From bone to fossil: a review of the diagenesis of bioapatite

Sarah W. Keenan*

University of Tennessee, Department of Earth and Planetary Sciences, 1412 Circle Drive, Knoxville, TN 37996, USA

*Current address: University of Tennessee, Department of Biosystems Engineering and Soil Science, 2506 E.J. Chapman Drive, Knoxville, TN 37996, USA; skeenan1@vols.utk.edu

Abstract

The preservation of bone or bioapatite over geologic time has presented paleobiologists with long-standing and formidable questions. Namely, to elucidate the mechanisms, processes, rates, and depositional conditions responsible for the formation of a fossil from a once living tissue. Approaches integrating geochemistry, mineralogy, physics, hydrology, sedimentology, and taphonomy have all furthered insights into fossilization, but several fundamental gaps still remain. Notably, our understanding of: (1) the timing of processes during diagenesis (e.g., early and/or late), (2) the rate of bioapatite transformation into thermodynamically more stable phases, (3) the controls imparted by depositional environment, and (4) the role of (micro)biology in determining the fate of bone bioapatite (dissolution or preservation) are limited. The versatility of fossil bioapatite to provide information on the biology of extinct vertebrates rests on our ability to identify and characterize the changes that occurred to bioapatite during diagenesis. This review will evaluate our current understanding of bioapatite diagenesis and fossilization, focusing on the biogeochemical transformations that occur during diagenesis to the mineral and
organic components of bone (excluding teeth and enamel), the analytical approaches applied to
evaluate fossilization processes, and outline some suggestions for future promising directions.

Keywords: fossilization, bioapatite, diagenesis, geobiology

Biologically precipitated apatite (bioapatite)

Vertebrates, by definition, develop a mineralized internal skeleton composed of
bioapatite that provides the animal with structural and mechanical support (e.g., Akkus et al.
2004), a reservoir of ions to maintain acid-base homeostasis (Green and Kleeman 1991), and
permits terrestrial locomotion. Bioapatite consists of an organic and inorganic fraction forming a
composite material that provides the skeleton and bones with a degree of flexibility as well as
strength (e.g., Alexander et al. 2012). The composition of the inorganic, or mineralized, fraction
of bioapatite is a non-stoichiometric apatite phase most similar in structure and composition to
hydroxylapatite, with additional minor elements incorporated in the lattice (Na_y (Ca,Mg)_{10-x-}
y[(PO_4)_{6-x-y}(CO_3)_{x+y}](OH)_{2-x}) (Li and Pasteris 2014b). In a living organism, bioapatite of bone is
in a dynamic state of equilibrium with the body, undergoing precipitation and dissolution over
the lifetime of the animal (Green and Kleeman 1991). For example, bone provides the body with
a reservoir of Na, Ca, P, Mg (e.g., Green and Kleeman 1991), as well as other important sorbed
species, such as citrate (e.g., Dickens 1941; Hu et al. 2010). The composition of bioapatite in
bone reflects vital processes occurring over the animal’s lifetime. For paleobiologists, the use of
isotopes to reconstruct past diet, climate, and ecology of extinct animals is enabled by the
preservation of endogenous indicators of vital processes in the form of isotopes (e.g., Nd and Sr;
At the macro- and micro-scale, the bioapatite found in vertebrate teeth (enamel) and bones is distinct. Tooth enamel has larger, well-ordered bioapatite crystallites that contain less carbonate and more fluorine compared to bones (Wopenka and Pasteris 2005). Additionally, enamel has a low organic content (<1 % by volume), which contrasts with bone (32-44 % by volume; Olszta et al. 2007). The presence of organics plays a critical role in diagenesis (discussed below).

From living tissue to fossil

Once removed from an organism, bioapatite undergoes necrolysis, biostratinomy, and diagenesis, potentially transforming the original living tissue into fossil bioapatite phase(s) (Figs. 1, 2). The process of diagenesis—the chemical, physical, and biological interactions that result in the transformation of an original compound—is divided into two broad intervals for describing fossilization: early and late. For bones, early diagenesis generally refers to the initial alteration of bone once introduced into a geochemical system, although there is some ambiguity regarding the timing of this period (Trueman et al. 2008a, b). Early diagenetic processes specific to bone include the removal of soft tissues (i.e. muscle and skin), degradation of collagen (abiotic and biotic), and initial chemical and structural changes to the mineralized component of bone, bioapatite, ultimately resulting in decomposition or potentially in preservation (e.g., Greenlee 1996; Sponheimer and Lee-Thorp 1999). The removal of organic compounds, including collagen, from within the bone provides a critical mechanism for opening the bone and bioapatite lattice to subsequent fluid movement (Fig. 2). Migration of fluid derived from the
surrounding environment facilitates the substitution of ions in bioapatite to form a thermodynamically more stable phase (e.g., Hinz and Kohn 2010). Late diagenetic alteration includes further structural and chemical modification to the apatite lattice, resulting in the formation of a new apatite phase, and potentially whole-scale replacement of the original bioapatite.

Alteration to the mineralized fraction of bone

Apatite was once referred to as “Nature’s trashcan,” an apt description given the extreme flexibility of the lattice for replacements at every site within the mineral structure (e.g., Pan and Fleet 2002). Trace metals including Fe, Mn, Sr, and Mg as well as rare earth elements (REE) may be incorporated in place of calcium at both the Ca(I) and Ca(II) sites (e.g., Trueman et al. 2008a, b; Koenig et al. 2009; Herwartz et al. 2011). Protonation of the hydroxyl ion facilitates the incorporation of trace halogens like F⁻ and Cl⁻ forming fluorine- or chlorine-enriched phases. The incorporation of carbonate (CO₃²⁻) ions in place of phosphate (PO₄³⁻) or OH⁻ readily occurs under a range of pH conditions (Berna et al. 2004) as well as in vivo (Bergstrom and Wallace 1954; Green and Kleeman 1991; Rollin-Martinet et al. 2013). The flexibility of apatite for substitutions plays a critical role in the subsequent diagenesis of bone and preservation over geologic time (e.g., Trueman 1999; Berna et al. 2004; Keenan et al. 2015).

In fossils, the composition of the resulting apatite phase varies widely (e.g., Trueman 1999; Goodwin et al. 2007). The vast majority of fossilized bone exists as fluorine and/or carbonate-enriched apatite phases in both archaeological (e.g., Berna et al. 2004) and paleontological (e.g., Sponheimer and Lee-Thorp 1999; Trueman 1999) materials. Modeled fluid saturation states with respect to selected apatite and phosphorus (P)-bearing mineral phases
provides a first approximation of the predicted fate of each mineral phase, and helps to explain
the persistence of fossil bioapatite as altered phases (Fig. 3). Bone, closest compositionally to
hydroxylapatite (HAP), is predicted to be unstable under low total P concentrations and under
acidic to circumneutral pH (Fig. 3). If fluids have high total P, stability shifts towards HAP
supersaturation across a wider range of pH conditions. If recrystallized to a phase approaching a
stoichiometric end-member such as fluorapatite (FAP) or carbonated fluorapatite (CO$_3$-FAP),
stability shifts towards supersaturation, even under low total P and low pH conditions (Fig. 3).
From purely a thermodynamic perspective, in this modern system inhabited by aquatic and semi-
aquatic vertebrates, bone will only be preserved if altered to a different apatite phase, such as
FAP or CO$_3$-FAP. For teeth, larger crystallite sizes, reduced carbonate content, low collagen
content, and the presence of F$^-$ in enamel in vivo results in a thermodynamically more robust
material compared to bone (e.g., Wopenka and Pasteris 2005).

These predictions broadly match observed fossil bone chemistry where F enrichment is
widely observed and bone is recrystallized to a new apatite phase. Additionally, the major and
trace element composition of fossil bone is highly site-specific, and varies even within a single
bone or between bones preserved at the same site (e.g., Trueman and Benton 1997; Suarez et al.
2010). This variability reflects the intimate connection between fossil composition and site
geochemistry, with recrystallization driven by mineral stabilities, dissolved ions in solution, site
mineralogy, and sediment porosity. For example, in the modeled aqueous solution discussed
above (Fig. 3), varying one dissolved constituent (P) drastically altered predicted saturation
states. Integrating observations of conditions present in modern depositional environments can
help to guide interpretations about diagenetic conditions present in the geologic past facilitating
bone recrystallization.
Alteration and degradation of collagen in bone

The association of organics, predominantly type I collagen, with the mineral fraction of bioapatite imparts bone with characteristic strength and a certain degree of flexibility in life (Olszta et al. 2007; Alexander et al. 2012). The process of bone biomineralization still eludes biologists and materials scientists, where the initial phases of formation are unclear (e.g., apatite nucleation and growth on collagen, or development from an amorphous precursor phase) (e.g., Olszta et al. 2007), in addition to the nanostructure (e.g., Alexander et al. 2012). Regardless of the factors controlling growth and mineralization of bone and the underlying nanostructure, the resulting composite material contains collagen fibers arrayed in characteristic association with the bioapatite crystallites (Fig. 2; Collins et al. 2002; Alexander et al. 2012). Collagen is intimately associated with crystallites in a parallel and staggered arrangement, resulting in a series of regularly spaced gaps or grooves (~ 67 nm) with bioapatite crystallites found occupying intrafibrillar, interfibrillar, and extrafibrillar regions relative to the collagen (e.g., Olszta et al. 2007; Alexander et al. 2012). The association of organics and mineral becomes important for understanding processes associated with the diagenesis of bone.

After host death, bone is deposited in a natural environment outside the relative homeostasis experienced within a living vertebrate. Collagen is removed through autolytic (e.g., via thermal destabilization; Leikina et al. 2002) or biologic activity (Grupe 1995; Balzer et al. 1997; Collins et al. 2002; Jans et al. 2004), opening pore spaces in bone to the movement of fluids, dissolved ions, and microorganisms (Fig. 2). The combined effects of abiotic and biotic processes drive pore space opening and subsequent alteration of bioapatite crystallites. Type I collagen is a ubiquitous protein found not only in bone but also in the skin, tendon, and muscles.
of vertebrates (Collins et al. 2002). While collagen is stable in vivo, if exposed to varying
temperatures in vitro, collagen can begin to denature (Leikina et al. 2002). Destabilization due to
relaxation of the triple helix structure opens the system to further decomposition. Exposure to
aqueous solutions can result in swelling of collagen, a process used to explain fracturing
observed in bones deposited in aqueous environments (Pfretzschner 2004).

The role of microorganisms in bone-associated collagen degradation has received some
direct investigation (e.g., Grupe 1995; Balzer et al. 1997). However, the mechanisms by which
microorganisms break down collagen are unclear. For example, it is unclear if enzymatic
processes (i.e., release of collagenase enzymes), or physical modification exposing collagen to
subsequent biochemical alteration (i.e., fungal hyphae penetration of bone), occur in a specific
order (e.g., Nicholson 1996; Grupe and Turban-Just 1998). Microbes (sensu stricto “bacteria”
and “fungi”) have been implicated in bone breakdown in the fields of archaeology and
paleontology, where they are believed to actively scavenging the carbon and nitrogen-rich
constituent amino acids forming the complex collagen molecule (Child 1995; Jans et al. 2004;
Jans 2008). But, at present, limited direct testing through experimental approaches places
significant ambiguity as to the precise role of microorganisms in bone collagen as well as bone
mineral degradation. Additionally, the potential for site-specific processes to accelerate or retard
(e.g., role of humics; Nicholson 1996) collagen decomposition presents another level of
ambiguity. One possibility is the presence of microbial communities specializing in the
production of collagenolytic proteases, forming the first line of attack on bone collagen
(Watanabe 2004). Unraveling the timing and processes associated with collagen degradation,
often invoked as the first step in diagenesis (Collins et al. 2002), is critical for estimating the
preservation potential of bioapatite over geologic time.
Preservation of biomolecules

One of the goals of a paleobiologist is to reconstruct the biology of an extinct organism, including the color of its skin or feathers (Vinther et al. 2010; Lindgren et al. 2012), diet (Varricchio 2001; Chin et al. 2003), thermophysiology (e.g., Barrick and Showers 1994) as well as the use of oxygen and carbon isotopes to source drinking water and diet (e.g., Koch 2007). Unfortunately, the processes of diagenesis and fossilization have the potential to alter an endogenous, biogenic signature, both in the form of soft tissues and chemical information held in the mineralized fraction of bone. Despite the recovery and successful sequencing of DNA extracted from archaeological remains, the upper-limit for DNA preservation is generally considered to be less than a million years for bacterial DNA (Willerslev and Cooper 2005), and ~65 kyr for vertebrates (e.g., bison; Gilbert et al. 2004; Allentoft et al. 2012). Perhaps one of the most controversial and transformative studies, resulting in the development of a new field of paleobiology—molecular paleontology—was the discovery of endogenous biomolecules from fossil dinosaur bone preserved in sandstone (Schweitzer et al. 1997). Not only was the fossil material significantly older than previously believed to be able to host any original biogenic organics, but the specific molecules uncovered also indicated that the *Tyrannosaurus rex* was an actively reproducing female, providing biological insights never before deemed possible by paleobiologists. Further discovery of preserved original biomolecules in fossils from the Recent to the Cretaceous, from marine as well as terrestrial sediments, suggests that the process of fossilization may not completely destroy an original, biogenic signal (Lindgren et al. 2011; Schweitzer 2011). Despite the hotly contested results of this research (Buckley et al. 2008), they have held up to subsequent replication (Bern et al. 2009; Schweitzer et al. 2009) and inclusion of...
additional bones and localities (Schweitzer et al. 2007; Lindgren et al. 2011), suggesting fossilization may not operate in a predictable manner at every site. One of the unifying themes that links exceptional preservation of biomolecules relates to inhibition of microbial degradation through physical and/or chemical controls (e.g., growth of secondary minerals in pore spaces, preventing recrystallization). Molecular paleontology will undoubtedly continue to fundamentally transform our understanding of process, rate, and duration of bioapatite diagenesis and the potential for preservation of endogenous biomolecules (see review by Schweitzer (2011) and references therein).

Analytical approaches to investigate fossils

Fossils are used widely in paleobiology and archaeology to address a variety of questions related broadly to paleoclimate, paleoecology, taphonomic processes, and vital processes, to name a few. Driving the development and evolution of these questions are simultaneous advancements in analytical capabilities. The integration of newly emerging analytical techniques, singularly and in combination with long-established tools, has revolutionized our understanding of bone as a whole, from both compositional and diagenetic perspectives (e.g., Trueman and Benton 1997; Reiche et al. 2003; Koenig et al. 2009; Dumont et al. 2009) (Table 1).

Some of the earliest attempts to characterize the mineralogy and geochemistry of fossil bones integrated petrographic assessment (e.g., Hubert et al. 1996; Wings 2004), X-ray diffraction (XRD), electron microprobe (EMP) analyses (Person et al. 1995; Hubert et al. 1996), as well as bulk chemical measurements (e.g., Samoilov and Benjamini 1996). These as well as other early attempts to quantify the chemical composition of fossil bone provided some fundamental insights into composition as well as mechanisms involved in diagenesis. The
application of these analytical techniques to evaluate fossil composition is still widely used
today, and provides a way to quantify, visualize, and spatially resolve elemental compositions
(Fig. 4). Examining the petrography of fossils, including both the development of secondary
phases (e.g., Wings 2004) and histological modification (e.g., Jans 2008), provides a visual
means of assessing diagenesis.

The stable isotopic composition of bones are routinely used to evaluate diet (e.g., Koch
2007) and thermophysiology (e.g., Barrick and Showers 1994) of extinct taxa, and more recently,
growing appreciation for the potential overprinting by diagenetic conditions as led to an
assessment of the integrity of bioapatite stable isotopes as an archive of an original, biogenic
signature (e.g., Kohn and Law 2006). The $\delta^{13}C$ and $\delta^{18}O$ isotopic composition of bioapatite
carbonate and $\delta^{18}O$ of phosphate have the potential to preserve an original biogenic signature for
reconstructing paleodiet (see Koch (2007) for an in-depth review). Additionally, the isotopic
composition may be exchanged with pore fluids during diagenesis, resulting in a record of
conditions during diagenesis rather than a biogenic signal (e.g., Wang and Cerling 1994; Kohn
and Law 2006).

Subsequent diagenesis-specific studies capitalized on initial observations of rare earth
element (REE) enrichment by using spatially-resolved REE patterns collected from laser ablation
inductively coupled plasma mass spectrometry (LA-ICP-MS) were used to assess transport
history and bone provenance (e.g., Trueman and Benton 1997; Metzger et al. 2004; Suarez et al.
2007), rates of ion uptake and exchange (e.g., Millard and Hedges 1996; Kohn 2008; Kohn and
Moses 2013), and mechanisms of uptake (e.g., Kohn 2008; Herwartz et al. 2011, 2013; Kohn and
Moses 2013). The integration of novel tools for REE-based studies marked a major turning point
in diagenesis-related studies. The ability to not only quantify but to also spatially-resolve the

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
The chemical composition of fossil bone fundamentally transformed our understanding of the changes that occur to bone over geologic time. Diagenesis of bone was recognized to be a dynamic process, one controlled by a variety of bone-specific and environment-specific parameters, such as redox, groundwater composition, climate, and host sediment composition (e.g., Berna et al. 2004; Koenig et al. 2009; Suarez et al. 2010). The interplay of all of these components influences the composition of fossil bone, and the processes and mechanisms are gradually being resolved.

The integration of other analytical tools, particularly synchrotron-based techniques (Table 1), has furthered our understanding of bone as a material and diagenesis. Several approaches, including micro X-ray fluorescence (μ-XRF) and synchrotron rapid scanning X-ray fluorescence (SRS-XRF), allow for high-resolution mapping of elemental concentrations and distributions (e.g., Janssens et al. 1999; Dumont et al. 2009; Bergmann et al. 2010) in various fossil specimens. A related technique, proton induced X-ray emission (PIXE) (e.g., Goodwin et al. 2007), provides an additional tool to spatially-resolve elemental composition as well as detailed tissue morphology and microstructure. The application of X-ray spectroscopic techniques, such as X-ray absorption near-edge structure (XANES) and extended X-ray fine-edge structure (EXAFS) spectroscopy, to modern and fossil bone, refined our understanding of underlying atomic-level configurations, bonding, and electron sharing within the apatite lattice for specific elements including Mn (Reiche and Chalmin 2009), and Ca and P (Keenan et al. 2015). Recent investigations into the atomic-level structure of fossils from a range of depositional settings and ages revealed that fossil apatite converged on a uniform lattice structural arrangement, suggesting both physical and chemical controls on fossil preservation at the atomic-level (Keenan et al. 2015). Decades of research on fossil bone geochemistry provided numerous
insights into the process of fossilization, and led to a major conclusion, namely that fossil
geochemistry is a reflection of site-specific conditions, and argued for an overarching chemical
control on preservation. However, a uniform lattice arrangement in geochemically distinct bones
(Keenan et al. 2015) also suggests that there are physical constraints on preservation, and we
cannot invoke chemistry alone as a driving mechanism of preservation.

Continued development of techniques, including Raman spectroscopy, led to the
identification of highly carbonated bioapatite (e.g., Li and Pasteris 2014a, b), transforming our
understanding of biomineralization. In situ characterization of bone undergoing repair (e.g.,
Penel et al. 2005), age-related changes to bone (Gao et al. 2015), and the mineralization of bone
(Crane et al. 2006), permit nanoscale assessment of bioapatite development and growth in
vertebrates. These studies help to refine our understanding of the structural, chemical, and
physical properties of bioapatite in vivo, which become critical when assessing diagenesis. For
example, the potential for elevated carbonate in bioapatite in certain taxa, such as whales (Li and
Pasteris 2014a, b), influences bioapatite crystallite size and solubility. The application of these
newer tools in combination with more traditional analyses (i.e., petrography, XRD, FTIR,
Raman, EMP) will continue to drive novel insights into fossilization processes.

Actualistic taphonomy and contributions from forensics

The process of fossilization, starting with early diagenesis and persisting through late
diagenesis, renders reconstruction of endogenous biogenic signatures or physical processes
difficult, if not impossible. One approach to evaluating the chemical and physical processes
occurring during early diagenesis is through actualistic taphonomy—controlled evaluation of
decomposition, decay, and alteration of an organism following death. There are numerous
questions that may be addressed using an actualistic taphonomic approach. Questions range in
terms of spatial or temporal scales as well as whether the objective is an understanding of
physical and/or chemical processes (e.g., Behrensmeyer 1978; Weigelt 1989; Grupe 1995;
Nicholson 1996, 1998). Additionally, the type of environment or climate under which
experiments are conducted will also influence the physical and chemical processes. Evaluating
changes to bone chemistry and structure in modern systems through actualistic taphonomy can
be used to make inferences regarding processes occurring in the geologic past.

Some of the earliest studies incorporating actualistic taphonomy focused on large-scale,
physical assessment of bone transport over time in various depositional systems. One of the first
(paleo)biologists to evaluate decomposition in modern systems was Johannes Weigelt (1989). He
observed a range of vertebrate taxa decomposing over time in a suite of depositional systems
ranging from fluvial to estuarine environments. His observations provided a predictive
framework for assessing the accumulation history of bones in the fossil record (Weigelt 1989).

Additional seminal work focusing on modern bone taphonomy is a multi-decadal study of
bone alteration in Kenya by Behrensmeyer and colleagues (Behrensmeyer 1978; Behrensmeyer
et al. 2000), which resulted the identification of discrete weathering stages. Unfortunately, long-
term studies like this for other environments and climates are notably lacking (although see

Perhaps the most in-depth and longest running research programs evaluating the
alteration of bone in modern systems relate to forensics applications. Starting with whole
carcasses of a range of animals, including humans (e.g., Carter et al. 2007), decomposition
progresses through several well-characterized stages until skeletonization occurs, exposing bones
to ambient physiochemical conditions. For forensics, bones and DNA preserved within bones are
frequently the only materials available to identify the remains (e.g., Mundorff and Davoren 2014). A rapidly evolving area in forensics research is developing a way to use microbial ecology associated with the exposed and decomposing bone as a marker of postmortem interval (PMI) (e.g., Metcalf et al. 2013; Damann et al. 2015). Preliminary results from these studies suggest that microbial community structure associated with bone decomposition changes during each stage of decomposition, culminating in microorganisms largely derived from the soil (Damann et al. 2015). These results provide an important first step in understanding the (micro)biological controls on bone diagenesis, although the target substrate (i.e. organic or mineral) is unknown.

Surprisingly, a large amount of research on the role of biology in decomposing bone comes from studies of whale falls (e.g., Goffredi et al. 2005; Goffredi and Orphan 2010). The introduction of nutrient-rich reservoirs into an otherwise nutrient starved system stimulates rapid vertebrate, invertebrate, and microbial responses, and results in a long-lived ‘hot spot’ for benthic organisms, largely invertebrate and microbial communities (e.g., Goffredi and Orphan 2010). In whale falls, invertebrate polychaete worms (*Osedax*) have evolved a tight (endo)symbiotic relationship with intracellular microbes that aid with the physical and chemical breakdown of bone, targeting collagen-derived proteins and cholesterol (Goffredi et al. 2005). The mm-cm sized holes cause by the activity of boring polychaetes opens the bone to further utilization occurs by bacteria and fungi derived from the environment.

With improved analytical techniques and capabilities, questions relating more specifically to the chemical changes that occur to bone during diagenesis are now possible, and stand as the next step for actualistic taphonomy. For example, even a basic question like, how long can bone survive in a natural environment, is far from understood. This lack of knowledge is not trivial,
particularly for trying to understand the preservation potential of bioapatite over geologic time
and biases in the fossil record. Recent experimental work assessing the timing of early diagenesis
in bones buried in a wetland and simulated wetland conditions revealed chemical and structural
changes to bone within weeks to months of exposure to aggressive environmental fluids and
exogenous soil microorganisms (Keenan and Engel in preparation). Further experimental work
focused on characterizing the role of biology in early transformations of bone in a range of
depositional settings are warranted. In particular, combining geochemical tools with microbial
ecology will provide novel insights into early diagenesis (Table 2).

Implications: outlook and future directions

Despite the incredible progress made towards evaluating the composition, structure, and
mechanisms of preservation of bone (Table 1), there are still significant gaps in our
understanding of the process of fossilization. Based on rates of uptake and exchange,
fossilization likely occurs on timescales ranging from thousands to 10’s of thousands of years
(e.g., Millard and Hedges 1996; Kohn and Law 2006), although recently transformations of bone
during the early diagenetic period immediately following host death suggest changes may occur
even earlier (Keenan et al. in preparation). The role of site-specific conditions in controlling
apatite diagenesis is somewhat understood, including important roles played by pH (e.g., Berna
et al. 2004; Fig. 3), redox (e.g., Suarez et al. 2010), and sediment porosity, but the boundary
conditions are not well-defined. Perhaps most importantly, the role of biology in fossilization
processes is not well understood. We know that (micro)biology can physically and chemically
alter bone (e.g., Child 1995; Jans 2008), but exact mechanisms, timing, rates, and ways in which
biology alters local (micro-scale) geochemistry are unknown. Additional unknowns that
currently stand at the fore-front of diagenesis-related research include: the degree of the primary
signal preserved in recrystallized bone, particularly with respect to isotopes, and a better
understanding of the nano-scale (and atomic-scale) information preserved within bioapatite, both
modern and fossil.

The introduction of a carcass in both terrestrial and aquatic systems provides a significant
input of nutrients, particularly carbon and nitrogen, stimulating microbial growth (e.g., Carter et
al. 2007; Cobaugh et al. 2015). Progress in evaluating the changes to soil microbial communities
associated with animal decomposition promises to provide insights into biogeochemical cycling
of nutrients. The role of microbes in the physical and chemical breakdown of bioapatite in
marine and terrestrial systems is vastly understudied. For example, it is unclear if destabilization
of the apatite lattice and bone is driven by organic (collagen) degradation or if certain microbial
communities actively target apatite, leading to mineral breakdown. With the advent of affordable
and accessible molecular techniques (e.g., 16S rRNA-based sequencing of the community),
evaluating the role of microbes in bone decomposition (or preservation) is an achievable goal.

As technological innovations continue to drive research, the future of unraveling
fossilization and diagenesis processes sit at the convergence of novel analytical approaches
through unusual collaborations. Paleobiology is poised for transdisciplinary collaborative
research, bridging disciplines as seemingly disparate as physics and geomicrobiology. Only by
approaching a long-held question in paleontology from different and unconventional
perspectives will we continue to shed light on the ‘black-box’ of the fossilization of bone. The
versatility of apatite in living tissue, and ultimately in fossils, provides an invaluable tool for
understanding extinct life and biotic and climatic changes over geologic time.
Acknowledgements

Dan Harlov and John Hughes are acknowledged for organizing this thematic issue. Jill Pasteris provided discussions and feedback on bone as a living tissue. Many of the ideas presented in this paper benefited from the feedback of several individuals, including Annette S. Engel, Chris Fedo, Linda Kah, Mark Radosevich, and Larry Taylor. This review greatly benefitted from the comments and suggestions of two reviewers, Alan Koenig and Celina Suarez, as well as the editor, John Hughes.
Figure 1: Schematic view of diagenesis from the life to death of an animal. (a-b) Following the death of an animal, such as the alligator illustrated here, the bones may be deposited within the same system occupied in life. (c) The activity of scavengers, microorganisms, and physical processes may remove some of the bones resulting in a fragmented and incomplete fossil record. Burial and diagenesis, which transform the original bone into fossil apatite, enhance preservation potential. (d) Subsequent erosion of overlaying sediments may bring the fossilized bone back to the surface. Each of these stages of diagenesis results in physical and chemical modification of the original bioapatite (from Keenan 2014).

Figure 2: Schematic view of diagenesis of bioapatite. (a) In vivo, bioapatite consists of interlayered mineral and organic phases. (b) Following the deposition of a bone in an environmental system, the degradation of collagen (autolytic or biologic) opens pore spaces to the movement of fluids carrying dissolved ions. (c) Substitution of elements in the bioapatite lattice results in the formation of secondary mineral phases, with reduced porosity, and increased crystallite size (from Keenan 2014; modified after Trueman and Tuross 2002).

Figure 3: Representative mineral stabilities (K_{sp}) for apatites and vivianite in a natural environment across a range of pH conditions at 25°C. Using water chemistry from a fluvial system in Louisiana with high total dissolved solids, models of predicted saturation states with respect to selected mineral phases were developed under two end-member conditions: low (0.6 μmol/L) and high (48.4 μmol/L) total phosphorus concentrations. Models were developed using PHREEQC-I (Appelo and Postma, 2005). Values that plot within the region marked...
‘supersaturation’ indicate that solution chemistry is predicted to be supersaturated with respect to
the mineral phase (i.e., mineral phase is stable or actively precipitating), and values within
‘undersaturation’ indicates mineral phases are predicted to dissolve. HAP refers to
hydroxylapatite; FAP is fluorapatite; CO$_3$-FAP is carbonated fluorapatite.

Figure 4: Electron microprobe (EMP) false-color and mixed element maps for a dinosaur fossil
(Hell Creek Formation, Montana; HCDO03). (a) Backscatter electron image of the bone held
within a sandstone matrix. The bone is more apparent in the false-color maps. (b) False-color
element map of phosphorus. Greater color intensity corresponds to elevated elemental
concentrations. (c) False-color element map of iron (as Fe$^{2+}$) distribution in the bone and
sediment. (d) False-color map of strontium distribution within the bone and adjacent sediment.
(e) Mixed element map of P, Sr, Fe, and F in bone and sediment. Some compositional grading is
evident in the bone fragments with a zone of P depletion following structural features.
Table 1: Summary of some of the analytical methods and tools used to investigate physical
and/or chemical properties of bone, key results for each method, and selected publications. This
table is not exhaustive, but rather touches on a wide range of techniques currently in use.

<table>
<thead>
<tr>
<th>Analytical Method or Tool</th>
<th>Results of analyses</th>
<th>Resolution</th>
<th>Selected Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray absorption near-edge structure spectroscopy (XANES)</td>
<td>Atomic-level composition; arrangement of bonds; electron sharing</td>
<td>Angstrom</td>
<td>Reiche and Chalmin (2008); Keenan et al. (2015)</td>
</tr>
<tr>
<td>Synchrotron rapid scanning X-ray florescence (SRS-XRF)</td>
<td>Spatially-resolved chemical composition</td>
<td>Angstrom</td>
<td>Janssens et al., 1999; Dumont et al. (2009); Bergmann et al. (2010)</td>
</tr>
<tr>
<td>Proton induced X-ray emission (PIXE)</td>
<td>Elemental composition; spatially-resolved chemical composition through mapping</td>
<td>Angstrom</td>
<td>Reiche et al. (2003); Goodwin et al. (2007); Bradley et al. (2010)</td>
</tr>
<tr>
<td>Extended X-ray fine structure spectroscopy (EXAFS)</td>
<td>Atomic-level composition; arrangement of bonds; electron sharing</td>
<td>Angstrom</td>
<td>Peters et al. (2000)</td>
</tr>
<tr>
<td>Fourier-transform infrared spectroscopy (FTIR)</td>
<td>Vibrational modes of constituent compounds; organics; surface mapping; proportion of carbonate species; crystallinity</td>
<td>Micron</td>
<td>Sponheimer and Lee-Thorp (1999); Pucéat et al. (2004); Keenan et al. (2015)</td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>Vibrational modes of constituent compounds; surface visualization; mapping; organics; quantify carbonate content and species</td>
<td>Micron</td>
<td>Penel et al. (2005); Crane et al. (2006); Li and Pasteris (2014a,b)</td>
</tr>
<tr>
<td>Electron microprobe (EMP) analyses</td>
<td>Elemental composition (quantitative and qualitative); visualization of surface; elemental mapping</td>
<td>Micron</td>
<td>Greenlee (1996); Hubert et al. (1996); Keenan et al. (2015)</td>
</tr>
<tr>
<td>Transmission electron microscopy (TEM)</td>
<td>Size and structure of crystallites</td>
<td>Micron</td>
<td>Reiche et al. (2003)</td>
</tr>
<tr>
<td>Scanning electron microscopy (SEM)</td>
<td>Surface morphology; elemental composition when combined with energy dispersive X-ray</td>
<td>Micron</td>
<td>Reiche et al. (2003)</td>
</tr>
<tr>
<td>Atomic-force microscopy (AFM)</td>
<td>Surface morphology; material properties, including strength</td>
<td>Nanometer</td>
<td>Gao et al. (2015)</td>
</tr>
<tr>
<td>Histology</td>
<td>Macroscale morphology</td>
<td>Nanometer</td>
<td>Tütken et al. (2004); Straight et al. (2009)</td>
</tr>
<tr>
<td>Computed tomography (CT)</td>
<td>Physical structure</td>
<td>Nanometer to micrometer</td>
<td>Straight et al. (2009)</td>
</tr>
<tr>
<td>Thermogravimetric analyses (TGA)</td>
<td>Weight loss informs water, organic, carbonate content</td>
<td></td>
<td>Mkukuma et al. (2004); Keenan et al. (2015)</td>
</tr>
<tr>
<td>Method</td>
<td>Application</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>X-ray diffraction (XRD)</td>
<td>Mineralogy</td>
<td>Person et al. (1995); Peters et al. (2000); Piga et al. (2009); Keenan et al. (2015)</td>
<td></td>
</tr>
<tr>
<td>X-ray florescence (XRF)</td>
<td>Elemental composition</td>
<td>Piga et al. (2009)</td>
<td></td>
</tr>
<tr>
<td>Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)</td>
<td>Elemental composition (bulk or spatially resolved); trace element composition (e.g., REE)</td>
<td>Trueman et al. (2008a); Koenig et al. (2009); Suarez et al. (2010); Herwartz et al. (2011, 2013)</td>
<td></td>
</tr>
<tr>
<td>Nuclear magnetic resonance (NMR)</td>
<td>Bonding and structure of Ca-bearing phases</td>
<td>Laurencin and Smith (2013)</td>
<td></td>
</tr>
<tr>
<td>Stable isotope geochemistry (variety of techniques)</td>
<td>Insight into paleodiet, paleoclimate, paleoecology</td>
<td>Cerling et al. (1993); Barrick and Showers (1994); Wang and Cerling (1994); Kohn (1996); Tütken et al. (2004); Kohn and Law (2006); Koch (2007); Tütken et al. (2011); Suarez et al. (2014)</td>
<td></td>
</tr>
</tbody>
</table>

Molecular Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Application</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbial ecology, community composition (DNA-based)</td>
<td>Genetic ID of microbes (bacteria, fungi, archaea) associated with bone diagenesis</td>
<td>Reeb et al. (2011); Damann et al. (2015)*associated with bone, role in diagenesis not demonstrated</td>
</tr>
<tr>
<td>Microbial ecology, community functioning (RNA-based)</td>
<td>Functional insights into metabolic processes occurring (e.g., P-mineralization, collagen degradation)</td>
<td>none</td>
</tr>
</tbody>
</table>
Table 2: Timeline of key recent advances and suggested future directions in bone diagenesis and related research.

Timeline of Recent Major Advances and Suggested Future Advances

<table>
<thead>
<tr>
<th>Period</th>
<th>Major Advances</th>
<th>Suggested Future Directions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990's</td>
<td>Fossil bone is chemically altered. Enrichment of F, trace elements compared to modern. Largely bulk analysis-based approaches using XRD, XRF, etc. Crystallite-scale characterization using FTIR, Raman. Biology, specifically microbiology, plays a role in diagenesis of bone.</td>
<td></td>
</tr>
<tr>
<td>2000's</td>
<td>Fossil bone is chemically zoned, reflecting diagenetic processes. Application of synchrotron-based techniques takes off. REE chemistry a major field in paleontology. Field of 'molecular paleontology' begins to emerge.</td>
<td></td>
</tr>
<tr>
<td>2010-15</td>
<td>Continued application of novel tools (e.g., synchrotron-based). Some application of molecular techniques (e.g., Reeb et al., 2011). Continued 'molecular paleontology' (e.g., Schweitzer et al., 2014).</td>
<td></td>
</tr>
<tr>
<td>2015-onwards</td>
<td>Microbial role in bone alteration (from molecular perspectives: community function and composition). Integrate conceptual models of bone stability with experimental data. Combined analytical techniques to address element- or process-specific questions (e.g., what is the dominant phase of Fe in bone?).</td>
<td>Transdisciplinary collaborations</td>
</tr>
</tbody>
</table>

References cited

Rendus Palevol, 3, 605-616.

ray Diffraction (XRD) and X-ray Fluorescence (XRF) investigation in human and animal
fossil bones from Holocene to Middle Triassic. Journal of Archaeological Science, 36, 1857-
1868.

XANES/XRF study at Mn K-edge of blue, grey or black coloured palaeontological and

Measurement Science and technology, 14, 1608-1619.

Thermodynamic basis for evolution of apatite in calcified tissues. American Mineralogist, 98,
2037-2045.

Samoilov, V.S., and Benjamini, C. (1996) Geochemical features of dinosaur remains from the
Gobi Desert, South Mongolia. Palaios, 11, 519-531.

(2014) Multi-taxon isotopic investigation of paleohydrology in the Lower Cretaceous Cedar
Mountain Formation, Eastern Utah, U.S.A.: deciphering effects of the Nevadaplano Plateau
on regional climate. Journal of Sedimentary Research, 84, 975–987.

rare earth element (REE) patterns and concentrations in a fossil bone: implications for the use

paleodiet reconstruction from stable isotopes. Palaeogeography, Palaeoclimatology,
Palaeoecology, 107, 281–289.

Watanabe, K. (2004) Collagenolytic proteases from bacteria. Applied Microbiology and
Biotechnology, 63, 520-526.

University of Chicago Press, Chicago.

Society of London B: Biological Sciences, 272, 3-16.

correlation with depositional environments. Palaeogeography, Palaeoclimatology,
Palaeoecology, 204, 15–32.

Figure 1
Fluid movement through pore spaces leads to loss of organics.

Dissolved ions substitute into apatite lattice, leading to bioapatite formation.

Secondary mineral formation occurs with the replacement of Ca\(^{2+}\), OH\(^{-}\), and PO\(_4\)^{3-} ions, resulting in reduced porosity and recrystallized apatite.

Figure 2
Figure 3

Apatite and P-bearing mineral stabilities

@ 25°C

Solution pH

Saturation Index

Supersaturation

Undersaturation

HAP

HAP (low)

FAP

FAP (low)

CO₃-FAP

CO₃-FAP (low)

Vivianite

Vivianite (low)
Figure 4

[Image: a) BSE image; b) P Kα map; c) Fe Kα map; d) Sr Lα map; e) P, Sr, Fe, F mixed element map]