1	American Mineralogist Manuscript 5682 Revision 1
2	Yangite, PbMnSi ₃ O ₈ ·H ₂ O, a new mineral species with double
3	wollastonite silicate chains, from the Kombat mine, Namibia
4 5	Robert T. Downs ¹ , William W. Pinch ² , Richard M. Thompson ^{3*} , Stanley H. Evans ¹ , and
6	Lauren Megaw ¹
7	¹ Department of Geosciences, University of Arizona, 1040 E. 4 th Street, Tucson, Arizona 85721, U.S.A.
8	² 19 Stonebridge Lane, Pittsford, New York 14534, U.S.A.
9	³ School of Information, University of Arizona, 1103 E. 2 nd Street, Tucson, Arizona 85721, U.S.A.
10	*Corresponding author: rmthomps@email.arizona.edu
11	Abstract
12	A new chain-silicate mineral species, yangite, ideally PbMnSi ₃ O ₈ ·H ₂ O, has been
13	found on a specimen from the Kombat mine, Otavi Valley, Namibia. Associated minerals
14	are melanotekite and rhodochrosite. Yangite is colorless to pale brown in transmitted
15	light, transparent with white streak and vitreous luster. Broken pieces of yangite crystals
16	are bladed or platy, and elongated along [010]. It is sectile with a Mohs hardness of \sim 5;
17	cleavage is perfect on {101} and no twinning or parting was observed. The measured and
18	calculated densities are 4.14(3) and 4.16 g/cm ³ , respectively. Optically, yangite is biaxial
19	(-), with $n_{\alpha} = 1.690(1)$, $n_{\beta} = 1.699(1)$, $n_{\gamma} = 1.705(1)$, $Y = b$, $Z \land c = 11^{\circ}$ and $2V_{meas} =$
20	77(2)°. It is insoluble in water, acetone, and hydrochloric acid. An electron microprobe
21	analysis demonstrated that the sample was relatively pure, yielding the empirical formula
22	(with calculated H ₂ O) $Pb_{1.00}Mn^{2+}_{1.00}Si_{3.00}O_8 \cdot H_2O$.
23	Yangite is triclinic and exhibits space group symmetry P-1 with unit-cell
24	parameters $a = 9.6015(9)$, $b = 7.2712(7)$, $c = 7.9833(8)$ Å, $\alpha = 105.910(4)$, $\beta = 118.229(4)$,
25	$\gamma = 109.935(5)^{\circ}$, and $V = 392.69(7)$ Å ³ . Its crystal structure is based on a skeleton of double
26	wollastonite SiO ₄ tetrahedral chains oriented parallel to [010] and interlinked with

27	ribbons of Mn- and Pb-polyhedra. Yangite represents the first chain silicate with two-
28	connected double chains and possesses all of the structural features of a hypothetical
29	triclinic $Ca_2Si_3O_8$ ·2H ₂ O phase proposed by Merlino and Bonaccorsi (2008) as a
30	derivative of the okenite structure. The difference in the H ₂ O component between the
31	hypothetical phase and yangite likely is a consequence of the larger Pb ²⁺ with its lone-
32	pair electrons in yangite replacing the smaller Ca^{2+} in the hypothetical phase.
33	Key words: yangite, chain silicate, wollastonite chains, crystal structure, X-ray
34	diffraction, Raman spectra
35	Introduction
36	A new mineral species and new type of chain silicate, ideal formula
37	PbMnSi ₃ O ₈ ·H ₂ O, has been found on a specimen from the Kombat mine, Otavi Valley,
38	Namibia. It is named yangite to honor the contributions of Dr. Hexiong Yang,
39	Department of Geosciences, University of Arizona, to the fields of chain silicates in
40	particular and mineralogy in general, and his stewardship of the RRUFF project's
41	(<u>http://rruff.info</u>) ambitious attempt to characterize the known minerals chemically,
42	structurally, and spectrographically. The new mineral and its name have been approved
43	by the Commission on New Minerals and Nomenclature and Classification (CNMNC) of
44	the International Mineralogical Association (IMA2012-052). Part of the cotype sample
45	has been deposited at the University of Arizona Mineral Museum (Catalogue # 19341),
46	the RRUFF Project (deposition # R090031), and the Smithsonian Institution, Washington
47	DC, USA (catalogue number 175983). This paper describes the physical and chemical
48	properties of yangite, and its single-crystal X-ray diffraction and Raman spectroscopic
49	data.
50	Sample Description and Experimental Methods
51	Occurrence, physical and chemical properties, and Raman spectra
52	Yangite was found on a single specimen from the Kombat mine, Namibia, in the

53 collection of the late John Innes (Figure 1). Innes was a senior mineralogist in the

employ of the Tsumeb Corporation and has been honored for his studies of the geology
and mineralogy of the Tsumeb and Kombat mines with a mineral name, johninnesite (c.f.
Innes and Chaplin 1986). He gave the piece to co-author Bill Pinch with the recognition
that it was unique.

58 A brief summary of relevant geological information follows, taken from a detailed 59 presentation of the geology of the Kombat Mine authored by Innes and Chaplin (1986). The Kombat mine, located in the Otavi Valley, 37 km east of Otavi and 49 km south of 60 Tsumeb, is in a sequence of weakly metamorphosed, thin to massive bedded, shallow-61 62 water dolostones of the Upper Proterozoic Hüttenberg Formation. Six discrete bodies of 63 brecciated, hydrothermally deposited massive sulphide ores are present along a 64 disconformity separating dolostone from younger slate. Elements that occur in economic 65 concentrations include copper, lead, and silver. Iron and manganese are abundant. Other 66 elements found at Kombat in significant concentrations include zinc, barium, arsenic, 67 chromium, molybdenum, chlorine, and germanium.

68 Yangite occurs in an epithermal association, one of seven described ore types. 69 The others are massive and semi-massive sulphides, mineralized net-vein fracture 70 systems, galena-rich alteration breccias, a pyrite-sericite association, an iron-manganese 71 oxide/silicate association, and mineralized fracture fillings. The epithermal association 72 postdates main mineralization and consists of vuggy veins of calcite, quartz, and 73 chalcopyrite; narrow veins of galena, rhodochrosite, helvite, and barite; and a rare 74 assemblage in the Kombat Central ore body of manganite-nambulite-serandite-barite-75 cahnite-brushite-kentrolite-calcite-gypsum. Yangite presumably comes from the narrow 76 rhodochrosite-bearing veins.

Dunn (1991) reviewed rare minerals found in the Kombat Mine, including four Pb-silicates: barysilite, melanotekite, kentrolite, and molybdophyllite. Yangite increases the total of Pb-silicates to five, and is found in a massive assemblage with melanotekite $Pb_2Fe^{3+}_2O_2Si_2O_7$ and rhodochrosite MnCO₃. Figure 1 is a photograph of a spray of

81	yangite in a matrix of black massive melanotekite and brown rhodochrosite. Broken
82	pieces of yangite crystals are bladed or platy, elongated along [010], and up to 12 mm
83	long. No twinning is apparent in any of the samples.
84	The mineral is colorless to pale brown in transmitted light under miscrscopy,
85	transparent with white streak and vitreous luster. It is sectile and has a Mohs hardness of
86	~5; cleavage is perfect on $\{101\}$ and no parting was observed. Fractures are uneven. The
87	measured (by heavy-liquid) and calculated densities are $4.14(3)$ and 4.16 g/cm ³ ,
88	respectively. Optically, yangite is biaxial (-), with $n_{\alpha} = 1.690(1)$, $n_{\beta} = 1.699(1)$, $n_{\gamma} =$
89	1.705(1), Y = b, Z \land c =10.7 °, 2V _{meas} = 77(2)°, and 2V _{calc} = 78°. It is insoluble in water,
90	acetone, and hydrochloric acid.
91	The chemical composition of yangite was determined with a CAMECA SX100
92	electron microprobe at 15 kV and 5 nA with a beam diameter of 20 $\mu m.$ The standards
93	include diopside for Si, rhodonite for Mn, and NBS_K0229 (Pb-glass) for Pb, yielding an
94	average composition (wt.%) (10 points) of SiO ₂ 36.59(19), MnO 14.45(11), PbO
95	45.46(41), H_2O 3.66 added on the basis of structural results, resulting in a total of
96	100.16(34). The presence of H_2O in yangite was confirmed by Raman spectroscopic
97	measurements and structure determination (see below). Trace amounts of Fe and Ca were
98	observed from WDS, but they were under the detection limits of the analysis. The
99	resultant chemical formula, calculated on the basis of 9 O atoms (from the structure
100	determination), is $Pb_{1.00}Mn_{1.00}Si_{3.00}O_8 \cdot H_2O$, or simply $PbMnSi_3O_8 \cdot H_2O$.
101	The Raman spectrum of yangite was collected from a randomly oriented crystal
102	on a Thermo Almega microRaman system, using a 532-nm solid-state laser with a
103	thermoelectric cooled CCD detector. The laser is partially polarized with 4 cm ⁻¹
104	resolution and a spot size of 1 μ m.
105	X-ray crystallography
106	Both powder and single-crystal X-ray diffraction data of yangite were collected
107	on a Bruker X8 APEX2 CCD X-ray diffractometer equipped with graphite-

108 monochromatized Mo K_{α} radiation. However, it is difficult to unambiguously index all 109 powder X-ray diffraction peaks due to severe peak overlaps. Table 1 lists the measured 110 powder X-ray diffraction data, along with those calculated from the determined structure 111 using the program XPOW (Downs et al. 1993).

112 Single-crystal X-ray diffraction data for yangite were collected from an 113 untwinned, elongated tabular crystal (0.06 x 0.04 x 0.03 mm) with frame widths of 0.5° 114 in ω and 30 s counting time per frame. All reflections were indexed on the basis of a 115 triclinic unit-cell (Table 2). No satellite or super-lattice reflections were observed. The 116 intensity data were corrected for X-ray absorption using the Bruker program SADABS. 117 The absence of any systematic absences of reflections suggest possible space groups P1 118 or P-1. The crystal structure was solved and refined using SHELX97 (Sheldrick 2008) 119 based on the space group P-1 because it produced the better refinement statistics in terms 120 of bond lengths and angles, atomic displacement parameters, and R factors. The positions 121 of all atoms were refined with anisotropic displacement parameters, except for H atoms, 122 which were not located from the difference Fourier maps. Final coordinates and 123 displacement parameters of the atoms in yangite are listed in Table 3 and selected bond-124 distances in Table 4.

125

Discussion

126 *Crystal structure*

127 The crystal structure of yangite consists of double wollastonite SiO₄ tetrahedral 128 chains running parallel to **b** and sharing corners with ribbons of Mn- and Pb-polyhedra 129 (Figure 2a). These double chains are characterized by alternating 4- and 6-membered 130 tetrahedral rings, like those found in okenite, Ca₁₀Si₁₈O₄₆·18H₂O (Figure 2b) (Merlino 131 1983). In okenite, however, layers of parallel double chains stacked along c* alternate 132 with sheets of tetrahedra composed of 5- and 8-membered rings. Similar double 133 wollastonite chains have also been found in synthetic compounds (Haile and Wuensch 134 1997, 2000; Radić and Kahlenberg 2001; Radić et al. 2003).

135 There are three distinct tetrahedral Si sites in yangite, Si1, Si2, and Si3, with average Si-O bond distances of 1.622, 1.622, and 1.624 Å, respectively. Among them, the 136 137 Si3 tetrahedron is the most distorted and the Si2 the least, as measured by tetrahedral 138 angle variance and quadratic elongation (Robinson et al. 1971) (Table 4), but none are 139 unusually distorted. The Mn²⁺ cation is octahedrally coordinated. Bond-valence sums calculated 140 141 using the parameters given by Brese and O'Keeffe (1991) indicate that Mn is 2+, rather 142 than 3+, and that O9W is H₂O (Table 5). The cation coordination octahedron is relatively 143 undistorted, especially given that one corner is anchored by a water molecule, with an 144 angle variance of 34.06 and a quadratic elongation of 1.01. The bonding topology of yangite was calculated using the procrystal 145 146 representation of its electron density. Procrystal electron density is computed by 147 summing the contributions of the spherically-averaged electron density of neutral atoms placed at the experimentally determined locations of the atoms in a crystal (c.f. Downs et 148 149 al. 2002, Downs 2003 for details of the method and evidence of its accuracy and 150 efficacy). Calculations were performed with in-house software using the most accurate 151 available analytical Hartree-Fock wave functions (Koga et al. 1999, Koga et al. 2000, 152 Thakkar and Koga 2003). The results suggest that Pb^{2+} is five-coordinated, with all Pb-O bond distances 153 154 shorter than 2.770 Å (Table 4). As explained in the companion paper, (Thompson et al. 155 this issue), geometrical constraints in pyroxenoids arising from the nature of the 156 octahedral and tetrahedral chains dictate that at least one M site must be very distorted. 157 Procrystal calculations also indicate the presence of a three weak O9W-O bonds 158 and a weak, long O9W-Pb interaction that bridges the channel between the parallel bands 159 of Mn/Pb polyhedra. Interestingly, the computation was performed using an oxygen atom 160 at the location of O9W, i.e. without the protons. It is not possible to determine the nature 161 of these bonds given that the unlocated hydrogen atoms were disregarded in the

162 computation, but it is certainly possible that the Pb²⁺ lone pair is involved in a hydrogen
163 bond with O9W. However, it is not obvious how the hydrogens fit into the structure. A
164 more extensive discussion of this issue is in the companion paper (Thompson et al. this
165 issue).

166 The bulk structure of yangite can be regarded as layers of SiO_4 tetrahedra 167 alternating with those of Mn- and Pb-polyhedra stacked along **c*** (Figure 3). For an 168 analysis of the structural relationships between yangite and other pyroxenoids, see the 169 companion paper, Thompson et al. (this issue).

170 Raman spectra

171 There have been numerous Raman spectroscopic studies on materials with wollastonite-like silicate chains (e.g., Mills et al. 2005; Makreski et al. 2006; Wierzbicka-172 173 Wieczorek et al. 2010; Can et al. 2011). In particular, Frost et al. (2012) measured the 174 Raman spectra of xonotlite, a mineral with one-connected double wollastonite chains (the 175 *n-connected* terminology describes the number of connecting tetrahedra between chains 176 and is due to Merlino and Bonaccorsi 2008). The Raman spectrum of yangite is displayed 177 in Figure 4, along with the Raman spectra of xonotlite and elpidite taken from the 178 RRUFF Project (R120029 and R060200, respectively) for comparison.

179 Due to extremely strong sample fluorescence, we were unable to improve the spectral quality of vangite above 1500 cm⁻¹. Nonetheless, the broad bands between 3200 180 and 3850 cm⁻¹ may be ascribed to the O-H stretching vibrations. The two sharp bands at 181 1015 and 916 cm⁻¹ are due to the Si-O stretching vibrations within the SiO₄ groups, 182 whereas the bands between 300 and 900 cm⁻¹ are primarily attributable to the O-Si-O and 183 Si-O-Si angle bending vibrations (Dowty 1987; Makreski et al. 2006; Frost et al. 2012). 184 The bands below 320 cm⁻¹ are of a complex origin, mostly associated with the rotational 185 186 and translational modes of SiO₄ tetrahedra, Mn-O and Pb-O interactions.

187

188 A great number of natural and synthetic phases, mostly hydrous Ca-silicates, 189 display crystal structures characterized by the presence of double wollastonite chains. 190 Merlino and Bonaccorsi (2008) presented a thorough review of such compounds and 191 classified them into three categories based on the number of tetrahedra shared between 192 two single chains: one-, two-, and three-connected chains, exemplified by those in 193 xonotlite, okenite, and elpidite, respectively. However, unlike xonotlite or elpidite, 194 okenite is not a "pure" chain silicate, as its structure consists of both silicate chains and 195 sheets (Merlino 1983). Therefore, yangite represents the first chain silicate with two-196 connected double chains. Furthermore, the discovery of yangite implies that more Pbsilicate compounds or minerals with the chemical formula PbMSi₃O₈·H₂O ($M = Fe^{2+}$, 197 Ca^{2+} , Mg^{2+} , and other divalent cations) may be synthesized or found in nature, as 198 199 substitution between Mn and other divalent cations is rather common in pyroxenoids. 200 By eliminating the silicate tetrahedral sheets in the okenite structure, Merlino and 201 Bonaccorsi (2008) derived a hypothetical structure with the composition Ca₂Si₃O₈·2H₂O, space group P-1, and unit-cell parameters a = 9.69, b = 7.28, c = 8.11 Å, $\alpha = 103.0$, $\beta =$ 202 203 118.5, $\gamma = 112.1^{\circ}$ (Table 2). Most remarkably, comparison of yangite and the model 204 structure proposed by Merlino and Bonaccorsi (2008) reveals that, except for the amount 205 of H₂O, this hypothetical phase possesses all of the structural features found in yangite 206 (Table 2, Figure 2). The differences in the H₂O contents and unit-cell parameters between the hypothetical phase and yangite are most likely to result from the substitution of larger 207 Pb^{2+} with its lone-pair electrons for smaller Ca^{2+} . 208 209 Acknowledgements 210 This study was funded by Science Foundation Arizona. We are grateful to Dr. 211 Stefano Merlino for providing us with his unpublished data and Dr. Ajit Thakkar for 212 providing us with his electron wave functions. We also thank Dr. Merlino and two 213 anonymous reviewers, along with Associate Editor Dr. Fernando Colombo, for their

214 comments, which have improved the quality of this manuscript.

215	References Cited
216	Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta
217	Crystallographica, B47, 192-197.
218	Can, N., Guinea, J.J.G., Kibar, R., and Cetin, A. (2011) Luminescence and Raman
219	characterization of rhodonite from Turkey. Spectroscopy Letters, 44, 566-569.
220	Dowty, E. (1987) Vibrational interactions of tetrahedra in silicates glass and crystals: II.
221	Calculations on melilites, pyroxenes, silica polymorphs and feldspars. Physics and
222	Chemistry of Minerals, 14, 122-138.
223	Downs, R.T. (2003) Topology of the pyroxenes as a function of temperature, pressure,
224	and composition as determined from the procrystal electron density. American
225	Mineralogist 88, 556-566.
226	Downs, R.T., Bartelmehs, K.L., Gibbs, G.V. and Boisen, M.B., Jr. (1993) Interactive
227	software for calculating and displaying X-ray or neutron powder diffractometer
228	patterns of crystalline materials. American Mineralogist, 78, 1104-1107.
229	Downs, R.T., Gibbs, G.V., Boisen, M.B.Jr., and Rosso, K.M. (2002) A comparison of
230	procrystal and ab initio representations of the electron-density distributions of
231	minerals. Physics and Chemistry of Minerals 29, 369-385.
232	Dunn, P.J. (1991) Rare minerals of the Kombat Mine. Mineralogical Record, 22, 421-
233	424.
234	Frost, R.L., Mahendran, M., Poologanathan, K., and Xi, F. (2012) Raman spectroscopic
235	study of the mineral xonotlite Ca ₆ Si ₆ O ₁₇ (OH) ₂ —A component of plaster boards.
236	Materials Research Bulletin, 47, 3644-3649.
237	Haile, S.M. and Wuensch, B.J. (1997) Comparison of the crystal chemistry of selected
238	MSi ₆ O ₁₅ -based silicates. American Mineralogist, 82, 1141-1149.
239	Haile, S.M. and Wuensch, B.J. (2000) Structure, phase transitions and ionic conductivity
240	of $K_3NdSi_6O_{15}$ ·xH ₂ O. I. α -K ₃ NdSi ₆ O ₁₅ ·2H ₂ O and its polymorphs. Acta
241	Crytallographica, B56, 335-345.

242	Innes, J. and Chaplin, R.C. (1986) Ore bodies of the Kombat Mine, South West
243	Africa/Namibia. in Anhaeusser, C.R. and Maske, S. (Eds.): Mineral Deposits of
244	South Africa, Vol. 1 and 2. Geological Society of South Africa, Johannesburg,
245	Republic of South Africa, pp. 1789-1805.
246	Koga, T., Kanayama, K., Watanabe, T., Imai, T., and Thakkar, A.J. (2000) Analytical
247	Hartree-Fock wave functions for the atoms Cs to Lr. Theoretical Chemistry
248	Accounts, 104, 411-413.
249	Koga, T., Kanayama, K., Watanabe, T., and Thakkar, A.J. (1999) Analytical Hartree-
250	Fock wave functions subject to cusp and asymptotic constraints: He to Xe, Li^+ to
251	Cs ⁺ , H ⁻ to I ⁻ . International Journal of Quantum Chemistry, 71, 491-497.
252	Makreski, P., Jovanovski, G., Gajovic, A., Biljan, T., Angelovski, D., Jacimovic, R.
253	(2006) Minerals from Macedonia. XVI. Vibrational spectra of some common
254	appearing pyroxenes and pyroxenoids. Journal of Molecular Structure, 788, 102-
255	114.
256	Merlino, S. (1983) Okenite, $Ca_{10}Si_{18}O_{46}$ ·18H ₂ O: the first example of a chain and sheet
257	silicate. American Mineralogist, 68, 614-622.
258	Merlino, S. and Bonaccorsi, E. (2008) Double wollastonite chains:
259	topological/conformational varieties, polytypic forms, isotypic compounds.
260	Zeitschrift für Kristallographie 223, 85-97.
261	Mills, S.J., Ray L. Frost, R.L., Kloprogge, J.T., and Weier, M.L. (2005) Raman
262	spectroscopy of the mineral rhodonite. Spectrochimica Acta, 62, 171–175.
263	Radić, S. and Kahlenberg, V. (2001) Single crystal structure investigation of twinned
264	NaKSi ₂ O ₅ a novel sinlge layer silicate. Solid State Sciences, 3, 659-667.
265	Radić, S., Kahlenberg, V., and Schmidt, B.C. (2003) High-pressure mixed alkli dislicates
266	in the system $Na_{2-x}K_xSi_2O_5$: hydrothermal synthesis and crystal structures of
267	NaKSi ₂ O ₅ -II and Na _{0.67} K _{1.33} Si ₂ O ₅ . Zeitschrift für Kristallographie 218, 413-420.
268	Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Quadratic elongation, a quantitative

269	measure of distortion in coordination polyhedra. Science, 172, 567-570.
270	Sheldrick, G. M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-
271	122.
272	Thakkar, A.J. and Koga, T. (2003) Analytic Hartree-Fock wave functions for atoms and
273	ions. Fundamental World of Quantum Chemistry: A tribute to the memory of Per-
274	Olov Löwdin, Vol. I, E.J. Brändas and E.S. Kryachko (eds), 587-599.
275	Thompson, R.T., Yang, H., and Downs, R.T. (2016) Ideal Wollastonite and the
276	Relationship Between the Pyroxenoids and Pyroxenes. American Mineralogist x,
277	у - z.
278	Wierzbicka-Wieczorek, M., Kolotsch, U., Nasdala, L., Tillmanns, E. (2010)
279	K _{2.9} Rb _{0.1} ErSi ₃ O ₉ : a novel, non-centrosymmetric chain silicate and its crystal
280	structure. Mineralogical Magazine, 74, 979-990.
281 282	List of Figure Captions
283	Figure 1. (a) Rock samples on which yangite crystals are found; (b) A microscopic
284	view of yangite, associated with dark brown melanotekite.
285	Figure 2. (a) Crystal structure of yangite, showing the double chains of SiO_4 tetrahedra
286	and ribbons of Mn- and Pb-polyhedra. (b) A portion of the okenite structure
287	(Merlino 1983), showing its similarity to the yangite structure. The spheres in
288	both figures represent H ₂ O.
289	Figure 3. Crystal structure of yangite. The large and small spheres represent Pb and H_2O
290	groups, respectively. The octahedra and tetrahedra represent MnO_6 and SiO_4
291	groups, respectively. For clarity, no chemical bonds are drawn for Pb.
292	Figure 4. Raman spectrum of yangite, along with the Raman spectra of xonoltite and
293	elpidite for comparison. The spectra are shown with vertical offset for more
294	clarity.

Figure 1a

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 1b

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 2a

Figure 2b

Figure 3

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Table 1. Powder X-ray diffraction data for yangite

I _{meas.}	d _{meas.}	I _{calc.}	$d_{ m calc}.$	h	k	1
60	7.361	100.00	7.3796	-1	0	1
21	7.023	29.36	7.0353	0	0	1
31	6.671	46.90	6.6489	0	-1	1
30	6.000	31.96	5.9844	1	0	0
10	4.712	13.60	4.7204	-1	1	1
37	4.472	26.68	4.4677	1	-1	1
13	4.272	16.11	4.2765	-1	-1	2
14	3.806	18.74	3.8159	-2	1	1
42	3.697	42.50	3.7173	-2	0	1
		19.73	3.6898	-2	0	2
25	3.591	26.16	3.6054	0	1	1
35	3.514	35.74	3.5177	0	0	2
		9.66	3.5170	-2	1	0
10	3.409	15.52	3.4141	-1	2	0
8	3.321	13.80	3.3244	0	-2	2
18	3.175	24.17	3.1817	-1	-1	3
12	3.111	16.02	3.1177	-1	1	2
53	2.985	35.99	2.9922	2	0	0
100	2.909	60.50	2.9171	1	-2	2
		51.74	2.9076	0	2	0

		27.16	2.8953	-1	-2	2
17	2.761	12.30	2.7678	-1	2	1
15	2.718	7.51	2.7196	-2	-1	1
23	2.447	18.77	2.4378	1	0	2
12	2.390	16.43	2.4003	-3	2	1
6	2.332	4.36	2.3358	-1	-1	4
19	2.275	4.81	2.2775	0	2	1
		5.80	2.2728	-1	-2	4
18	2.220	11.02	2.2338	2	- 2	2
18	2.205	13.29	2.1999	1	2	0
9	2.134	8.76	2.1469	1	-1	3
		5.28	2.1348	-3	-1	2
6	2.097	9.08	2.0898	-3	-1	4
9	2.077	4.75	2.0756	-1	0	4
7	2.064	6.60	2.0724	-1	-3	3
4	2.016	11.23	2.0264	3	-2	1
8	1.931	9.46	1.9418	-3	2	3
4	1.856	3.94	1.8478	0	1	3
14	1.805	3.49	1.8027	0	2	2
22	1.783	6.68	1.7939	-3	3	2
		5.28	1.7935	1	-2	4
		4.07	1.7915	2	0	2
10	1.704	5.57	1.7172	3	-2	2
		4.22	1.7118	-1	2	3

15	1.673	7.83	1.6884	2	2	0
13	1.666	4.19	1.6648	3	0	1

Yangite Hypothetical material Ideal chemical formula PbMnSi₃O₈·2H₂O Ca2Si3O8.2H2O Crystal symmetry Triclinic Triclinic *P*-1(#2) Space group *P*-1 (#2) a(Å)9.6015(9) 9.69 *b*(Å) 7.28 7.2712(7) c(Å)7.9833(8) 8.11 α(°) 105.910(4) 103.0 β(°) 118.229(4) 118.5 $\gamma(^{\circ})$ 109.935(5) 112.1 $V(Å^3)$ 392.69(7) 404.30 Ζ 2 2 $\rho_{cal}(g/cm^3)$ 4.164 λ (Å, MoK α) 0.71073 μ (mm⁻¹) 23.501 2θ range for data collection ≤65.58 No. of reflections collected 9930 No. of independent reflections 2848 No. of reflections with $I > 2\sigma(I)$ 2460 No. of parameters refined 128 R(int) 0.042 Final R_1 , wR_2 factors $[I > 2\sigma(I)]$ 0.031, 0.063

Table 2. Crystallographic data and refinement results for yangite

Final R_1 , wR_2 factors (all data)	0.040, 0.066	
Goodness-of-fit	1.00	
Reference	This work	Merlino and Bonaccorsi (2008)

Table 3. Atomic coordinates and displacement parameters for yangite

=====				=================		=======================================	=================	=======================================	=============	
Atom	x	У	Z	Uiso	U11	U22	U33	U23	U13	U12
=====										
Pb	0.22536(3)	0.73792(3)	0.05494(3)	0.0132(1)	0.0134(1)	0.0145(1)	0.0143(1)	0.0075(1)	0.0098(1)	0.0084(1)
Mn	0.1787(1)	0.2238(1)	0.0739(1)	0.0102(1)	0.0091(3)	0.0102(3)	0.0112(3)	0.0056(3)	0.0060(3)	0.0057(3)
Si1	0.1178(2)	0.2686(2)	0.4471(2)	0.0080(2)	0.0078(6)	0.0080(6)	0.0084(6)	0.0046(5)	0.0049(5)	0.0046(5)
Si2	0.1430(2)	0.8580(2)	0.4314(2)	0.0086(2)	0.0089(6)	0.0096(6)	0.0098(6)	0.0058(5)	0.0062(5)	0.0063(5)
Si3	0.4104(2)	0.7099(2)	0.5425(2)	0.0087(2)	0.0061(6)	0.0075(6)	0.0095(6)	0.0041(5)	0.0035(5)	0.0037(5)
01	0.0058(5)	0.1535(6)	0.1840(6)	0.0107(6)	0.010(2)	0.013(2)	0.009(2)	0.006(1)	0.005(1)	0.006(1)
02	0.3099(5)	0.5233(6)	0.5936(6)	0.0105(6)	0.009(2)	0.007(2)	0.010(2)	0.004(1)	0.004(1)	0.002(1)
03	0.1868(5)	0.1149(6)	0.5347(6)	0.0101(6)	0.012(2)	0.010(2)	0.011(2)	0.007(1)	0.007(1)	0.008(1)
04	-0.0103(5)	0.2891(6)	0.5213(6)	0.0135(7)	0.017(2)	0.013(2)	0.021(2)	0.012(1)	0.015(2)	0.011(1)
05	0.3482(5)	0.8942(6)	0.5801(6)	0.0122(7)	0.011(2)	0.011(2)	0.014(2)	0.006(1)	0.006(1)	0.009(1)
06	0.0403(5)	0.7286(6)	0.1679(6)	0.0112(7)	0.012(2)	0.013(2)	0.009(2)	0.006(1)	0.007(1)	0.007(1)
07	0.3252(5)	0.5838(6)	0.2877(6)	0.0129(7)	0.015(2)	0.012(2)	0.012(2)	0.006(1)	0.008(1)	0.008(1)
08	0.6363(5)	0.8585(6)	0.7301(6)	0.0110(7)	0.008(2)	0.011(2)	0.015(2)	0.007(1)	0.006(1)	0.005(1)
O9W	0.3552(6)	0.3169(9)	0.9730(7)	0.033(1)	0.016(2)	0.051(3)	0.018(2)	0.013(2)	0.011(2)	0.009(2)
=====										

Table 4. Selected bond distances in yangite

	Distance (Å)		Distance (Å)	Distance (Å)
Si1-O1	1.599(3)	Si2-O3	1.624(3)	Si3-O2	1.650(3)
-02	1.626(4)	-04	1.630(4)	-05	1.655(3)
-03	1.635(3)	-05	1.619(3)	-07	1.594(4)
-04	1.629(3)	-06	1.613(4)	-08	1.599(4)
Ave.	1.622		1.622		1.624
TAV	13.73		11.24		20.95
TQE	1.0031		1.0027		1.0049
Pb-O1	2.684(3)	Mn-O1	2.200(3)		
-06	2.333(3)	-01	2.245(3)		
-06	2.770(3)	-06	2.300(3)		
-07	2.412(3)	-07	2.124(3)		
-08	2.397(3)	-O8	2.138(3)		
-05	3.063(3)	-O9w	2.188(4)		
Ave.	2.610	Ave.	2.199		
		OAV	34.06		
		OQE	1.0104		

Note: TAV---tetrahedral angle variance; TQE---tetrahedral quadratic elongation OAV--octahedral angle variance; OQE---octahedral quadratic elongation (Robinson et al. 1971).

Table 5. Calculated bond-valence sums for yangite.

	01	O2	03	O4	O5	O6	07	O8	O9w	Sum
Pb	0.21			0.02	0.03	0.55	0.44	0.46	0.01	1.95
					0.06	0.17				
Mn	0.33					0.25	0.40	0.39	0.35	2.01
	0.29									
Si1	1.07	1.00	0.98	0.99						4.04
g: 2			0.00	0.00	1.01	1.02				4.01
S 12			0.99	0.98	1.01	1.03				4.01
Si3		0.93			0.92		1.09	1.07		4.01
Sum	1.90	1.93	1.97	1.99	2.02	2.00	1.93	1.92	0.36	

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Note: The parameters used for the calculations were from Brese and O'Keeffe (1991).