation of an equivalent number of
moles of MgO, therefore the total number of oxygens in the cell is conserved and only Mg and H
are exchanged.

The final model was refined with the constraints $x_{T2} + x_{M5} = 1$ and $x_{T3} + x_{M4} = 1$, to avoid simultaneous
occupancy of adjacent T and O sites and yielded $x_{T2} = 0.203(7)$ and $x_{T3} = 0.209(6)$ (see table 2 for the
parameters of the refinement, table S4 for the refined atomic positions and the interatomic
distances).

The chemical formula of the vacancy model refined with PEDT data can then be approximated as
$\text{Mg}_{3.30}\text{Al}((\text{OH})_{2.40}\text{O}_{0.60})(\text{Si}_2\text{O}_7)$. The vacancy model implies that the new phase is not a sorosilicate
"sensu stricto", but the Si_2O_7 can be connected by other two or three tetrahedra forming larger
clusters in the tetrahedral layers (see fig. 8d).

The ideal stoichiometry indicates that this phase may incorporate up to 8.5 wt % of water. The
density of $\text{Mg}_3\text{Al}((\text{OH})_3(\text{Si}_2\text{O}_7)$ at ambient condition is 3.13 g/cm3.

Implications

The 11.5Å phase $\text{Mg}_6\text{Al}((\text{OH})_7(\text{SiO}_4)_2$ and HySo $\text{Mg}_3\text{Al}((\text{OH})_3(\text{Si}_2\text{O}_7)$ represent two new structural
types among the known hydrous silicates and significantly increase the number of hydrous phases
in the MASH system that play an active role in the water exchange at subduction conditions (table 3).

The 11.5Å-phase is a layer silicate, with structural features typical of high pressure phases. It is
built from modular blocks constituted by double octahedral and T-O-T layers. All the connections
in the structure are by corner-, edge- and face-sharing of the constituting Si, Al and Mg tetrahedra
and octahedra. In particular, the face sharing MgO$_6$ octahedra (fig. 4) are responsible for the high
density of the phase, comparable to hydrous phase A and E (2.96 and 2.88 g/cm3 respectively).

Contrary to the common phyllosilicates in mafic and ultramafic rocks (e.g chlorite, tale or
serpentine), the 11.5Å phase structure does not present layer units connected by hydrogen bond.
This structural feature can explain its elastic behavior with a high bulk modulus $K_0 = 108.3(8)$ GPa
(as determined by in-situ synchrotron X-ray powder diffraction, see supplementary). This value is visibly higher than other Mg-Al hydrous silicates, e.g. clinoclore, \(K_0 = 75 \) GPa (Welch and Marshall 2001); 10Å-phase, \(K_0 = 39 \) GPa (Comodi et al. 2006); talc, \(K_0 = 56 \) GPa (Gatta et al. 2013), and also slightly higher than phase A (\(K_0 = 105 \) GPa (Kudoh et al. 2002), \(K_T = 97, K_T' = 6 \) (Crichton and Ross 2002)), which exhibits similar density and water content. The axial compressibility is quite isotropic, with the \(c \)-axis only slightly more compressible than \(a-b \) (fig. S11). A situation different from the known layer silicates, where a strong elastic anisotropy related to the shrinking of O-H..O bonds is normally observed. These features were noticed also for the elastic behavior of phase A (Sanchez-Valle et al. 2008), which seems to be the MSH analogous of 11.5Å phase.

The 11.5Å phase must be closely related with a recently discovered hexagonal hydrous Mg-Al silicate phase synthesized at 10 GPa and 1000 °C (Cai et al. 2015). Its hexagonal unit cell, if described with the crystallographic reduced C-centred monoclinic unit cell, is similar to the unit cell of the 11.5Å phase, as well as its determined crystal chemistry, \(\text{Mg}_{11}\text{Al}_2\text{Si}_4\text{O}_{16}(\text{OH})_{12} \). We can suppose that either a quenchable hexagonal high-pressure polymorph of 11.5Å phase exists or, alternatively, that the X-ray powder diffraction pattern could not resolve the monoclinic symmetry.

The crystal chemistry of the 11.5Å phase is compatible with the bulk chemical composition of the “hybrid rocks” (Spandler et al. 2008) existing at the slab interface in subduction environments (Fumagalli and Poli 2005). The petrological significance of the 11.5Å-structure is far reaching. In the simplified MgO-SiO₂-H₂O system (MSH), we observe, at low pressures, hydrous phyllosilicate phases such as serpentine and talc. Their role as water carriers or water hosting minerals in the upper portion of the upper mantle is well recognized. The breakdown of these structures proceed, along a subduction geotherm, with the stabilization of the phase A, which exhibits completely new crystallographic features, in particular the presence of isolated \(\text{SiO}_4 \) tetrahedra and OH groups with hydrogen atoms located in structural interstices. Consequently, the density of phase A is significantly higher as well as its water storage capability. In the MgO-Al₂O₃-SiO₂-H₂O (MASH)
system, the determination of 11.5Å-phase indicates a similar structural scenario. The low pressure phyllosilicate phases, chlorite in particular, on increasing pressure and temperature, destabilize with the formation of new types of phases, no longer based on infinite tetrahedral layers, and hydrogen bond as connection mechanism between the structural modules. The Si-O-Si interconnections are therefore reduced and the density is significantly increased. This is the case of 11.5Å and HySo phase reported here, as well the HAPY structure (Gemmi et al. 2011).

The above considerations apply also for the HySo phase Mg₃Al(OH)₃(Si₂O₇), which has a high bulk modulus $K_0=120.6(6)$ GPa (see supplementary and fig. S11). It is noticeable, for HySo, the defect mechanism based on octahedral vacancies revealed by electron-diffraction single-crystal structure refinements. Exploiting this mechanism HySo can host a variable amount of water acting as a water reservoir. In principle HySo can adapt its water content by exchanging Mg with the environment in a window of a few wt% of water until the vacancies in the octahedral layer make the structure to collapse.

The occurrence of 11.5Å and HySo phases as breakdown product of a clinohore composition suggests that, for Al-enriched hybrid rocks in subduction environments, they can effectively act as water carrier beyond the stability field of chlorite in the upper Earth’s Mantle.

An obvious question arises: what will be the role of these phases in more complex systems? Although it is difficult to speculate we can confidently affirm that these crystal structures can host iron in both its oxidation states, Fe$^{2+}$ substituting Mg in the octahedral sites and Fe$^{3+}$ substituting Al in tetrahedral sites in proportions depending on oxygen fugacity, and small quantities of Ca can be hosted by HySo in the M₅ site. In this respect we can envisage that the presence of garnet would play an important role on the stability of both phases if Fe is added to the system.

The results here obtained are remarkable also from a methodological point of view. The proposed combination of fEDT plus PEDT for the phase screening and crystal structure determination of nanocrystal, if applied systematically to high pressure experimental charges will allow the
discovery of several new phases, and the correct interpretation of experiments, where x-ray
diffraction and EMPA analysis give contradictory results.

References

Angel, R.J., Frost, D.J., Ross, N.-L., and Hemley, R. (2001) Stabilities and equations of state of
Bose, K., and Ganguly, J. (1995) Experimental and theoretical studies of the stabilities of talc,
antigorite and phase A at high pressures with applications to subduction processes. Earth and
Brown, B.E., and Bailey, S.W. (1963) Chlorite polytypism: II. Crystal structure of a one-layer Cr-
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., Giacovazzo, C., Mallamo,
hydrous Mg silicate (23 Å phase) in the deep upper mantle. American Mineralogist, 100, 2330-
2335.
10 Å phase: A spectroscopic and diffractometric study up to 42 GPa. Earth and Planetary Science
Letters, 246, 444–457.
A, Mg7Si2O8(OH)6. American Mineralogist, 87, 333-338.
order in a Li-poor biotite mica. American Mineralogist, 94, 334-344.
expandable sheet silicate stable during subduction of hydrated lithosphere. Earth Planetary Science
Letters, 186, 125-141.
to 6.5 GPa and their consequences on the dynamics of subduction zones. Journal of Petrology, 46,
555-578.
stability of chlorite and other hydrates in subduction melanges: experiments in the system Cr2O3-
MgO-Al2O3-SiO2-H2O. Contribution to Mineralogy and Petrology, 167, 979.
Oxford, UK.
Gatta, G.D., Merlini, M., Valdrè, G., Liermann, H.P., Nénert, G., Rothkirch, A., Kahlenberg, V.,
and Pavese A. (2013) On the crystal structure and compressional behavior of talc: a mineral of

Koch-Müller, M., Mugnaioli, E., Rhede, D., Speziale, S., Kolb, U., and Wirth, R. (2014) Synthesis of a quench high-pressure phase of magnetite (h-Fe₃O₄) with composition Fe₁₋₀₇₅Mg₀₂₆Fe²⁺(Fe³⁺₀₇₀₅Al₀₁₁Si₀₀₄)₂O₄. American Mineralogist, 99, 2405-2415.

Palatinus L (2011) PETS—software for processing of electron diffraction data. Institute of Physics,
Praha, Czech Republic.

Tables

<table>
<thead>
<tr>
<th>Run name</th>
<th>Bulk composition</th>
<th>P (GPa)</th>
<th>T (°C)</th>
<th>Runtime (h)</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>A8</td>
<td>A (Cr-MASH)</td>
<td>6.5</td>
<td>700</td>
<td>150</td>
<td>Py, Fo, 11.5 Å, Gu</td>
</tr>
<tr>
<td>B5</td>
<td>B (Cr-MASH)</td>
<td>6.0</td>
<td>650</td>
<td>168</td>
<td>Fo, Gu, Cen, HySo</td>
</tr>
<tr>
<td>B6</td>
<td>B (Cr-MASH)</td>
<td>6.5</td>
<td>700</td>
<td>150</td>
<td>Fo, Gu, Cen, HySo</td>
</tr>
<tr>
<td>JO1</td>
<td>JO (MASH)</td>
<td>6.5</td>
<td>700</td>
<td>218</td>
<td>Fo, 11.5 Å, HySo</td>
</tr>
</tbody>
</table>

Table 1. Details of the synthesis conditions of experiments involving 11.5 Å or HySo phases. Py: pyrope, Fo: forsterite, Gu: guyanaite, Cen: clinoenstatite.
Table 2. Details of the structure refinement results for the 11.5 Å and the HySo phases. The reported parameters for the dynamical refinements calculations are defined in Palatinus et al. (2015a-b).

<table>
<thead>
<tr>
<th>Data Set</th>
<th>11.5 Å</th>
<th>HySo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angular range (°)</td>
<td>-60 to +50</td>
<td>-51 to +60</td>
</tr>
<tr>
<td>N. of patterns</td>
<td>111</td>
<td>112</td>
</tr>
<tr>
<td>Angular step (°)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Precession angle (°)</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Kinematical Refinement

N. of reflections (obs/all)	432/1770	1387/2352
N. of independent reflections (obs/all)	200/709	572/813
N. of refined parameters:	35	41
R (obs/all) (%)	19.67/37.09	27.49/29.90
wR (obs/all) (%)	20.78/21.14	30.88/30.97
Goodness of fit (obs/all)	9.97/5.02	12.97/15.58

Dynamical Refinement

N. of reflections (obs/all)	2463/5259
N. of refined parameters	151
g_max (Å⁻¹)	2
Sg_max (matrix) (Å⁻¹)	0.01
Sg_max (refine) (Å⁻¹)	0.1
R_g_max	0.4
R (obs/all) (%)	9.49/15.88
wR (obs/all) (%)	10.27/12.05
Goodness of fit (obs/all)	1.97/2.44

Table 3. Composition, symmetry and density of the main high pressure hydrous phases of the MASH system. All phases have very low symmetry, either triclinic or monoclinic. References: 1- Brown and Bailey 1963, 2 - Gemmi et al. 2011, 3 - Gottschalk et al. 2000.

<table>
<thead>
<tr>
<th>Name</th>
<th>Chemical formula</th>
<th>Space group</th>
<th>Density (g/cm³)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinochlore</td>
<td>Mg₄(Mg₀.1Al₁.2Cr₀.7)(Si₃O₁₀)(OH)₈</td>
<td>C-1</td>
<td>2.69</td>
<td>1</td>
</tr>
<tr>
<td>Hapy</td>
<td>Mg₂₋₃₋₋₄₋₋个百分</td>
<td>C 2/m</td>
<td>3.175</td>
<td>2</td>
</tr>
<tr>
<td>11.5 Å</td>
<td>Mg₆Al(OH)₆(SiO₄)₂</td>
<td>C 2/c</td>
<td>2.93</td>
<td>This work</td>
</tr>
<tr>
<td>Hyso</td>
<td>Mg₄Al(OH)₆(SiO₄)₂</td>
<td>C 2/m</td>
<td>3.13</td>
<td>This work</td>
</tr>
<tr>
<td>Mg-sursassite</td>
<td>Mg₄(Mg₀.4₂Al₀.₅₈)₂₁₋₋个百分</td>
<td>C 2/m</td>
<td>3.27</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure captions
Figure 1. fEDT screening on two crystal aggregates. In the two boxes the bright field images of the aggregates and the three dimensional reconstructions of the reciprocal space based on the fEDT data collection on the marked crystals are displayed (Py-pyrope, Fo-forsterite, Mg-magnesite, 11.5-11.5 Å phase, Gu-Guyanaite). All the investigated crystals have a size of 500nm or smaller and are in contact with other crystals requiring a remarkable goniometer for an automatic fEDT data collection.

Figure 2. Three dimensional reconstruction of the reciprocal space of a disordered crystal of 11.5 Å phase. A) Projection along the disordered stacking direction. Traces of the sections displayed in C) and D) are indicated by arrows and thin lines. B) View orthogonal to the disordered stacking direction showing the characteristic streaking. C) Sections normal to [100] zone axis. The streaking is not so pronounced and the vertical rows not passing through the origin show a double periodicity of 23 Å. D) Sections normal to [110] zone axis. The streaking in the vertical rows is evident but it does affect all the rows in the same way. One in every three rows is almost streaking-free.

Figure 3. Three dimensional reconstruction of the reciprocal space of an ordered crystal of 11.5 Å phase. Projections along the three fundamental reciprocal directions, (001), (010) and (100) are displayed. For comparison a section normal to [110] zone axis corresponding to the same displayed in fig.1 D) is shown at bottom right. The strong streaking parallel to (001) has completely disappeared.

Figure 4. Structural model of the 11.5 Å phase. Color code: orange Mg; light blue Al; blue Si; red O; green OH. 1) [010] projection. 2) [100] projection 3) The double octahedral layer viewed along e*. 4) One TOT layer viewed along e*.

Figure 5. a) Stacking sequence of two unit cells along e of the 11.5 Å phase viewed along the [110] direction. In this projection the s+ and s- modules can be distinguished. b) High resolution image taken near the edge of on crystal of 11.5 Å phase in [110] orientation. c) the same image filtered by averaging out the contribution of the amorphous scattering. A simulated image is reported in the inset. The disordered stacking sequence of the different TOT modules is evident. d) Simulated
image (in the conditions matching the image contrast) superimposed on the crystal structure of an ordered unit cell stacking. The strong white dots correspond to the OH group in between the TOT modules, while the weakest white dots correspond to the empty spaces between the tetrahedra of the TOT modules. Their parallel or staggered configuration corresponds to the s+ and s- module type, respectively.

Figure 6. Rietveld analysis of the sample JO1 (circles: experimental data points; black line: Rietveld fit; gray line: difference curve). In the inset a portion of the low angle powder pattern is plotted and the diffraction peaks are labelled (11.5: 11.5 Å phase; Fo: forsterite; Hy: HySo).

Figure 7. Projections of the 3D reconstructed reciprocal space of the new hydrous sorosilicate phase along the (100), (010) and (001) reciprocal directions and along the rotation axis (top right).

Figure 8. A) Crystal structure of HySo viewed along the c axis. Color code: orange Mg; light blue Al; blue Si; red O; green OH. The gray atoms correspond to the partially occupied Mg sites in special position. B) TOT layer view normal to (100) planes. The displayed area corresponds to 2 x 2 unit cells. C) Difference Fourier map calculated taking into account dynamical scattering superimposed on the structural model viewed along c. The black atoms are oxygens, the dark gray atoms are octahedral cations and the light gray atoms are tetrahedral silicon sites. The two new tetrahedral sites T2 and T3 are clearly visible in the map. D) TOT layer as displayed in B) but with the new tetrahedral sites in yellow. The M4 and M5 octahedral sites partially occupied are both displayed in gray.