Revision 1

Location and Stability of Europium in Calcium Sulfate and its Relevance to Rare Earth Recovery from Phosphogypsum Waste

Radha Shivaramaiah,¹ Wingyee Lee,¹ Alexandra Navrotsky,¹ Dechao Yu,² Paul Kim,² Haohan Wu,² Zhichao Hu,² Richard Riman² and Andrzej Anderko³

¹ Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, California 95616

² Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, 607 Taylor Road, Piscataway, New Jersey 08855

³ OLI Systems, Inc., 240 Cedar Knolls Road, Suite 301, Cedar Knolls, New Jersey 07927
ABSTRACT

Rare earth elements (REE) are technology drivers, essential for applications ranging from clean energy technologies to biomedical imaging. Thus they are “critical elements” and it is desirable to find additional RE domestic sources and explore green extraction technologies to overcome their supply risk. Phosphogypsum, a major byproduct of the phosphate fertilizer industry, incorporates a significant amount of RE from the apatite source rock and thus is a potential alternate source of RE. In order to know the accessibility and extractability of RE from phosphogypsum, it is important to understand the location and nature of RE binding. Here, we report the synthesis of analogs of RE doped phosphogypsum, with europium (Eu) as a model RE. Using several characterization tools we conclude that, the majority of Eu is on the surface of the calcium sulfate crystal as a separate secondary phase, namely a metastable amorphous/nanocrystalline precipitate in which Eu is associated with phosphate and sulfate as counterbalancing ions. The rapid precipitation at low temperature could be responsible for this behavior, which may not represent equilibrium, and our experiments are comparable in the time scale with the fast phosphogypsum precipitation in the industrial process. These results suggest that the Eu is not entrapped by ionic substitutions in the calcium sulfate lattice. Thus RE should be extracted relatively easily from phosphogypsum using methods that extract the RE from its surface.

Key Words: Phosphogypsum, rare earth elements, thermodynamics, spectroscopy.
INTRODUCTION

Rare earth elements (REE) are technologically very important in today’s world. They are found in materials such as catalysts, batteries, magnets, phosphors, cell phones, LED displays, GPS equipment, night vision goggles, and many others (Cho et al. 1999; Gai et al. 2014; Bitnar et al. 2002; Shen et al. 2008; Zhou et al. 2008). REE, contrary to their name are moderately abundant in the earth crust; however there are few natural occurrences of ores in which REE are in concentrations of 1 wt% or greater (Lipin et al. 1989). The major commercial REE ores contain bastnaesite and monazite (Shivaramaiah et al. 2016; Ni et al. 1995; Glass et al. 1945). Currently the major and almost sole global producer and supplier of REE is China (Keith 2011; Scarce supply 2014), making RE supply vulnerable to geopolitical control (Humphries 2010). REEs are thus considered ‘critical’ or ‘strategic’ since their supply risk could adversely affect today’s technology-dependent society across the globe (Humphries 2010). This has called for a situation where there is an urgent need for strategic plans to manage the supply risk of REEs, which is one of the major focus areas of Critical Materials Institute, an Energy Innovation Hub established by the U. S. Department of Energy. Its strategy includes search for alternative sources of RE, from which they can be recovered economically.

Phosphate rock, which is used as a source for synthesizing soluble phosphoric acid-based fertilizers, contains an appreciable amount of RE (0.06 %) (Habashi 1985; Altschule et al. 1967). Its major mineral is apatite (Ca_{10}(PO_{4})_{6}(OH,F,Cl)_{2}) (Waggaman et al. 1915). Since RE substitute easily for Ca, they are present within the lattice of apatite itself or in the associated monazite phase (REPO_{4}). In the wet processing of the ore, phosphate rock is treated with sulfuric acid to obtain phosphoric acid and a byproduct phosphogypsum as shown in equation (1) (Slack 1968; U.S. Geological Survey 2012).
Ca$_5$F(PO$_4$)$_3$ + 5H$_2$SO$_4$ + 10H$_2$O \rightarrow 3H$_3$PO$_4$ + 5CaSO$_4$ + 2H$_2$O + HF \quad (1)

During this process, \sim 38 \text{ wt}\% \text{ of RE from original rock are incorporated into the byproduct phosphogypsum while the rest remains in sludge (\sim 12 \text{ wt}\%}, obtained by evaporative concentration of phosphoric acid) and in clay (\sim 40 \text{ wt}\%) \text{ (Thyabat and Zhang 2015). Thus, both phosphogypsum and sludge could be potential attractive sources of RE. Phosphogypsum and sludge comprise hydrated forms of CaSO$_4$ with some occluded phosphate phases. Every year 220 million tons of phosphate rock are mined and processed worldwide to produce agricultural fertilizer (Hull and Burnett 1996). For every ton of phosphate rock processed, 5 tons of phosphogypsum are produced (Tayibi et al. 2009). Despite its use in agriculture, construction materials and road building (Yang et al. 2009; Smadi et al. 1999), a large excess remains, including much whose radium concentration exceeds the EPA standard (10 pCi/g), precluding industrial reuse (Hull and Burnett 1996; Rutherford et al. 1995). Such phosphogypsum is stacked into piles, which occupy hundreds of acres near these fertilizer plants, especially in Florida (Lottermoser 2010). These stacks are currently treated as waste and have been stored for decades now, causing serious ecological concern. In order to target ‘stack free’ conditions in the fertilizer plants, it is important to aim at a safe and sustainable use of phosphogypsum and to look at it as a potential resource rather than a waste (Hilton 2010). While phosphogypsum and sludge are indeed dilute sources of REs (as are many so-called rare earth ores), recovering REE from them will have additional benefits as it will aid in removing potentially hazardous waste and eventually transform phosphoric acid production to a low waste process. A case study of evaluation of REE recovery (Kulczycka et al. 2016) from phosphogypsum in one of the plants in Poland shows that RE recovery from phosphogypsum is cost-effective in operation but requires
significant initial financial investment. It is however characterized by a relatively high degree of risk due to the volatility of prices of RE.

In order to optimize extraction of RE from phosphogypsum, it is essential to know where they are incorporated in these solids and to understand the nature of their binding and thermodynamic stability. Some of the possibilities are: (a) RE could form solid solution in gypsum by substituting for Ca – without charge balancing by vacancy creation or with charge balancing by phosphate, or other ions, (b) RE could be surface adsorbed and (c) RE could form auxiliary phases, either amorphous or crystalline, on gypsum surfaces or in between gypsum grains. In each of these circumstances, the degree of accessibility and extractability of RE will vary significantly. Thus the main goal of this work is to determine the fate of RE when precipitated rapidly from a solution rich in Ca, SO$_4$ and PO$_4$.

The present study chose a simple synthetic model system, namely CaSO$_4$ with added phosphate and/or europium (Eu) to study RE location and stability. This system is more controllable than commercial phosphogypsum, which is variable in composition, phases present, and impurities. We chose Eu as a model RE because of its easy spectroscopic detection and characterization of local environment (Jagannathan and Kottaisamy 1995). By precipitation from aqueous solution, we synthesized gypsum samples with different Eu and phosphate concentrations. Using an array of characterization techniques (chemical analysis, thermal analysis, X-ray diffraction, scanning electron microscopy, infrared and photoluminescence spectroscopy, oxide melt solution calorimetry) we arrived at the likely location of Eu in the solid phase assemblage and determined the stability of these phases.
MATERIALS AND METHODS

Synthesis of Eu and phosphate doped CaSO₄. All the samples were synthesized by a simple co-precipitation reaction using europium nitrate (99.99 %, Alfa Aesar), calcium nitrate tetrahydrate (99.98 %, Alfa Aesar) and sodium sulfate (99.99 %, Alfa Aesar). Europium nitrate and calcium nitrate were dissolved in water to which sodium sulfate solution was added under mechanical stirring. The final solution was then aged at 80 °C (temperature typical of the reactor in the industrial fertilizer process) for 24 h. The precipitate was separated by centrifugation and the sample was washed with deionized (DI) water three times to remove sodium and nitrate ions. The product was then dried in an oven at 80 °C. For the synthesis of samples with phosphate, ammonium diphosphate (99.99 %, Sigma Aldrich) solution was added as a source of phosphate during the initial precipitation. Since we used Eu(NO₃)₃ as a source of Eu in the synthesis in which Eu in +3 oxidation state and since in the course of synthesis there were no reducing conditions, we do not expect Eu to change its oxidation state. Indeed the spectroscopic studies (see below) confirmed Eu³⁺. The concentration of the dopants in solution (Eu³⁺, PO₄³⁻) was between 0.01 - 0.5 moles per mole of calcium sulfate. The lowest concentration of 0.01 mol Eu³⁺/PO₄³⁻ was chosen since it is close to the RE concentration in natural phosphate rock and in phosphogypsum. Several concentrations above 1 mol % were chosen, as the concentration of RE and phosphate is higher in sludge. The wide range in dopant concentration also allows us to seek systematic trends in the structure and stability. For all the nominal concentration of Eu in solution, two sets of Eu doped CaSO₄ were synthesized – one without any phosphate where the excess sulfate serves as a counter ion and the other with phosphate where phosphate, in addition to sulfate could act as a charge balancing anion. Furthermore the behavior of Eu in the solid in the presence and absence of phosphate also aided in understanding RE behavior both in the
phosphogypsum stacks and sludge. In this paper, we have focused on four samples; each made from solutions with 0.01 and 0.5 mol dopants per mol of calcium sulfate (see Table 1).

Characterization. Powder X-ray diffraction patterns (XRD) of the synthesized samples were recorded using a Bruker AXS D8 Advance diffractometer with CuKα radiation, (Kα = 1.5418 Å) to identify the phases. Data were collected in the 2θ range of 10 –70° with a step size of 0.02° and a collection time of 0.5 s/step using a zero-background sample mount. The Rietveld technique was employed for structure refinement of all the samples using X’pert HighScore Plus software. All the structure refinements were carried out using the published structure models of gypsum and bassanite. For samples containing a mixture of bassanite and gypsum, two-phase refinements were performed to obtain the phase ratio. Thermogravimetric analysis (TGA) was performed to determine the water content in the samples using a Setaram Labsys thermal analysis system in a dynamic Ar atmosphere (25 - 500 °C, 5 °C/min, Pt crucible, and 10 cc/min). The data were analyzed using Calisto software (Version 1.31). The overall RE content in the samples was measured by ICP-MS with an Agilent Technologies’ 7500a instrument. A known amount of sample was dissolved in ~0.1 mL of ICP grade HCl and diluted with Millipore water (Simplicity® Systems). Attenuated total reflectance-Fourier transform infrared (ATR - FTIR) spectra of all the samples were recorded using a Bruker Model Alpha-P IR spectrometer (diamond ATR cell, 4 cm⁻¹ resolution, 400 - 4000 cm⁻¹). Morphology, phase segregation and composition heterogeneity of all the samples, was examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) using a JEOL 7401 SEM at Lawrence Livermore National Laboratory, operated at 3 kV for imaging and 15 kV for chemical analysis. Photoluminescence spectroscopy (PLS) was performed with a high-resolution spectrophotometer, (Edinburgh FLS920) using a xenon lamp as the excitation source, to examine
emission from Eu in different sites in the sample. High temperature oxide melt solution calorimetry was performed using a custom built isoperibol Tian-Calvet microcalorimeter. The details of the calorimetry used are described elsewhere (Navrotsky 1977; Navrotsky 1997). Molten sodium molybdate was used as a solvent at 700 °C. Heats of drop solution of the binary oxides were taken from previously published work (Navrotsky 2014; Majzlan et al. 2002; Drouet and Navrotsky 2003; Ushakov 2001).

RESULTS

Compositions of all four samples obtained using ICP analysis is listed in Table 1. Based on the ICP analysis and water content obtained by TG we arrive at a molecular formula for each sample. The results confirm that both Eu and phosphate are incorporated into the solid during the precipitation reaction. However the amount incorporated in the solid is only about 50 % of that in the initial solution or even less. In all the samples the ratio of S to Ca exceeds 1, indicating that the excess sulfate could form phases with cations other than Ca, perhaps Eu and Na. In samples doped with both europium and phosphate, the ratio of Eu to P exceeds 1 as well, indicating that, besides forming a phase with phosphate, Eu also forms other phases, perhaps with sulfate from the observations noted above.

PXRD patterns of all the four samples are shown in Figure 1. All the samples contained either one or both of the hydrated phases of CaSO₄ (gypsum – CaSO₄·2H₂O and bassanite – CaSO₄·0.5H₂O). Two – phase Rietveld refinements were performed in order to quantify the two hydrated phases of CaSO₄ in each sample (Supporting information, SI 1). Gypsum crystallizes in orthorhombic structure and bassanite in trigonal. Samples with a lower amount of Eu and PO₄ – GS 1 and PG1 comprised gypsum as the major phase, consistent with the literature reports on Eu doped CaSO₄ (Jagannathan 1995). The PXRD pattern corresponding to GS 1 could be fit with
the gypsum phase alone, and that of PG 1 with a mixture of gypsum (88 %) and bassanite (12 %). GS 2 and PG 2, on the other hand, were a mixture of gypsum and bassanite. Phase fractions obtained by the Rietveld analysis are listed in Table 2. No shifts in the Bragg reflections were observed in the gypsum or bassanite phase, in any of the samples that might have been due to incorporation of Eu and PO₄ during the precipitation. Further, no additional peaks corresponding to auxiliary phases containing Eu, phosphate, or other elements were detected. This indicates that any auxiliary phases present were either in too small amounts to be detected or too poorly crystalline or amorphous to observe in the PXRD.

TG-DSC curves obtained for all the samples are shown in Figure 2. All the samples exhibit mass loss between 100 – 250 °C, which is endothermic and can be attributed to dehydration of calcium sulfate phases. An exothermic peak is observed in all the samples at ~370 – 400 °C, which is not associated with any mass loss. A subsequent TG-DSC run on the same sample in all the cases showed disappearance of the exothermic peak. This indicates that the exothermic process observed at ~370 °C is irreversible and we believe, it could be associated with the crystallization of any amorphous secondary phases present in these samples. XRD patterns of the heat treated samples are given in supporting information SI 2 and showed peaks corresponding to anhydrite, confirming calcium sulfate dehydration. However, no peaks for crystalline phases containing Eu or phosphate were observed, perhaps because they were present in too low concentration. In each case, depending on the phase fraction obtained by Rietveld analysis, total water content calculated from mass loss between 100 – 250 °C, was distributed among gypsum and bassanite (Table 2). The remaining excess water is probably loosely bound water on the surfaces and between the particles or probably is the water associated with any possible amorphous phases. It can be seen that the presence of Eu and phosphate affects the
water content incorporated in the solid and in turn the phase fractions of gypsum and bassanite in all the cases. Both with and without phosphate, when the Eu content is lower, most of the water is associated with CaSO₄ and a tiny fraction of it is in excess, whereas with higher Eu content, a larger fraction of water is in excess. This is indirect evidence for the possible presence of hydrated amorphous phases containing Eu.

ATR spectra of the four samples under study are shown in Figure 3. The spectrum of GS 1 sample exhibits similar features as that of pure gypsum, where the symmetry of sulfate is reduced from T₄ to C₂ᵥ. Peaks due to sulfate were observed at 1117 cm⁻¹ – ν₃, 1003 cm⁻¹ – ν₁ and 667 cm⁻¹, 600 cm⁻¹ – ν₄. However, GS 2, with higher Eu concentration exhibits additional features. We observe a broad band at 1103 cm⁻¹ (ν₃) with a shoulder at 1000 cm⁻¹ (ν₁). ν₄ appears as a doublet at 650 cm⁻¹ and 590 cm⁻¹. Unlike in GS 1 and pure gypsum, the broad band observed in the case of GS 2 arises due to overlapping of several peaks which could be due to sulfate associated in two different coordination symmetries, possibly with Ca and Eu. Though this sample comprises both gypsum and bassanite, sulfate in both these phases is known to be in similar environments and the stretching and bending modes of sulfate is known to be identical in them (Bishop 2014). A tiny peak at 503 cm⁻¹ corresponds to ν₂, symmetric bending mode and a tiny band at 430 cm⁻¹ corresponds to Eu-O lattice vibrations. Observation of Eu-O vibrations and broad band with several overlapping peaks thus suggests that sulfate in GS 2 is associated with more than one coordination symmetry. On the other hand, both sulfate and phosphate being tetrahedral, their stretching and bending modes overlap with each other and it is hard to differentiate among them in the samples with phosphate. The ATR spectrum of PG 1 exhibits a band at 1149 cm⁻¹ with a shoulder at 1117 cm⁻¹ which can be attributed to ν₃ mode of sulfate and/or phosphate. A doublet observed at 667 cm⁻¹ and 600 cm⁻¹ corresponds to the ν₄ bending.
mode and features observed below 500 cm\(^{-1}\) could be due to Eu-O vibrations. Unlike in PG 1, in PG 2 the concentration of Eu is high, and it is associated with both sulfate and phosphate. Thus, the spectrum for PG 2 is a sum of vibrations due to phosphate and sulfate associated with Ca and Eu. A broad band observed at 1103 cm\(^{-1}\) (\(v_3\)) with a shoulder at 1001 cm\(^{-1}\) (\(v_1\)) could arise due to several overlapping peaks arising due to S-O and P-O asymmetric stretching vibrations of phosphate and sulfate associated with Ca and Eu. Features observed at 619 cm\(^{-1}\), and 595 cm\(^{-1}\) could be attributed to \(v_4\) bending mode of sulfate, whereas the one observed at 537 cm\(^{-1}\) could be attributed to \(v_4\) bending mode of phosphate. All the four samples exhibit a doublet at \(~3500-3380\) cm\(^{-1}\) corresponding to stretching vibration modes of water and a doublet at \(~1680\) and 1620 cm\(^{-1}\) corresponding to bending mode of water. The stretching modes at 3500-3380 cm\(^{-1}\) are sharp in GS 1 and PG 1 where the bassanite phase is minor and the adsorbed water content is low. In the case of GS 2 and PG 2, the peaks are broad and additionally there is a shift in the peaks with reversal in the intensities of \(v_1\) and \(v_3\) modes of water. This could be due to the presence of both gypsum and bassanite in these samples and also the higher amount of adsorbed water. Gypsum is known to have peaks at 3395 (\(v_1\)-H\(_2\)O) and 3489 cm\(^{-1}\) (\(v_3\)-H\(_2\)O), whereas bassanite at 3553 (\(v_1\)-H\(_2\)O) and 3605 cm\(^{-1}\) (\(v_3\)-H\(_2\)O) corresponding to stretching modes of water (Liu 2009).

SEM images of the four samples are shown in Figure 4. Two different crystal morphologies were found across all the samples - one which was lath-like or acicular with size between 20 to 120 \(\mu\)m and the other consisting of platelets with size between 40 and 80 \(\mu\)m. These two morphologies for calcium sulfate have been previously described in the literature (Kovler1998; Shih et al. 2005). In addition, in the case of samples with phosphate; we observe a layer of particles without any faceted morphology forming a thin coating on the surface of the crystals (Figure 5a). EDS revealed that the layer was composed of 50.3 % wt O, 16.9 % wt Ca,
13.5 % wt S, 16.5 % wt Eu and 2.8 % wt P. The molar ratio between Eu and P in these particles on surface is thus ~1.2, with a likely uncertainty of about 10 - 20 %. This suggests that europium in this thin surface layer is associated with phosphate, forming a separate Eu rich phase, that possibly could be europium phosphate, EuPO$_4$, or a hydrated variant. This is also supported by the TG and IR observations, where we observe excess adsorbed water. In addition, small particles of around 1 μm diameter were found on the surface of the flat platelet crystals in both PG1 and PG2 which is shown in Figure 5. Under a higher magnification 30,000 - 40,000 x, it was clear that the morphology of these smaller particles were different from the larger platelets and thin crystals. They had no faceted shape and resembled clusters of tiny spherical units that were agglomerated together. The visual estimation of the concentration of these clusters was 1 – 2 %. EDS revealed that these clusters were Eu rich, ranging from 10 to 50 wt. % while the P ranged from 0.5 to 2.5 wt. %. The mole ratio of Eu to P varied from 1.4 to 1.7 in these particles, indicating that europium was not only associated with phosphate but also could be forming other auxiliary phases, perhaps europium sulfate or oxide or hydroxide. Thus SEM images confirm that, in these solids Eu forms auxiliary phases. While the Eu-rich phases were not detected by XRD, they were distinguishable from gypsum/bassanite phases based on their morphology and composition in SEM. The observations that these auxiliary phases appear to be thin surface coatings on the crystals and that particles were aggregates of tiny spherical units, indicate that even if they were to produce Bragg reflections they would be broad and will be buried under the strong peaks from gypsum/bassanite.

Photoluminescence spectra (PLS) of all the four samples are shown in supporting information SI 3. The samples with lower Eu concentrations, GS 1 and PG 1, did not exhibit any significant peaks in the PLS. However the samples with higher Eu concentration, GS 2 and PG 2
exhibit distinct emission spectra which are consistent with trivalent Eu. GS 2 has the maximum emission band centered at 612 nm, which is due to the $^5\text{D}_0 \rightarrow ^7\text{F}_2$ electric dipole transition of Eu$^{3+}$, while PG 2 exhibits the maximum emission peak at 593 nm, which is due to $^5\text{D}_0 \rightarrow ^7\text{F}_1$ magnetic dipole allowed transition of Eu$^{3+}$ (Du 2011; Sun 2010). For GS 2, the $^5\text{D}_0 \rightarrow ^7\text{F}_2$ emission intensity is much stronger than the $^5\text{D}_0 \rightarrow ^7\text{F}_1$ emission intensity, which indicates that the Eu$^{3+}$ is located at a site without inversion symmetry, like in Eu$_2$(SO$_4$)$_3$.xH$_2$O host (see SI4 for the PLS of commercial Eu$_2$(SO$_4$)$_3$.xH$_2$O). However for PG 2 the reverse case is observed, due to decrease in the contribution of $^5\text{D}_0 \rightarrow ^7\text{F}_2$ emission with the introduction of PO$_4^{3-}$ groups, likely forming the auxiliary phase EuPO$_4$ (see SI4 for the PLS of commercial EuPO$_4$ for comparison). These results reveal that at higher Eu concentrations, in the absence of phosphate Eu is largely associated with SO$_4^{2-}$ group, but in the presence of phosphate Eu is largely associated with PO$_4^{3-}$ group. Thus Eu probably exists as Eu$_2$(SO$_4$)$_3$ and EuPO$_4$ in the case of GS 2 and PG 2, respectively, although these phases may be poorly crystalline (nanophase or amorphous) and/or hydrated. PLS of industrial phosphogypsum does not exhibit any features corresponding to RE emission, which is similar to our observation in the case of GS 1 and PG 1.

High temperature oxide melt solution calorimetric measurements were made on these samples to examine their energetic stability. Enthalpy of formation values were calculated from different constituents in order to determine the relative stability of these phases; (a) from a mixture of oxides and water, (b) from mixture of anhydrous sulfates, phosphate and water and (c) from mixture of hydrated sulfates, phosphate. The thermochemical cycle used to calculate enthalpy of formation from a mixture of anhydrous sulfates, phosphate and water is shown in Figure 6; other cycles are analogous. Enthalpies of drop solution of all the constituents used in a
thermochemical cycle for calculation of formation enthalpies are listed in Table 3. The calculated
enthalpy of formation values from different constituents is listed in Table 4.

The enthalpy of formation values calculated from oxides for all four samples are highly
exothermic, indicating that these phases are stable compared to the oxides of their constituent
metals. This however reflects the highly exothermic formation of sulfates and phosphates and
does not provide useful insights into relative stability of these phases. We therefore calculated
the enthalpy of formation of Eu-doped gypsum-phosphogypsum phases from a mixture of
anhydrous sulfates, Eu-phosphate and water. While all the constituent sulfates exist in hydrated
form, we opt to calculate formation enthalpy values from anhydrous sulfates, as there was not
enough total water content in each sample to attribute to hydrated forms of constituent sulfates
(CaSO₄, Eu₂(SO₄)₃ and Na₂SO₄). These values are negative for GS 1 and PG 1 but slightly
positive for GS 2 and PG 2, indicating that samples with low Eu concentration are
thermodynamically more stable than samples with higher concentration of Eu. However, it is
important to realize that in all these samples water is associated with CaSO₄, which exists as
gypsum and bassanite. The small negative enthalpy observed for the two low concentration
samples could therefore arise due to attributing all the water molecules to loosely held water.
Since we do not observe any auxiliary phases in XRD corresponding to Eu or Na, we had no
choice but to distribute the water molecules between thermodynamically more stable phases of
CaSO₄ – gypsum and bassanite. The remaining water was attributed to loosely bound water,
which could be associated with amorphous phases or held between the particles. Phase fractions
of gypsum and bassanite were obtained by combined Rietveld analysis of PXRD pattern and TG
results as described earlier in the text and listed in Table 2. We calculated the formation
enthalpies of all the four synthesized samples from a mixture of gypsum, bassanite and other
sulfates / phosphates and the values obtained are listed in the last column of Table 4. The values are all positive, indicating that all the synthesized samples are energetically metastable with respect to the stable hydrated polymorphs of CaSO$_4$ and other crystalline phases containing Eu, sulfate and phosphate. The metastability increases with increasing Eu content. We suspect this reflects the presence of amorphous phases as argued from TEM and XRD evidence. The calorimetric data thus support the other evidence including SEM, ATR, PLS and TG-DSC that Eu and P are not present as stable solid solutions or as stable secondary phases but more likely are present as metastable nanophase or amorphous precipitates on the surfaces of gypsum or bassanite.

DISCUSSION

Various experimental techniques adopted to examine the nature of Eu in the synthetic gypsum/phosphogypsum thus indicate that it likely forms metastable amorphous precipitates on the major solid sulfate phases. The precipitate formed was found to have Eu associated with both phosphate and sulfate. It is important to note that, quite similar to our observations with the synthetic samples, industrial phosphogypsum also does not exhibit any rare earth rich auxiliary phases in XRD and it exhibits an exothermic peak at 350 °C in DSC which is often attributed to crystallization of amorphous impurity phases (Hanna 1999). Further, similar amorphous coatings were observed under SEM on the surface of larger platelets of the industrial samples. Thus the results obtained here for the location of Eu are likely to be the same for REs in the industrial phosphogypsum. Therefore the RE are likely to be in the form of surface adsorbed metastable auxiliary phases in the phosphogypsum stacks. Industrial phosphogypsum stacks from Florida are rich in Nd, Ce, La and Y. While the results obtained in the current work are based on only Eu, it could probably be generalized to other RE since they all possess similar properties, which
is the reason for finding them together in nature. However, there could be some variations in behavior among different RE, which prompt us for future work with Nd and Y, which are abundant in industrial samples. It would also be interesting to examine the behavior of RE in the solid precipitated from a solution with a mixture of RE. Thermodynamic stability of individual RE sulfates and phosphates might dictate phase formation in such a situation.

The other important observation in this work is the difference in RE behavior in the samples precipitated from solutions with and without phosphate. We see that, in the samples precipitated without phosphate in solution, Eu is mainly associated with sulfate, while in samples with phosphate in solution during the precipitation, Eu is associated with both sulfate and phosphate ions. However, in both cases most of the Eu forms auxiliary amorphous/nanophase precipitates though one cannot exclude the possibility of a very small amount of RE being in the CaSO$_4$ lattice. We suspect that the rapid precipitation at low temperature is responsible for this behavior. The goal of this study was to mimic the industrial precipitation conditions and we are careful not to claim equilibrium. It is possible that, at equilibrium, a greater extent of RE ionic substitution within the gypsum crystal structure might occur. A separate study, probably involving hydrothermal or high temperature annealing conditions, would be necessary to probe kinetic versus thermodynamic control and to establish and prove equilibrium and that is outside the scope of the present work.

The observed surface precipitation has an important implication for RE recovery from byproducts of phosphate ore processing. The formation of metastable phases and their location on surfaces make them more accessible to dissolution.
Both phosphogypsum and sludge obtained at various stages of soluble phosphate synthesis are significant sources of RE. Phosphogypsum, which incorporates ~38% of REs from the original phosphate rock, has a very low concentration of phosphate and hence the majority of RE could be associated with sulfate. However, the sludge obtained after evaporating phosphoric acid to P₂O₅ is obviously rich in phosphate and thus RE in sludge could be associated with both sulfate and phosphate phases. Although the sludge incorporates only ~12% of REs from the original rock, the overall concentration of RE in sludge is much higher than in phosphogypsum. While the sludge has bassanite (CaSO₄·0.5H₂O) as a major phase, gypsum (CaSO₄·2H₂O) is the major phase in phosphogypsum. A similar difference is also observed in the synthetic samples in the present work, where gypsum is the major phase in samples with lower Eu concentration and bassanite is the major phase in samples with higher Eu concentration.

It is not clear whether the higher RE concentration acts, kinetically or thermodynamically, to select for a given calcium sulfate phase. In both laboratory and industrial samples it would appear that enough water is present during synthesis to form the dihydrate, so the reason for bassanite formation is not obvious.

IMPLICATIONS

Eu-doped gypsum and phosphogypsum analogs were prepared in the laboratory to examine the location and stability of Eu in these phases. While no Eu-rich phases were observed by XRD, the other techniques including SEM, TG-DSC and high temperature oxide melt solution calorimetry collectively indicate that the Eu in gypsum/phosphogypsum exists as a poorly crystalline nanophase or amorphous secondary phase which is energetically metastable. The phosphogypsum precipitation in the industrial process occurs fast so our experiments are comparable in time scale. The similarities that we observe in PXRD and SEM of industrial...
samples and the synthetic samples support the relevance of our experiments to the industrial process. The accessibility of RE to leaching/extraction should thus be high as they exist as small particles of an energetically metastable secondary phase on grain surfaces rather than being a part of the gypsum structure. These observations are encouraging in terms of developing a commercially viable process for recovering RE from phosphogypsum and sludge.

ASSOCIATED CONTENT

A plot of TG-DSC, PXRD of heat treated samples, ATR spectra and PLS spectra of all the four samples is available in the supporting information

ACKNOWLEDGEMENTS

This work is supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. Authors thank Dr. Annie Kresting and Dr. Zurong Dai at Lawrence Livermore National Laboratory for SEM-EDS measurements.
References

Figure Captions

Figure 1. PXRD patterns of all the samples stacked with the simulated patterns of gypsum and bassanite

Figure 2. TG-DSC curves of Eu doped gypsum and phosphogypsum samples

Figure 3. ATR spectra of all the four samples

Figure 4. SEM images of (a) GS 1, (b) GS 2, (c) PG 1 and (d) PG 2

Figure 5. SEM image of PG 2 sample showing surface adsorbed layer of Eu phase and that of PG 1 sample showing Eu–rich particles with no faceted morphology

Figure 6. Thermochemical cycle used for the calculation of enthalpy of formation values of Eu-gypsum samples from a mixture of anhydrous sulfate and water
Table 1. Compositional analysis of all the four samples obtained by ICP analysis and TG measurements.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Eu content in solution (mol per mol of CaSO₄)</th>
<th>PO₄ content in solution (mol per mol of CaSO₄)</th>
<th>Empirical formula (based on ICP and TG results)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS1</td>
<td>0.01</td>
<td>0</td>
<td>CaEu₀.0012Na₀.28(SO₄)₁.₁₄·2.05H₂O</td>
</tr>
<tr>
<td>GS2</td>
<td>0.5</td>
<td>0</td>
<td>CaEu₀.29Na₀.61(SO₄)₁.₇₅·1.01H₂O</td>
</tr>
<tr>
<td>PG1</td>
<td>0.01</td>
<td>0.01</td>
<td>CaEu₀.₀₀₂₁Na₀.₂₆(SO₄)₁.₁₃(PO₄)₀.₀₀₂₁·1.₈₉H₂O</td>
</tr>
<tr>
<td>PG2</td>
<td>0.5</td>
<td>0.5</td>
<td>CaEu₀.₂₈Na₀.₄₂(SO₄)₁.₂₅(PO₄)₀.₂₅₅·2.₁₄H₂O</td>
</tr>
</tbody>
</table>
Table 2. Phase fractions of gypsum and bassanite in samples based on Rietveld refinements and the distribution of water content obtained by TG measurements between the two.

<table>
<thead>
<tr>
<th>Sample</th>
<th>CaSO$_4$ (mol)</th>
<th>Based on Rietveld analysis</th>
<th>Based on TGA and Rietveld analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Moles of gypsum</td>
<td>Moles of bassanite</td>
</tr>
<tr>
<td>GS 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GS 2</td>
<td>1</td>
<td>0.12</td>
<td>0.88</td>
</tr>
<tr>
<td>PG 1</td>
<td>1</td>
<td>0.88</td>
<td>0.12</td>
</tr>
<tr>
<td>PG 2</td>
<td>1</td>
<td>0.65</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Table 3. Thermochemical data used for the calculation of enthalpy of formation of Eu-doped gypsum-phosphogypsum samples

<table>
<thead>
<tr>
<th>Phase</th>
<th>Drop solution enthalpy* (kJ/mol)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaO</td>
<td>-90.3±1.8</td>
<td>A. Navrotsky, J Am Ceram Soc (2014)</td>
</tr>
<tr>
<td>Eu$_2$O$_3$</td>
<td>-129.24±2.12</td>
<td>A. Navrotsky, J Am Ceram Soc (2014)</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>-164.6±0.85</td>
<td>A. Navrotsky, J Am Ceram Soc (2014)</td>
</tr>
<tr>
<td>SO$_3$</td>
<td>-203.7±4.09</td>
<td>A. Navrotsky, J Am Ceram Soc (2014)</td>
</tr>
<tr>
<td>CaSO$_4$</td>
<td>108.25±1.20</td>
<td>J. Majzlan, Geochimica et Cosmochimica Acta, 2002</td>
</tr>
<tr>
<td>Na$_2$SO$_4$</td>
<td>155.7±2.30</td>
<td>C. Drouet, Geochimica et Cosmochimica Acta, 2003</td>
</tr>
<tr>
<td>Eu$_2$(SO$_4$)$_3$</td>
<td>265.05±4.60</td>
<td>Present work</td>
</tr>
<tr>
<td>EuPO$_4$</td>
<td>139.87±1.43</td>
<td>S. Ushakov, J Mater Res, 2001</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>68.98±0.1</td>
<td>calculated from heat capacity</td>
</tr>
</tbody>
</table>

* in molten 3Na$_2$O·4MoO$_3$
<table>
<thead>
<tr>
<th>Sample</th>
<th>Drop solution enthalpy (kJ/mol)</th>
<th>ΔH_f from oxides (kJ/mol)</th>
<th>ΔH_f from mixture of sulfates (anhydrous) and phosphate (kJ/mol)</th>
<th>ΔH_f from mixture of gypsum/bassanite and phosphate (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS 1</td>
<td>299.60±1.88</td>
<td>-511.74</td>
<td>-27.78</td>
<td>1.46</td>
</tr>
<tr>
<td>GS 2</td>
<td>256.05±1.85</td>
<td>-719.18</td>
<td>9.00</td>
<td>23.15</td>
</tr>
<tr>
<td>PG 1</td>
<td>263.16±3.22</td>
<td>-482.39</td>
<td>-3.65</td>
<td>23.53</td>
</tr>
<tr>
<td>PG 2</td>
<td>266.43±2.19</td>
<td>-549.17</td>
<td>61.69</td>
<td>84.94</td>
</tr>
</tbody>
</table>
Figure 1. PXRD patterns of all the samples stacked with the simulated patterns of gypsum and bassanite.
Figure 2. TG-DSC curves of Eu doped gypsum and phosphogypsum samples
Figure 3. ATR spectra of all the four samples between (a) 400 – 2000 cm\(^{-1}\) showing vibrations corresponding to sulfate/phosphate and (b) 3000 – 4000 cm\(^{-1}\) showing vibrations due to H\(_2\)O.
Figure 4. SEM images of (a) GS 1, (b) GS 2, (c) PG 1 and (d) PG 2
Figure 5. SEM image of (a) PG 2 sample showing surface adsorbed layer of Eu phase and (b) PG 1 sample showing Eu – rich particles with no faceted morphology.
Figure 6. Thermochemical cycle used for the calculation of enthalpy of formation values (ΔHᵢ) of Eu-gypsum samples from a mixture of anhydrous sulfate and water.