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Abstract	7	

Here	we	test	the	concept	that	a	potential	energy	model	(force	field)	based	on	an	8	

expansion	of	the	bond-valence	model	can	use	molecular	geometry	to	make	a	reasonable	9	

prediction	of	the	thermodynamic	energy.		The	backbone	of	the	model	is	a	non-standard	10	

choice	of	structural	descriptors	for	the	energy	decomposition,	which	relates	the	energy	to	11	

particular	aspects	of	the	structure.	Most	force	fields	use	a	many-body	decomposition	to	12	

describe	structures	(with	two-,	three-,	and	possibly	four-body	terms,	etc.),	whereas	ours	13	

employs	a	multipole	expansion	of	the	bond	valence	incident	to	each	atom.	This	valence	14	

multipole	model	separates	the	energy	associated	with	each	atom	into	terms	related	to	total	15	

bonding	(valence	monopole),	bonding	asymmetry	(valence	dipole),	and	ellipsoidal	16	

deformation	(valence	quadrupole).	All	of	these	are	inherently	multi-body	terms	that	are	17	

calculated	by	combining	two-body	terms	(bond	valences).	Provided	bond	valence	sums	are	18	

satisfied	to	within	0.2	v.u.	of	the	ideal	for	all	atoms,	this	model	can	provide	accuracies	of	~5	19	

kJ/mol	per	unique	atom	in	the	Al-Si-H-O	system,	at	least	for	the	equilibrium	structures	20	

tested	here,	comparable	to	most	quantum	mechanical	calculations.		More	development	is	21	

needed	to	produce	a	fully	functional	force	field	suitable	for	molecular	dynamics	22	
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simulations,	but	this	work	shows	that	the	development	of	such	a	force	field	is	likely	to	be	23	

feasible.			24	

Introduction	25	

Molecular	modeling	has	become	increasingly	popular	in	geochemistry	and	26	

mineralogy,	as	knowledge	of	molecular-scale	mechanisms	and	structures	has	become	27	

progressively	more	important.		Quantum	mechanical	(QM)	models	are	the	gold	standard	28	

for	molecular	modeling,	but	can	be	prohibitively	computationally	expensive,	especially	for	29	

the	larger	systems	of	atoms	sometimes	needed	to	adequately	represent	natural	materials	30	

and	processes.		Molecular	mechanics	(MM)	potential	energy	models,	or	“force	fields,”	are	31	

common,	less	computationally	intensive	alternatives,	but	are	subject	to	a	number	of	32	

difficulties	that	have	often	limited	their	scope	and	effectiveness.			33	

We	suggest	that	some	of	these	problems	can	be	addressed	by	restructuring	the	basic	34	

architecture	of	an	MM	force	field.		In	this	contribution,	we	report	on	the	construction,	35	

optimization,	and	initial	testing	of	a	potential	energy	model	(intended	to	be	a	precursor	to	a	36	

fully	reactive	force	field)	for	the	Al-Si-H-O	system,	designed	around	the	Valence	Multipole	37	

Model	(VMM)	(Bickmore	et	al.,	2013;	Shepherd	et	al.,	2016),	which	is	an	extension	of	the	38	

Bond-Valence	Model	(BVM)	(Brown,	2002;	2009;	2014).		To	our	knowledge,	this	is	the	first	39	

example	of	a	potential	energy	model	constructed	completely	from	a	bond-valence	model	of	40	

chemistry	rather	than	by	using	the	BVM	to	augment	existing	architectures.		Early	41	

indications	are	that	such	models	are	capable	of	excellent	accuracy,	with	limited	42	

computational	expense,	at	least	with	respect	to	estimating	thermodynamic	energies	of	43	

equilibrium	structures.		Considering	how	often	bond	valence	has	been	used	in	quantitative	44	

structure-activity	relationships	(Hiemstra	et	al.,	1989;	Sverjensky,	1994;	Hiemstra	and	Van	45	
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Riemsdijk,	1996;	Hiemstra	et	al.,	1996;	Sverjensky	and	Sahai,	1996;	Sahai	and	Sverjensky,	46	

1997b;	a;	Sverjensky	et	al.,	1997;	Lufaso	and	Woodward,	2001;	Sahai,	2002;	Bickmore	et	47	

al.,	2004;	Etxebarria	et	al.,	2005;	Sverjensky,	2005;	Bickmore	et	al.,	2006a;	Bickmore	et	al.,	48	

2006b;	Perez-Mato	et	al.,	2009;	Bickmore,	2014),	this	is	a	significant	development	in	itself.			49	

Theory	50	

To	introduce	this	new	approach,	we	discuss	the	standard	architecture	of	MM	force	51	

fields,	give	a	basic	explanation	of	the	VMM,	and	show	how	a	potential	energy	model	based	52	

on	the	VMM	would	differ	from	the	standard	architecture,	while	allowing	for	broader	53	

applicability	and	greater	accuracy,	at	a	reasonable	computational	cost.		54	

	55	

Standard	MM	Force	Fields	56	

MM	force	fields	mimic	interactions	between	atoms	and	molecules	by	treating	them	57	

essentially	as	“balls	on	springs”	(Hinchliffe,	2003).		That	is,	the	geometry	of	a	system	of	58	

atoms	is	defined	in	terms	of	a	set	of	structural	descriptors	(e.g.,	interatomic	distances	and	59	

bond	angles),	ideal	values	are	specified	for	the	descriptors	(e.g.,	preferred	bond	lengths	and	60	

angles),	and	energy	cost	functions	are	applied	to	deviations	from	the	ideal	values.		The	61	

simplest	and	most	often	used	of	these	energy	cost	functions	is	Hooke’s	Law	for	springs	62	

(Eqn.	1),	in	which	the	spring	length	is	the	structural	descriptor	of	interest.		Here,	u	is	the	63	

potential	energy,	k	is	a	constant,	x0	is	the	ideal	value	of	the	structural	descriptor	of	interest,	64	

and	x	is	the	actual	value.			65	

	66	

𝑢 =
1
2 𝑘 𝑥 − 𝑥! !	

	 	 	 	 	 	 	 	 	 	 	 	 (1)	67	
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	68	

Each	of	these	energy	terms	includes	one	or	more	parameters	that	can	be	adjusted	to	fit	the	69	

overall	model	to	some	set	of	data,	including	crystal	or	molecular	structures,	70	

thermodynamic	data,	or	even	structures	and	associated	energies	gleaned	from	QM	71	

calculations	(Rappé	and	Casewit,	1997;	Hinchliffe,	2003;	Cramer,	2004;	Comba	et	al.,	2009).		72	

Other	common	energy	cost	functions	have	quartic	or	sinusoidal	forms	(Cramer,	2004).	73	

One	of	the	core	assumptions	of	a	standard	MM	force	field	is	“pair-wise	additivity”	74	

(Rowley,	1994),	that	every	pair-wise	energy	contribution	is	completely	independent	of	75	

every	other	pair	wise	energy	contribution.		The	geometry	of	the	system	is	described	76	

primarily	via	pair-wise	potential	energy	terms,	uij,	based	on	the	distance	between	a	pair	of	77	

atoms	(e.g.,	Coulomb,	Van	der	Waals,	and	Morse	potentials).		The	total	potential	energy	of	78	

the	system	(U)	is	approximated	simply	by	summing	the	pair-wise	terms,	as	in	Eqn.	2.	79	

𝑈 = 𝑢!"
!!!

	

	 	 	 	 	 	 	 	 	 	 	 	 (2)	80	

This	assumption	is	not	strictly	true,	however.		For	instance,	changing	one	bond’s	81	

length	(for	whatever	reason)	changes	the	ideal	lengths	of	neighboring	bonds	linked	to	the	82	

same	atoms,	as	well	as	the	angles	between	them.	This	fact	follows	from	QM	theory,	and	83	

explains	why	structures	optimized	via	MM	tend	to	have	higher	symmetry	than	the	84	

corresponding	experimental	structures	(Comba	et	al.,	2009).		85	

Such	a	simple	approach	generally	only	poorly	describes	the	geometry	of	the	system	86	

and	it	is	frequently	necessary	to	add	multi-body	terms	(e.g.,	bond-angle	bending	terms	87	

involving	three	bodies,	or	out-of-plane	or	dihedral-angle	distortion	terms	involving	four	88	



	 	 5	

bodies)	as	corrections	to	the	lower-order	terms,	decreasing	in	importance	with	the	number	89	

of	bodies	involved.	This	is	called	many-body	decomposition;	it	means	simply	that	the	90	

energy	terms	are	organized	by	increasing	number	of	bodies	(atoms)	involved.		This	can	be	91	

expressed	as	an	expansion	about	the	pair-wise	energies,	as	in	Eqn.	3,	where	N	is	the	total	92	

number	of	atoms	or	molecules	in	the	system	(Rowley,	1994).	93	

	94	

𝑈 = 𝑢!"
!!!

+ ∆𝑢!"# +⋯+ ∆𝑢!,!,!…!
!!!!!

 	

	 	 	 	 	 	 	 	 	 	 	 (3)	95	

Mathematically,	this	is	an	excellent	choice,	because	it	is	a	limiting	series	in	which	the	96	

two-body	terms	will	be	most	important,	and	subsequent	terms	decrease	in	importance	as	97	

the	number	of	bodies	increases.	Chemically,	however,	these	terms	are	coupled	with	one	98	

another,	and	this	coupling	increases	for	the	higher-order	terms.		As	the	number	of	99	

interactions	considered	increases,	so	does	the	number	and	degree	of	highly	coupled,	100	

adjustable	model	parameters.		While	this	can	produce	high	accuracy	results	for	a	particular	101	

set	of	chemical	conditions,	this	can	lead	to	force	fields	that	can	be	over-fitted	to	that	limited	102	

domain,	and	are	woefully	inaccurate	outside	that	domain.		Furthermore,	the	computational	103	

expense	of	tracking	spatial	relationships	between	increasing	numbers	of	bodies	can	quickly	104	

become	prohibitive.	105	

	 Even	with	multi-body	corrections,	force	fields	based	on	pair	potentials	with	106	

universal	ideal	bond	lengths	and	angles	for	interactions	of	a	given	type	may	not	be	able	to	107	

model	chemical	reactions	during	which	coordination-number	changes	take	place.		This	108	

drove	the	need	to	create	reactive	force	fields,	potential	energy	surfaces	for	molecules	that	109	
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were	capable	of	bond	dissociation	and	formation.	The	methods	for	creating	reactive	force	110	

fields	that	can	address	bond	and	coordination	number	changes	usually	involve	extra	111	

potential	energy	terms	built	on	a	foundation	of	more	traditional	terms	(Liang	et	al.,	2013).		112	

Thus,	the	parameterization	problem	is	exacerbated,	and	the	range	of	utility	of	these	types	113	

of	models	can	be	further	limited.		114	

	115	

	116	

Bond-Order	Potentials	and	the	Bond-Valence	Model	117	

One	method	used	to	augment	traditional	MM	force	fields	is	to	use	bond	order	as	a	118	

structural	descriptor.		Bond	order	generally	refers	to	the	number	of	electron	pairs	involved	119	

in	a	given	bond;	e.g.,	single	bonds	involve	one	electron	pair,	double	bonds	involve	two,	and	120	

non-integral	bond	orders	are	possible,	as	well.		Particular	atoms	tend	to	be	most	stable	121	

when	the	bond	orders	of	incident	bonds	sum	to	some	ideal	value,	which	is	determined	by	122	

standard	electron	counting	rules,	e.g.,	the	octet	rule.		There	are	various	methods	for	123	

calculating	bond	order,	based	on	bond	lengths,	bond	angles,	calculated	electron	densities,	124	

and	so	on,	but	the	advantage	of	using	bond	order	as	a	structural	descriptor	is	that	the	125	

energy	cost	comes	from	deviation	of	the	summed	bond	orders	about	each	atom	from	an	126	

ideal	value;	i.e.,	it	is	based	on	the	total	bonding	environment	of	an	atom.		Some	examples	of	127	

MM	force	fields	that	include	bond-order	terms,	called	bond-order	potentials	(BOPs),	are	the	128	

Tersoff	(Tersoff,	1988),	Brenner	(Brenner,	1990),	Finnis-Sinclair	(Finnis	and	Sinclair,	129	

1984),	and	ReaxFF	(van	Duin	et	al.,	2003)	potentials.	130	

	 One	class	of	BOPs	(Grinberg	et	al.,	2002;	Cooper	et	al.,	2003;	Grinberg	et	al.,	2004;	131	

Shin	et	al.,	2005;	Shin	et	al.,	2007;	Shin	et	al.,	2008;	Grinberg	et	al.,	2009;	Liu	et	al.,	2013a;	132	
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Liu	et	al.,	2013b;	Takenaka	et	al.,	2013)	uses	the	BVM	(Brown,	2002;	2009;	2014)	to	133	

estimate	bond	orders.		The	BVM	is	essentially	a	method	for	relating	bond	order	to	bond	134	

length.		(Note:		From	this	point	forward,	the	terms	"bond	order"	and	"bond	valence"	are	135	

used	interchangeably.)		The	principal	axiom	of	the	BVM	is	the	valence	sum	rule	(Eqn.	4),	136	

which	predicts	that	in	a	stable	structure	the	sum	(Si)	of	the	valences	(orders)	of	the	bonds	137	

(sij)	incident	to	atom	i	from	neighboring	atoms	j	must	cancel	the	atomic	valence	of	atom	i	138	

(Vi).		In	the	traditional	forms	of	the	BVM,	the	bond	valences	are	negative	in	the	direction	of	139	

cations	and	positive	in	the	direction	of	anions.	140	

𝑠!"
!

+ 𝑉! = 𝑆! + 𝑉! = 0	

	 	 	 	 	 	 	 	 	 	 	 	 (4)	141	

The	value	of	Vi	is	usually	taken	as	equivalent	to	the	oxidation	number,	but	important	142	

variants	exist	(O'Keeffe	and	Brese,	1992;	Brown,	2002;	2014;	Wander	et	al.,	2015a).		The	143	

individual	bond	valences	are	calculated	using	an	equation	relating	bond	length	to	bond	144	

valence,	which	is	calibrated	on	known	equilibrium	structures	by	applying	some	bond	145	

valence-length	relationship	and	enforcing	the	valence	sum	rule.		The	most	commonly	used	146	

bond	valence-length	relationship	is	shown	in	Eqn.	5,	where	Rij	is	the	bond	length,	R0	is	the	147	

length	of	a	single	(1	valence	unit	or	v.u.)	bond,	and	B	is	a	constant	that	dictates	the	148	

curvature.		149	

𝑠!" = 𝑒 !!!!!" /! 	

	 	 	 	 	 	 	 	 	 	 	 	 (5)	150	

The	individual	bond	valences	are	computationally	comparable	to	simple	pair-wise	151	

terms.		But	if	a	BOP	applies	an	energy	cost	function	like	Eqn.	1	to	the	deviation	of	Si	from	Vi,	152	
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rather	than	deviation	of	individual	bond	valences	from	ideal	values,	then	we	have	a	true	153	

multi-body	term	that	is	calculated	simply	by	summing	pair-wise	terms.		This	is	why	BOPs	154	

are	attractive,	i.e.,	they	employ	multi-body	terms	that	are	relatively	computationally	155	

inexpensive,	and	require	only	two-body	parameterization.	156	

	157	

Expanding	the	Bond-Valence	Model	158	

	 As	mentioned	above,	however,	the	multi-body	terms	in	BOPs	have	more	or	less	been	159	

treated	as	corrections	to	a	model	framework	based	on	standard	many-body	terms	that	160	

assume	pair-wise	additivity,	the	independence	of	the	individual	bond	potentials.		Our	goal	161	

is	to	discover	what	it	would	take	to	create	a	potential	energy	model	based,	as	completely	as	162	

possible,	on	the	concept	of	bond	valence.		This	requires	some	expansion	of	the	BVM,	which	163	

we	have	addressed	under	four	headings:		1)	introducing	directionality	via	the	Valence	164	

Multipole	Model	(VMM),	2)	introducing	fully	covalent	interactions,	3)	redefining	the	shape	165	

of	bond	valence-length	curves,	and	4)	optimization	of	the	curves	to	produce	appropriate	166	

potential	energy	surfaces.	167	

The	Valence	Multipole	Model.		Bond	valence	alone	addresses	only	bond	lengths,	168	

rather	than	the	complete	spatial	distribution	of	bonds,	and	so	is	incapable	of	describing	all	169	

aspects	of	a	structure.		The	VMM	addresses	this	problem	by	describing	full	structures	via	a	170	

multipole	expansion	of	the	valence	bonds	incident	to	each	atom,	made	possible	by	treating	171	

bond	valence	as	a	vector	quantity	(Harvey	et	al.,	2006;	Bickmore	et	al.,	2013).	In	this	way,	172	

we	can	consider	both	scalar	magnitudes	of	bonding,	as	well	as	directionality.			173	

Multipole	expansions	are	commonly	used	to	describe	spatial	distributions	of	things	174	

like	electric	charge	or	mass,	using	a	succession	of	terms	that	describe	progressively	finer	175	
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details.		Typical	multipole	terms	include	the	monopole	(a	scalar	describing	the	total	176	

quantity	of	interest	within	a	defined	region),	the	dipole	moment	(a	vector	describing	the	177	

lopsidedness	of	the	distribution	around	some	point),	the	quadrupole	moment	(a	rank-2	178	

tensor	describing	the	spherical	symmetry	of	the	distribution),	and	so	on	(octupole	moment,	179	

etc.)		In	the	VMM,	the	bond	monopole	(Si)	is	the	total	bonding	reaching	an	atom,	the	dipole	180	

moment	is	the	vector	sum	of	the	bonds	reaching	that	atom,	and	the	quadrupole	moment	is	181	

a	tensor	describing	the	ellipsoidal	distribution	of	bond	valence.		The	bond	dipole	can	182	

describe	non-centrosymmetric	distortions	of	the	coordination	sphere,	while	the	bond	183	

quadrupole	moment	can	describe	centrosymmetric	distortions.		(To	be	clear,	we	should	184	

emphasize	the	fact	that	bond	valence	does	not	equate	to	charge	transfer,	although	this	is	a	185	

common	misconception.		If	that	were	the	case,	then	a	multipole	expansion	of	bond	valence	186	

would	essentially	be	the	same	as	a	multipole	expansion	of	the	charge	distribution,	which	is	187	

more	familiar	to	scientists.		Rather,	we	are	using	the	same	mathematical	formalism	to	188	

describe	the	spatial	distribution	of	"bonding"	incident	to	an	atom,	which	is	physically	a	189	

more	nebulous	concept.		As	explained	below,	we	will	likely	add	a	Coulomb	term	to	our	190	

model	in	the	future.)	191	

We	find	it	convenient	to	normalize	(Eqn.	6)	the	individual	bond-valence	vectors	𝑠!" 	192	

to	Si,	resulting	in	fractional	bond-valence	vectors	 𝑝!" 	that	are	used	to	calculate	the	valence	193	

dipole	 𝑃! 	and	valence	quadrupole	 Θ! 	terms	for	each	atom,	as	in	Eqns.	7-9.		Here	N	is	the	194	

number	of	bonds	from	neighboring	atoms	j	incident	to	the	central	atom	i,	and	𝑝!"! 	or	𝑝!"! 	195	

represents	the	magnitude	of	𝑝!" 	projected	onto	one	of	the	Cartesian	directions,	where	196	

𝛼,𝛽 = 𝑥,𝑦, 𝑧.		(E.g.,	𝑝!"! = 𝑥 •	𝑝!" ,	where		𝑥	is	the	unit	vector	in	the	x	direction.)		δαβ	is	the	197	

Kronecker	delta,	which	is	one	in	the	case	that	direction	α	equals	direction	β,	but	otherwise	198	
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zero.		The	𝑃! 	and	Θ! 	values	calculated	using	fractional	bond-valence	vectors	 𝑝!" 	thus	199	

depend	only	upon	the	shape	of	the	bond-valence	distribution,	and	not	on	the	atomic	200	

valence	of	the	central	atom,	or	the	over-	or	under-bondedness	of	the	atom	(Shepherd	et	al.,	201	

2016).			202	

	203	

𝑝!" =
𝑝!"!
𝑝!"!
𝑝!"!

= 𝑠!"
𝑆! 	

	 	 	 	 	 	 	 	 	 	 	 	 (6)	204	

𝑃! = 𝑝!"
!

	

	 	 	 	 	 	 	 	 	 	 	 	 (7)	205	

𝚯! =
1
2 3𝑝!"!𝑝!"! − 𝛿!" 𝑝!"

!

𝛽=𝑥,𝑦,𝑧𝛼=𝑥,𝑦,𝑧

!

!!!

	

	 	 	 	 	 	 	 	 	 	 	 	 (8)	206	

𝚯! =
1
2

3 𝑝!"!
!
− 𝑝!"

!
 !

!!!

3 𝑝!"!𝑝!"!

!

!!!

3 𝑝!"!𝑝!"!

!

!!!

3 𝑝!"!

!

!!!

𝑝!"! 3 𝑝!"!
!
− 𝑝!"

!
!

!!!

3 𝑝!"!

!

!!!

𝑝!"!

3 𝑝!"!𝑝!"!

!

!!!

3 𝑝!"!𝑝!"!

!

!!!

3 𝑝!"!
! − 𝑝!"

!
!

!!!

	

	 	 	 	 	 	 	 	 	 	 	 (9)	207	

Finally,	we	discard	some	of	the	directional	information	contained	in	𝑃! 	and	𝚯! 	to	208	

condense	them	into	single	scalar	values,	by	calculating	their	magnitudes	(norms).		Eqn.	10	209	

shows	the	equation	for	the	norm	of	𝑃! ,	and	Eqn.	11	shows	the	equation	for	the	Frobenius	210	
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norm	of	𝚯! ,	where	θ!"	represents	the	nine	elements	of	𝚯! 	in	rows	m	and	columns	n.		The	211	

Frobenius	norm	does	not	depend	on	the	rotation	of	the	axes	(Horn	and	Johnson,	2012;	212	

Golub,	2013).	213	

	214	

𝑃! = 𝑃!!
! + 𝑃!!

! + 𝑃!!
! 	

	 	 	 	 	 	 	 	 	 	 	 (10)	215	

𝚯! = θ!" !

!

!!!

!

!!!

	

	 	 	 	 	 	 	 	 	 	 	 	 (11)	216	

	 As	a	result,	we	now	have	three	scalar	quantities	(Si,	 𝑃! ,	and	 𝚯! ),	capable	of	217	

describing	different	aspects	of	the	total	bonding	environment	of	each	atom	in	a	structure.			218	

Previous	work	(Bickmore	et	al.,	2013;	Shepherd	et	al.,	2016)	has	shown	that	 𝑃! 	and	 𝚯! 	219	

vary	systematically	as	a	function	of	the	bonding	environment.		Therefore,	it	should	be	220	

possible	to	model	how	their	ideal	values	change	under	various	circumstances.		However,	it	221	

should	be	noted	that	it	may	be	necessary,	in	some	circumstances,	to	recover	some	of	the	222	

directional	information	lost	when	taking	the	Frobenius	norm	of	the	quadrupole.		For	223	

instance,	 𝚯! 	does	not	distinguish	between	oblate	and	prolate	spheroidal	deformation.	224	

Bond	Valence	for	Fully	Covalent	Bonds.		The	standard	formulation	of	the	BVM	225	

effectively	addresses	ionic	and	polar-covalent,	but	not	fully	covalent	(i.e.,	between	atoms	of	226	

the	same	element),	bonds.		The	reason	for	this	is	that	if	atomic	valence	(Vi)	is	taken	as	227	

equivalent	to	the	oxidation	number,	fully	covalent	(i.e.,	same-element)	bonds	must	be	228	

ignored	for	calculating	the	total	bond	valence.		For	example,	C	in	diamond	has	an	oxidation	229	
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state	of	zero,	but	forms	four	single	bonds	with	its	neighbors.		Likewise,	C	in	ethane	(C2H6)	230	

has	an	oxidation	state	of	+3,	but	still	forms	four	single	bonds	to	the	three	surrounding	H	231	

atoms,	and	the	neighboring	C.		One	must	simply	decide	on	the	correct	value	of	Vi	for	232	

covalent	systems.		In	both	of	the	above	cases,	it	is	clearly	4,	rather	than	0	or	3,	as	the	classic	233	

model	suggests.		234	

Fully	covalent	bonds	can	easily	be	included	in	a	bond-valence	treatment,	however,	if	235	

certain	adjustments	are	made	to	the	model.		For	instance,	if	we	define	atomic	valence	as	the	236	

maximum	number	of	single	bonds	incident	to	an	atom	(always	a	positive	number),	it	would	237	

suffice	for	most	typical	situations	involving	minerals.		In	this	case,	we	would	also	need	to	238	

define	the	bond	valence	as	positive	in	both	directions,	and	recast	the	valence	sum	rule	239	

(Eqn.	4)	as	in	Eqn.	12.		240	

𝑠!"
!

= 𝑆! ≈ 𝑉! 	

	 	 	 	 	 	 	 	 	 	 	 	 (12)	241	

O'Keeffe	and	Brese	(1992)	showed	that	a	bond-valence	approach	could	be	used	to	242	

describe	anion-anion	bonds	in,	for	example,	persulfides,	sulfosalts,	and	peroxides,	but	243	

ignored	bonds	weaker	than	0.25	v.u.		However,	Wander	et.	al.	(2015a)	showed,	for	the	Al-244	

Si-H-O	and	Al-Si-K-O	systems,	that	calculated	bond-valence	sums	could	actually	be	245	

improved	by	including	even	very	weak	anion-anion	bonds.	Including	cation-cation	bonds	246	

made	little	difference	in	these	systems,	but	certainly	would	in	others,	particularly	in	cases	247	

with	partially	and	fully	reduced	metals.			248	

The	utility	of	including	fully	covalent	bonding	goes	beyond	improving	bond-valence	249	

sums,	however.		It	widens	our	definition	of	bonding,	allowing	for	more	types	of	two-body	250	
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interactions	to	be	included	in	our	bonds.	First,	it	provides	a	means,	within	a	strict	bond-251	

valence	framework,	of	incorporating	attractive	and	repulsive	potentials	between	co-ions,	252	

depending	on	whether	the	atoms	involved	are	under-	or	over-bonded,	respectively.		It	also	253	

allows	for	the	incorporation	of	Van	der	Waals	interactions	within	the	bond-valence	254	

framework.		Second,	if	we	acknowledge	that	the	energy	(i.e.,	well	depth)	of	a	given	bond	255	

depends	on	both	the	bond	valence	and	factors	such	as	the	bond	character,	we	can	256	

qualitatively	predict	a	very	broad	range	of	chemical	behavior	(Wander	et	al.,	2015a).	257	

Bond	Valence-Length	Curve	Shapes.		To	define	bond	valence-length	relationships	for	258	

individual	atom	pairs,	one	usually	assumes	a	simple	model	form	similar	to	Eqn.	5,	and	then	259	

adjusts	one	or	two	of	the	parameters	to	enforce	the	valence	sum	rule	(Eqn.	4)	within	a	260	

collection	of	crystal	structures.		One	potential	problem	with	this	is	that	a	given	atom	pair	261	

typically	exhibits	a	fairly	narrow	range	of	bond	lengths	in	crystal	structures,	over	which	262	

many	simple	decay	functions	can	reasonably	represent	the	relationship.		Wander	et	al.	263	

(2015b)	used	both	molecular	and	crystal	structures,	however,	to	show	that	over	a	wider	264	

range	of	bond	lengths,	simple	one-	or	two-parameter	decay	functions	are	not	always	265	

flexible	enough	to	adequately	capture	the	relationship.		This	failure	is	problematic,	given	266	

that	our	goal	is	to	produce	a	valence-based	potential	energy	model	for	use	in	molecular	267	

dynamics	simulations,	which	would	require	accurate	representation	of	a	wider	range	of	268	

bond	valences.		269	

Eqns.	13	and	14	show	more	flexible	forms	of	the	bond	valence-length	relationship,	270	

which	we	will	use	here	in	addition	to	Eqn.	5.		Eqn.	13	is	a	weighted,	geometric	mean	of	the	271	

exponential	decay	function	in	Eqn.	5	and	a	power-law	decay	function.		It	has	three	272	
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parameters:		R0,	B,	and	w,	which	is	a	weighting	coefficient	with	possible	values	between	0	273	

and	1.		274	

𝑠!" = 𝑒 !!!!!" !/! !!
!!"

!!! /!
	 	 	 	 	 	 	 (13)	275	

	276	

Eqn.	14	is	a	weighted,	arithmetic	mean	of	two	exponential	decay	functions,	with	five	277	

parameters,	including	distinct	values	of	R0	and	B.	278	

𝑠!" = 𝑤𝑒 !!,!!!!" /!! + 1− 𝑤 𝑒 !!,!!!!" /!! 		 	 	 	 	 (14)	279	

In	Eqns.	5	and	13,	R0	corresponds	to	the	length	of	the	single	bond,	but	this	is	not	the	280	

case	for	Eqn	14.			There	is	still	one	and	only	one	Rij	value	that	does	correspond	to	the	single	281	

bond	length,	however.	In	all	cases	where	we	have	applied	Eqn.	14,	the	curvature	break	282	

occurs	at	around	sij	=	1	v.u.			283	

Bond	Valence-Length	Curve	Optimization.		Bond	valence-length	relationships	can	be	284	

estimated	based	on	known	structures	for	which	the	individual	bond	valences,	or	at	least	285	

the	total	bond	valence	incident	to	each	atom,	can	be	unambiguously	assigned.		In	some	286	

cases,	however,	the	available	structures	are	too	narrowly	focused	to	sufficiently	constrain	287	

the	curve	shape.		In	other	cases,	a	wide	distribution	of	bond	lengths	is	available,	but	it	is	288	

difficult	or	impossible	to	unambiguously	assign	bond	valence	values.		This	is	particularly	289	

problematic	for	optimizing	B	values	in	Eqns.	5,	13,	and	14,	because	it	can	demonstrate	290	

enormous	flexibility	to	compensate	for	poor	structural	data	(e.g.,	poorly	characterized	O-H	291	

bond	lengths).	In	such	cases,	it	may	be	possible	to	use	supplementary	methods.	292	

We	assume	that	bond	valence	is	essentially	identical	to	bond	order,	and	use	prior	293	

work	(Badger,	1934;	Johnston,	1966)	on	the	relationship	between	vibrational	force	294	
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constants	and	bond	order	to	leverage	available	vibrational	spectroscopic	data.		Johnston	295	

(1966)	posited	the	relationship	in	Eqn.	15,	where	kij	is	the	vibrational	force	constant	for	a	296	

bond	between	atoms	i	and	j,	of	order	sij,	and	k1	is	the	vibrational	force	constant	for	a	single	297	

bond	of	the	same	type.	298	

	 	 	 	 𝑠!" =
!!"
!!
		 	 	 	 	 	 (15)	299	

In	cases	for	which	we	know	the	vibrational	force	constants	for	triple,	double	and	single	300	

bonds,	they	conform	closely	to	a	3:2:1	ratio.		Making	this	assumption	that	bond	valence	is	301	

essentially	equivalent	to	other	bond	order	estimates	allows	us	to	use	vibrational	data	from	302	

a	much	broader	array	of	molecules,	including	radicals,	to	constrain	the	shape	of	bond	303	

valence-length	curves.	This	is	particularly	important	for	estimating	the	B	parameters	with	304	

confidence	(Eqns.	5,	13,	and	14),	because	we	can	now	relate	this	value	to	the	changes	in	the	305	

experimental	vibrational	force	constant	with	distance.	Whether	one	uses	the	traditional	306	

structural	data,	or	the	method	we	suggest	here	using	experimental	vibrational	data,	one	307	

should	get	the	same	answer.	308	

	 	309	

Potential	Energy	Model 310	

	 Our	expanded	bonding	model	provides	structural	descriptors	and	rough	estimates,	311	

at	least,	of	ideal	values	for	those	descriptors	under	various	circumstances.		To	produce	a	312	

complete	potential	energy	model,	however,	we	must	create	energy	cost	functions	for	313	

deviations	from	the	ideal	values.		Here	we	describe	the	basic	form	of	our	preliminary	314	

model,	along	with	the	associated	energy	cost	functions.	315	

	 Energy	Decomposition.		The	essential	form	of	our	model	is	shown	in	Eqn.	16,	where	E	316	

denotes	energy,	and	the	subscripts	VM,	VD,	and	VQ	denote	the	valence	monopole,	dipole,	317	
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and	quadrupole	terms	for	each	atom	i.		(Again,	these	are	calculated	from	bond	vectors,	318	

rather	than	the	distribution	of	electric	charge.)	These	terms	are	then	summed	over	all	319	

atoms	in	the	system.	320	

	 	 	 	 𝐸!"#$% = 𝐸!",! + 𝐸!",! + 𝐸!",!! 	 	 	 	 (16)	321	

As	model	development	progresses,	we	anticipate	that	we	may	need	to	add	other	322	

terms,	such	as	Coulomb	interactions	at	long	range,	dipole-dipole	terms	on	neighboring	323	

atoms,	and	pressure	corrections.		However,	the	simple	model	shown	in	Eqn.	16	is	sufficient	324	

to	show	the	utility	of	the	valence-multipole	energy	decomposition.	325	

Valence	Monopole	Energy.			The	valence	monopole	energy	for	each	atom	i	(Eqn.	17)	326	

is	a	function	of	the	total	incident	bond	valence	(Si)	and	the	atomic	valence	(Vi).		It	is	scaled	327	

to	the	a	quantity	(DE1,i)	analogous	to	the	well	depth	term	in	a	Morse	function,	and	includes	328	

an	exponent	(αi).		This	form	is	valid	only	if	Si	≈	Vi,	but	it	is	not	known	how	close	they	need	329	

to	be.	330	

		 	 	 𝐸!",! =
!
!

 𝑉!𝐷!!,!
!!
!!

!!
− 1

!
		 	 	 	 (17)	331	

	 As	shown	in	Eqn.	18,	the	value	of	αi	is	related	to	the	softness	parameters	(B)	in	the	332	

bond	valence-length	relationships	used	(Eqns.	5,	13,	14),	and	both	the	force	constant	(k1)	333	

and	well	depth	(DE1,i)	for	a	single	bond	of	the	type	incident	to	the	atom.	334	

𝛼! = 𝐵!
𝑘!,!
2𝐷!!,!

	

	 	 	 	 	 	 	 	 	 	 	 	 (18)	335	

In	all	cases,	the	subscript	i	in	Eqns.	16-18	denotes	a	particular	atom,	so	terms	that	336	

would	normally	be	associated	with	a	particular	bond	must	somehow	be	averaged	over	all	337	



	 	 17	

the	bonds	incident	to	the	atom	in	question.			For	each	atom	i,	we	use	a	simple	weighted	338	

arithmetic	mean	over	all	the	incident	bonds	ij,	to	compute	the	k1,i	and	DE1,i	(Eqns.	19-20).	339	

	 	 	340	

𝑘!,! =
1
𝑆!

𝑠!"𝑘!,!"
!

	

	 	 	 	 	 	 	 	 	 	 	 	 (19)	341	

	 𝐷!!,! =
!
!!

𝑠!"𝐷!,!"! 	342	

	 	 	 	 	 	 	 	 	 	 	 (20)	343	

For	the	Bi	value,	we	instead	do	a	weighted	arithmetic	average	of		1/Bij	(Eqn.	21).		344	

1
𝐵!
=

1
𝑆!

𝑠!"
𝐵!"!

	

	 	 	 	 	 	 	 	 	 	 	 (21)	345	

However,	this	could	not	be	applied	directly	in	cases	where	the	double	exponential	form	346	

(Eqn.	14)	was	used	for	the	bond	valence-length	relationship.		In	such	cases,	however,	we	347	

treat	the	two	exponential	terms	as	describing	two	separate	bonds	between	the	same	two	348	

atoms,	in	which	case	Eqn.	21	still	applies.	349	

	 What	remains,	at	this	point,	is	to	describe	how	DE	values	for	individual	bonds	are	350	

estimated.		DE	values	for	bonds	involving	each	atom	pair	are	represented	by	a	polynomial	351	

function	of	sij	(Eqn.	22),	except	in	the	case	of	H-O	bonds,	for	which	Eqn.	23	is	applied.		In	352	

these	equations,	a,	b,	c,	etc.,	denote	fitted	constants.	353	

𝐷!,!" = 𝑎𝑠!" + 𝑏𝑠!"!  +⋯	

	 	 	 	 	 	 	 	 	 	 	 	 (22)	354	
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𝐷!,!" = 𝑎𝑠!"
!/! + 𝑏𝑠!"! 	

	 	 	 	 	 	 	 	 	 	 	 (23)	355	

	356	

	 Valence	Dipole	Energy.		For	the	valence	dipole	term,	we	used	a	simple	harmonic	357	

energy	penalty	function	(Eqn.	24),	where	kVD,i	is	a	type	of	spring	constant.	This	form	is	358	

unusual,	because	the	units	of	kVD,i	are	not	the	typical	energy/distance2,	but	rather	359	

energy/valence2.		360	

𝐸!",! = 𝑘!",! 𝑃! − 𝑃! !"#$%

!
	 	 (24)	361	

It	is	because	of	this	unit	difference	that	we	have	chosen	the	designation	“spring	constant”	362	

rather	than	the	more	traditional	“force	constant”	for	both	the	valence	dipole	and	363	

quadrupole	moment	restraint	equations.		364	

The	key	to	this	term	lies	in	the	determination	of	the	ideal	value.		In	many	cases,	365	

especially	normal	cations	not	subject	to	lone-pair	or	Second-Order	Jahn-Teller	effects,	and	366	

bonded	to	a	single	type	of	anion,	 𝑃! !"#$%
= 0	v.u.	In	the	Al-Si-H-O	system,	only	O	(due	to	367	

lone-pair	effects)	and	H	(due	to	its	small	size	and	asymmetric	bonding)	had	to	be	treated	368	

differently.		For	such	elements	there	is	likely	to	be	not	one,	but	multiple	values	of	 𝑃! !"#$%
,	369	

each	of	which	corresponds	to	a	particular	arrangement	of	bonds.		These	will	depend	on	370	

both	the	coordination	number	and	the	identity	of	the	bound	atoms.			371	

We	have	only	a	very	limited	ability	to	guess	what	ideal	values	might	be.	In	general,	372	

they	will	depend	strongly	on	the	coordination	number	and	the	row	number	of	the	bound	373	

atoms.	In	many	cases	transitions	between	the	known	points	are	impossible	to	determine.	374	
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As	the	coordination	number	increases	past	four,	it	is	expected	that	oxygen	will	act	as	a	375	

spherical	anion,	and	 𝑃! !"#$%
	should	approach	zero	(Bickmore	et	al.,	2013).	376	

	377	

Quadrupole	Valence	378	

We	assumed	a	similar	energy	cost	function	for	the	valence	quadrupole	terms	(Eqn.	379	

25).	380	

	381	

𝐸!" = 𝑘!",! 𝚯! − 𝚯! !"#$%
!	

	 	 	 	 	 	 	 	 	 	 	 	 (25)	382	

We	found	that	valence	quadrupole	terms	were	not	needed	for	the	Al-Si-H-O	system,	so	we	383	

mention	them	here	only	to	note	that	we	made	the	attempt.		However,	we	are	certain	that	384	

valence	quadrupole	terms	will	be	needed	for	transition	metals	subject	to	centrosymmetric	385	

First-Order	Jahn-Teller	distortions	(Shepherd	et	al.,	2016),	and	many	actinide	ions	(e.g.,	386	

uranyl).	387	

	388	

METHODS	389	

Given	the	basic	form	of	the	potential	energy	model,	optimizing	the	model	for	the	Al-390	

Si-H-O	system	involved	1)	constructing	appropriate	sets	of	data	for	calibrating	and	testing	391	

the	model,	and	2)	the	optimization	procedure	itself.	392	

	393	

Data	Sets	394	

	 To	calibrate	the	model,	we	needed	both	structural	and	thermodynamic	data	for	a	395	

wide	range	of	species,	but	finding	such	data	proved	to	be	a	substantial	difficulty.	Even	in	396	
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cases	where	structural	data	was	available,	it	was	often	not	of	sufficient	quality.	The	VMM	is	397	

an	extremely	sensitive	model,	and	errors	in	bond	lengths	as	small	as	0.02	Å	can	cause	398	

significant	problems.	Therefore,	we	used	the	most	recent,	suitable	structural	data	available,	399	

and	only	used	structures	determined	by	neutron	diffraction	where	H	was	present.		400	

Similarly,	thermodynamic	data	were	not	always	available.	401	

We	employed	three	data	sets,	including	both	molecules	and	crystals	in	the	Al-Si-H-O	402	

system:		one	for	calibration	of	Al-O,	Si-O,	H-O,	H-H,	and	O-O	interactions,	another	for	403	

calibration	of	Al-Al,	Si-Si,	Al-Si,	Al-H,	and	Si-H	interactions,	and	a	smaller	set	for	checking	404	

the	results	of	the	first	set.		Thermodynamic	data	for	the	data	sets	was	obtained	from	the	405	

online	NIST	JANAF	thermochemical	tables	(http://kinetics.nist.gov/janaf/),	or	from	Robie	406	

and	Hemingway	(1995).			407	

The	set	used	for	calibrating	Al-O,	Si-O,	H-O,	H-H,	and	O-O	interactions	was	well-408	

tempered,	spanning	a	very	large	range	of	likely	bond	configurations.		It	included	the	fully	409	

dissociated	atoms	(Al(g),	H(g),	Si(g),	and	O(g)),	SiO2(g),	HOAlO(g),	several	SiO2(s)	polymorphs	410	

(quartz,	cristobalite,	coesite,	and	stishovite),	α-Al2O3(s)	(corundum),	and	the	Al2SiO5(s)	411	

polymorphs	(kyanite,	andalusite,	and	sillimanite).(Busing	and	Levy,	1965;	Cox	et	al.,	1973;	412	

Hill,	1981;	Bish,	1993;	Downs	and	Palmer,	1994;	Heaney	and	Post,	2001;	Dera	et	al.,	2003;	413	

Balan	et	al.,	2008)		In	all	cases	Al	was	in	the	+3	oxidation	state	and	Si	in	+4.	414	

The	set	used	for	calibrating	Al-Al,	Si-Si,	Al-Si,	Al-H,	and	Si-H	interactions	included	415	

Al(s),	Si(s),	Al2(g),	Si2(g),	AlH3(s),	AlH3(g),	HAlO(g),	and	SiH4(g).	In	all	these	systems	Al	and	Si	were	416	

either	partially	or	fully	reduced.	In	addition,	we	included	Al2H6(g)*	and	Si2H6(g)*,	for	which	417	

we	did	not	have	complete	thermodynamic	data.		Therefore,	we	performed	optimizations	418	

and	frequency	calculations	at	the	CCSD/cc-pVTZ	level	of	theory	in	Gaussian	09,	and	419	
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computed	thermodynamic	values	from	reaction	calculations	involving	other	members	of	420	

the	various	sets.	421	

The	check	set	contained	several	species,	against	which	we	checked	the	calibrated	422	

model	for	the	fully	oxidized	Al	and	Si	parameters.		Some	species	were	expected	to	give	good	423	

results:		Al(OH)3	(bayerite),	AlOOH	(boehmite),	Al4Si4O10(OH)8	(kaolinite),	and	SiO2	424	

(tridymite,	moganite,	and	seifertite).		However,	we	had	no	expectations	about	how	the	425	

model	would	perform	for	others,	for	various	reasons:		e.g.,	radicals	like	AlO�,	AlOO�,	HO2�,	426	

and	H3O+,	or	SiO2	(β-quartz	at	848	K).	(Newnham	and	de	Haan,	1962;	Dollase,	1965;	427	

Rothbauer	et	al.,	1967;	Wardle	and	Brindley,	1972;	Saalfeld	and	Wedde,	1974;	Dollase	and	428	

Baur,	1976;	d'Amour	et	al.,	1978;	Finger	and	Hazen,	1978;	Hill,	1979;	Levien	et	al.,	1980;	429	

Levien	and	Prewitt,	1981;	Joswig	and	Drits,	1986;	Taylor	et	al.,	1986;	Spackman	et	al.,	1987;	430	

Hazen	et	al.,	1989;	Ross	et	al.,	1990;	Glinnemann	et	al.,	1992;	Miehe	and	Graetsch,	1992;	431	

Boisen	et	al.,	1994;	Smyth	et	al.,	1995;	Daniels	and	Wunder,	1996;	Comodi	et	al.,	1997;	432	

Clark	et	al.,	1998;	Schmidt	et	al.,	1998;	Dera	et	al.,	2002;	Balan	et	al.,	2006;	Ikuta	et	al.,	433	

2007;	Antao	et	al.,	2008;	Demichelis	et	al.,	2008)		However,	we	did	not	have	enough	species	434	

with	Al-Al,	Si-Si,	Al-Si,	Al-H,	and	Si-H	bonds	to	include	any	of	those	in	the	check	set.		435	

Tempering.		The	first	calibration	set	was	specifically	selected	to	be	tempered	with	436	

respect	to	bond	valence	variations,	meaning	that,	as	far	as	possible,	species	were	chosen	to	437	

cover	the	complete	range	of	likely	bond	valences,	while	avoiding	too	frequent	inclusion	of	438	

any	particular	narrow	range.	Since	we	were	attempting	to	fit	DE	vs.	sij,	curves	as	exactly	as	439	

possible,	it	was	necessary	to	select	at	least	one	molecule	or	crystal	with	bond	valences	440	

similar	to	the	most	probable	values,	but	heavily	favoring	one	narrow	range	(e.g.,	most	Si-O	441	

bonds	are	~1	v.u.)	might	worsen	the	fit	in	other	regions	of	the	curve.		For	example,	Si	forms	442	
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bonds	with	O	of	2	v.u.,	~1	v.u.,	and	~2/3	v.u.,	so	we	included	at	least	one	bond	in	each	of	443	

these	ranges.		Al-O	bonds	occur	over	an	even	wider	range,	with	values	around	⅓,	½,	⅗,	¾,	444	

1,	and	2	v.u.		H-O	bonds	were	particularly	difficult,	because	almost	all	of	them	are	close	to	1	445	

v.u.		This	places	great	emphasis	on	the	effects	of	small	deviations	from	unity	and	very	heavy	446	

emphasis	on	the	few	data	points	we	have	away	from	1	v.u.,	such	as	the	gas-phase	water	447	

dimer	hydrogen	bond.	448	

In	addition,	we	expected	a	valence	dipole	term	on	oxygen	to	be	significant	for	449	

tetrahedrally-coordinated	Si	in	silicates.		Therefore,	we	used	a	carefully	balanced	selection	450	

of	those,	favoring	the	most	stable	minerals	(under	ambient	conditions).		451	

This	level	of	attention	to	this	issue	was	entirely	warranted,	because	our	model	is	452	

likely	to	perform	relatively	poorly	if	applied	to	systems	that	have	bonding	configurations	453	

significantly	different	from	those	in	the	calibration	set,	even	if	they	are	bracketed	by	the	454	

set.	For	example,	we	have	no	Si-O	bonds	of	~1.5	v.u.	in	the	set.		Given	that	the	form	of	our	455	

DE	vs.	sij,	curves	(Eqns.	22-23)	is	potentially	quite	flexible,	the	model	might	produce	a	large	456	

error	in	such	a	scenario.	The	reason	is	straightforward:		a	small	error	in	DE	is	cumulative	457	

over	all	the	bonds	in	the	system,	and	so	will	produce	total	errors	on	the	order	of	5-10x	458	

higher	than	those	of	an	individual	bond.		459	

Another	reason	to	restrict	ourselves	to	small	sets	is	due	to	the	exponential	form	of	460	

the	bond	valence	length	relationships	(Eqns.	5,	13,	and	14).		This	causes	a	systematic	error	461	

that	affects	all	bond-valence	fitting	procedures.	The	details	of	this	source	of	error	are	462	

discussed	in	the	online	Supplemental	Information,	since	it	is	likely	only	of	interest	to	a	463	

select	group	of	methodologists.		464	

	465	
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Fitting	procedure	466	

We	used	a	three-stage	fitting	procedure	to	optimize	the	potential	energy	model.					467	

The	first	stage	involved	fitting	the	bond	valence-length	curves	(Eqns.	5,	13,	14),	as	468	

described	above.		This	was	done	either	using	vibrational	spectroscopy	data,	where	bond	469	

lengths	could	be	related	to	bond	order	based	on	measured	force	constants,	or	the	more	470	

traditional	approach	of	optimizing	the	fitting	parameters	to	enforce	the	valence	sum	rule	471	

(Eqn.	12).			472	

We	could	only	use	vibrational	spectroscopy	data	for	H-H,	O-O,	and	O-H	atom	pairs,	473	

because	they	were	the	only	sets	with	enough	data	for	bonds	of	different	lengths.		For	H-H	474	

we	had	H2,	and	H2+	(experimental	data	from	the	NIST	Computational	Chemistry	475	

Comparison	and	Benchmark	Database	at	http://cccbdb.nist.gov.		Hereafter	referenced	as	476	

CCCBDB).	For	O-O	we	had	O2+,	O2,	and	O2-	(CCCBDB).	For	H-O	we	had	H2O,	H2O2,	OH,	OH-,	477	

OH+,	H3O+	(CCCBDB),	and	the	(H2O)2	gas	phase	dimer	(Kalescky	et	al.,	2012).		For	this	478	

approach,	it	is	possible	to	use	charged	species,	provided	they	clearly	follow	the	same	trend	479	

as	the	others.		For	example,	ozone	shows	substantial	force	relaxation	due	to	the	480	

impossibility	of	satisfying	all	valences	(without	forming	triangular	ozone,	which	is	481	

unstable).	This	is	quite	common	among	strained	molecules.	Unfortunately,	it	is	not	yet	482	

possible	to	use	larger	molecules	like	H2O2	in	this	procedure,	because	the	vibrational	modes	483	

are	too	closely	coupled.		484	

The	second	approach	to	the	bond	valence-length	fitting	scheme	was	much	more	485	

similar	to	the	classic	procedure	(Brown	and	Altermatt,	1985),	except	that	we	used	bond	486	

lengths	from	both	molecular	and	crystal	structures.		Cutoff	distances	for	calculating	bond	487	

valence	corresponded	approximately	to	the	minimum	in	the	radial	distribution	function	488	
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between	first	and	second	shell	coordination.	In	this	case	we	also	had	to	utilize	other	489	

parameter	sets,	specifically	OO	and	OH	for	both	AlO	and	SiO	and	SiO	for	AlO	fitting.	The	SiO	490	

set	was	SiO2(g),	HSiO2-(g),	SiOH4(g),	quartz,	and	stishovite;	and	the	AlO	set	was:	AlO-(g),	HAlO(g),	491	

Al(OH)3(g),	sillmanite,	andalucite,	and	corundum.	This	approach	requires	a	separate	known	492	

reference	point	to	establish	the	k1	value	(Eqn.	15),	such	as	the	vibrational	force	constant	of	493	

a	small	molecule	like	AlO(g).		494	

In	both	procedures	(classic	and	force	matching),	we	began	by	fitting	Eqn.	5	to	the	495	

data,	and	if	the	curvature	of	the	fit	was	inadequate,	we	then	progressed	to	Eqns.	13	and	14.	496	

For	the	Al-Si	bonding	we	could	find	no	data,	so	we	used	a	mixing	approximation.	Our	choice	497	

was	the	arithmetic	mean	for	R0	and	the	geometric	mean	for	k1/B.		498	

Ideally,	the	second	stage	of	the	procedure	would	involve	optimizing	DE	vs.	sij,	curves	499	

(Eqns.	22-23)	to	match	the	structural	and	thermodynamic	data.		But	given	that	the	500	

thermodynamic	data	was	not	corrected	for	zero-point	energies,	in	practice	we	were	limited	501	

to	optimizing	D0	vs.	sij,	curves.	The	k1	values	were	fixed	at	the	time	of	the	bond-valence	502	

parameter	fitting,	and	a	constrained	optimization	was	performed	simultaneously	over	the	503	

D0	values	for	all	atom	pairs.	 	504	

In	the	third	stage,	we	re-optimized	all	the	D0	vs.	sij,	curves,	sequentially	including	the	505	

subsequent	terms	of	the	potential	energy	model	(valence	dipole	and	quadrupole	terms).		506	

The	results	of	the	first	optimization	were	used	as	initial	estimates	for	the	second	507	

optimization,	and	so	on.		508	

	509	

RESULTS	AND	DISCUSSION	510	
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The	form	of	the	valence	multipole	energy	decomposition	is	unique,	and	and	has	not	511	

been	designed	from	one	specific	theoretical	framework.		Instead,	the	only	theoretical	basis	512	

for	our	model	is	simply	the	standard	electron	counting	rules	that	undergird	the	BVM,	while	513	

the	rest	of	the	model	is	based	on	conjecture	and	empirical	fitting.		Our	results,	nevertheless,	514	

show	that,	although	the	mathematical	form	of	the	model	is	very	simple	compared	to	515	

existing	reactive	force	fields,	it	demonstrates	the	capability	to	reasonably	capture	the	516	

chemical	energy	of	the	system.		Moreover,	the	simplicity	of	the	model	allows	us,	in	some	517	

cases,	to	rationalize	the	model	in	terms	of	theoretical	expectations.	518	

In	this	section,	we	report	the	results	of	the	model	optimization,	including	parameter	519	

values	and	overall	accuracy,	and	discuss	possible	connections	with	theory.		Finally,	we	520	

discuss	probable	necessary	refinements	of	the	model.	521	

	522	

Model	Optimization	523	

Table	1	shows	the	fitted	parameters	for	the	bond	valence-length	relationships	524	

(Eqns.	5,	13,	14).		These	results	conform	to	the	expectation	that	more	metallic	and	ionic	525	

bonds	require	mathematically	more	complex	relationships	(Eqns.	13	and	14)	to	capture	the	526	

high	curvature	around	sij	=	1	v.u.		This	can	be	rationalized	in	terms	of	the	transition	527	

between	σ-	and	π-bonding	(Wander	et	al.,	2015b).				528	

The	D0	vs.	sij	curves	were	first	optimized	with	only	monopole	terms	(see	Table	2	and	529	

Figure	1a),	and	then	with	both	monopole	and	dipole	terms	(see	Table	3	and	Figure	1b).		530	

The	graphs	in	Figures	1a	and	1b	are	quite	similar,	as	we	would	expect	if	the	monopole	term	531	

were	indeed	dominant.		This	also	seems	consistent	with	the	long-standing	usefulness	of	532	

bond-	and	group-additivity	methods	for	estimating	thermodynamic	properties	of	533	
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molecules	(Benson	and	Buss,	1958;	Fliszár,	2008).		It	should	also	be	noted	that	the	valence-534	

energy	relationships	derived	here	do	not	jibe	with	those	one	might	predict	based	on	any	535	

number	of	BVM-based	quantitative	structure-activity	relationships	(Bickmore,	2014)	536	

The	curves	in	Figure	1b	show	a	periodic	quality.	The	most	ionic	bonds	(Al-O,	Si-O,	H-537	

O)	rise	quickly	as	a	function	of	sij	and	then	drop	off	as	the	bond	valence	surpasses	1	v.u.,	538	

while	the	more	covalent	bonds	(H-H	and	O-O)	are	much	slower	to	rise,	but	then	gain	539	

strength	rapidly	as	the	covalent	bonding	becomes	more	significant.		This	is	consistent	with	540	

the	fact	that	ionic	atom	pairs	favor	a	greater	number	of	low-valence	bonds,	while	more	541	

covalent	pairs	favor	a	smaller	number	of	high-valence	bonds	(Brown	and	Skowron,	1990;	542	

Brown,	2002).			543	

Compared	to	other	covalent	bonds,	HH	bonds	at	fractional	bond	orders	are	quite	544	

strong.	This	is	probably	due	to	the	fact	that	hydrogen	has	no	core	electrons	and	any	545	

substantial	polarization	can	lead	to	a	bare	proton.	Furthermore,	because	there	are	no	non-546	

bonding	electrons	there	is	a	substantially	reduced,	if	not	eliminated,	reorganization	energy,	547	

which	would	further	reduce	the	bonding	energy.			548	

Another	particularly	strong	bond,	which	is	unfortunately	not	visible	on	the	scale	of	549	

our	graph	is	the	O-H	hydrogen	bond.	Despite	being	only	a	small	fraction	of	a	single	bond,	it	550	

still	has	an	energy	of	~24	kJ/mol.	The	only	way	to	explain	this	is	to	suggest	that	the	OH	551	

hydrogen	bond	is	substantially	more	ionic	than	the	OH	molecular	bond.		552	

The	fact	that	these	curves	lend	themselves	to	physical	interpretation,	despite	the	553	

fact	that	they	are	purely	empirical	fits,	with	no	a	priori	considerations	about	the	form,	554	

suggests	an	underlying	physical	basis.		This	seems	promising	in	terms	of	the	ability	to	555	

expand	the	model's	predictive	capability.		556	
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When	we	included	dipole	terms,	we	used	 𝑃! !"#$%
= 0.95	v.u.	for	H	bound	to	O,	and	557	

a	kVD	value	of	85.4	kJ•mol-1•v.u.-2	(Eqn.	24),	and	considered	it	unlikely	to	have	a	significant	558	

contribution	to	the	energy,	otherwise.		To	avoid	multiplication	of	fitting	parameters,	we	did	559	

not	attempt	to	fit	dipole	terms	for	Si	and	Al.		We	have	no	chemical	justification	for	their	560	

inclusion,	and	we	considered	these	terms	unlikely	to	make	a	substantial	difference	in	the	561	

predicted	energies	of	minerals.		562	

Table	4	shows	a	relevant	selection	of	likely	O	bonding	configurations	used	to	563	

calculate	 𝑃! !"#$%
,	with	kVD	=	284.3	kJ•mol-1•v.u.-2	(Eqn.	24).		The	results	generally	564	

conform	to	the	expectation	that	higher-valence,	and	more	covalent	bonds,	cause	more	565	

distortion	in	the	coordination	shells	of	anions	with	lone	pairs	(Gillespie	and	Hargittai,	566	

1991;	Gillespie	and	Johnson,	1997;	Bickmore	et	al.,	2013).	567	

The	results	of	the	final	energy	optimization	are	reported	in	Tables	5	and	6	for	the	568	

calibration	and	check	sets,	respectively.		The	standard	deviation	of	the	energy	error	on	the	569	

calibration	sets	was	0.8	kJ/mol	per	unique	atom	(see	also	Figure	4a.)	570	

	 At	first	glance,	the	check	set	results	(Figure	4b)	are	not	as	accurate	as	we	might	like.	571	

However,	most	of	these	are	not	typical	or	ideal	systems.	The	first	half	are	entirely	572	

composed	of	systems	in	which	the	valence	sum	rule	cannot	even	be	approximately	573	

satisfied.	The	second	half	actually	does	quite	well	with	two	exceptions,	and	both	exceptions	574	

have	the	same	basic	problem	over	estimation	of	the	dipole	term	on	H,	which	we	will	575	

explain	below.	Otherwise,	the	results	are	excellent,	with	the	standard	deviation	error	per	576	

atom	of	about	5	kJ/mol.	577	

	 The	model	clearly	fails	when	applied	to	molecules	with	significantly	unsatisfied	578	

valence.	We	need	to	understand	the	effect	on	force	constants	when	Bond	Valence	sums	579	
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cannot	be	satisfied.	The	classic	example	is	ozone	whose	BV	sums	are	closer	to	1.5	and	2.5	580	

v.u.,	rather	than	the	expected	2.	This	deviation	causes	a	proportionate	weakening	between	581	

the	predicted	(1000	N/m)	and	actual	(570	N/m)	force	constant.	Until	we	can	address	this,	582	

we	are	limited	to	systems	where	the	BV	sums	are	nearly	satisfied.	Since	this	problem	is	583	

only	likely	to	occur	in	the	gas	phase,	or	with	certain	radicals,	the	level	of	limitation	is	not	584	

too	severe.	Some	part	of	this	may	be	unsolvable,	as	the	very	assumptions	that	underlie	our	585	

BV	potential	assume	saturated	or	near	saturated	valence.		In	this	case,	single	molecule	force	586	

fields	could	be	created	if	sufficient	need	warranted	it.	However,	we	suspect	that	there	is	a	587	

fundamental	relationship	between	force	constants	and	bond-valence	saturation	that	will	588	

yield	to	analysis	over	time.	589	

	 Two	of	the	crystals	had	substantial	per-atom	errors	on	the	order	of	100	kJ/mol,	590	

boehmite	(γ-AlOOH)	and	bayerite	(β-Al(OH)3).	Both	exhibited	substantial	underbonding	of	591	

H	of	20%	or	more.	This	leads	to	strong	underestimation	of	the	H-bond	dipole	and,	592	

correspondingly,	a	large	positive	deviation	in	energy.	The	geometric	difference	here	is	593	

actually	quite	tiny,	perhaps	0.02Å,	so	it	may	be	that	there	are	errors	in	the	structure	594	

determinations.		It	may	also	be	that	the	valence	dipole	potential	energy	surface	for	H	is	595	

asymmetric,	which	is	something	we	can	explore	in	future	implementations	of	the	model.		596	

Finally,	Tables	8	and	9	report	the	results	from	the	reduced	calibration	set.	Table	8	597	

shows	the	D0	vs.	sij	curves	and	Table	9	shows	the	energy	results.	There	is	no	way	to	confirm	598	

these	values	as	we	have	no	additional	experimental	data.		599	

	600	

IMPLICATIONS	601	
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Our	results	show	that	it	is	possible	to	use	an	energy	decomposition	based	on	a	602	

valence	multipole	expansion	to	determine	reasonable	system	energies,	with	chemically	603	

useful	accuracy.	As	long	as	deviations	in	the	bond-valence	sums	are	less	than	about	0.2	v.u.,	604	

this	model	should	produce	results	with	errors	of	only	5	kJ/mol	per	unique	atom.	This	is	a	605	

remarkable	result	for	any	black-box	model,	on	par	with	comparable	quantum	mechanical	606	

approaches.		Also,	the	model	should	have	similar	accuracy	when	applied	to	either	607	

molecules	or	crystals.	608	

While	the	results	are	promising,	some	work	still	remains	to	fully	implement	this	609	

type	of	model	for	use	in	molecular	modeling.	The	first	issue	is	that	model	calibration	610	

requires	enough	bonds	for	every	pair	of	atoms,	covering	a	wide	enough	range	of	bond	611	

orders,	which	presents	a	challenge	when	considering	the	range	of	available	experimental	612	

data.	We	will	clearly	need	to	move	into	computational	sources	for	our	data	collection.	613	

Fortunately,	since	our	parameterization	relies	largely	on	small	molecules,	it	will	be	possible	614	

to	use	high-level	ab	initio	approaches	like	coupled-cluster	techniques.	Even	with	this	level	615	

of	theory,	however,	the	requisite	accuracy	is	not	a	given,	particularly	for	metallic	systems.	616	

	 We	also	anticipate	the	necessity	of	making	adjustments	in	the	shapes	of	the	D0	vs.	sij	617	

curves,	especially	at	high	sij	values,	to	accommodate	non-equilibrium	configurations	618	

encountered	in	molecular	dynamics	simulations,	as	well	as	high-pressure	phases.		619	

Additionally,	changes	to	the	bond	energy	expression	are	also	likely	to	better	match	changes	620	

in	energy	far	away	from	equilibrium	geometries	and	better	reproduce	dissociation	curves.		621	

	 Finally,	all	the	interactions	discussed	so	far	only	deal	with	very	short-range	622	

interactions.		To	model	systems	in	which	long-range	interactions	play	a	larger	role	(e.g.,	623	
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aqueous	solutions),	we	will	have	to	consider	Coulombic	interactions,	at	least	outside	of	the	624	

bond	cutoffs.		625	
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Table	1.		Optimized	bond-valence	parameters.	869	

Atom 1 Atom 1 
Valence 

Atom 2 Atom 2 
Valence 

Form R0,1 
(Å) 

B1 
(Å) 

R0,2 
(Å) 

B2 
(Å) 

Rcut 
(Å) 

w 

O 2 Al 3 Eqn. 14 1.7005 0.0924 2.2096 0.9990 3 0.5179 
O 2 Si 4 Eqn. 14 1.5531 0.0575 2.3547 0.9612 3 0.5065 
O 2 H 1 Eqn. 13 0.9530 0.1950 0 0 6 0.4835 
O 2 O 2 Eqn. 5 1.4560 0.3579 0 0 6 1 
Al 3 Al 3 Eqn. 5 0 0 0 0 6 1 
H 1 Al 3 Eqn. 5 0 0 0 0 3 1 
Si 4 Al 3 Eqn. 5 0 0 0 0 6 1 
H 1 H 1 Eqn. 5 0.7919 0.5259 0 0 2 1 
H 1 Si 4 Eqn. 5 0 0 0 0 3 1 
Si 4 Si 4 Eqn. 5 0 0 0 0 6 1 
Al 3 H 1 Eqn. 5 0 0 0 0 3 1 
Al 3 Si 4 Eqn. 5 0 0 0 0 6 1 
Si 4 H 1 Eqn. 5 0 0 0 0 3 1 

	870	

	871	

	 	872	
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Table 2. D0 vs. sij parameters resulting from valence monopole-only energy optimization on the 873	

tempered set. Force constants were taken from experimental data and not refit.	874	

Atom 1 Atom 2 Force Const 
(kJ•mol-1Å-2) 

Form a b c d 

O Al 1777.3150 Eqn. 22 851.8089 -1192.1804 1224.6636 -383.0072 
O Si 2762.9621 Eqn. 22 527.0360 -22.0542 -47.0318 0 
O H 4656.4438 Eqn. 23 216.6120 247.5746 4.1099 0 
O O 3607.2626 Eqn. 22 38.4168 25.6211 35.4555 0 
Al Al 0 Eqn. 22 0 0 0 0 
H Al 0 Eqn. 22 0 0 0 0 
Si Al 0 Eqn. 22 0 0 0 0 
H H 3464.6712 Eqn. 22 265.6922 166.5006 -25.6530 0 
H Si 0 Eqn. 22 0 0 0 0 
Si Si 0 Eqn. 22 0 0 0 0 
Al H 0 Eqn. 22 0 0 0 0 
Al Si 0 Eqn. 22 0 0 0 0 
Si H 0 Eqn. 22 0 0 0 0 

	875	

	 	876	
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Table 3. D0 vs. sij parameters resulting from valence dipole energy optimization on the tempered 877	

set. Force constants were taken from experimental data and not refit.  878	

	879	

Atom 1 Atom 2 Force Const 
(kJ•mol-1Å-2) 

Form a b c d 

O Al 1777.3150 Eqn. 22 739.2846 -834.8911 868.1735 -277.3448 
O Si 2762.9621 Eqn. 22 481.3612 32.0345 -62.7606 0 
O H 4656.4438 Eqn. 23 160.3074 315.0453 1.4734 0 
O O 3607.2626 Eqn. 22 170.4692 -91.7876 61.1265 0 
Al Al 0 Eqn. 22 0 0 0 0 
H Al 0 Eqn. 22 0 0 0 0 
Si Al 0 Eqn. 22 0 0 0 0 
H H 3464.6712 Eqn. 22 0.0074 963.5303 -556.9658 0 
H Si 0 Eqn. 22 0 0 0 0 
Si Si 0 Eqn. 22 0 0 0 0 
Al H 0 Eqn. 22 0 0 0 0 
Al Si 0 Eqn. 22 0 0 0 0 
Si H 0 Eqn. 22 0 0 0 0 

	880	

	 	881	
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	882	

Table	4.	Configurations	used	to	calculate	 𝑃! !"#$%
	in	a	variety	of	environments.		Nc	883	

denotes	the	oxygen	coordination	number.	884	

	885	

Nc	 Ligands	 Ideal	Angle(s)	
0	 None	 N/A	(VVSideal=0)	
1	 Any	 N/A	(VVSideal=S1)	
2	 H	 104.5o	
2	 Al2,	or		Al	&	Si	 180o	
2	 Si2	 145.5o	
2	 Al,H	 130.8o	
2	 Si,H	 118.7o	
3	 All	Al	or	Si	 131o,	131o,	98o	
3	 H	 111.3o(x3)	
4	 Any	(Generally	only	Al)	 ~109o		( 𝑃! !"#$%

= 0.05	v.u.)	
5+	 Any	(None	in	set)	 ( 𝑃! !"#$%

= 0	v.u.)	

	886	
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Table	5.	Energy	fitting	results	from	the	oxidized	tempered	set.		The	experimental	energies	(Eexp)	were	corrected	(∆Ecorr)	from	

their	tabulated	values	to	reflect	a	free-atom	standard	state.		The	experimental	energies	are	then	compared	to	the	calculated	

energies	when	monopole	(Emono),	dipole	(Edi),	and	quadrupole	(Equad)	terms	were	included,	to	calculate	the	misfit	values	

(∆Emono,	∆Edi,	∆Equad).		All	values	are	reported	in	kJ/mol.	

Molecule/Crystal	 ∆Ecorr	 Eexp	 Emono	 Edi	 Equad	 ∆Emono	 ∆Edi	 ∆Equad	
(H2O)2(g)	 1276.578	 -483.16	 -480.63 -482.71 -482.71 -3.36 -0.21 -0.21 
Al(g)	 289.068	 289.07	 289.07 289.07 289.07 0.00 0.00 0.00 
AlOOH(g)	 955.817	 -447.01	 -447.01 -447.01 -447.01 0.00 0.00 0.00 
Andalusite	 2142.346	 -2441.80	 -2441.60 -2442.00 -2442.00 -0.58 0.15 0.15 
Coesite	 869.001	 -852.30	 -855.68 -854.66 -854.66 2.79 1.95 1.95 
Corundum	 1273.345204	 -1582.30	 -1580.72 -1582.93 -1582.93 -3.73 0.55 0.55 
Cristobalite	 869.001	 -854.60	 -855.19 -856.39 -856.39 -1.37 1.00 1.00 
H2+(g)	 1726.521	 1491.18	 1491.19 1491.19 1491.19 -0.02 0.00 0.00 
H2(g)	 406.552	 0.00	 0.00 0.00 0.00 0.00 0.00 0.00 
H2O(g)		 638.289	 -228.58	 -233.63 -229.50 -229.50 6.70 0.45 0.45 
H2O2(g)	 870.026	 -105.44	 -105.16 -105.36 -105.36 -0.38 -0.08 -0.08 
H(g)	 203.276	 203.28	 203.28 203.28 203.28 0.00 0.00 0.00 
Kyanite	 2142.346	 -2443.10	 -2444.44 -2442.26 -2442.26 3.62 -0.68 -0.68 
O2+(g)	 1784.905	 1139.99	 1140.09 1140.02 1140.02 -0.14 -0.02 -0.02 
O2(g)	 463.473	 0.00	 -0.20 -0.06 -0.06 0.28 0.05 0.05 
O(g)	 231.737	 231.74	 231.74 231.74 231.74 0.00 0.00 0.00 
Quartz	 869.001	 -865.30	 -860.43 -861.65 -861.65 -3.80 -2.51 -2.51 
Si(g)	 405.528	 405.53	 405.53 405.53 405.53 0.00 0.00 0.00 
Sillimanite	 2142.346	 -2439.10	 -2439.15 -2439.03 -2439.03 0.16 -0.05 -0.05 
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SiO2(g)	 869.001	 -306.92	 -306.94 -306.90 -306.90 0.06 -0.02 -0.02 
Stishovite	 869.001	 -802.80	 -802.54 -803.01 -803.01 -0.78 0.15 0.15 
Diaspore	 955.817	 -922.70	 -923.40 -922.87 -922.87 0.94 0.08 0.08 
Standard	Deviation	

	 	    1.86 1.08 1.08 
	

	 	



	 	 42	

Table	6.		Energy	fitting	results	from	the	check	set.		The	experimental	energies	(Eexp)	were	corrected	(∆Ecorr)	from	their	

tabulated	values	to	reflect	a	free-atom	standard	state.		The	experimental	energies	are	then	compared	to	the	calculated	energies	

when	monopole	(Emono)	and	dipole	(Edi)	terms	were	included,	to	calculate	the	misfit	values	(∆Emono	and	∆Edi).		The	misfit	values	

were	then	normalized	to	the	number	of	unique	atoms	(Nunique).	

Molecule/
Crystal	 ∆Ecorr	 Eexp	 Emono	 Edi ∆Emono ∆Edi Nunique 

∆Emono/ 
Nunique 

∆Edi/ 
Nunique 

AlO(g)	 520.804	 40.803	 -363.98	 -409.96	 -404.78	 -450.76	 2	 -202.39	 -225.38	
AlOO(g)	 752.541	 -91.677	 -984.63	 -1006.08	 -892.96	 -914.40	 3	 -297.65	 -304.80	
H3O+(g)	 329.303	 198.125	 -717.79	 -759.64	 -915.91	 -957.76	 3	 -305.30	 -319.25	
HOO(g)	 666.749	 14.431	 30.20	 26.49	 15.77	 12.06	 4	 3.94	 3.01	
St.	Dev.	 	 	 	  444.5 455.2  144.0 148.9 
	 	 	 	       
β-Quartz	 869.001	 -856.153	 -826.00	 -824.99	 30.15	 31.17	 4	 7.54	 7.79	
Boehmite	 955.817	 -915.900	 -922.21	 -392.41	 -6.31	 523.49	 3	 -2.10	 174.50	
Kaolinite	 4287.926	 -3797.500	 -3778.20	 -3870.40	 19.30	 -72.90	 17	 1.14	 -4.29	
Moganite	 869.001	 -851.300	 -860.03	 -861.27	 -8.73	 -9.97	 3	 -2.91	 -3.32	
Seifertite	 869.001	 -794.000	 -808.50	 -809.18	 -14.50	 -15.18	 3	 -4.83	 -5.06	
Trydmite	 869.001	 -853.800	 -848.59	 -848.95	 5.21	 4.85	 3	 1.74	 1.62	
Bayerite	 1594.106	 -1153.000	 -1238.28	 -1228.54	 -85.28	 -75.54	 7	 -12.18	 -10.79	
St.	Dev.	 	 	 	  37.4 210.2  6.1 67.1 
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Table	7.		D0 vs. sij parameters for the reduced calibration set.	

Atom 1 Atom 2 a b 
Al Al 205.8767738 -52.59772999 
H Al 154.231069 -21.10143446 
Si Al 100.76 -17.598 
H H 1422.742954 -1919.768723 
'H Si 144.0735109 0 
Si Si 254.0441443 -53.80073857 
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Table	8.		Energy	fitting	results	from	the reduced calibration set.  The	experimental	

energies	(Eexp)	were	corrected	(∆Ecorr)	from	their	tabulated	values	to	reflect	a	free-

atom	standard	state.		The	experimental	energies	are	then	compared	to	the	

calculated	energies	when	monopole	(Emono)	terms	were	included,	to	calculate	the	

misfit	values	(∆Emono).			

Crystal/Molecule ∆Ecorr Eexp Emono ∆Emono 
Al(g) 289.068 0 0.000 0.000 
Al2(g) 578.135 434.251 434.251 0.000 
AlH3(g) 898.896 96.619 96.619 0.000 
Si2(g) 811.056 532.654 532.647 -0.007 
Si2H6(g) 2030.713 105.7365 99.597 -6.139 
SiH4(g) 1218.633 56.827 66.047 9.220 
Si(g) 405.528 0 3.054 3.054 
St. Dev. 

   
4.265 
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a	

	b	

Figure	1.	D0 vs. sij curves	obtained	from	a)	the	monopole-only	optimization,	and	b)	

the	dipole	optimization.	The	curves	show	clear	periodicity,	with	ionic	bonds	rising	



	 	46	

more	sharply	at	longer	distances	(lower	bond	valence),	and	multiple	bonds	favored	

for	covalent	bonds.		
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	a	

	b	

Figure	2.	Comparison	between	experimental	energy	and	calculated	energy	in	the	a)	

tempered	calibration	set	and	b)	the	check	set.		The	symbols	for	the	calibration	set	

differentiate	between	crystals	and	molecules,	and	show	the	results	for	both	the	

monopole-only	optimization	and	the	dipole	optimization.		The	symbols	for	the	check	
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set	differentiate	between	species	with	fully	saturated	atomic	valences,	and	those	

with	unsaturated	valences.		The	quality	of	the	results	is	on	par	with	the	best	

quantum	mechanical	approaches,	and	exceeds	those	currently	available	for	crystals.		
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