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Abstract 20 

Experimental observations on the dissolution of elements in minerals and melts 21 

and the partitioning between the two materials show that the concentration (or the 22 

partition coefficient) of trace elements depends on the properties of elements as well as 23 

those of relevant materials (minerals and melts) and the thermochemical conditions. 24 

Previous models of element solubility in minerals contain a vague treatment of a role of 25 

the stiffness of the element and have a difficulty in explaining some observations 26 

including the solubility of the noble gases. A modified theory of element solubility in 27 

minerals is presented where the role of elasticity of both matrix mineral and the element 28 

is included using the continuum theory of point defects by Eshelby. This theory provides 29 

a framework to explain a majority of observations and shows a better fit to the published 30 

results on the effective elastic constants relevant to element partitioning. However, the 31 

concept of “elasticity of the trace element” needs major modifications when the site 32 

occupied by a trace element has large excess charge. The experimental data of the 33 

solubility coefficients of noble gases in the melts show strong dependence on the atomic 34 

size that invalidates the ‘zero-charge’ model for noble gas partitioning. A simple model 35 

of element solubility in the melts is proposed based on the hard sphere model of complex 36 

liquids that provides a plausible explanation for the difference in the dissolution behavior 37 

between noble gases and other charged elements. Several applications of these models 38 

are discussed including the nature of noble gas behavior in the deep/early Earth and the 39 

water distribution in the lithosphere/asthenosphere system.  40 

41 
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INTRODUCTION 42 

The distribution of elements in various materials on Earth has been used to infer 43 

the chemical evolution of Earth including the history of partial melting and degassing that 44 

has created the crust, atmosphere and oceans (e.g., (Allègre, 1982; Allègre et al., 45 

1986/1987; Hofmann, 1997; Matsui et al., 1977)). The distribution of elements is 46 

controlled largely by the difference in the excess free energy of a given element in co-47 

exiting materials (e.g., (Blundy and Wood, 2003; Matsui et al., 1977; Nagasawa, 1966)), 48 

although kinetic factors might also contribute if diffusion is slow (e.g., (Lee et al., 2007; 49 

Van Orman et al., 2002)). When we assume chemical equilibrium to simplify the 50 

discussion, then the element distribution is controlled by the differences in the excess free 51 

energy of elements in coexisting materials such as minerals and melts. 52 

The concentration of trace elements in minerals and melts changes with the 53 

physical and chemical conditions as well as the properties of minerals (melts) and 54 

elements. Consequently, understanding the controlling factors of concentration of 55 

elements in minerals and melts will help us understand the physical and chemical 56 

processes in Earth. This is an area where mineralogists (mineral physicists) can make an 57 

important contribution to geochemistry. 58 

Obviously, the most direct and crucial studies would be the experimental studies 59 

on element partitioning but experimental studies of partitioning (solubility 1 ) are 60 

challenging and the data set is incomplete particularly under the deep Earth conditions. In 61 

some cases, there are large discrepancies among published results (e.g., a case of noble 62 

gas partition coefficients in olivine and clinopyroxene: (Broadhurst et al., 1992; Hiyagon 63 

1 I use the term “solubility” in a broad sense meaning the amount of an element in a 
material in the given thermo-chemical environment.  
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and Ozima, 1986)). In case of Ar, for example, even the issue of either Ar behaves like 64 

compatible or incompatible element upon partial melting (or solidification from the melt) 65 

is controversial (e.g., (Broadhurst et al., 1992; Shcheka and Keppler, 2012; Watson et al., 66 

2007)). Understanding the theoretical basis for dissolution of elements will help assess 67 

the experimental observations. 68 

In most of geochemical studies, we focus on the partitioning of trace elements 69 

(elements with small concentration) because they are believed to behave as a passive 70 

marker of physical/chemical processes (such as partial melting) without changing the 71 

nature of the processes themselves. In these cases, the essence of theory of solubility of 72 

trace elements in minerals is much the same as the theory of point defects in solids: both 73 

point defects and trace elements are “impurities” in nearly perfect crystals. Therefore, the 74 

results of a large amount of theoretical and experimental studies on point defects in solids 75 

(for review, see e.g., (Eshelby, 1956; Flynn, 1972)) can be used to help understand the 76 

physical mechanisms of element solubility (partitioning). In case of dissolution of trace 77 

elements in the complex liquids (melts), somewhat different models will apply since the 78 

structure and the thermodynamic properties of complex liquids are quite different from 79 

those of solids (e.g., (Barrat and Hansen, 2003; Jing and Karato, 2011)). 80 

In this paper, I will first review the basic observations on element partitioning, 81 

summarize thermodynamics of element partitioning, and then discuss the physical models 82 

of element solubility (uptake) including previously published models (Blundy and Wood, 83 

1994, 2003; Carroll and Stolper, 1993; Guillot and Sarda, 2006; Nagasawa, 1966). In the 84 

case of the solubility in solids, the previous models have a common limitation in 85 

explaining why different elements and minerals have different partitioning, the most 86 



5

important goal of a theory. The limitation of the previous models becomes serious when 87 

one considers the solubility (partitioning) of noble gas elements that have unusually 88 

smaller “stiffness” than the host crystal. I will present a modified theory of element 89 

partitioning to rectify this and finally discuss some implications.  90 

In case of the liquids (melts), some theoretical models were proposed to explain 91 

the solubility of noble gases (Carroll and Stolper, 1993; Guillot and Sarda, 2006). 92 

However, the applicability of these models to other trace elements is unknown. I will 93 

present a simple conceptual model of element dissolution in the melts based on the hard 94 

sphere model of complex liquids (e.g., (Guillot and Sarda, 2006; Jing and Karato, 2011)) 95 

and suggest that the dissolution mechanisms in the melts are different between neutral 96 

elements (noble gases) and charged elements: noble gas elements go to the void space 97 

while other charged trace elements replace an ion in the molecular cluster.  98 

99 

EXPERIMENTAL OBSERVATIONS ON ELEMENT PARTITIONING AND 100 

SOLUBILITY   101 

102 

The equilibrium distribution of an element between two materials can be 103 

characterized by a partition coefficient that describes the ratio of concentration of a given 104 

element between two materials. The concentration of an element can be defined in a few 105 

different ways, and therefore there are several definitions of the partition coefficient (e.g., 106 

(Blundy and Wood, 2003)). In most geochemical literatures, the concentration of an 107 

element is measured by the weight fraction (as oxides in many cases) and the Nernst 108 

partitioning coefficient is used that is defined by 109 
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110 

%Di
Y / X =

%Ci
Y

%Ci
X (1) 111 

112 

where %Ci
Y X( )  is the mass fraction of element i in phase Y (or X) (all the symbols used in 113 

this paper are summarized in Table 1). Instead of the mass fraction, the molar fraction 114 

may be used to define the molar partition coefficient, 115 

116 

Di
Y / X = Ci

Y

Ci
X (2) 117 

118 

where Ci
Y X( )  is the molar fraction of the element i in phase Y (or X). An alternative 119 

measure of element partitioning is the equilibrium constant, 120 

121 

Ki
Y / X = ai

Y

ai
X (3) 122 

123 

where ai
Y X( )  is the activity of element i in phase Y(X). Thermodynamically this is the 124 

simplest definition because Ki
Y / X contains only the thermodynamic properties of pure 125 

end-member components. The molar partition coefficient, Di
Y / X , is identical to the 126 

equilibrium constant when the activity of an element in a given material is the same as its 127 
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molar concentration (i.e., ideal solution). I will make this assumption for simplicity and 128 

review the models for Di
Y / X  (or Ki

Y / X )2.  129 

There is an extensive literature on element partitioning (for reviews, see (Blundy 130 

and Wood, 2003; Jones, 1995; Wood and Blundy, 2004)). There are several features in 131 

element partitioning (or solubility) that should be explained by a physical model: 132 

(i) For a given pair of materials (say clinopyroxene and basaltic melt) at a given 133 

physical/chemical condition, trace elements with different sizes and electric 134 

charges have different partition coefficients (e.g., Fig. 1a, (Blundy and Dalton, 135 

2000; Onuma et al., 1968)). 136 

(ii) For a given element, partition coefficients depend strongly on minerals (and137 

sometimes on melts). An important case is the contrast between Mg-perovskite 138 

and Ca-perovskite (e.g., Fig. 1b, c, (Corgne et al., 2004; Hirose et al., 2004)) and 139 

between diopside and olivine (e.g., (Witt-Eickschen and O'Neill, 2005)). 140 

(iii)  Even for the same pair of materials, partition coefficient of some elements (say141 

hydrogen) depends strongly on thermo-chemical conditions such as temperature, 142 

pressure and the fugacity of relevant species. A case is the hydrogen partitioning 143 

between olivine and orthopyroxene (e.g., Fig. 1d, (Dai and Karato, 2009)). 144 

(iv)  The noble gas partition coefficient between olivine, diopside and the melt is145 

nearly independent of the size of noble gas atom (e.g., Fig. 1e, (Brooker et al., 146 

2003; Heber et al., 2007)) whereas the solubility of noble gas atom in bridgmanite 147 

strongly depends on the atomic size (Fig. 1f, (Shcheka and Keppler, 2012)).  148 

2 There are a few important cases where this assumption is not valid. In these cases, the 
role of fugacity of relevant species is important. 
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(v) The solubility coefficient of noble gas in the melt is highly sensitive to the atomic 149 

size of the noble gas (e.g., Fig. 1g, (Carroll and Stolper, 1993; Heber et al., 2007; 150 

Shibata et al., 1998; Shibata et al., 1994)).  151 

The issues listed as (i) through (iii) are all fundamental to the physics and 152 

chemistry of element partitioning, but previous models to explain these features are 153 

highly limited as I will discuss in the next section. For example, the influence of the 154 

properties of trace element on the partitioning was not properly formulated in the 155 

previous models. Also, the issue (iii), i.e., the sensitivity of the partition coefficient on 156 

physical and chemical conditions has not been fully appreciated. Although this is a 157 

consequence of a general physics and chemistry of element partitioning (see the next 158 

section), the element partition coefficient is often considered to be a constant rather than 159 

a property that depends on the physical/chemical conditions. Important cases are 160 

hydrogen partitioning between olivine and orthopyroxene (Dai and Karato, 2009) and the 161 

H/Ce ratios in basaltic magmas (Dixon et al., 2002) both of which have important 162 

ramifications to the study of distribution of water (hydrogen). 163 

Solubility and partitioning of the noble gases require special attention. 164 

Understanding the behavior of noble gases is important because they provide important 165 

clues to the evolution of Earth and other terrestrial planets (e.g., (Allègre et al., 1983; 166 

Marty, 2012; Ozima, 1994)). Noble gas atoms have weak chemical bonding to other 167 

atoms and hence the free energy change caused by the dissolution of noble gas atoms into 168 

minerals and melts can be markedly different from those of other trace elements where 169 

charged trace elements (e.g., H + , La3+ ,Sm3+ ,U 4+ ) replace other cations (e.g., 170 

Mg2+ , Ca2+ , Al3+ , Si4+ ) in the host minerals or melts.  171 
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172 

THEORETICAL MODELS FOR ELEMENT SOLUBILITY (PARTITIONING) 173 

174 
Chemical reactions and thermodynamics 175 

176 
Physics of element partitioning can be viewed in a few different ways. When one 177 

considers element partitioning between melt (liquid) and mineral (solid), one could 178 

imagine a model where a trace element i and host element h are exchanged between a 179 

liquid and a solid (Fig. 2a)3, viz., 180 

181 

S y( ) + L i( ) ⇔ S i( ) + L y( ) (4) 182 

183 

where S y( )  is a solid (mineral) containing cation y, and L i( )  is a liquid (melt)184 

containing element i etc. The free energy change associated with the reaction (4) can be 185 

calculated by dividing the reaction into two separate reactions (Fig. 2a), namely, 186 

187 

S y( ) → L y( ) (5a) 188 

and  189 

L i( ) → S i( ) . (5b) 190 

191 

3 In reality, there are several cases where the exchange of multiple elements is involved in 
the dissolution of some elements (“coupled substitution”, e.g., Al3+ + H + ⇔ Si4+ ). To 
simplify the discussion, I will focus on simple cases (without coupled substitution), and 
will discuss the issues of coupled substitution only briefly in relation to hydrogen and 
noble gas partitioning. 
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The reaction (5a) is melting of the host mineral, and the free energy change 192 

associated with this reaction is the free energy change upon melting ( ΔG fusion
y  in the 193 

notation by (Blundy and Wood, 1994)). The reaction (5b), L i( ) → S i( ), is a reaction to 194 

bring a trace element from the liquid to the solid (the free energy change is ΔGexchange
y−i  in 195 

(Blundy and Wood, 1994)). Blundy and Wood (1994) argued that the latter is dominated 196 

by the strain energy in solid and developed a model using the theory by (Brice, 1975). In 197 

this treatment, the role of liquid (melt) is obscured because the free energy change in the 198 

liquid (melt) is included only implicitly in ΔGexchange
y−i . In fact, I will show that the role of199 

liquid is important in the case of noble gas where the dissolution of noble gas in the melt 200 

has non-negligible excess free energy. 201 

The physical nature of the change in the free energy associated with element 202 

partitioning between a solid and a liquid can be understood more clearly by considering 203 

the chemical reactions of both a solid (mineral) and a liquid (melt) with an “environment 204 

(a reservoir)” that is a fluid phase (Fig. 2b). In this approach, I consider element 205 

dissolution in a solid and a liquid separately, and by taking the ratio of the concentration 206 

of a given element in a solid and a liquid, I will calculate the partition coefficient. The 207 

chemical equilibrium of material X (either a solid or a liquid) with a reservoir A with 208 

respect to the exchange of elements i and y can be written as 209 

210 
A i; y − 1( ) + X i − 1; y( ) = A i − 1; y( ) + X i; y − 1( ) (6) 211 

212 
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where A i; y − 1( )  is a reservoir containing the element i and y-1, X i; y − 1( )  is a phase X213 

that contains an element i as an impurity and the host cation y-1. Rewriting equation (6), 214 

one gets, 215 

216 

%A i; y( ) = %X i; y( )  (7) 217 

218 

where %A i; y( ) = A i; y − 1( ) − A i − 1; y( )  and %X i; y( ) = X i; y − 1( ) − X i − 1; y( ). The219 

chemical equilibrium of reaction (7) demands 220 

221 

μ %A i;y( ) = μ %X i;y( )  (8) 222 

223 

where μ %A i;y( )  is the chemical potential of the reservoir (A) containing element i and y and224 

μ %X i;y( )  is the chemical potential of phase X (solid or liquid) containing element i and y. I225 

assume that the reservoir is large, and therefore the properties of the reservoir are 226 

insensitive to the amount of host element, i.e., μ %A i;y( ) ≈ μ %A i( ) . Then227 

228 

μ %A i( ) = μ %A i( )
o + RT log f %A i( )

Po
(9) 229 

230 

where f %A i( )  is the fugacity of element i in the reservoir %A i( ) , Po  is the reference pressure231 

and μ %A i( )
o  is the chemical potential of the reservoir at the reference pressure (and232 

temperature). 233 
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As to the chemical potential of X (a solid or a liquid) containing some trace 234 

element, μ %X i;y( ) , I will assume that the amount of trace element is small and hence the235 

change in the concentration of the host cation (say from y to y-1) does not change the 236 

chemical potential of the solid (or the liquid), μ %X i;y( ) ≈ μ %X i( ) . This assumption also leads237 

to an ideal solution model where the chemical potential of a solid (or a liquid) containing 238 

the trace element is given by,  239 

240 

μ %X i( ) = μ %X i( )
0 + RT logCi

X (10) 241 

242 

where μ %X i( )
0  is the change in chemical potential of phase X by replacing the host cation 243 

(y) with a trace element (i) (i.e., the formation free energy of a “defect”), Ci
X  is the 244 

(molar) concentration of element i in a phase X, and RT has their usual meaning4.  245 

In writing the chemical equilibrium between the reservoir (a fluid phase) and a 246 

solid (or a liquid), it is necessary to know how many molecules of the fluid phase are 247 

involved in the given reaction. For instance, when Ar is dissolved in a mineral, one may 248 

write 249 

250 

Ar + X = X Ar( )   (11) 251 

252 

where one mole of Ar reacts to form a mineral containing a certain amount of Ar. The 253 

situation is different in case of the dissolution of hydrogen H in a mineral. In this case, 254 

4 In a more realistic case, where trace elements interact each other, one needs to make a 
correction to the relation (8) by introducing the activity coefficient. 
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the above formula must be modified because hydrogen can react with other species such 255 

as oxygen O to form a “compound” such as OH or 2H( )M
×  (two protons trapped at the256 

M-site vacancy). In this case, we can write the chemical reaction equation as257 

258 

α ⋅ H2O + X = X H( )  (12) 259 

260 

where α  is a constant that depends on the nature of H-bearing chemical species 261 

contained in phase X such as OH or 2H( )M
× (two protons trapped at M-site). In case of262 

OH, α =½, whereas in case of 2H( )M
× , α =1 (e.g., (Karato, 2008)).263 

 Therefore the concentration of element i in mineral X that co-exists with a 264 

reservoir for element i (a fluid phase A) is given by 265 

266 

Ci
X,A = exp α i

Xμ %A i( )
0

RT( ) ⋅ f %A i( ) P,T( )
Po

⎡
⎣⎢

⎤
⎦⎥

α i
X

⋅exp − μ %X i( )
0

RT( ) . (13) 267 

268 

Ci
X,A  is the solubility of element i in mineral X if the fluid phase A is the end-member 269 

phase (e.g., if the fluid phase is water, then equation (13) will be the solubility of 270 

hydrogen (i) in mineral X). The same formula applies to another material (mineral or 271 

melt), Y. The ratio of concentration of a species i between two phases (Y and X) can then 272 

be given by 273 

274 

Ci
Y ,A

Ci
X ,A = Di

Y / X = exp α i
X −α i

Y( )μ %A i( )
o

RT
⎡
⎣

⎤
⎦ ⋅ f %A i( )

α i
X −α i

Y
P,T( ) ⋅exp − μ %Y i( )

0 −μ %X i( )
0

RT( ) (14)275 
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276 

where α i
Y X( )  are the coefficients in chemical reaction such as (11), Di

Y / X  is the molar 277 

partition coefficient of an element i between the phase Y and X, that is equivalent to the 278 

molar partition coefficient if the ideal solution model works. 279 

A simple but important and general conclusion from the relations (13) and (14) is 280 

that the partition coefficient is generally a function of thermodynamic conditions 281 

including pressure, temperature and the fugacity of relevant components. In other words, 282 

the tendency of an element to prefer one phase over another phases depends on the 283 

thermodynamic conditions. Consequently, experimental data on element partitioning 284 

obtained under some limited conditions should not be applied to largely different 285 

conditions without proper corrections. For instance, the partition coefficient of hydrogen 286 

between olivine and orthopyroxene changes with pressure, temperature and water 287 

fugacity by a large amount, say a factor of 10 or more ((Dai and Karato, 2009), see also 288 

(Sakurai et al., 2014)). 289 

A case of trace element partitioning can be treated easily if one considers the 290 

partitioning of elements with similar chemical properties (e.g., partitioning of rare Earth 291 

elements). In such a case, one can assume α i
X = α i

Y , and the term containing the 292 

properties of the reservoir can be eliminated, and equation (14) becomes 293 

294 

Ci
Y ,A

Ci
X ,A = Ci

Y

Ci
X = exp − μ %Y i( )

0 −μ %X i( )
0

RT( ).  (15) 295 

296 
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Consequently, in this case the only task is to evaluate how μ %Y i( )
0 − μ %X i( )

0  depends on the 297 

properties of the element and the matrix. 298 

In the literatures, the element partitioning between the melts and minerals is 299 

discussed (e.g., (Blundy and Wood, 2003; Matsui et al., 1977; Nagasawa, 1966; Onuma 300 

et al., 1968; Wood and Blundy, 2004)). In these cases, although the influence of melt 301 

composition is studied (e.g., (Blundy and Dalton, 2000; O'Neill and Eggins, 2002; 302 

Schmidt et al., 2006)), it is often assumed that the excess energy for the melt is 303 

independent of the trace element ( μ %Y i( )
0 is independent of trace element, i), and the304 

discussion is focused on the excess energy in minerals ( μ %X i( )
0 ). Noble gases are305 

exceptions: their solubility in melts is small and highly sensitive to the atomic size of the 306 

noble gas, the solubility (coefficient) varies more than a factor of ~100 among different 307 

species (e.g., (Carroll and Stolper, 1993; Heber et al., 2007; Shibata et al., 1998)). The 308 

physical reasons for different behavior will be discussed in a later section based on the 309 

hard sphere model of silicate melts. 310 

When the role of melts is minor, then the main question is what determines the 311 

different solubility of different elements in different minerals (what controls the degree of 312 

“incompatibility”)? One may ask two different questions: (1) why different elements 313 

have different solubility in a given mineral?, and (2) why different minerals have 314 

different solubility for a given element? Such questions were addressed by a pioneer of 315 

geochemistry, Goldschmidt, who also classified elements into several categories based on 316 

the affinity to various materials (Goldschmidt, 1937). Goldschmidt pointed out that the 317 
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size of ions and the crystal structure of minerals (as well as the charge of the ion) are the 318 

key to determine the partition coefficients5.  319 

The breakthrough on this topic was made by Onuma, Matsui and their colleagues 320 

(Matsui et al., 1977; Nagasawa, 1966; Onuma et al., 1968) who clearly showed that the 321 

partition coefficients of elements between minerals and melts depend on the size (ionic 322 

radius) of that element relative to the size of the site in the mineral as envisaged by 323 

Goldschmidt. A diagram showing the partition coefficients as a function of ionic radius is 324 

called the Onuma diagram. 325 

326 

Outline of the models for the excess free energy 327 

The excess free energy associated with the dissolution of a trace element may be 328 

calculated from theoretical models incorporating the atomistic details (e.g., (Allan et al., 329 

2001; Purton et al., 1996; Purton et al., 2000)), but the use of simpler theoretical models 330 

will make the basic physics clearer. Therefore, I will focus on the theoretical models from 331 

which some essence of element solubility can be understood. 332 

Two types of models will be considered. In case of a solid (a mineral), the change 333 

in free energy caused by the dissolution of trace element is dominated by the change in 334 

enthalpy, i.e., the change in internal energy and volume. A trace element in a crystal can 335 

be considered as a point defect, and therefore the change in internal energy and volume 336 

associated with trace element dissolution may be formulated following the models of 337 

point defects (e.g., (Eshelby, 1954, 1956; Flynn, 1972; Mott and Littleton, 1938)). 338 

5 “One of the most important principles for the distribution of the elements is the grading 
according to their size, especially as compared with the lattice spacings or interatomic 
distances of rock-forming minerals” (from Goldschmidt (1937)). 
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The excess free energy caused by a point defect can be calculated by the response 339 

of a crystal to the introduction of a point defect. A point defect exerts some force to the 340 

surrounding crystal. This force could be separated into two components, the force caused 341 

by the “size” mismatch and the force caused by the excess charge. The first force causes 342 

uniform displacement of cations and anions, while the second one causes opposite 343 

displacement between cations and anions, i.e., the dielectric polarization. The excess free 344 

energy associated with the first can be expressed as the strain energy, while the latter as 345 

the electrostatic energy.  In some cases, these two effects are related and I will come back 346 

to that point when I discuss the dissolution of noble gases. Although this is a gross 347 

simplification of the actual processes of formation of point defects (or the dissolution of 348 

trace elements), such an approach provides a good estimate of some properties of point 349 

defects in olivine and other minerals (e.g., (Karato, 1977, 1981; Lasaga, 1980)). 350 

Dissolution of a trace element in complex liquids such as silicate melts should be 351 

treated in a different way because thermodynamic properties of complex liquids are 352 

markedly different from those of solids (minerals). The differences in thermodynamic 353 

properties include small (and a narrow range of) bulk moduli that are unrelated to the 354 

bulk moduli of corresponding solids and the positive pressure dependence of Grüneisen 355 

parameter. Jing and Karato (2011) showed that most of these observations can be 356 

explained by a hard-sphere model in which the main contribution to the free energy is the 357 

configurational entropy rather than the enthalpy. In this model, a silicate melt is 358 

considered to be a mixture of hard spheres and free space, and the motion of hard spheres 359 

in the free space contributes to the configurational entropy. A trace element could go 360 

either into the free space (void space) or into the hard spheres by replacing the pre-361 
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existing ions in them. I will discuss these two cases based on the hard sphere model of a 362 

complex liquid in a later section. 363 

364 

Continuum models of excess energy for a solid 365 

When an atom (or an ion) in a crystal is replaced with another one (I will call it as 366 

a trace element), the free energy of the crystal will change. The change in chemical 367 

potential (the Gibbs free energy per mole) is generally expressed as 368 

369 

Δμ = Δu + PΔυ − T Δs = Δh − T Δs  (16) 370 

371 

where Δμ  is a change in the chemical potential, Δu is a change in the internal energy, 372 

Δυ  is a change in the volume, and Δs  is a change in the entropy ( Δh  is a change in 373 

enthalpy). In solids, the entropy change in this equation corresponds to a change in the 374 

vibrational entropy (Flynn, 1972). In general a change in the vibrational entropy caused 375 

by a point defect is a fraction of R (measured by J/K/mol) (e.g., (Maradudin et al., 1971)), 376 

and the influence of this term on element partitioning is small ( exp Δs
R( ) ≈ O 1( )). The377 

pressure effect PΔυ  is important when partition coefficient under a broad pressure range 378 

is investigated. However, the emphasis in this paper is to provide a good explanation for 379 

the behavior of partition coefficient for different elements or for different materials 380 

(under the limited pressure (and temperature) conditions), so I will focus on Δu . 381 

In contrast, in silicate melts, the change in configurational entropy can be large 382 

when a trace element atom occupies the “free space” (or the void space). This is likely 383 
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the case for the dissolution of noble gases in melts (e.g., (Carroll and Stolper, 1993; 384 

Guillot and Sarda, 2006)). In these cases, the entropy term cannot be ignored. 385 

The trace element that replaces an ion in the host crystal has in general a different 386 

size and charge than those of the ion in the matrix that will be replaced with the trace 387 

element. Therefore the dissolution of a trace element creates excess elastic strain and 388 

dielectric polarization of a crystal (in addition to the change in the strain energy of the 389 

trace element itself). In the continuum approximation, the excess energy may be written 390 

as 391 

392 

μ %Y i( )
0 = μ %Y i( )

elastic + μ %Y i( )
dielectric  (17) 393 

394 

where μ %Y i( )
elastic  is the excess elastic strain energy and μ %Y i( )

dielectric  is the excess dielectric 395 

polarization energy.  396 

Under these approximations, the partition coefficient can be written as 397 

398 

Di
Y / X = Di

Y / X,elastic ⋅ Di
Y / X,dielectric

≈ exp − Δuelastic

RT( ) ⋅exp − Δudielectric

RT( ) (18) 399 

400 

where Di
Y / X,elastic ≈ exp − Δuelastic

RT( ) , Di
Y / X,dielectric ≈ exp − Δudielectric

RT( )  and the quantities are401 

for one mole, and the symbols i, Y/X are removed in the second line for simplicity. 402 

 403 

Strain energy models 404 



 20

Now let us focus on the contribution from the elastic strain, Δuelastic . The 405 

replacement of an ion with a trace element with a different size ( ro : the radius of the site 406 

at which a trace element is placed, r1 : the radius of the trace element) results in the 407 

excess elastic strain energy. The strain energy is determined by the magnitude of strain 408 

caused by this replacement and the elastic properties of both the matrix crystal and of the 409 

trace element. Therefore the key here is to calculate (i) the magnitude of strain and (ii) 410 

the strain energy associated with this process. 411 

(Nagasawa, 1966) was the first to discuss the nature of trace element partitioning 412 

based on the strain energy model. He used a theory by (Eshelby, 1954) and calculated the 413 

strain energy associated with the dissolution of a trace element assuming that the elastic 414 

properties of the matrix crystal are the same as those of the trace element. This 415 

assumption is valid only when the bulk moduli (only bulk modulus matters inside the 416 

inclusion according to the theory of (Eshelby, 1954)) of the matrix and the trace element 417 

are the same. In a more general case, the influence of different elastic properties of the 418 

matrix and the trace element needs to be included. Also, Nagasawa (1966) ignored the 419 

influence of the image force (Eshelby, 1954, 1956) causing small differences in the 420 

formula for the effective elastic constant (see also Table 2). 421 

Blundy and Wood (e.g., (Blundy and Wood, 1994, 2003; Wood and Blundy, 422 

1997, 2001, 2004)) used a model by (Brice, 1975) to interpret a large number of 423 

experimental data including the partitioning of noble gases. Their model is similar to that 424 

by (Nagasawa, 1966), but the model by (Brice, 1975) contains a few physically unsound 425 

assumptions. For instance, Brice assumes that when a trace element with the radius r1  is 426 

inserted to a site with the radius ro , then the radius of the site changes to r1 . This is 427 
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correct only when the trace element is infinitely stiff. In a more general case where the 428 

trace element has a finite bulk modulus, the displacement is not only controlled by the 429 

size difference but also by the difference in the elastic constants. This leads to a large 430 

systematic error when the trace element is much softer than the matrix, a case for the 431 

noble gas. Furthermore, Brice used an incorrect expression for the strain both inside and 432 

outside of the inclusion. The strain field in the matrix surrounding a spherical inclusion is 433 

shear strain and the strain inside of the inclusion is compressional strain (Eshelby, 1956), 434 

but Brice used a Young’s modulus and did not pay attention to the difference in the strain 435 

field inside and outside of an inclusion. Despite these differences, these two models give 436 

similar equations (Table 2), and both of them explain some of the experimental 437 

observations (e.g., the Onuma diagram for some elements). 438 

In short, these previous models have common limitations in ignoring the 439 

difference in the elastic properties between the matrix and the trace element (impurity). 440 

An important case is the partitioning of noble gas elements where the trace element 441 

(impurity) has much smaller bulk modulus than the matrix. In such a case, the strain 442 

would be small ε = %r
ro

− 1  1 much less than the Brice model would predict ε = r1
r0

− 1.443 

The appropriate treatment of the role of the size and stiffness of the trace element 444 

is a key step in understanding how the properties of the trace elements and of the matrix 445 

affect element partitioning. As will be shown later, the stiffness of the trace element has a 446 

strong influence on the magnitude of lattice strain and therefore it is one of the key 447 

parameters controlling the strain energy. To rectify the limitations of these previous 448 

models, I have made modifications to the continuum model of trace element solubility by 449 

introducing the following three points: (i) the proper boundary conditions at the boundary 450 
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between the inserted (trace) element and the surrounding matrix (i.e., the continuity of the 451 

displacement and the normal stress) are included in solving the equation for the 452 

equilibrium conditions (this was included in (Nagasawa, 1966) but not in (Brice, 1975)), 453 

(ii) the strain energy of the element itself is included in addition to the strain energy of454 

the host crystal using the different elastic moduli (in previous models, strain energy in the 455 

trace element was calculated assuming the same elastic constant as the matrix) and (iii) 456 

both volumetric and shear strain are considered (this was correctly included in 457 

(Nagasawa, 1966) but Brice used an incorrect relationship for the strain). 458 

An analysis including these points shows that the displacement of the boundary 459 

caused by the replacement of an atom (ion) with the radius ro  with that of a trace element 460 

with the radius r1  depends not only on the relative size but also on the elastic constants of 461 

the trace element and of the matrix as (Fig. 3; see also Appendix 1) 462 

463 

ε = %r
ro

− 1 = K1
K1+ 4

3 Go

r1
ro

− 1( ) (19) 464 

465 

where %r  is the final (equilibrium) size of the site now occupied by a trace element, Go  is 466 

the shear modulus of the matrix and K1 is the “bulk modulus” of the trace element6.467 

Equation (19) means that if the trace element is very stiff compared to the shear modulus 468 

of the matrix ( K1  Go ), then %r ≈ r1 , whereas for a weak trace element ( K1  Go ), 469 

 (and ε ≈0) (Fig. 4). This concept plays a key role in explaining the solubility 470 

(partitioning) of noble gas elements. Corresponding to this displacement, both the 471 

6 Physical meaning of the bulk modulus of a trace element in a lattice site can be 
complicated and will be discussed in the later part of this paper. 
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element itself and the crystal will undergo elastic deformation leading to an increase in 472 

the strain energy (per one trace element) that is given by (Appendix 1), 473 

474 

Δuelastic = 6πro
3 K1

2

K1+ 4
3Go

r1
ro

− 1( )2
1+ K1

K1+ 4
3Go

r1
ro

− 1( )⎡
⎣⎢

⎤
⎦⎥
. (20) 475 

476 

This equation contains the bulk modulus of a trace element ( K1 ) and the shear 477 

modulus of the matrix crystal ( Go ). This corresponds to the fact that the strain inside of a 478 

spherical inclusion is homogeneous compression while the strain outside of an inclusion 479 

is shear strain (Eshelby, 1951, 1954, 1956). The effective elastic constant (the EEC, or 480 

the lattice strain parameter) corresponding to the Young’s modulus in the Brice model 481 

would be 3K1
2

K1+ 4
3 G0

 that is related to the stiffness of the element as EEC ≈ 3K1  for 482 

K1  Go , while EEC ≈ 9
4

K1
2

Go
 for K1  Go. Therefore the influence of elasticity of trace 483 

elements is large when the elastic constant of the trace element is much different from 484 

that of the matrix minerals. These predictions of the model have important bearing on the 485 

interpretations of experimental observations (see Discussion). 486 

487 

Influence of excess charge: dielectric polarization energy and influence on strain 488 

When a trace element goes to a site that is usually occupied by an ion with a 489 

different electrostatic charge, then there will be an excess charge, either positive or 490 

negative, relative to the perfect crystal at the site that the trace element occupies. The 491 

excess charge exerts electrostatic force to the surrounding ions. Due to this force, cations 492 

and anions will move to the opposite directions causing dielectric polarization. The 493 
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dielectric polarization energy caused by an excess electrostatic charge, ΔZ ⋅e, is given by 494 

(e.g., (Flynn, 1972)),  495 

496 

Δudielectric = ΔZ( )2e2

2 %rκ (21) 497 

498 

where κ  is the static dielectric constant and %r  is the size of the defect. This energy 499 

decreases with the size of the trace element, and hence the solubility of the element 500 

increases with the size of the defect. However, the influence of the atomic size is weak 501 

compared to that in the elastic strain energy (see equation (20) where r1
r0

− 1( )2
 term502 

provides strong influence of the size of atoms (ions)). Its effect is to change the values of 503 

partition coefficient by a similar amount for all the trace elements. Systematic differences 504 

in the partition coefficients among different minerals (e.g., Mg-perovskite versus Ca-505 

perovskite) might be due to the difference in the static dielectric constant, κ , between 506 

these minerals (see a later section). 507 

The static dielectric constant is the sum of the contributions from electronic, ionic 508 

and dipolar effects and the dielectric constant varies among different minerals (e.g., 509 

(Kittel, 1986)). In general, an ion with a large radius has a large electronic polarizability 510 

that has an important contribution to the static dielectric constants. Ca2+  has substantially 511 

higher electronic polarizability and hence Ca-bearing minerals tend to have a large 512 

dielectric constant (e.g., (Shannon, 1993)). 513 

Excess charge has another effect. A large part of the atomic displacement caused 514 

by the excess charge is the anti-symmetric movement of cations and anions, i.e., 515 
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dielectric polarization. However, near the vicinity of the excess charge, displacement of 516 

ions is large and can contribute to the elastic strain, ε = %r
r0

− 1. Let us consider a case517 

where Mg2+  at the M-site is replaced with Ar  (i.e., A ′′rM  (Ar at the M-site with two 518 

negative effective charge)). In such a case, the effective negative charge (the negative 519 

charge relative to the perfect lattice) is present at the M-site that exerts a large force to the 520 

neighboring oxygen ions to cause their displacement away from the defect ( A ′′rM ). The 521 

similar effect was observed by (Spalt et al., 1973) for a vacancy in KBr. Consequently, 522 

one expects a larger elastic strain than expected from ε = %r
r0

− 1 = K1
K1+ 4

3Go

r1
r0

− 1( ), leading to523 

larger strain energy. I will come back to this issue when I discuss the partitioning of 524 

noble gases (see also Appendix 2).  525 

Finally, excess charge has another effect: the effect caused by the charge balance. 526 

This is a chemical effect in the sense that in order to deal with the charge balance one 527 

must consider the interaction with other charged species. This issue will be discussed 528 

when I discuss the partitioning (dissolution) of noble gas elements and hydrogen (water).  529 

530 

Trace element dissolution in the melts 531 

In the literature where the element partitioning between minerals and melts is 532 

discussed, it is often assumed that the sensitivity of element partitioning on the atomic 533 

(ionic) size of element is caused by the sensitivity of the solubility in minerals to atomic 534 

(or ionic) size of elements, and that the element dissolution in melts is associated with 535 

small excess energy and is insensitive to the size of elements (e.g., (Blundy and Wood, 536 

2003)). This is the case for most trace elements.  537 
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Noble gases do not follow this: solubility is low and sensitive to the atomic size 538 

(Carroll and Stolper, 1993; Guillot and Sarda, 2006; Guillot and Sator, 2012; Heber et al., 539 

2007; Shibata et al., 1998; Shibata et al., 1994). There is no clear evidence of the 540 

presence of a peak in the solubility coefficient when plotted against the size of noble gas 541 

atom. Therefore these observations suggest that noble gas atoms do not occupy well-542 

defined sites. Carrol and Stolper (1993) explained this observation by a model in which 543 

noble gas atoms occupy the void space. Similarly, Guillot and his colleagues used a “hard 544 

sphere model” in which they assumed that noble gas atoms occupy the void space among 545 

the hard spheres (Guillot and Sarda, 2006; Guillot and Sator, 2012). The hard sphere 546 

model also explains the correlation between the composition and the solubility coefficient 547 

of noble gases: the noble gas solubility coefficient is higher in a melt with higher silica 548 

content (Shibata et al., 1998). Such a trend is often explained by the concept of NBO 549 

(non-bridging oxygen; (Mysen, 1983)), but this can also be explained by a hard sphere 550 

model because the degree of net-working increases with the increase of the silica content 551 

that leads to a higher void space (Guillot and Sarda, 2006; Guillot and Sator, 2012). 552 

Given a marked dependence of noble gas solubility coefficient in the melt on their 553 

atomic size but a commonly made assumption of independence of other trace element 554 

dissolution on their ionic size, one may wonder why the dissolution behavior of these two 555 

types of elements in the melts is so different. In order to understand what controls the 556 

mechanisms of dissolution of elements in the melt, let us consider a hard sphere model of 557 

silicate melts (Fig. 5). Unlike minerals, complex liquids such as silicate melts can be 558 

considered as a mixture of clusters of atoms (hard spheres) that are randomly distributed 559 

leaving void space among them. Since these clusters are separated by the void space, 560 
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their direct mutual interaction is weak except that any cluster cannot move into the space 561 

occupied by other clusters (“excluded volume”). These clusters move nearly freely in the 562 

limited space (space unoccupied by other clusters) and hence the internal energy of a 563 

cluster does not change much with the type of liquid where it is located. Free motion of 564 

clusters in the limited space contributes to the configurational entropy, Sconfig , and 565 

−T ⋅Sconfig  makes the dominant contribution to the free energy of a complex liquid. The566 

hard sphere model is one of these models and provides a systematic explanation of a 567 

large number of observations on the equation of state of melts (Jing and Karato, 2011). 568 

Fig. 5a shows a case where a trace element (i) replaces a host element (y) in a 569 

molecular cluster in the liquid. This is a case where the element i has modest electric 570 

charge similar to the host ion h. The initial energy of the whole system is uinitial = ui
A + uy

L571 

( ui.y
L,A : energy of a cluster in the liquid (L) or in the reservoir (A) containing the element i 572 

or h), and the final energy is u final = uy
A + ui

L . Therefore u final − uinitial = uy
A − ui

A( ) − uy
L − ui

L( ).573 

In a hard sphere model, clusters (hard spheres) do not interact each other energetically. 574 

Therefore the energy difference such as uy
L,A − ui

L,A  is the energy difference in the clusters 575 

and uy
L − ui

L ≈ uy
A − ui

A , i.e., u final ≈ uinitial
7. Since both elements i and h occupy the cluster,576 

there is little change in the excluded volume and hence little change in the configurational 577 

entropy and μ final ≈ μinitial . Consequently the solubility of these elements is high and 578 

nearly independent of their size.  579 

7 For a solid, ui,h
L ≠ ui,h

A  because of the strong interaction among the clusters, and hence 
uinitial

S ≠ u final
S . 



28

For a noble gas element that has neutral charge, there will be a large excess 580 

electrostatic energy if it replaces an ion in a cluster. Also the noble gas in the 581 

environment (“A”) is not in the cluster, and a cation will not be dissolved in the noble 582 

gas. Consequently, the noble gas dissolution does not occur as an exchange of a noble gas 583 

atom and the cation in the liquid. Therefore the second mechanism (occupying the void 584 

space) will be preferred (Fig. 5b). In this case, the excess energy strongly depends on the 585 

size of the noble gas atom that determines the decrease in the void space (free volume).  586 

587 

DISCUSSION 588 

589 
Comparison with the previous strain energy models on element solubility in minerals 590 

Elastic strain energy associated with the replacement of an ion in a mineral with a 591 

trace element is an important factor controlling the solubility of the trace element in a 592 

mineral (e.g., (Blundy and Wood, 2003)). In this section, I compare various strain energy 593 

models with the experimental observations. Table 2 compares three models of the strain 594 

energy associated with the dissolution of an element in a mineral, and Fig. 6 shows a 595 

graph of normalized solubility (~partition coefficient if the element solubility in the melt 596 

is independent of the size of the element) against r1
ro

. All models show a peak in the 597 

solubility at the ionic radius corresponding to the radius of the site of the host crystal 598 

( r1
ro

=1) (see equation (19)). The curvature of the curves is determined by the effective 599 

elastic constant EEC( )obs  relevant to element substitution that can be defined as 600 

601 

Δuelastic = 2πro
3 EEC( )obs

r1
ro

− 1( )2
1+ ξ r1

ro
− 1( )⎡

⎣
⎤
⎦

(22)602 
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603 

where Δuelastic  is the strain energy and ξ = K1
K1+ 4

3Go
 for my model and ξ = 2

3  for the Brice 604 

model8. Although all models show similar curves, the curvature, i.e., EEC( )obs , has605 

different expressions (see Table 2), and it is EEC( )obs  that distinguishes different models. 606 

EEC( )obs  was calculated by Blundy and Wood for various sites in various minerals. For607 

each combination of the site and the mineral, experimental data on partitioning for 608 

various elements were used and from the shape of the curve of the Onuma diagram, they 609 

calculated EEC( )obs  (see Appendix 3). In the following, I will use the values of EEC( )obs  610 

and compare them with the predictions from various models to evaluate the validity of 611 

the models.  612 

The simplest model for EEC( )calc  would be the Brice model where all the relevant 613 

elastic constants are those for the matrix. In this case, 614 

615 

EEC( )calc
Brice = 3KoGo

Ko +Go /3 ≈ 1.5Ko = 0.225 Zo

ro +roxy( )3 (23) 616 

617 

where Ko  ( EEC ) is in GPa, r in nm, and Zo is the valence of the ion at the site (+2 for 618 

Mg2+ ), ro is the ionic radius of the site in the matrix that is replaced with the trace 619 

element, roxy is the ionic radius of oxygen (0.138 nm). The results are compared with 620 

EEC( )obs  in Fig. 7a. The results show very poor fit indicating that the properties of a621 

trace element other than its size play an important role in controlling the effective elastic 622 

8 The difference in ξ  between these two models is small and does not affect the 
calculated values of EEC( )obs  substantially. 
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constant, EEC . I evaluate the goodness of the model by a parameter χ 2 (reduced chi-623 

square or variance)9 and χ 2 =106 for this model. 624 

Blundy and Wood (1994) noted a good correlation between EEC( )obs  and Z1  625 

(charge of the trace element) in plagioclase and diopside ( EEC( )obs ∝ Z1)). The EEC of 626 

the M2 site of clinopyroxene systematically changes with the charge of the trace elements 627 

in such a way that EEC( )M2
+1 < EEC( )M2

+2 < EEC( )M2
+3  where EEC( )M 2

+n  is the effective elastic 628 

modulus of the M2 site for trace elements with a charge +n (Blundy and Dalton, 2000). 629 

Similarly, (Hill et al., 2011) found EEC( )M2
+3

 EEC( )M1
+4  for clinopyroxene although the 630 

polyhedron bulk moduli for the M1 and M2 sites are similar (Levien and Prewitt, 1981). 631 

The EEC for a given mineral and a given site varies as much as a factor of ~100 among 632 

different trace elements. This challenges the theory because none of the previous theories 633 

(Brice, 1975; Nagasawa, 1966) includes the properties of a trace element other than its 634 

size.  635 

To account for the strong influence of the electrostatic charge of the trace element 636 

Z1, Blundy and Wood proposed the following relationship, 637 

638 

EEC( )calc
BW = 1.125 ⋅ Z1 / ro + roxy( )3  (24) 639 

640 

9 χ 2 (reduced chi-square or normalized variance) is defined as χ 2 = 1
N

yj
i −x j( )2

i
∑

yj
i −yj( )2

i
∑j

∑  where j

specifies a combination of a mineral, the site and the charge of the trace element (j=1---
N), and i specifies the individual data of EEC (i=1--- M j ), yj

i  is the inferred value of EEC 
for a given i and j from the experimental data, x j is the model prediction for j and yj is the 

mean value of yj
i . For the perfect model, χ 2 =0. 
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and called this as “site-elasticity” ( EEC( )calc
BW  in GPa, r in nm) (Blundy and Wood, 1994). 641 

A comparison of this model with EEC( )obs is shown in Fig. 7b. This model better fits 642 

EEC( )obs  ( χ 2 =40) but shows a systematic deviation from EEC( )obs  for the large values643 

of EEC. Apart from the use of a dimensionally incorrect formula for an elastic constant10, 644 

the theoretical basis of combining the property of the trace element ( Z1) and the property 645 

of the matrix ( ro ) in the Blundy-Wood model is unclear.  646 

In contrast to the previous models by (Nagasawa, 1966) and (Blundy and Wood, 647 

1994), my model includes the influence of different elastic properties of the matrix and 648 

the trace element based on the Eshelby theory of a point defect in an elastic material. This 649 

model shows that the effective elastic constant (EEC) is ECC( )calc
Karato = 3K1

2

K1+ 4
3Go

.650 

According to this model, it is the bulk modulus of the trace element ( K1) and the 651 

shear modulus of the matrix ( Go ) that determine the EEC. The EEC is not the Young’s 652 

modulus of the material as incorrectly assumed by Brice (1975). For K1 , I use a 653 

relationship K1 = 0.15 ⋅ Z1 / r1 + roxy( )4 11  corrected from (Hazen and Finger, 1979) and654 

calculated EEC( ) calc
Karato= 3K1

2

K1+ 4
3G o

. In other words, I assume that K1  is determined by the 655 

bonding between the trace element and the surrounding oxygen ions. One problem with 656 

this approach is that because EEC( )obs  is calculated for each site (each ro ) for a range of 657 

10 The relation EEC( )calc
BW = 1.125 ⋅ Z1 / ro + roxy( )3  is derived from Hazen and Finger (1979)

model, K = 0.75 ⋅ Z / r + roxy( )3 (K in GPa, Z: charge of cation, r: radius of cation (nm)) but
this equation is dimensionally incorrect (Karato, 2008). A dimensionally correct equation 
is K = 0.15 ⋅ Z / r + roxy( )4 , but these two equations predict similar elastic constants.
11 One could use a relation similar to Blundy-Wood’s model, i.e., the use of ro  instead of 

r1, K1 = 0.15 ⋅ Z1 / ro + roxy( )4 . The results are similar (not shown).
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r1 one must use some average of r1. I used a simple arithmetic average. The calculated 658 

EEC( )calc
Karato  are compared with EEC( )obs  in Fig. 7c (for the details see Appendix 3). My 659 

model, EEC( )calc
Karato , shows a better fit to EEC( )obs for large values of EEC( ) , and the 660 

variance is substantially reduced ( χ 2 =18 for this model). However, the use of the “bulk 661 

modulus” to represent the stiffness of a trace element is a gross simplification, and its 662 

limitation will become obvious when I analyze the solubility of noble gas elements. 663 

664 

Why do Ca-bearing minerals have high trace element solubility? 665 

Solubility of trace elements is sensitive to minerals. Most trace elements have 666 

much higher solubility in clinopyroxene than olivine (e.g., (Witt-Eickschen and O'Neill, 667 

2005)). Similarly, the trace element solubility in Ca-perovskite is higher than that in Mg-668 

perovskite (e.g., (Corgne et al., 2004; Hirose et al., 2004)). Common to these two cases is 669 

that the solubility of trace elements is higher in a mineral that contains Ca than those that 670 

do not contain Ca.  671 

Here I take an example of Ca-perovskite and Mg-perovskite (bridgmanite) for 672 

which a detailed study was conducted (Hirose et al., 2004). Although there is a large 673 

difference in Di
mineral/melt  between Ca-perovskite and Mg-perovskite in the ionic size 674 

versus Di
mineral/melt  plot (the Onuma diagram) implying that there is no large difference in 675 

Di
mineral/melt ,elastic  between them (Fig. 1c). Therefore I conclude that most of the difference 676 

between Ca-perovskite and Mg-perovskite (bridgmanite) is caused by the difference in 677 

Di
mineral/melt , dielectric  term. The main physical property that controls Di

mineral/melt ,dielectric  is 678 

(static) dielectric constant, κ  (equation (19)). The static dielectric constant of a mineral 679 
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depends on the polarizability of ions contained in a mineral (e.g., (Kittel, 1986)). Among 680 

various cations in a typical mantle minerals, Ca has anomalously large polarizability due 681 

to its large ionic size (Shannon, 1993). Consequently, a mineral that contains a large 682 

amount of Ca has a large dielectric constant and hence leads to the high solubility of trace 683 

elements.  684 

685 

Partitioning of noble gases 686 

In previous sections, I pointed out that there are fundamental limitations of the 687 

previous models of element partitioning in incorporating the elasticity of trace elements. 688 

This problem becomes serious when one deals with noble gas elements whose elastic 689 

constants are much lower than those of the host minerals (e.g., ~2-4 GPa (Devlal and 690 

Gupta, 2007; Jephcoat, 1998) as compared to ~120 GPa for olivine). 691 

Brooker et al. (2003) suggested that the observed trend for partitioning of noble 692 

gases showing the weak dependence on noble gas atomic size (Fig. 1e) can be attributed 693 

to weak effective elastic constants (a ‘zero charge’ model). However, such an explanation 694 

is misleading for two reasons. First, the weak dependence of partition coefficient on the 695 

atomic size of noble gas elements observed in the diagram such as Fig. 1e does not mean 696 

that the solubility of noble gas elements in olivine and diopside depends weakly on the 697 

atomic size of noble gas elements. The partition coefficient shown in Fig. 1e is the ratio 698 

of the solubility of noble gas in a mineral to that in a melt (see equation (12), 699 

Dnoble gas
mineral/melt =

Cnoble gas
mineral

Cnoble gas
melt ; Cnoble gas

mineral ,melt : concentration of noble gas in mineral (melt)). The 700 

experimental observations shown in Fig. 1e indicate that Dnoble gas
mineral/melt  is weakly dependent 701 

on the size of the noble gas atom. But Cnoble gas
melt  is strongly dependent on the size of the 702 



34

noble gas atom (Carroll and Stolper, 1993; Heber et al., 2007; Shibata et al., 1998; 703 

Shibata et al., 1994) (Fig. 1f). Therefore, one must conclude that Cnoble gas
mineral  is strongly 704 

dependent on the size of noble gas atoms. 705 

To illustrate this point, I calculated Cnoble gas
mineral for olivine and diopside from the 706 

results shown in Fig.1e ( Dnoble gas
mineral/melt ) and Fig. 1g ( Cnoble gas

melt ). Fig. 8 shows a plot of 707 

partition coefficients of noble gases between olivine (or diopside) and the melt multiplied 708 

by the solubility of noble gases in the melts, Dnoble gas
mineral /melt ⋅Cnoble gas

melt . Essentially this is a plot 709 

of the solubility (coefficient) of noble gases, Cnoble gas
mineral = Dnoble gas

mineral/melt ⋅Cnoble gas
melt( ) , in olivine710 

and diopside as a function of the size of noble gas atoms. This plot shows that the 711 

solubility of noble gases in olivine and diopside decreases substantially with the size of 712 

the noble gas atom. A similar trend was reported for the noble gas solubility in 713 

bridgmanite (Shcheka and Keppler, 2012) (Fig. 1f). I conclude that the solubility of noble 714 

gases in olivine, diopside and bridgmanite decreases strongly with the atomic size of 715 

noble gas, and therefore these results are inconsistent with the ‘zero-charge’ model by 716 

(Brooker et al., 2003). 717 

Second, the model by (Brice, 1975) does not include the stiffness of the trace 718 

element and the concept of “site-elasticity” in which one invokes the stiffness of the trace 719 

element does not have a sound physical basis as discussed before. The elastic constant in 720 

the Brice model is the elastic constant of the matrix. So even though a noble gas element 721 

has ‘zero charge’, one should not make the effective elastic constant = 0 if one were to 722 

use the Brice model. However, my model in its simplest form also fails to explain this 723 

observation. If one uses experimentally determined bulk moduli of noble gas elements 724 
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(Devlal and Gupta, 2007; Jephcoat, 1998) with my theory (equation (20)), one would 725 

predict that the effective elastic constant will be 3K1
2

K1+ 4
3Go

~0.3 GPa. This is too low to 726 

explain the observations. One might try to explain this by dielectric polarization model as 727 

Brooker et al. (2003) proposed. However, the dielectric polarization model predicts an 728 

opposite trend (high solubility for a large size). 729 

How can we interpret such a trend, i.e., the substantial reduction of the solubility 730 

of noble gas elements with their atomic size? Let us use a strain energy model and 731 

interpret the inferred “bulk modulus” of the noble gas based on a physical model of point 732 

defects in ionic solids. Because the data are limited, I assume ro  and using the solubility 733 

versus atomic size ( r1 ) relation, I will estimate the effective elastic constant. The 734 

observed trend (Fig. 8) suggests that the size of the site ( ro ) where a noble gas atom is 735 

located in olivine and diopside must be smaller than 0.16 nm (atomic size of Ar). 736 

Assuming that ro =0.072 nm in olivine, I get ~12 GPa (for clinopyroxene, assuming 737 

r0 =0.1 nm, I get ~20 GPa). Similarly, Shcheka and Keppler (2012) estimated the 738 

effective elastic constant in bridgmanite is ~35 GPa assuming that noble gas elements go 739 

to the oxygen site ( r0 =0.14 nm). These effective elastic constants are substantially larger 740 

than those estimated from the bulk moduli of the noble gases and the shear modulus of 741 

the matrix using the definition of the effective elastic modulus, 3K1
2

K1+ 4
3Go

 (~0.2-0.3 GPa).  742 

The ECCs of the noble gas elements inferred from the experimental observations 743 

of element partitioning are much higher than those calculated from the experimentally 744 

determined elastic moduli of relevant elements. There is a possible physical explanation 745 

for the inferred high ECC. When one inserts an atom into a crystalline site, then both 746 
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crystal and the atom deform to define the equilibrium size of the site (equation (19)). If 747 

one uses the bulk modulus of the sphere, K1  (2-4 GPa), then the lattice strain will be 748 

ε = %r
r0

− 1 = K1
K1+ 4

3Go

r1
ro

− 1( ) and for a typical bulk moduli of noble gas element, the strain will749 

be on the order of 1-2 % of r1
ro

− 1( ) . For r1
ro

− 1( )~20 %, the lattice strain would be ~0.3 %.750 

Inferred high effective elastic strain implies that the atomic displacement near the 751 

“defect” site (where a trace element replaces a host ion) is larger than expect from such a 752 

model. This can be explained if one considers the force balance at the site where a noble 753 

gas atom is inserted from a more atomistic point of view. When a neutral atom (e.g., a 754 

noble gas atom) replaces a cation (e.g., Mg2+), then there will be excess 2- charge at the 755 

site that will exert a repulsive force to the neighboring oxygen ions. As a consequence, 756 

neighboring oxygen ions move outward (see (Spalt et al., 1973) for a case of a vacancy in 757 

KBr). Consequently, the lattice strain caused by the replacement of a cation (e.g., Mg2+ ) 758 

with a noble gas will be larger than what one expects from the simple elastic model. The 759 

inferred large effective elastic constant for a noble gas could be due to this effect. In other 760 

words, the noble gas solubility in minerals such as olivine is likely much lower than 761 

expected from the low bulk moduli of the noble gases. I note that using a theoretical 762 

approach Du et al. (2008) showed relatively large effective elastic moduli for the 763 

dissolution of noble gases in minerals (Du et al., 2008). 764 

How can one explain the large difference in the magnitude of noble gas solubility 765 

between bridgmanite and other minerals (olivine and diopside)? To address this issue, let 766 

us consider the processes of noble gas dissolution in more detail. Fig. 9 shows two 767 

possible mechanisms of noble gas dissolution in minerals. In Fig. 9a, a noble gas atom, 768 



37

Π , occupies the M-site vacancy and in Fig. 9b, it occupies the O-site vacancy. In both 769 

cases, the concentration of noble gas atoms in the mineral is related to the concentration 770 

of vacancies as 771 

772 

ΠΦ
Ψ P,T , fO2 ,aSiO2( )⎡⎣ ⎤⎦ ∝ VΦ

Ψ P,T , fO2 ,aSiO2( )⎡⎣ ⎤⎦ ⋅ fΠ P,T( ) ⋅ KΠ P,T , fO2 ,aSiO2( )  (25)773 

774 

where ΠΦ
Ψ  is a noble gas atom occupying the Φ -site with an effective charge of Ψ  (e.g.,775 

A ′′rM  (Ar at the M-site with effective two negative charge)), VΦ
Ψ  is a vacancy at the Φ -site776 

with an effective charge of Ψ , fΠ  is the fugacity of the noble gas Π , and KΠ is the 777 

relevant equilibrium constant12.  778 

The strain energy consideration discussed above was on KΠ. The equilibrium 779 

constant, KΠ P,T , fO2 ,aSiO2( ) , depends on the excess energy of a mineral when vacancy is780 

occupied by a noble gas. However, the difference in this term between olivine, diopside 781 

and bridgmanite is not consistent with the difference in the noble gas solubility among 782 

these minerals. Therefore I conclude that it is the difference in vacancy concentration, 783 

VΦ
Ψ⎡⎣ ⎤⎦ , that is responsible for the difference in the solubility of noble gases in different 784 

minerals.   785 

The concentration of vacancy depends strongly on minerals. In case of olivine and 786 

diopside, the relevant vacancy is ′′VM  whose concentration is ~10-5-10-4 under typical 787 

upper mantle conditions (Nakamura and Schmalzried, 1983), whereas in bridgmanite the 788 

12 To clarify the microscopic aspect, I used a point-defect notation, i.e., Kröger-Vink 
notation, ΠΦ

Ψ⎡⎣ ⎤⎦  rather than Cnoblegas
mineral . 
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dominant vacancy is VO
 whose concentration is much higher although it depends on the 789 

concentration of impurities such as Al3+ (e.g., (Brodhlot, 2000; Lauterbach et al., 2000; 790 

Navrotsky, 1999)). This provides an explanation for the higher solubility of noble gases 791 

in bridgmanite compared to olivine and diopside (e.g., (Brooker et al., 2003; Shcheka and 792 

Keppler, 2012)). However, this model also implies that the solubility is highly pressure 793 

dependent, ΠΦ
Ψ⎡⎣ ⎤⎦ ∝ exp − PV*

RT( ) , where V* is the volume expansion associated with794 

vacancy formation.  795 

796 

SOME APPLICATIONS 797 

Water content in the mantle from mantle materials 798 

Among the various elements, volatile elements such as H play important roles in a 799 

number of geological processes and therefore estimating the water content in the mantle 800 

is an important topic (e.g., (Karato, 2011; Peslier et al., 2010)). However, because of very 801 

high mobility of H in olivine (and other minerals or melts; (Kohlstedt and Mackwell, 802 

1998)), it is challenging to infer the distribution of H in the mantle. Evidence of 803 

hydrogen-loss from olivine is frequently reported (e.g., (Demouchy et al., 2006; Peslier 804 

and Luhr, 2006)). Two approaches have been conducted to overcome this difficulty.  805 

One is to measure the water content of other minerals such as orthopyroxene 806 

where hydrogen diffusion is more sluggish (inferred from the lack of diffusion profile in 807 

opx; (Warren and Hauri, 2014)). In such a case, one might consider that the hydrogen 808 

content in orthopyroxene is more “reliable” and could take it as a more faithful indicator 809 

of H in the mantle. However, different water content between olivine and orthopyroxene 810 

may also reflect the equilibrium partitioning that depends on the thermodynamic 811 
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conditions. A careful analysis must be made including the influence of the dependence of 812 

hydrogen partition coefficient on the thermochemical conditions. The water partitioning 813 

between olivine and orthopyroxene,  814 

815 

H[ ]oli
H[ ]opx

∝ fH 2O
αoli

fH 2O
αopx

exp − Eoli
H +PVoli

H

RT( )
exp −

Eopx
H +PVopx

H

RT( )  (26) 816 

817 

where αoli,opx  is the fugacity coefficient, Eoli.opx
H and Voli.opx

H  are energy and volume change 818 

associated with hydrogen dissolution in olivine and orthopyroxene respectively. Because 819 

all of these parameters are different between olivine and orthopyroxene (Kohlstedt et al., 820 

1996; Mierdel et al., 2007), the water partition coefficient, H[ ]oli
H[ ]opx

, changes with the821 

thermodynamic conditions by more than a factor of 10 (Dai and Karato, 2009). 822 

Particularly important is the fact that in most cases, H[ ]oli
H[ ]opx

∝ fH 2O
1/2 , and consequently, the823 

partition coefficient of water (hydrogen) between olivine an opx is depends on water 824 

fugacity. Consequently, under the environment where water fugacity is low (e.g., the 825 

lithosphere), the partition coefficient is low and much of water (hydrogen) in the 826 

lithosphere goes to orthopyroxene. In many literatures, the observed low H[ ]oli
H[ ]opx

 in the827 

lithosphere is interpreted to be a results of hydrogen loss from olivine, and the water 828 

content in orthopyroxene is used to estimate the water content in the lithosphere 829 

assuming the partition coefficient determined at high water fugacity (e.g., (Warren and 830 

Hauri, 2014)). This method could lead to an over-estimate of the water content in the 831 
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lithosphere. Also, I note that (Hauri et al., 2006; Tenner et al., 2009) and (Mierdel et al., 832 

2007) reported quite different depth dependence of H solubility and partitioning. 833 

Ce/H ratio ( Ce[ ]
H[ ] ) of basaltic magma is often used to infer the hydrogen content in834 

the source region (e.g., (Dixon et al., 2002)). Again there are two concepts behind this 835 

approach. First, both Ce and H are “incompatible elements” and go mostly to the melt 836 

upon partial melting. The degree to which pre-existing Ce and H in the rock goes to melt 837 

depends on the partition coefficients (if everything occurs as equilibrium process). The 838 

assumption behind this is that this ratio is nearly constant and hence by knowing the 839 

concentration of Ce, one could get some idea about the H content in the source region. 840 

Also the diffusion of Ce is much slower than that of H (e.g., (Chakraborty, 2010)) so Ce 841 

will faithfully reflect the Ce content of the source region while H might have escaped. 842 

Another also important assumption behind this exercise is that the partition coefficient of 843 

Ce and H between minerals and melts does not change with physical/chemical 844 

conditions.  845 

 Since H and Ce have different electrostatic charges (normally H +  and Ce3+ ), the 846 

dissolution mechanisms of H and Ce are likely different (Fig. 10). The dissolution 847 

mechanisms illustrated in Fig. 10 lead to the following relationship, 848 

849 

Ce[ ]
H[ ] ∝ aCe2O3

1/2

fH2O
fO2

−1/12 exp −
P 3υMg −2υCe

2 −υMgO( )
RT

⎡
⎣⎢

⎤
⎦⎥

 (27) 850 

851 

where aCe2O3
 is the activity of Ce2O3, fO2  is oxygen fugacity (where I assumed a relation 852 

′′VM[ ] ∝ fO2
1/6), υMgO  is the molar volume of MgO, υMg  is the molar volume of Mg and υCe  853 
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is the molar volume of Ce. Among various terms in the right hand side of this equation, 854 

aCe2O3
 and fH 2O correspond to the composition of the material, whereas other terms 855 

( fO2, exp
P υMgO −

3υMg−2υCe
2( )

RT
⎡
⎣⎢

⎤
⎦⎥ ) depend on the physical and chemical conditions. In particular, 856 

since υMgO −
3υMg−2υCe

2( ) >0, the ratio Ce[ ]
H[ ]  increases with pressure. The depth (therefore pressure857 

and temperature) at which partial melting occurs is different among different types of 858 

volcanism (e.g., mid-ocean ridge volcanism versus ocean island volcanism). Therefore 859 

the ratio Ce[ ]
H[ ]  is likely different among the rocks from different regions. Also, the860 

diffusion coefficient of Ce is much lower than that of H (Van Orman et al., 2001). 861 

Therefore it is possible that Ce concentration is not in chemical equilibrium. 862 

863 

Are noble gases compatible or incompatible elements? 864 

Noble gases are often assumed to behave like incompatible elements (e.g., 865 

(Allègre et al., 1996; Marty, 2012)). However, this notion is not entirely secure because 866 

either a noble gas element behaves like a compatible or incompatible element depends on 867 

the solubility ratio of that element between minerals and melts, and the solubility of noble 868 

gases in both minerals and melts depends strongly on pressure and temperature and 869 

minerals. Consequently, it is possible that the behavior of the noble gas elements, either 870 

compatible or incompatible, depends on the conditions at which melts and minerals co-871 

exist. 872 

There have been some challenges to the common belief of incompatible element 873 

behavior of noble gases such as Ar. For instance, Watson et al. (2007) published the 874 

results suggesting that Ar is a compatible element in the upper mantle although most of 875 
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previous studies show that all the noble gas elements behave like incompatible elements 876 

in the upper mantle (e.g., (Broadhurst et al., 1992; Brooker et al., 2003)). Similarly, 877 

Shcheka and Keppler (2012) published the experimental results showing high solubility 878 

of Ar in bridgmanite suggesting that Ar might behave like a compatible element in the 879 

lower mantle, although the solubility of other heavier noble gases is lower. 880 

However, the validity of the conclusions by (Watson et al., 2007) is questionable. 881 

The solubility of Ar reported by (Watson et al., 2007) are substantially higher than any 882 

other results including those by (Hiyagon and Ozima, 1986) who reported relatively high 883 

partition coefficient (high solubility) that is considered to be caused by inclusions (e.g., 884 

(Broadhurst et al., 1992)). If we focus on the results where the influence of inclusions 885 

was minimized (e.g., (Broadhurst et al., 1992)), the difference is even larger. The reason 886 

for the reported high solubility is unknown but one possibility is that this is due to the 887 

anomalous properties near the surface13  (see also (Pinilla et al., 2012)). In contrast, 888 

Shcheka and Keppler (2012) measured the bulk composition and showed that 889 

bridgmanite has much higher solubility of Ar than ringwoodite, and olivine. They also 890 

found a systematic trend in the solubility of various noble gas elements (Fig. 1e).  891 

In order to address the question of either a given noble gas behaves like an 892 

incompatible element or compatible element during melting or crystallization, it is 893 

necessary to compare the solubility of each noble gas element in minerals and melts. 894 

I assume the results by (Broadhurst et al., 1992) on the solubility of Ne, Ar, Kr and Xe in 895 

olivine and those in bridgmanite by (Shcheka and Keppler, 2012) in comparison with the 896 

13 Watson et al. (2007) used near surface ~ 60 nm layers. They checked the crystallinity 
of studied regions by electron-back scattered pattern (EBSD) but this does not prove that 
these regions are defect-free. 
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experimental results on the solubility in the melts by (Heber et al., 2007). Either a noble 897 

gas element behaves like a compatible or incompatible element depends on the partition 898 

coefficient, D = Cmineral

Cmelt . A few assumptions are made in this analysis. First, the solubility 899 

results by (Broadhurst et al., 1992) are reported as Π[ ] / fΠ (solubility divided by the900 

fugacity of relevant element). However, the solubility depends on fugacity as well as the 901 

free energy difference between a mineral with impurity and pure mineral as 902 

Π[ ] ∝ fΠ exp − E*+PV *

RT( )  (see equation (13)). Therefore one needs to make a correction for903 

the exp − E* +PV*

RT( )  term. The reported values by (Shcheka and Keppler, 2012) are directly904 

Π[ ] but the results are at P=25 GPa (T=1873-2073 K). Therefore in order to discuss the905 

partitioning in the whole lower mantle (P=24 to 135 GPa, T=2000-4000 K), one needs a 906 

large extrapolation in the exp − E* +PV*

RT( )  term. Given a vacancy model (Fig. 9), V*  is907 

essentially the volume change associated with vacancy formation that is approximately 908 

the volume of ion that is replaced with a noble gas14, and E*  can be estimated from the 909 

experimental results (Fig. 1e) using the strain energy model.  910 

Ar solubility in the melts at ~25 GPa calculated from the data at ~10 GPa 911 

(Chamorro-Perez et al., 1998; Schmidt and Keppler, 2002) is ~0.1 wt % in olivine melt, 912 

and 0.5-0.8 wt % tholeiite melt. The Ar solubility in bridgmanite at ~25 GPa is ~0.5-1 wt 913 

% (Shcheka and Keppler, 2012). This means that the frequently made assumption that Ar 914 

is incompatible element (e.g., (Allègre et al., 1996; Marty, 2012)) is not valid at least in 915 

the shallow lower mantle, and bridgmanite will work as a reservoir for Ar in the shallow 916 

lower mantle. For other noble gas elements, data are limited, but Xe has higher solubility 917 

14 This is based on the fact that oxygen is highly non-ideal gas at pressures higher than ~1 
GPa. 
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in the melt than in bridgmanite, i.e., Xe is incompatible element at the shallow lower 918 

mantle. 919 

However, the behavior of noble gas elements under higher pressures is not 920 

constrained. A theoretical model for the solubility in the melt suggests a modest decrease 921 

in solubility at higher pressures (Guillot and Sarda, 2006), while a vacancy model (see 922 

Fig. 9) would predict a stronger effect (with V*=5 cc/mol, increase in pressure by 50 GPa 923 

will reduce the solubility by a factor of ~105) whereas the pressure effect on the solubility 924 

in melt is much less according to (Guillot and Sarda, 2006). Consequently, it is expected 925 

that the compatible element behavior of Ar is limited to the shallow lower mantle 926 

conditions. This hypothesis needs to be tested by experiments. 927 

928 

SUMMARY AND CONCLUDING REMARKS 929 

Extensive experimental studies on trace element partitioning have revealed 930 

various trends including the importance of the difference in the size of the trace element 931 

and the size of the ion that the trace element replaces. The nature of element partitioning 932 

between two materials depends on how those materials accommodate “impurities”. 933 

Physics and chemistry of point defects is highly relevant to understand the dissolution of 934 

trace elements. A continuum model of point defects (e.g., (Eshelby, 1951, 1954, 1956; 935 

Flynn, 1972)) and the basics of point defect chemistry (e.g., (Kröger and Vink, 1956)) 936 

can be used to explain a majority of observations. However, I also note that some 937 

atomistic details need to be incorporated in case of charged defects (e.g., (Mott and 938 

Littleton, 1938)) to explain the inferred magnitude of the strain field.  In melts, impurities 939 

are accommodated by a more flexible structure. A hard sphere model (Barrat and Hansen, 940 
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2003; Guillot and Sarda, 2006; Guillot and Sator, 2012; Jing and Karato, 2011) provides 941 

a good framework to explain various behavior of trace element solubility in the melts. 942 

One important general conclusion is that the solubility and/or the partition 943 

coefficient of any elements depends on minerals and melts as well as pressure, 944 

temperature and other chemical parameters (such as oxygen fugacity and water fugacity). 945 

Consequently, partition coefficients likely change with physical and chemical conditions. 946 

Results obtained under limited conditions should not be applied to other conditions 947 

without appropriate corrections. Experimental studies under a broad range of conditions 948 

are important to understand the behavior of elements in Earth and planetary interiors. 949 
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Figure Captions 960 

Fig. 1 Examples of some observations on element partitioning (solubility) 961 

a. Element partition coefficient between diopside and silicate melt (Blundy and 962 

Wood, 2003)  (P=3 GPa, T=1930 K) 963 

b. Trace element partition coefficients between (i) Mg-perovskite and silicate melt 964 

and (ii) Ca-perovskite and silicate melt (Hirose et al., 2004) (P=25-27 GPa, T=2670-965 

2800K) 966 

c. Trace element partition coefficients between (i) Mg-perovskite and silicate melt 967 

and (ii) Ca-perovskite and silicate melt plotted as a function of the size of trace element, 968 

i.e., the Onuma diagram (Hirose et al., 2004) (P=25-27 GPa, T=2670-2800K)969 

d. The partition coefficient of hydrogen between olivine and orthopyroxene (Dai and 970 

Karato, 2009) 971 

e. The partition coefficient of noble gas between olivine and silicate melt (Brooker 972 

et al., 2003; Heber et al., 2007) (P=0.1 GPa, T=1530 K) 973 

f. The solubility of noble gas elements in bridgmanite at P=25 GPa, T=1873-2073 K 974 

(Shcheka and Keppler, 2012) 975 

g. The solubility coefficient of noble gas in silicate melts at P=0.1 GPa and T~1530 976 

K (Heber et al., 2007) 977 

978 

Fig. 2 Two ways of examining the element partitioning between a solid (a mineral) and 979 

a liquid (melt) 980 

(a) Direct exchange of a trace element (i) and the host ion (h) (a model used by981 

(Blundy and Wood, 1994)) 982 
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(b) The same process can be envisioned as the dissolution of a trace element (i) in 983 

a solid (a mineral) and a liquid (melt) (a model used in this paper). 984 

985 

Fig.3 A diagram showing the process of replacement of an ion with the radius ro  with a 986 

trace element with the radius r1  987 

The final size of the site ( %r ) is between initial size ( ro ) and the size of the trace 988 

element ( r1) and is determined by the size difference and the elastic properties of the 989 

matrix and the trace element. 990 

Fig. 4 A plot of 
%r

ro
−1

r1
ro

−1
= K1

K1+ 4
3Go

= K1/G0
1+ 4

3 K1/G0( )  against K1 / G0  ( %r : the size of the site after a trace991 

element occupies replaces the pre-existing cation, ro : the size of the site before a trace 992 

element goes to the site (size of the cation), r1 : the size of the trace element, K1 : the bulk 993 

modulus of the trace element, Go : shear modulus of the matrix) 994 

If the trace element is soft ( K1 / G0 → 0; e.g., a noble gas element), then %r ≈ ro , 995 

whereas if the trace element is stiff ( K1 / G0 → ∞ ), %r ≈ r1 . The assumption by (Brice, 996 

1975) of %r ≈ r1  would be valid only for an infinitely stiff trace element, but not for weak 997 

elements such as the noble gas elements. 998 

999 

Fig. 5 A schematic diagram showing the processes of trace element dissolution in a 1000 

liquid (L: liquid, A: reservoir) 1001 

(a) A case where a trace element (i) replaces a host ion (h) in the liquid 1002 
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This is a case when the trace element is an ion occupying a cluster in the liquid and in the 1003 

reservoir. The green hexagons in these figures show the clusters each of which contains a 1004 

cation and oxygen ions. 1005 

(b) A case where a trace element (i) occupies the void space1006 

This would be a preferred case when the trace element is neutral (e.g., noble gas). 1007 

Dissolution of a trace element (noble gas atom) occurs as an addition to the liquid not as 1008 

an exchange between the liquid (L) and the reservoir (A). 1009 

1010 

Fig. 6 Plots of normalized trace element solubility ( Ci
mineral ) corresponding to the elastic 1011 

strain energy model against the size of the trace element corresponding to three models 1012 

summarized in Table 2 ( r1 : size of the trace element, r0 : size of the site to which a trace 1013 

element goes) 1014 

K1 =100 GPa ( = Ko ), G0  =80 GPa, r0 = 0.1 nm, T=1600 K 1015 

The comparison is made after normalizing that the strain energy at r1/ro=1 is 1016 

common. Such a diagram can be directly translated to a diagram for the partition 1017 

coefficient ( Di
mineral/melt = Ci

mineral / Ci
melt ) only when the concentration of trace element 1018 

( Ci
m elt ) is independent of element. 1019 

1020 

Fig. 7 Plots showing the correlation of experimentally determined effective elastic 1021 

constant EEC( )obs  with the effective elastic constant from various models EEC( )calc  1022 

amp: amphibole, cpx: clinopyroxene, gt: garnet, oli: olivine, opx: orthopyroxene, 1023 

pla: plagioclase, woll: wollastonite (data from (Blundy and Wood, 2003)), unit of EEC is 1024 

GPa 1025 
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(a) A comparison with the Brice model EEC( )calc
Brice = 0.225 ⋅ Zo / ro + roxy( )4  ( Zo : electric 1026 

charge of ion at the site where a trace element is dissolved, ro : ionic radius of the host 1027 

ion, roxy : ionic radius of oxygen ion) 1028 

A thick line corresponds to EEC( )obs = EEC( )calc
Brice  ( χ 2 =106). 1029 

(b) A comparison with the Blundy and Wood model EEC( )calc
BW = 1.12 ⋅ Z1 / ro + roxy( )31030 

( Z1 : electric charge of the trace element)  1031 

A thick line corresponds to EEC( )obs = EEC( )calc
BW  ( χ 2 =40). 1032 

(c) A comparison with the present model EEC( )calc
Karato = 3K1

2

K1+ 4Go
3

1033 

K1  is the bulk modulus of a cation-oxygen polyhedron (= 0.15 ⋅ Z1 / ri + roxy( )4 , ri : ionic 1034 

radius of a trace element i). Since several different ions are used to determine EEC( )obs , I 1035 

used an average value, K1  (average on various i). A thick line corresponds to 1036 

EEC( )obs = EEC( )calc
Karato ( χ 2 =18).1037 

1038 

Fig. 8 Solubility of noble gases in olivine and diopside ( Cnoble gas
mineral ) calculated from the 1039 

partitioning coefficient Dnoble gas
mineral/melt  and noble gas solubility in the melt Cnoble gas

melt  using a 1040 

formula Cnoble gas
mineral = Dnoble gas

mineral/melt ⋅Cnoble gas
melt   1041 

The data shown in Fig. 1d and Fig. 1f are used. The results correspond to P=0.1 1042 

MPa and T~1550 K. Solubility of noble gases in the melt increases with pressure linearly 1043 

to ~10 GPa (Guillot and Sarda, 2006). Solubility of noble gases in minerals also likely 1044 
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increases with pressure linearly in the low-pressure regime (<0.1 GPa) (Henry’s law), but1045 

the pressure dependence at high pressures was not studied. 1046 

1047 

Fig. 9 Dissolution of a noble gas element, Π , in a mineral via a vacancy mechanism 1048 

A noble gas atom ( Π ) goes into a vacant Φ -site to form a point defect ΠΦ
Ψ  ( Π  1049 

occupying the Φ -site with an effective charge of Ψ ). A vacancy at the M-site ( ′′VM ) is 1050 

preferred in olivine and diopside while a vacancy at the O-site ( VO
) is preferred in 1051 

bridgmanite. The charge compensating defects are FeM
  (ferric Fe at the M-site) in 1052 

olivine and diopside, and ′e  (free electron) in bridgmanite.  1053 

1054 

Fig. 10 Models of dissolution of (a) H (hydrogen) and (b) Ce in olivine 1055 

(a) H2O reacts with olivine to form H-bearing olivine (as 2H( )M
× + MgOsurface)1056 

This model predicts H[ ] ∝ fH 2O P,T( ) ⋅exp − P⋅υMgO
RT( ).1057 

(b) Ce2O3 reacts with olivine to form Ce-bearing olivine (as 2CeM
 + ′′VM + 3MgOsurface)1058 

This model predicts Ce[ ] ∝ aCe2O3

1/2 ⋅ ′′VM[ ]−1/2 exp − Δυ
2RT( ) ∝ aCe2O3

1/2 ⋅ fO2
−1/12 exp − P 3υMg −2υCe( )

2RT( ).1059 

1060 

1061 
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 1062 
Table 1 Definition of symbols 1063 
 1064 

Nernst partition coefficient of element i between phase Y and X 

mass fraction of element i in a phase Y (X) 

Di
Y /X = Ci

Y

Ci
X( ) molar partition coefficient of element i between phase Y and X 

Ci
Y ,X  molar fraction of element i in a phase Y(X) 

Ki
Y /X = ai

Y

ai
X( ) equilibrium constant of element i between phase Y and X 

ai
Y ,X  activity of element i in a phase Y(X) 

μX  chemical potential of a phase X 
fX fugacity of a fluid phase X 
ro  radius of a lattice site at which a trace element is to be placed 
r1 radius of a trace element before placed into the crystal site 

size of the crystal site after the placement of a trace element 
lattice strain caused by the replacement of a host ion with a trace element 

K1 bulk modulus of a trace element 
Go  shear modulus of the matrix (crystal) 
κ  static dielectric constant of the matrix 

ξ = K1
K1+ 4

3Go( ) relative contribution from the trace element and the matrix to strain energy 

EEC effective elastic constant of a site with a trace element 
χ 2  measure of the fit of a model to the data 
Z1 electrostatic charge of a trace element 
roxy  radius of oxygen ion 
A ′′rM  Ar at the M-site with effective charge of 2- 

1065 
1066 
1067 
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Table 2 Equations for strain energy of trace element dissolution*, ** 1068 

 All Δu  are for a defect (for per mole, one should multiply by NA  Avogadro 1069 

number). 1070 

 1071 

author strain energy

Nagasawa (1966) 
Δuelatsic = 8πr0

3 KoGo
Ko+ 4

3Go

r1
r0

− 1( )2
1+ Ko

Ko+ 4
3 Go

r1
r0

− 1( )⎡
⎣⎢

⎤
⎦⎥

T

Blundy and Wood (1994) 
(Brice, 1975) Δuelastic = 6π r0

3 KoGo

Ko + Go
3

r1
r0

− 1( )2
1+ 2

3
r1
r0

− 1( )⎡
⎣

⎤
⎦

     (T-2) 

Karato (this study) 
Δuelastic = 6π r0

3 K1
2

K1+ 4
3G0

r1
r0

− 1( )2
1+ K1

K1+ 4
3G0

r1
r0

− 1( )⎡
⎣⎢

⎤
⎦⎥
   (T-3)

1072 

In equations (T-1) and (T-2), I transformed E (Young’s modulus) to a combination of 1073 

bulk modulus and shear modulus using E = 9KG
3K+G .  1074 

ro : radius of the site into which a trace element is inserted 1075 

r1: radius of the trace element 1076 

K1: bulk modulus of the trace element 1077 

Ko: bulk modulus of the matrix (host crystal) 1078 

Go : shear modulus of the matrix (host crystal) 1079 

1080 
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Appendix 1: a modified strain energy model 1299 

I consider the elastic strain energy model to calculate the energy change 1300 

associated with the replacement of an ion in a crystal with another one with different size. 1301 

In the elastic strain energy model, all materials involved are considered to be elastic 1302 

media. Accordingly, both the matrix and the trace element are treated as elastic media. 1303 

Treating a trace element as an elastic medium is a gross simplification. However, by 1304 

assigning a bulk modulus to the trace element, it is possible to evaluate the influence of 1305 

“stiffness” of a trace element on the strain energy.  1306 

When a crystal is treated as an isotropic elastic medium, the displacement in the 1307 

matrix and the spherical inclusion is given by (e.g., (Flynn, 1972)), 1308 

1309 

ru0,1 = A0,1

r3 + B0,1( ) rr (A-1) 1310 

1311 

where suffix 0 refers to those for the matrix and 1 to the trace element, and A0,1 and B0,1 1312 

are constants that are to be determined by the boundary conditions. The equation (A-1) 1313 

has 4 unknowns, A0,1 and B0,1 . The boundary conditions are: (1) σ rr R( ) = 0 (R is the1314 

radius the crystal (homogeneous stress caused by pressure is subtracted)), (2) σrr  and u1315 

are continuous at the boundary between 1 and 0 ( r = %r ≡ 1+ ε( )r0 ). Note that the1316 

displacement of the boundary, i.e., ε , is also an unknown that must be determined by 1317 

solving the force balance and displacement continuity equations.  1318 

The solution to (A-1) is somewhat tricky to obtain because of the effects of the 1319 

image force, i.e., the condition σ rr R( ) = 0 (Eshelby, 1951, 1954). We consider first a1320 
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finite crystal with a finite radius R and consider the proper boundary conditions including 1321 

the ones at the surface (r=R). Then we let R → ∞ . The condition of zero (excess) normal 1322 

stress at r=R leads to 1323 

1324 

B0 = 4G0
3K0

A0

R3 .  (A-2) 1325 

1326 

Note that although B0 becomes vanishingly small at R → ∞, it leads to a finite volume 1327 

change of a crystal due to the effect of the image force (Eshelby, 1951, 1954).  The 1328 

volume change of a crystal due to this displacement is 1329 

1330 

Δυc = 4π R2u R( ) = 4π A0
Ko + 4

3Go
Ko

= 12π A0
1−ν0( )
1+ν0

.   (A-3) 1331 

1332 

In addition, there is an explicit volume change caused by the addition of a trace element. 1333 

Adding the volume change by replacing one atom (ion) with another, the net change in 1334 

the volume of the whole system is given by 1335 

1336 

Δυ = Δυc + υ1 −υ0( ) = 12π A0
1−ν0( )
1+ν0

+ υ1 −υ0( ) (A-4) 1337 

1338 

where υ1  are the volume of mineral after the trace element is dissolved and υ0  is the 1339 

volume of the mineral before the trace element dissolution (the volume difference 1340 

υ1 −υ0( )  may correspond to the volume change associated with the formation of point1341 

defects). The normal stress at the boundary ( r = %r ≡ 1+ ε( )r0) from the inclusion comes1342 
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from the initial pressure + displacement. The conditions of continuity of stress and 1343 

displacement lead to 1344 

1345 

− 4G0A0
%r3 + 3K0B0 = 3K1 1− r1

%r( ) (A-5a) 1346 

A0

%r2 + B0 %r = B1%r = %r − r0  (A-5b) 1347 

1348 

where K0,1  are the bulk moduli of the host crystal and the trace element respectively.1349 

From (A-5b), B1%r = %r − r0 = B1r0 1+ ε( ) = r0ε , so that B1 = ε
1+ε . Using (A-2) and taking1350 

the limit of R → ∞ , one obtains A0 = ε 1+ ε( )2 r0
3.1351 

Therefore the coefficients in equation (A-1) are given by, 1352 

1353 

A0 = ε 1+ ε( )2 r0
3 (A-6a) 1354 

A1 = 0 (A-6b) 1355 

B0 = ε 1+ ε( )2 4G0
3K0

r0
R( )3

 (A-6c) 1356 

B1 = ε
1+ε .  (A-6d) 1357 

1358 

Inserting these relations into (A-5a) and ignoring the terms containing r0
3

R3 , one obtains 1359 

1360 

ε = β r1
r0

−1( )  (A-7) 1361 

1362 
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with β ≡ K1
K1+ 4

3Go
. Therefore for a very stiff trace element ( K1 >> G0 ), ε ≈ r1

r0
−1  and ˜ r ≈ r11363 

whereas for a very soft trace element (e.g., noble gas elements), K1 / Go  1, so ε ≈ 0  1364 

and ˜ r ≈ r0 .1365 

The enthalpy associated with the incorporation of trace element is given by 1366 

1367 

Δhela = Δuela + PΔυ  (A-8) 1368 

1369 

where Δuela  is the strain energy and Δυ  is the volume change of a crystal due to the 1370 

incorporation of a trace element. From (A-4) and (A-6a), the volume change is given by 1371 

1372 

Δυ = 4πro
3 r1

r0
−1( ) 1+ Ko

Ko+ 4
3Go

r1
r0

−1( )⎡
⎣⎢

⎤
⎦⎥

2
+ 4π

3 r0
3 r1

3

r0
3 −1⎛

⎝
⎞
⎠. (A-9) 1373 

1374 

The volume change due to this process is a fraction of atomic volume and is small 1375 

compared to the volume change associated with vacancy formation. 1376 

The strain energy can be calculated as 1377 

1378 

Δuela = 4π w1 r( )0
%r
∫ r2dr + lim

R→∞
w0 r( )%r

R
∫ r2dr⎡

⎣⎢
⎤
⎦⎥

(A-10)1379 

where  1380 

w0,1 = λ0,1
2

dur
0,1

dr + 2 ur
0,1

r( )2
+ μ0,1

dur
0,1

dr( )2
+ 2 ur

0,1

r( )2⎡

⎣
⎢

⎤

⎦
⎥ (A-11)1381 

1382 
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are the strain energy densities in the host crystal (0) and in the trace element (1) 1383 

respectively and where λ0,1, μ0,1 are the Lamé constants of the matrix (“0”) and the trace 1384 

element (“1”). 1385 

From (A-5), (A-6), (A-7) and (A-11), one gets, 1386 

1387 

w0 = 9
2 K0B0

2 + 6G0A0
2

r6 = 2Ao
2μo

4Go
Ko

1
R6 + 3

r6⎡⎣ ⎤⎦  (A-12a) 1388 

w1 = 9
2 K1B1

2.  (A-12b) 1389 

1390 

Inserting equations (A-6) and with (A-10),  1391 

1392 

Δuela = 6π r0
3 ε 2 1+ ε( ) K1 + 4

3 G0( )
= 6π K1

2

K1+ 4
3G0

r0
3 r1

r0
−1( )2

1+ K1
K1+ 4

3G0

r1
r0

−1( )⎡
⎣⎢

⎤
⎦⎥

.  (A-13) 1393 

1394 

The equations (A-8), (A-9) and (A-13) give the change in the elastic enthalpy, Δhela , 1395 

upon the dissolution of a trace element. 1396 

1397 
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Appendix 2: Electrostatic charge and effective elastic constants 1398 

Strain energy model is formulated in terms of the size of the site ( ro ), the size of a 1399 

trace element ( r1) and elastic constants of relevant materials (trace element and the host 1400 

crystal). Comparing a theoretical relationship such as the equations (T-1) through (T-3) 1401 

with the observed data on element partitioning, one can calculate the effective elastic 1402 

constant. However, when one does such an exercize, the size of the site at which a peak 1403 

of partition coefficient is supposedly located does not always agree with the ionic radius 1404 

of the host ion (e.g., (Blundy and Dalton, 2000)). For instance, in the case of the M2 site 1405 

of clinopyroxene where trace elements with 3+, 2+ and 1+ charge could go, the estimated 1406 

ro  from the Onuma diagram agrees well with the ionic radius of the host ion only for 1407 

trace elements with 2+ charge. The inferred ro  is substantially larger than the ionic radius 1408 

of the host ion for trace elements with 1+ charge, and it is less than the ionic radius for 1409 

trace elements with 3+ charge. 1410 

This can be attributed to the influence of the charge on the atomic displacement 1411 

near a point defect. When a point defect such as a vacancy is formed in an ionic crystal, it 1412 

will create elastic and electric singularities. When a trace element is inserted into that site 1413 

with an electric charge different from the host ion, it will generate electrostatic force to 1414 

cause displacement of the ions surrounding it. For a trace element with a charge less 1415 

(more) than that of the host, the force is repulsive (attractive) and the size of the site will 1416 

increase (decrease). This explains the systematic shift of ro  with the charge of the trace 1417 

element. 1418 

This effect is largest when the trace element is neutral, i.e., the noble gases. 1419 
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Appendix 3: Some notes on the estimation of EEC( )obs  1420 

When the solubility of trace elements in a mineral is measured (e.g., the noble gas 1421 

solubility in bridgmanite (Shcheka and Keppler, 2012)), the elastic strain energy model 1422 

can be directly compared with the data on the element solubility to calculate the effective 1423 

elastic constant, EEC. In most of trace elements, the available data are the partition 1424 

coefficients rather than the solubility. In these cases, we need to make an assumption that 1425 

the concentration of these elements in the melts is independent of the properties of the 1426 

element. If this assumption is valid, then one can translate the partition coefficient as the 1427 

solubility, and then compare the results with a model of element solubility (elastic strain 1428 

energy model)15.  1429 

There is another complication in estimating the EEC.  When the EEC is calculated 1430 

from the partition coefficients or the solubility, various data for a range of ionic radius (or 1431 

atomic radius), r1, are used. This is not trivial because the EEC itself likely depends on 1432 

the size of host ion ( ro ) and the size of the trace element ( r1 ), but the relationship 1433 

between these parameters and the EEC is unknown. Furthermore, even the size of the 1434 

site, ro , estimated from the Onuma diagram is sometimes different from the value 1435 

expected from the ionic radius of the host ion and is treated as an unknown parameter to 1436 

be determined from the experimental observations (e.g., (Blundy and Dalton, 2000)). 1437 

Under these circumstances, it is justifiable to obtain a rough estimate of the EEC first 1438 

assuming that it is independent of ro  and r1 , and explore the correlation of the effective 1439 

elastic constant with other parameters such as ro  and r1  because the dependence of the 1440 

EEC on these parameters is weak in comparison to the variation in the EEC. This can be 1441 

15 This assumption is not valid for the noble gases. 
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seen as follows. The bulk modulus of polyhedron depends on the ionic size as 1442 

Ki,o ∝ Zi,o / ri,o + roxy( )4  (corrected from (Hazen and Finger, 1979)) where roxy  is the radius1443 

of oxygen ion and Zi,o  is the electric charge of the trace element or the host ion. When 1444 

ri,o  changes from 0.10 to 0.14 nm, Ki,o  changes ~30% that is small compared to a 1445 

variation of the EEC among different sites (a factor of ~10-100; (Blundy and Wood, 1446 

2003)). Therefore such a procedure of estimating the effective elastic constant can be 1447 

justified as a first-order approximation.  1448 

1449 

1450 
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