1 2	Mineral chemistry and petrogenesis of a HFSE(+HREE) occurrence, peripheral to carbonatites of the Bear Lodge alkaline complex, Wyoming
3 4 5 6	Allen K. Andersen ^{1,*} , James G. Clark ² , Peter B. Larson ¹ and Owen K. Neill ¹ ¹ School of the Environment, Washington State University, Pullman, WA 99164-2812, USA ² Applied Petrographics, 4909 NE 320 Ave., Camas, WA 98607
7	Abstract
8	Rare earth mineralization in the Bear Lodge alkaline complex (BLAC) is mainly
9	associated with an anastomosing network of carbonatite dikes and veins, and their oxidized
10	equivalents. Bear Lodge carbonatites are LREE-dominant, with some peripheral zones enriched
11	in HREEs. We describe the unique chemistry and mineralogy one such peripheral zone, the Cole
12	HFSE(+HREE) occurrence (CHO), located approximately 2 km from the main carbonatite
13	intrusions. The CHO consists of anatase, xenotime-(Y), brockite, fluorite, zircon, and K-
14	feldspar, and contains up to 44.88% TiO ₂ , 3.12% Nb ₂ O ₅ , 6.52% Y ₂ O ₃ , 0.80 % Dy ₂ O ₃ , 2.63%
15	ThO ₂ , 6.0% P ₂ O ₅ , and 3.73% F. Electron microprobe analyses of xenotime-(Y) overgrowths on
16	zircon show that oscillatory zoning is a result of variable Th and Ca content. Cheralite-type
17	substitution, whereby Th and Ca are incorporated at the expense of REEs, is predominant over
18	the more commonly observed thorite-type substitution in xenotime-(Y). Th/Ca-rich domains are
19	highly beam sensitive and accompanied by high F concentrations and low microprobe oxide
20	totals, suggesting cheralite-type substitution is more easily accommodated in fluorinated and
21	hydrated/hydroxylated xenotime-(Y). Analyses of xenotime-(Y) and brockite show evidence of
22	VO_4^{3-} substitution for PO_4^{3-} with patches of an undefined Ca-Th-Y-Ln phosphovanadate solid-
23	solution composition within brockite clusters. Fluorite from the CHO is HREE-enriched with an
24	average Y/Ho ratio of 33.2, while other generations of fluorite throughout the BLAC are LREE-
25	enriched with Y/Ho ratios of 58.6-102.5.

26	HFSE(+HREE) mineralization occurs at the interface between alkaline silicate intrusions
27	and the first outward occurrence of calcareous Paleozoic sedimentary rocks, which may be local
28	sources of P, Ti, V, Zr, and Y. U-Pb zircon ages determined by LA-ICP-MS reveal two
29	definitive ²⁰⁷ Pb/ ²⁰⁶ Pb populations at 2.60-2.75 Ga and 1.83-1.88 Ga, consistent with derivation
30	from adjacent sandstones and Archean granite. Therefore, Zr and Hf are concentrated by a
31	physical process independent of the Ti/Nb-enriched fluid composition responsible for anatase
32	crystallization. The CHO exemplifies the extreme fluid compositions possible after protracted
33	LREE-rich crystal fractionation and subsequent fluid exsolution in carbonatite-fluid systems.
34	We suggest that the anatase+xenotime-(Y)+brockite+fluorite assemblage precipitated from
35	highly-fractionated, low-temperature (<200°C), F-rich fluids temporally related to carbonatite
36	emplacement, but after significant fractionation of ancylite and Ca-REE fluorocarbonates. Low
37	temperature aqueous conditions are supported by the presence of fine-grained anatase as the sole
38	Ti-oxide mineral, concentrically banded botryoidal fluorite textures, and presumed hydration of
39	phosphate minerals. Fluid interaction with Ca-rich lithologies is known to initiate fluorite
40	crystallization which may cause destabilization of (HREE, Ti, Nb)-fluoride complexes and
41	precipitation of REE+Th phosphates and Nb-anatase, a model valuable to the exploration for
42	economic concentrations of HREEs, Ti, and Nb.

Keywords: Xenotime, brockite, anatase, carbonatite, rare earth elements, HREE, fractionation,
thorium

45

Introduction

Late-stage HREE enrichment is observed in a number of REE deposits/occurrences,
many of which are related to carbonatite magmatism, including Lofdal, Namibia; Kalkfield and
Ondurakorume complexes, Namibia; Juquiá, Brazil; Bayan Obo, China; Karonge, Burundi; and

49	the Barra do Itapirapuã carbonatite, Brazil, among others (Wall et al. 2008; Bühn 2008; Smith et
50	al. 2000; Walter et al. 1995; Van Wambeke 1977; Andrade et al. 1999). Fractionation of the
51	REEs will often result in zones enriched specifically in either LREEs (La-Gd) or HREEs (Tb-Lu
52	and Y). This type of zoning may arise from crystal fractionation processes during magmatic
53	stages, or from changes in the activity of ligands with which the REEs typically form aqueous
54	complexes (i.e., Cl^{-} , F^{-} , $CO_{3}^{2^{-}}$, $SO_{4}^{2^{-}}$, and $PO_{4}^{3^{-}}$) during hydrothermal stages.
55	Differences in the stability of these charged complexes with increasing atomic number of
56	the trivalent REEs is a critical factor leading to fractionation (cf., Wood 1990a,b; Lee and Byrne
57	1992; Byrne and Li 1995; Wood 2003; Williams-Jones et al. 2012; Linnen et al. 2014). Hard
58	bases such as F^{-} and CO_{3}^{2-} are most frequently cited as hydrothermal REE transport ligands,
59	based largely on the stability of these REE complexes relative to complexes with ligands of
60	intermediate hardness, like Cl ⁻ , which are an order of magnitude lower (Schijf and Byrne 1999;
61	Luo and Byrne 2001; Williams-Jones et al. 2012). Based on the thermodynamic data and
62	stability constants of REE complexes available from studies by Wood (1990a,b) and Haas et al.
63	(1995), $HREEF^{2+}$ complexes were predicted to be more mobile than $LREEF^{2+}$ complexes. New
64	experimental work by Migdisov et al. (2009) shows that above 150°C, LREEF ²⁺ complexes are
65	more stable than HREEF ²⁺ complexes, but that fluoride is an improbable transport ligand due to
66	the low solubility of REE fluoride minerals (i.e., fluocerite) (Williams-Jones et al. 2012). REE-
67	phosphate solubility equilibria have been investigated (cf., Jonasson et al. 1985; Firsching and
68	Brune 1991; Bryne and Kim 1993; Liu and Byrne 1997; Cetiner 2003), but remain poorly
69	understood beyond standard conditions (20-25°C; ~1.0 bar).
70	Yttrium is commonly referred to as a heavy pseudolanthanide because of its similar

charge (3+) and radius to Ho^{3+} , and is appropriately placed between Dy^{3+} and Ho^{3+} on chondrite

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5532

Revision 1

72	normalized REE plots. In fluorine-rich systems, Y-Ho fractionation is common and recorded by
73	high, non-chondritic Y/Ho ratios (>28.8, using C1 chondrite values of McDonough and Sun
74	1995) of hydrothermal fluorite (Bau and Dulski 1995; Loges et al. 2013). Variation of Y/Ho
75	ratios in aqueous solutions is strongly influenced by temperature, fluoride activity, and
76	differences in Y-fluoride versus REE-fluoride speciation (Loges et al. 2013). In natural fluorites,
77	Y/Ho values between 50 and 200 are common (Bau and Dulski 1995; Bau 1996; Bau et al.
78	2003), and a similar range (33-103) is observed for Bear Lodge fluorites. REE concentrations
79	(including Y) and chondrite-normalized REE patterns of fluorites sampled from different host-
80	rock lithologies throughout the Bear Lodge alkaline complex (BLAC) are used to examine the
81	behavior of REEs in late-stage hydrothermal fluids and identify separate stages of fluorite
82	precipitation.
83	Changes in pH, redox, and dominant ligand may allow for extreme REE fractionation in
84	late-stage, hydrothermal fluids associated with carbonatites. We investigate the possible
85	scenario whereby HFSEs and HREEs are transported (possibly as fluoride or phosphate
86	complexes) by fluids emanating from carbonatite intrusions, and precipitate as REE phosphates
87	(xenotime-(Y) and REE-enriched brockite), fluorite, and anatase upon interaction with
88	calcareous Paleozoic sedimentary rocks.
89	Within the REE-mineralized areas of the BLAC, the CHO is of particular economic
90	interest because of its extraordinarily high concentrations of HREEs, Ti, and Nb. With the
91	advancement of technologies utilizing HREEs and low abundance of HREEs relative to LREEs
92	in the Earth's crust venotime is emerging as a notential source of the more valuable REEs
	In the Earth's crust, xenotime is emerging as a potential source of the more valuable REES

94 geochemical and geochronological studies with in situ trace element and U-Pb isotopic analysis

95	by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), secondary ion
96	mass spectrometry (SIMS), and electron probe microanalysis (EPMA), and sensitive high
97	resolution ion microprobe (SHRIMP). Understanding variations in actinide concentration and
98	incorporation are important to the interpretation of ages determined by in situ methods. At the
99	CHO, zones of variable actinide concentration in xenotime-(Y) are almost unequivocally related
100	to the crystallization of brockite [(Ca,Th)(PO ₄) \cdot H ₂ O], a member of the rhabdophane group. We
101	present some of the most complete electron microprobe analyses of REE-enriched brockite and
102	the first known analyses of a solid solution phase intermediate between brockite and a theoretical
103	Th-Ca-Y-REE vanadate end-member.
104	Geologic Setting
104 105	Geologic Setting The BLAC is a bilobate dome with an Eocene alkaline intrusive core, pendants or inliers
104 105 106	Geologic Setting The BLAC is a bilobate dome with an Eocene alkaline intrusive core, pendants or inliers of Archean granite/gneiss of the Wyoming Province, and a rim of outward dipping Paleozoic and
104 105 106 107	Geologic Setting The BLAC is a bilobate dome with an Eocene alkaline intrusive core, pendants or inliers of Archean granite/gneiss of the Wyoming Province, and a rim of outward dipping Paleozoic and Mesozoic sedimentary units (Fig. 1). The BLAC is part of a larger N70°W trend of Paleogene
104 105 106 107 108	Geologic Setting The BLAC is a bilobate dome with an Eocene alkaline intrusive core, pendants or inliers of Archean granite/gneiss of the Wyoming Province, and a rim of outward dipping Paleozoic and Mesozoic sedimentary units (Fig. 1). The BLAC is part of a larger N70°W trend of Paleogene alkaline intrusive centers through the northern Black Hills region which represent the
104 105 106 107 108 109	Geologic Setting The BLAC is a bilobate dome with an Eocene alkaline intrusive core, pendants or inliers of Archean granite/gneiss of the Wyoming Province, and a rim of outward dipping Paleozoic and Mesozoic sedimentary units (Fig. 1). The BLAC is part of a larger N70°W trend of Paleogene alkaline intrusive centers through the northern Black Hills region which represent the easternmost surface manifestations of Laramide-related magmatism. The transition between the
104 105 106 107 108 109 110	Geologic Setting The BLAC is a bilobate dome with an Eocene alkaline intrusive core, pendants or inliers of Archean granite/gneiss of the Wyoming Province, and a rim of outward dipping Paleozoic and Mesozoic sedimentary units (Fig. 1). The BLAC is part of a larger N70°W trend of Paleogene alkaline intrusive centers through the northern Black Hills region which represent the easternmost surface manifestations of Laramide-related magmatism. The transition between the Proterozoic Trans-Hudson suture zone and Wyoming Archean Province likely occurs 20-40 km
104 105 106 107 108 109 110 111	Geologic Setting The BLAC is a bilobate dome with an Eocene alkaline intrusive core, pendants or inliers of Archean granite/gneiss of the Wyoming Province, and a rim of outward dipping Paleozoic and Mesozoic sedimentary units (Fig. 1). The BLAC is part of a larger N70°W trend of Paleogene alkaline intrusive centers through the northern Black Hills region which represent the easternmost surface manifestations of Laramide-related magmatism. The transition between the Proterozoic Trans-Hudson suture zone and Wyoming Archean Province likely occurs 20-40 km east of the BLAC, and may have provided a zone of structural weakness that allowed for the
104 105 106 107 108 109 110 111 112	Geologic Setting The BLAC is a bilobate dome with an Eocene alkaline intrusive core, pendants or inliers of Archean granite/gneiss of the Wyoming Province, and a rim of outward dipping Paleozoic and Mesozoic sedimentary units (Fig. 1). The BLAC is part of a larger N70°W trend of Paleogene alkaline intrusive centers through the northern Black Hills region which represent the easternmost surface manifestations of Laramide-related magmatism. The transition between the Proterozoic Trans-Hudson suture zone and Wyoming Archean Province likely occurs 20-40 km east of the BLAC, and may have provided a zone of structural weakness that allowed for the ascension of mantle-derived alkaline silicate and carbonatite magmas.

Domal uplift of the BLAC occurred as alkaline silicate magmas intruded Paleozoic sedimentary units as sills and other small intrusive bodies, significantly inflating the sedimentary section (Dahlberg, 2014). Intermittent flux of alkaline magma continued through 38 Ma (McDowell 1971; Staatz 1983; Duke 2005), resulting in a central complex of small cross-cutting intrusions. The CHO occurs near a condensed section of the Cambrian-Ordovician Deadwood

Formation and Ordovician Winnipeg and Whitewood Formations, deposited near the edge of an 118 119 Ordovician basin. Outcrops of the Deadwood Formation consist of well indurated quartz 120 sandstone with interbedded black shales, calcareous siltstone, and probably more shale- and 121 siltstone-dominant lithologies at depth. The Winnipeg Formation consists of the Roughlock 122 Member (calcareous siltstone) and Ice Box Shale, while the Whitewood Formation consists of 123 dolostone and interlayered limestone. The three formations are encountered along a ~ 20 m 124 traverse through historic trenches near the CHO. Similar depositional environments resulting in 125 condensed sections of sandstone and shale, where high levels of dissolved phosphate are released into pore waters, are thought to be favorable sites for precipitation of coarse diagenetic xenotime 126 127 (cf., Vallini et al. 2002).

128 Although the CHO occurs in close proximity to sedimentary rocks, a majority of the REE mineralization in the BLAC is associated with intrusions of calciocarbonatite (sovite) (and their 129 130 oxidized equivalents) emplaced between 51 and 52 Ma (Andersen et al. 2013a). Staatz (1983) 131 describes the BLAC as one of North America's largest "disseminated" rare earth deposits, although a majority of the potentially economic REE mineralization is "carbonatite-hosted." 132 133 Carbonatite veins and dikes have been modified by late hydrothermal fluids and supergene 134 processes that are responsible for high REE abundances. Extensive exploration between 2010 and 2014 has revealed zones of HREE-enrichment peripheral to the LREE-enriched center of the 135 carbonatite dike swarm. The principal REE-bearing mineral in unoxidized carbonatite is ancylite 136 137 $[Sr,Ln(CO_3)_2(OH) \cdot H_2O]$ (Ln = lanthanide element(s)), with subordinate carbocernaite $[(Ca,Na)(Sr,Ln,Ba)(CO_3)_2]$, burbankite $[(Na,Ca)_3(Sr,Ba,Ln)_3(CO_3)_5]$, monazite $[Ln(PO_4)]$, and 138 apatite/fluorapatite [Ca₅(PO₄)₃(F,OH)] (Mariano 1981, 2009; Moore et al. 2014). REE-Ca 139 140 fluorocarbonates (bastnäsite $[Ln(CO_3)F]$, parisite $[Ca(Ln)_2(CO_3)_3F]$, and synchysite

141	[CaLn(CO ₃) ₂ F]) are the primary REE ore minerals in oxidized carbonatite equivalents, all of
142	which are LREE-dominant. Zones of HREE-enrichment commonly coincide with an increase in
143	the abundance of REE phosphates (rhabdophane group and xenotime) and HFSE minerals (rutile
144	and pyrochlore) (Andersen et al. 2013b,c).

145

Site and Sample Descriptions

146 **Description of the occurrence**

The CHO is situated along the eastern edge of the BLAC near the easternmost exposures 147 of alkaline silicate intrusions (Fig. 1). Rare earth mineralization appears to be restricted to the 148 interface between quartz sandstone of the Deadwood Formation and greenish-gray clayshale and 149 tan calcareous siltstone of the Winnipeg Formation. Several small intrusive bodies lie adjacent 150 to, and in some cases appear to have brecciated, surrounding sedimentary units. Recrystallized 151 152 quartz breccias commonly delineate these contacts and smoky quartz veins transect the quartz sandstones proximal to the CHO. The Cole HFSE(+HREE) mineralization was first described in 153 detail by Staatz (1983) (vein #22) and confidential reports around the same time by Anthony N. 154 155 Mariano. The exact dimensions of the occurrence are obscured by forest overgrowth and tailings from trenches and workings left from uranium exploration during the 1950s. Current exposures 156 reveal what appear to be relatively flat-lying "veins" no more than 1 m thick. Small veinlets in 157 surrounding brecciated alkaline silicate rock and siltstone are mineralogically similar to the more 158 massive exposure. At least two other small areas of Th-REE phosphate mineralization occur in 159 the western half of the BLAC at contacts between silicate or carbonatite intrusions and Paleozoic 160 161 sedimentary rocks.

162 Sample mineralogy

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5532

Revision 1

163	The CHO differs both chemically and mineralogically from carbonatites and
164	hydrothermal veins at Bear Lodge. In some oxidized carbonatite veins of the BLAC, phosphate
165	minerals account for a majority of the HREE budget, but at the CHO only HREE-dominant
166	phases (xenotime-(Y) and brockite) are present, with trace amounts of REEs in fluorite. The
167	phosphorus-HFSE association at the CHO is similar to other sites peripheral to the central
168	carbonatites. However, rutile/pseudorutile and pyrochlore group minerals are the predominant
169	Ti- and Nb-bearing phases and fine-grained "supergene" monazite or rhabdophane are the
170	principal REE-bearing phases at these peripheral localities. A definitive paragenesis of the CHO
171	is difficult to establish, owing to complex textural relationships, the small grain size (typically
172	$<60 \ \mu m$) of all phases except fluorite, and possible recrystallization. Except for inherited
173	components (zircon and possibly K-feldspar), the CHO consists almost exclusively of anatase,
174	xenotime-(Y), brockite, and fluorite, which appear to have crystallized in that sequence.
175	In the CHO, K-feldspar (30-40% modal) occurs as partially fragmented, 40-150 μ m
176	subhedral grains with corroded edges and coated with fine anatase druses. Detrital K-feldspar
177	grains of similar size and morphology are found in adjacent sedimentary rocks, and are typically
178	coated with authigenic K-feldspar overgrowths or interstitial cement. Rounded zircons (10-50
179	μ m) are present in both the CHO and surrounding sandstone with zoning ranging from simple to
180	complex. Zircon is volumetrically minor, but is much more abundant in the CHO compared to
181	the sandstones.
182	Anatase is the most abundant mineral in CHO rocks (30-50% modal). The presence of
183	anatase was confirmed by XRD and no other Ti-oxide minerals, including the anatase
184	polymorph, rutile were found. In many environments anatase occurs as striated acute
185	dipyramids, but here it occurs as more tabular crystals composed of a basal pinacoid with

numerous pyramidal faces (Fig. 2a). Crystals are oscillatory-zoned with 1-5 µm-wide bands of
slightly irregular periodicity parallel to their faces. Anatase commonly occurs as thin bands of
individual crystals precipitated on K-feldspar grain boundaries (Figs. 2b, 2c, 2d), acting as a
cement. In some instances, anatase appears to nucleate on zircons with xenotime-(Y) outgrowths
(Fig. 2e).

Brockite occurs as disseminated clusters of stubby hexagonal prisms (Fig. 2f) and cavitylining druses (Fig. 2g). Textures indicate that brockite crystallization continued after xenotime-(Y) precipitation. A previously unrecognized, Th-Ca-Y-REE phosphovanadate phase occurs as irregular patches within some larger brockite clusters. At Bear Lodge, similar phosphovanadate phases were identified in oxidized carbonatite along with other rhabdophane group minerals, by the authors of this study.

Xenotime-(Y) occurs primarily as disseminated aggregates with individual crystals less 197 198 than ~2 μ m. It also occurs as minute, syntaxial, pyramidal or dipyramidal outgrowths ($\leq 25 \mu$ m), or complete overgrowths (up to 80 µm), on rounded detrital zircon substrate (Figs. 2h and 2i). 199 200 Zircon is a preferable host for xenotime-(Y) nucleation owing to their isostructural (tetragonal) 201 relationship. This texture is observed in a variety of geological environments including 202 carbonatites (e.g., Wall et al. 2008), hydrothermal veins, metamorphic rocks, granites (e.g., Corfu et al. 2003), and diagenetically altered sedimentary rocks (e.g., Rasmussen 1996, 2005). 203 204 Both anatase and xenotime-(Y) are known to form well-developed, striated tetragonal 205 dipyramids, but at the CHO, only xenotime-(Y), occurs in this form (Fig. 2h). Distinct compositional banding is apparent in BSE images of most large outgrowths (Figs. 2h and 2i). 206 207 Phosphates, xenotime-(Y) and brockite represent ~10-20% of total CHO rock volume.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5532

Revision 1

208	Xenotime-(Y) outgrowths of a distinctly different morphology occur in Cambrian-
209	Ordovician quartz sandstone adjacent to the CHO (Figs. 2j and 2k). Sandstone-hosted xenotime-
210	(Y) occurs as bulbous and serrated outgrowths with a porous microstructure similar to those
211	documented by Hay et al. (2010). Xenotime-(Y) outgrowths in the Paleozoic section at Bear
212	Lodge have remained unrecognized until this study, partly due to the metamict nature of
213	xenotime-(Y) outgrowths, but also to the variable polishing procedures used for thin section
214	preparation. One set of polished thin sections may contain abundant xenotime-(Y) outgrowths,
215	while another may contain only the triangular-shaped voids left when outgrowths are dislodged
216	during polishing (Fig. 2l). Xenotime-(Y) outgrowths occur on all zircons in the CHO and ~80%
217	of zircons in the sandstone samples examined. In all CHO samples, fluorite (~3-10% modal)
218	appears to be the final crystalizing phase, where it occurs as botryoidal, concentrically banded
219	coatings lining cavities and small fractures (Fig. 2d).
220	Analytical Methods
221	SEM/EPMA imagining and analysis
222	REE phosphate mineral compositions were determined by wavelength dispersive electron
223	probe microanalysis using a JEOL JXA-8500F field emission electron microprobe at
224	Washington State University's GeoAnalytical Laboratory. The instrument was also used to
225	generate backscattered electron (BSE) images. Additional BSE images were obtained using a
226	FEI Quanta 200F field emission SEM housed at Washington State University's Franceschi
227	Microscopy Center.
228	The fine-grained hydrated/hydroxylated REE phosphates present numerous analytical
229	challenges, such as diffusive volatility of F (Goldstein et al. 1984; Pyle et al. 2002) and variable
230	electon microprobe oxide totals due to the presence of significant unanalyzed H ₂ O or OH ⁻ . The

231	fine-grained and potentially porous nature of these REE phosphates introduces additional
232	uncertainty (commonly lower totals than predicted) compared to ideal samples required for high
233	accuracy EPMA (Förster 2006; G b et al. 2011). Various electron microprobe settings have
234	been used to try and minimize crystal damage, volatility, and other potential sources of error,
235	while still achieving precise measurement of REEs. Recent studies of hydrated REE minerals
236	(e.g. Förster 2006; Krenn and Finger 2007; Berger et al. 2008; G b et al. 2011) have used an
237	accelerating voltage of 15-25 kV and beam current between 3 and 60 nA. Our test runs,
238	completed using a range of beam conditions, showed little improvement in reducing the amount
239	of damage at beam conditions as low as 15 kV and 15 nA, and slightly diminished precision.
240	The small areas of homogeneous composition require a focused beam and increased counting
241	time, which also contributes to mineral degradation during analysis. A defocused beam was used
242	where crystal dimensions permitted. The presence of elements not included in the routine and
243	submicron inclusions may also contribute to low totals and deviation from ideal stoichiometry.
244	The most consistent data for the REE phosphates were generated using a 2-10 μm beam
245	diameter, 20 kV accelerating voltage, and a 20-50 nA current. These conditions also allow for
246	lower detection limits and analysis of REEs at low concentration, while maintaining reasonable
247	analysis time.
2/19	A combination of natural and synthetic standards was used for calibration including a set

A combination of natural and synthetic standards was used for calibration, including a set of synthetic REE orthophosphates. Preferred X-ray analytical lines were chosen based on the recommendations of Roeder (1985), Williams (1996), and Pyle et al. (2002). Background positions were chosen carefully to avoid spectral overlaps. Quantitative corrections using ProbeForEPMA software were made where overlaps could not be avoided (Donovan et al. 1993,

253 2007). Specific acquisition information and setup for REE phosphate analysis are presented in254 Appendix Table 1.

255 U-Pb geochronology and trace element analysis by LA-ICP-MS

U-Pb age determination of zircon by LA-ICP-MS was performed at Washington State
University's GeoAnalytical Laboratory following procedures detailed in Chang et al. (2006).
Spot analyses of standards and unknowns were performed using a New Wave UP-213 laser
system with a spot size of 20 µm and a pulse rate of 10 Hz. Isotope ratios were measured on a
ThermoFinnigan Element2 single-collector HR-ICP-MS. An in-house zircon standard (Peixe),
with an established high precision TIMS age, was analyzed before and after a run of 20 unknown
sample grains and used to correct for mass, elemental, and instrument bias.

Data are reduced following the procedures of Chang et al. (2006). Signal intensities are first corrected for background using blank measurements made prior to each analysis. To correct for time-dependent mass and elemental fractionation of U and Pb, the U/Pb and Pb/Pb ratios of standards are compared with the TIMS values to calculate fractionation factors, which are then applied to unknown data. LA-ICP-MS can be used for U-Pb age determinations of xenotime; however the fine-grained, heterogeneous nature of xenotime-(Y) in our samples precluded analysis by this method.

Trace element concentrations in fluorite were performed on slide-mounted ~125 μ m thick sections and measured using the same LA-ICP-MS system used for U-Pb geochronology. For the trace element routine, the laser was operated at 15 Hz with a 40-60 μ m spot size. During trial runs, greater precision was achieved from stationary spots rather than transects, although signal decay was more severe as fluorite pitted under the laser. The systematic signal loss of all trace elements was corrected using calcium concentration, which was obtained independently by

276	electron microprobe and used as an internal standard. Two concentration standards, NIST610
277	and NIST612, were ablated before and after unknown samples for external calibration. Specific
278	isotopes analyzed during LA-ICP-MS included: ⁸⁸ Sr, ⁸⁹ Y, ¹³⁹ La, ¹⁴⁰ Ce, ¹⁴¹ Pr, ¹⁴⁶ Nd, ¹⁴⁷ Sm, ¹⁵¹ Eu,
279	¹⁶⁰ Gd, ¹⁵⁹ Tb, ¹⁶³ Dy, ¹⁶⁵ Ho, ¹⁶⁶ Er, ¹⁶⁹ Tm, ¹⁷² Yb, ¹⁷⁵ Lu, ²³² Th, and ²³⁸ U.

280 Controlled ablation of fluorite is often more difficult than other minerals owing to the presence of inclusions and its perfect cleavage {111} in four directions, which may cause 281 282 uncontrolled flaking of large pieces from the mineral surface (Jackson et al., 1992). This results 283 in large particles entering the argon plasma and spikes in signal intensity which may result in 284 trace element data of questionable accuracy and precision. During our analyses, ablation 285 stabilized after an initial flaking of larger particles, which was unmistakable in the resulting 286 spectrum, and addressed during data reduction. Time intervals for the background, initial spike, and signal region with uniform decay, were carefully selected. Any spectra with spikes, 287 288 indicating uncontrolled ablation or presence of inclusions, were excluded. Ratios of individual 289 REEs (e.g., La/Lu and Nd/Yb) were reviewed and remain consistent throughout the signal 290 region. Therefore, REE data are an accurate representation of the relative REE concentrations.

291 Whole rock geochemistry

Whole-rock compositions were determined at Activation Laboratories Ltd. using a combination of techniques. Major and trace element concentrations were determined using a lithium metaborate/tetraborate fusion with subsequent analysis by ICP-MS. The presence of even low levels of phosphate are known to severely affect the ability to accurately measure Nb₂O₅ by this method, with results biased toward low Nb₂O₅ values; therefore, Nb₂O₅, ZrO₂, and Ta₂O₅ were reanalyzed by fusion XRF. A second trace element analysis included an aqua regia digestion followed by ICP-MS for chalcophile elements known to volatilize (i.e., Sb, As, Mo,

Ga, Zn) during the fusion process. Reduced iron was measured by titration, and sulfur species
were determined by infrared methods. Fluorine was analyzed by ion selective electrode and CO₂
by coulometry.

302

Results and Discussion

303 Whole-rock geochemistry

Results from whole-rock analysis of three CHO vein samples and potential

305 HFSE(+HREE) source rocks are presented in Appendix Table 2. Unlike LREE-enriched, HFSE-

306 poor carbonatite intrusions at the center of the BLAC, the CHO is enriched in Be, F, P, Se, Sn,

and nearly all HFSEs and HREEs, with Y and lanthanides heavier than Tb representing 95% of

308 all REEs. Normalized to a composite of nine unoxidized Bear Lodge carbonatite samples, rocks

309 of the CHO are depleted in Ba, Pb, Sr, and La-Sm, and enriched in most trace elements with an

ionic potential greater than that of Gd (Fig. 3a). These results are consistent with the abundance

of xenotime-(Y) and brockite and absence of calcite in CHO rocks compared with the high

modal abundance of calcite, ancylite and Ca-REE fluorocarbonates in the central carbonatites.

313 Local Paleozoic sedimentary rocks and phonolitic intrusions have similar LILE and LREE

314 concentrations compared with the CHO, but chondrite normalized trace element patterns for the

315 CHO deviate from these lithologies for all HFSEs and REEs heavier than Nd (Fig. 3b).

Concentrations of HREEs and HFSEs in rocks of the CHO are in general, 2-3 orders of

317 magnitude greater than local Paleozoic sediments, alkaline silicate intrusions, and carbonatites.

TiO₂ concentrations are \sim 24.0-44.0 wt% higher and Nb₂O₅ 1.8-3.1 wt% higher than other

lithologies owing to the high modal abundance of anatase. Nb/Ti ratios are \sim 1-3 orders of

320 magnitude greater than local Paleozoic sediments and more comparable to Nb/Ti ratios of

321 carbonatite and alkaline silicate intrusions (Appendix Table 2). In CHO rocks, thorium and

322	vanadium reach 3430-26300 ppm and 11430-16170 ppm, respectively. The adjacent Icebox
323	clayshale (#25172) with 1320 ppm vanadium and carbonatites with an average of 467 ppm
324	thorium are potential source rocks of these HFSEs, although concentrations are still an order of
325	magnitude lower than CHO rocks. Except for Zr and Hf, alkaline silicate intrusions (e.g.
326	phonolite dike sample #12BL24) and carbonatites of the BLAC have similar HFSE

327 concentrations.

328 Mineral chemistry from EDS, EPMA, and LA-ICP-MS

Brockite. Brockite $[(Ca,Th,Ln)(PO_4)\cdot H_2O]$ is a rare mineral found only in a few 329 localities associated with metamorphosed quartz sandstones, granites and granite pegmatites, and 330 Th-REE carbonatites, typically forming as secondary alteration product of thorite (Fisher and 331 Meyrowitz 1962; Tiegeng et al. 1987; Shoji and Akai 1994; Berger et al. 2008). No precursory 332 thorite or other Th-bearing phases are identified at the CHO, suggesting direct precipitation from 333 Th-rich solutions. CHO brockite analyses are compared with the initial chemical analyses of 334 335 brockite from Th-REE carbonatite veins of the Wet Mountains, Colorado by Fisher and Mevrowitz (1962). More recent analyses (Tiegeng et al. 1987; Shoji and Akai 1994; Berger et 336 337 al. 2008), are all LREE-dominant varieties, although complete REE analyses are not always 338 attempted. Chondrite normalized REE patterns of brockite from the CHO are roughly parallel to those of brockite analyzed by Fisher and Meyrowitz (1962) (Fig. 4), but CHO brockite is HREE-339 dominant, with greater concentrations of REEs heavier than Tb and 3.2-5.2 wt% Y₂O₃ (Table 340 341 1a). To the authors' knowledge, brockite from the CHO contains the highest reported concentrations of REEs. Although there is significant variability in REE, Th, and Ca content, 342 REEs are incorporated into brockite according the substitution mechanism also responsible for 343 344 miscibility between monoclinic monazite and cheralite (Gramaccioli and Segalstad 1978; Watt

1995; Chakhmouradian and Mitchell 1998; Förster 1998a; Linthout 2007) and often referred to
as "brabantitic" or "cheralitic" substitution (Fig. 5a):

347
$$2(Y, REE)^{3+} = (Th, U)^{4+} + Ca^{2+}$$
 (1)

Although reasonably pure separations for verification by XRD were unsuccessful, 348 brockite is identified based on its hexagonal form (Fig. 2f) and Th- and Ca-dominant 349 350 composition determined by EPMA (Table 1a). Staatz (1983) lists brockite as a mineral confirmed by XRD at the CHO. Similar species include end-member cheralite [Ca, Th(PO₄)₂], 351 churchite-(Y) [YPO₄·2H₂O], and gravite [(Th,Pb,Ca)(PO₄)·H₂O], another member of the 352 353 rhabdophane group. Chemical analyses of end-member cheralite are often indistinguishable from brockite, lending some uncertainty to identifications based on chemistry alone. Electron 354 microprobe totals for brockite should be lower than those of end-member cheralite, owing to the 355 356 presence of H₂O.

Microprobe oxide totals for CHO brockite average 88.4%, which is close to the expected 357 value when accounting for the theoretical ~8 wt% H₂O in brockite. Our analyses of brockite 358 359 include 0.64-1.69 wt% F, while no previously reported analyses have included F. This suggests that brockite may include hydroxyl rather than molecular water, or both. Incorporation of F^- and 360 OH⁻ would also help correct for the observed charge imbalance as a result of excess REEs. 361 Trace amounts of CO_3^{2-} , not analyzed, may also contribute to the low electron microprobe oxide 362 totals, as chemical analyses by Tiegeng et al. (1987) and Fisher and Meyrowitz (1962) contain 363 2.55 and 3.1 wt% CO₂ (0.15 and 0.17 CO₃ apfu), respectively. 364

365 **Undefined** (Ca,Th,Y,Ln)[(V,P)O4]·nH₂O. In phosphate minerals, substitution of VO_4^{3-} 366 and AsO₄³⁻ ions for PO₄³⁻ is often reported, and in some cases, complete solid-solution between

367	PO ₄ - and VO ₄ -rich end members is suspected. Complete miscibility between xenotime-(Y)
368	[YPO ₄] and wakefieldite-(Y) [YVO ₄] is suspected, although poorly understood (Kolitsch and
369	Holtstam 2004; Hetherington et al. 2008). The existence of an intermediate member of this
370	series [Y((V,P)O ₄)] was encountered in oxidized carbonatite of the BLAC by the authors of this
371	study. Substitution of Nb is also possible, with fergusonite (YNbO ₄) as the end member
372	composition. However, all Nb appears to partition into anatase at the CHO.
373	Hydrated/hydroxlated Ca-Th-Y-Ln phosphovanadate at the CHO probably represents an
374	intermediate composition between brockite [(Ca,Th,Ln)(PO ₄)·H ₂ O] and a theoretical V-dominant
375	end member [(Ca,Th,Ln)(VO ₄)· H_2O].
376	The Ca-Th-Y-Ln phosphovanadate phase occurs as irregular patches (possible
377	exsolution) within brockite clusters (Fig. 6a). It appears as the brightest phase (highest average
378	atomic #) in BSE images owing to Th and V concentrations higher than all other minerals.
379	Electron microprobe data show the new phase has slightly higher V than P, and higher Th/Ca
380	ratios compared with brockite (Table 1b). Chondrite-normalized REE patterns are nearly
381	identical to those of brockite, with slightly higher HREE contents, and the phase is interpreted
382	simply as vanadatian brockite.
383	The newly discovered phase may account for a substantial amount of the 1.37 wt%
384	average V concentration from whole rock analyses; however, the completely exsolved
385	phosphovanadate is not particularly abundant. Brockite, from which the secondary
386	phosphovanadate phase has not exsolved, and xenotime-(Y) account for a majority of the V
387	budget. Brockite actually contains less V than co-existing xenotime-(Y), suggesting removal of
388	V as it partitioned into the phosphovanadate phase. The undefined Ca-Th-Y-Ln phosphovanadate
389	phase, or one chemically similar, was first discovered by the authors in oxidized carbonatite

nearly 2 km from the CHO, where it occurs as micron-size acicular needles among otherminerals of the rhabdophane group.

392	Although no official name is designated for a hydrated/hydroxlated Ca-Th-Y-Ln
393	phosphovanadate, chemically similar phases have been described previously. Hydrated thorite
394	analyses of Lumpkin and Chakoumakos (1988) are similar to our Ca-Th-Y-Ln phosphovanadate,
395	although the authors claim that all samples possess the tetragonal zircon structure with lattice
396	constants similar to thorite (Lumpkin and Chakoumakos 1986, 1988). Brown "thorite" samples
397	from a cleavlandite unit (Lumpkin and Chakoumakos 1988: Tables 1 and 2) contain up to 16.2
398	wt% V_2O_5 and 19.5 wt% P_2O_5 , which predominate over Si and As. These VO_4/PO_4 -dominant
399	"thorites" also exhibit high F concentrations (0.52-1.60 wt%) and the lowest oxide totals (~89-
400	92%), which suggest that the incorporation of V and P is accompanied by a greater degree of
401	hydration (and fluorination) than for Si-dominant varieties. Phosphate minerals of the CHO lack
402	any appreciable Si, and the association with hexagonal brockite suggests our
403	hydrated/hydroxlated Ca-Th-Y-Ln phosphovanadate phase is more closely related to the
404	rhabdophane group.

Xenotime-(Y). Overgrowths of xenotime-(Y) on zircon in the CHO are structurally and 405 chemically complex, with narrow zones which are highly beam sensitive (Fig. 6b). While Y^{3+} is 406 the predominant A-site cation (average Y_2O_3 : ~39 wt%), xenotime-(Y) contains an appreciable 407 amount of other REEs averaging 13.1 wt% total rare earth oxide (TREO) (Table 2). Beam 408 sensitive zones are enriched in Th and Ca, and deterioration under the electron beam is probably 409 due to the presence of H₂O or OH, a feature not commonly reported for xenotime-(Y). Thorium 410 is typically incorporated into xenotime-(Y) according to the charge-compensating substitution 411 (van Emden et al. 1997; Förster 1998b): 412

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5532

Revision 1

413
$$(Th, U)^{4+} + Si^{4+} = (Y, REE)^{3+} + P^{5+}$$
 (2)

The predominance of mechanism 2, involving coupled substitution of Th and Si in 414 xenotime-(Y), is not surprising, considering the isostructural relationship of thorite (ThSiO₄) and 415 xenotime-(Y). However, in CHO xenotime-(Y), Th, U, and Ca are incorporated according to 416 cheralite-type substitution (mechanism 1, Fig. 5b) with an accompanying decrease in P and 417 increase in F (and possibly OH) (Figs. 5c, 5d). 418 The Th- and Ca-rich bands normal to the c-axis of pyramidal xenotime-(Y) overgrowths 419 appear darker than the more pure xenotime-(Y) component in BSE images (Figs. 2h, 2i, 6b–e). 420 421 Substitution of Th should increase the average atomic number of xenotime-(Y), and it is improbable that the coinciding substitution of Ca would bring down the average atomic number 422 to produce the dark banding in xenotime-(Y). We propose that incorporation of H_2O/OH^2 , along 423 424 with Th and Ca, is responsible for the darker banding in xenotime-(Y). This is supported by the micro-porous texture and extremely beam sensitive nature of the Th/Ca-rich bands (Fig. 6b). 425 The exact mechanism by which water is incorporated into xenotime-(Y) is unclear, but 426 427 incorporation of Th, Ca, and water together suggests an association with brockite crystallization. Chondrite-normalized REE patterns for xenotime-(Y) and brockite are rough reflections of one 428 another for Tb-Lu (Fig. 7). Profiles of brockite show an Y-depletion relative to adjacent Dy and 429 Ho, which is probably a result of preferential Y-partitioning into xenotime-(Y) and fluorite, both 430 of which show positive Y-anomalies. The mirrored chondrite normalized patterns, Th/Ca-rich 431 domains in xenotime-(Y), and fine intergrowths of xenotime-(Y) and brockite in disseminated 432 clusters support co-precipitation of the two phases. Incorporation of Th and Ca also appears to 433 coincide with exchange in the tetrahedral site, where higher V concentrations are observed in 434 Th/Ca-rich domains (Fig. 5e). Where bright, low-water bands were sufficiently large to allow 435

436	analysis by electron microprobe, more typical, near stoichiometric xenotime-(Y) compositions
437	were obtained, with an average of 9.5 wt% higher Y_2O_3 , 4.0 wt% higher P_2O_5 , higher HREEs,
438	and lower Th, Ca, and V (Table 2). Xenotime-(Y) from albitites at Lofdal, Namibia, have lower
439	concentrations of Th, Ca, V, and F more typically observed for xenotime-(Y) and were analyzed
440	using the same routine as a check on accuracy (Appendix Table 4).
441	Variations of Th, U, Ca, and Si in xenotime-(Y) are commonly manifested in the form of
442	crystallographic and/or fine-scale (<5 μ m) compositional zoning and additional variations in
443	actinide content may arise in during alteration and metamictization (Kositcin et al. 2003;
444	Rasmussen 2005; Vallini et al., 2005; Harlov and Wirth 2012). The Th and Ca variations in
445	CHO outgrowths can probably be attributed to successive phases of xenotime-(Y) precipitation
446	from a fluid with fluctuating Th and Ca concentrations, influenced by the simultaneous
447	precipitation of brockite. Subsequent alteration and partial dissolution/reprecipitation may have
448	also affected xenotime-(Y) composition. Outgrowth banding is commonly disrupted adjacent to
449	the zircon substrate (Fig. 6c-e), but remains as uniform banding further from the zircon
450	boundary toward pyramidal terminations. This indicates a possible hiatus in growth of syntaxial
451	xenotime-(Y) marked by partial dissolution of early adjacent xenotime-(Y) and in some
452	examples, anatase inclusions (Fig. 6e). There is clear evidence that the beam-sensitive Th/Ca-
453	rich domains were preferentially affected by later fluids (Fig. 6c), and in some cases fissures of
454	recrystallized xenotime-(Y) transect the uniform outer banding (Fig. 6d). Regardless of the exact
455	timing, xenotime-(Y) closest to the zircon substrate became slightly more soluble and susceptible
456	to dissolution/reprecipitation by later fluids.
457	While the many substitutions possible in xenotime-(Y) and hydrated/fluorinated REE+Th

458 phosphates are beyond the scope of this study, analyses of CHO xenotime-(Y) are consistent

459	with other studies of xenotime-(Y) which show significant deviation from ideal stoichiometry
460	(cf., Johan and Johan 2004; Förster 2006; Bastos Neto et al. 2012). Such deviations typically
461	involve B-site (Si, P) deficiencies and an excess of A-site cations (Th, Ca, Ln, Y) (Forster,
462	2006), as observed in CHO xenotime-(Y). Bastos Neto et al. (2012) suggest that the
463	development of PO ₃ F tetrahedra may be important in F-rich xenotime-(Y) from the Madeira
464	granite at Pitinga, Brazil. A similar substitution involving F ⁻ /OH ⁻ and H ₂ O is employed to
465	explain low microprobe oxide totals of xenotime-(Y) from the Cínovec (Zinnwald) granite
466	cupola in the Czech Republic, with the general formula, $[(Y, REE)_{1-x} \Box_x] [(P, Si)O_{4-3x}(OH,F)_{3x}]$.
467	1-2H ₂ O (Johan and Johan 2004). The mechanism, $[(Th, U, Zr)_{1-x} (Y, REE)_x] [(SiO_4)_{1-x} (OH, F)_{3x}]$
468	is recognized for isostructural silicate members, thorite, zircon, coffinite, and thorogummite
469	(Pointer et al. 1988; Förster 2006). Substitutions of this type probably account for the
470	anomalously high F concentrations (1.96-3.02 wt%, Table 4), negative correlation between P and
471	F (Fig. 5d), and low microprobe oxide totals (81.2-96.2 wt%) of CHO xenotime-(Y). In
472	xenotime where Th and Si are introduced according to mechanism 1 (thorite-type), charge
473	balance appears to be maintained through the substitution $O^{2-} + P^{5+} = (F,OH)^{-} + Si^{4+}$ (Bastos
474	Neto et al. 2012). However, the extraordinarily F-rich xenotime-(Y) at both the CHO and
475	Madeira granites are notably poor in Si. Bastos Neto et al. (2012) suggest that unit cell
476	contraction related to the formation of PO_3F tetrahedra may inhibit replacement of P (0.17Å) by
477	Si (0.26Å.), thus explaining the poor effectiveness of thorite-type substitution in F-rich
478	xenotime-(Y) and B-site (P) vacancies in order to achieve charge balance. This may enable
479	cheralite-type substitution in F(±OH)-rich xenotime-(Y) like that of the CHO. An additional
480	factor controlling actinide incorporation is the availability of charge balancing Si ⁴⁺ versus Ca ²⁺ ,
481	as suggested by Förster (1998b). The lack Si-bearing hydrothermal minerals at the CHO and

482 high Ca²⁺ activity indicated by fluorite mineralization in the vicinity of calcareous sediments
483 lends support this conclusion.

Sandstone-hosted xenotime-(Y). REE concentrations and chondrite-normalized 484 485 patterns of quartz sandstone-hosted xenotime-(Y) outgrowths are nearly indistinguishable from the complex zoned overgrowths at the CHO (Table 2, Fig. 7). Sandstone outgrowths have 486 slightly higher Nd and lower Th, Ca, V, and F. Excess SiO₂ is probably a result of the beam 487 excitation volume overlapping onto the zircon substrate or adjacent quartz during analysis of 488 outgrowths $<5 \,\mu$ m. Although sandstone-hosted xenotime-(Y) has a radically different 489 morphology compared to CHO xenotime-(Y) (compare Figs. 2j, 2k and Figs. 2h, 2i), the nearly 490 identical compositions support a single generation of xenotime-(Y) precipitation. Th and F 491 492 concentrations are only slightly lower compared to CHO xenotime-(Y) and are higher than most diagenetic xenotime-(Y) analyses reported in the literature. The contrast in morphology and 493 absence of compositional (Th and Ca) zoning in sandstone-hosted outgrowths can be explained 494 495 by the impediment of xenotime-(Y) growth by closely packed quartz grains in the indurated sandstone. 496

The metamict nature of xenotime-(Y) suggests outgrowths would not survive mechanical abrasion during transport of zircon, whether concentrated by gravity separation as in a placertype occurrence or by hydrothermal fluids. The bond between xenotime-(Y) outgrowths and their detrital zircon substrate is not particularly strong (Rasmussen, 2005), yet dislodged pyramidal xenotime-(Y) fragments are rare within the CHO, indicating xenotime-(Y) outgrowths formed in situ and are not derived from the sandstones. Furthermore, outgrowths on zircon represent only a small percentage of the overall xenotime-(Y) in rocks of the CHO. A majority

of the xenotime-(Y) occurs as disseminated crystal clusters which are not present in the adjacentsandstones.

506	Two separate generations of xenotime-(Y) precipitation (CHO vs adjacent quartz
507	sandstone) cannot be excluded on the basis of morphology and composition alone. Sandstone-
508	hosted xenotime-(Y) may represent phosphate mineralization from pore waters during diagenesis
509	(Rasmussen and Glover 1994, 1996; Rasmussen 1996, 2005; Hay et al. 2010), or a low-
510	temperature metamorphic event (Vallini et al. 2002, 2005), which may predate Paleogene
511	carbonatite-related REE mineralization by as much as 400 million years. Further
512	geochronological studies are required to distinguish between a predominantly Cambrian-
513	Ordovician diagenetic or Paleogene hydrothermal origin for xenotime-(Y), but are complicated
514	by morphology and actinide mobility.
515	Fluorite. While the REE content of fluorite from the CHO is significantly lower than
516	that of the phosphate minerals, it has a remarkably similar lanthanide distribution. CHO fluorite
517	is HREE-enriched with a chondrite-normalized REE maximum at Y and minimum at Nd. This
518	REE distribution is strikingly different from LREE-dominant fluorite in Bear Lodge carbonatite
519	dikes, hydrothermal veins, and limestone karst cavities (Table 3, Fig. 8). Fluorite from the CHO
520	is further distinguished by its lack of Y-Ho fractionation, indicated by low Y/Ho ratios, and the
521	absence of a negative Eu anomaly. Contrasts in the behavior of Y and Ho have been attributed
522	to their different outer electron configurations, mass-dependent fractionation, and temperature-
523	dependent fractionation (Olin and Wolff 2010, 2012 and references therein). Element
524	fractionations are in general expected to be more pronounced at lower temperatures, as noted by
525	Bau (1996, 1999) and Bau and Dulski (1999). In fluorite specifically, Y-Ho fractionation has
526	been attributed to different dominant speciation between Y-fluoride (di-fluoride) and REE-

527	fluoride (monofluoride) complexes in F-rich fluids at temperatures up to 250°C, as opposed to a
528	source related phenomenon (Bau and Dulski 1995; Loges et al. 2013). The REE pattern of late
529	void-filling fluorite at the CHO (Fig. 8) reveals the HREE-enriched/LREE-depleted composition
530	of the fluid through the xenotime-brockite-fluorite sequence, consumption of phosphorus, and
531	probable increase in fluorine. While Y is preferentially partitioned into fluorite relative to Ho,
532	both are preferentially partitioned into xenotime-(Y). Crystallization of the less soluble REE+Th
533	phosphates would significantly decrease Y and Ho concentrations and affect the Y/Ho ratio in
534	the residual fluid. The lower Y/Ho ratios of CHO fluorite relative to all other fluorite at the
535	BLAC is probably related to the fractionation of xenotime-(Y), which is rare in the central
536	carbonatite dikes and other areas of fluorite mineralization. Based on the observed textures,
537	mineral parageneses, and studies of Y-Ho fractionation in fluorine-rich fluids (e.g., Loges et al.
538	2013), fluorine activity, temperature, and pH were probably the most important factors
539	contributing to Y-Ho variability in Bear Lodge fluorites. The preferential incorporation of Y
540	into fluorite is probably responsible for the circular Y soil anomaly rimming the BLAC (Fig. 9).
541	The Y anomaly appears to define fluorite-filled karst cavities in the Mississippian Pahasapa
542	(Madison) limestone, some of which were mined ~ 0.5 km outward from the CHO.

Anatase. WDS X-ray element mapping and EDS point analyses indicate anatase zoning revealed in BSE images is due to variations in Nb concentration. Assuming all Ti and Nb have partitioned into anatase, the ratio of Nb to Ti in whole-rock analyses suggest the formula of anatase is close to $Ti_{0.92}Nb_{0.08}O_2$. Niobium, which substitutes for Ti^{4+} in 6-fold coordination, accounts for all 1.88-3.11 wt% Nb₂O₅ in CHO samples. Although the rutile structure is denser than the anatase structure, the octahedral coordination site around Ti^{4+} is larger in rutile, allowing Nb to be more easily accommodated in this structure, rather than anatase (personal

550	communication, Anthony N. Mariano). This may indicate that temperature was the controlling
551	factor that favored anatase (low-T TiO ₂ polymorph) crystallization over rutile.
552	In sandstones and heavy mineral sands, anatase occurs as a detrital or authigenic
553	(diagenetic) mineral, commonly forming overgrowths or acting as a cement (Force, 1991; Ixer et
554	al. 1979; Ixer and Vaughan 1982; Morad and Aldahan 1982; Selleck 2008; Selleck et al. 2008).
555	The source of authigenic anatase is usually attributed to TiO ₂ liberated from detrital ilmenite,
556	rutile, anatase, titanite, or biotite during diagenesis. The morphology and cement-like texture of
557	CHO anatase indicate an "authigenic" origin, in the sense that anatase formed in situ by
558	precipitation from fluids, but not necessarily a "diagenetic" origin as local quartz sandstones do
559	not contain significant quantities of detrital Fe-Ti oxides. Shales are known to have even higher
560	concentrations of TiO ₂ (~ $0.6-1.0$ wt%), which Force (1991) attributes to fine-grained anatase
561	commonly present in regoliths and derived from weathering of Ti-bearing silicate or oxide
562	minerals. Shales of the mid-upper Deadwood Formation and the Icebox clayshale of the
563	Winnipeg Formation could be local sources of TiO ₂ . However, a maximum concentration of
564	~0.9 wt% TiO ₂ was determined for the Icebox clayshale (Appendix Table 2), which would
565	appear to be an insufficient source of TiO_2 without extremely high water:rock ratios through this
566	relatively narrow unit.

567 U-Pb geochronology of zircon by LA-ICP-MS

The trace element chemistry of xenotime-(Y), brockite, and fluorite and euhedral
morphology of cement-forming anatase suggest these phases are genetically related to a
HREE(+HFSE)-enriched hydrothermal fluid. This assemblage accounts for nearly all REEs and
HFSEs, except Zr and Hf, which are hosted almost exclusively by zircon. U-Pb ages of CHO
zircons were determined by LA-ICP-MS to confirm that Zr and Hf were introduced by a physical

573	process independent of the HFSE-enriched fluid composition. Three distinct age populations are
574	recorded by zircon xenocrysts (Table 4). The three Archean 207 Pb/ 206 Pb ages at 2.75-2.60 Ga are
575	typical for granites of the Wyoming craton, and correspond with periods of calc-alkaline arc
576	magmatism and penetrative deformation recorded in the Sweetwater subprovince in central
577	Wyoming, and along the southern margin (Southern accreted terranes) of the older Wyoming
578	craton (2.90-2.75 Ga) (cf., Chamberlain et al. 2003; Frost and Fanning 2006; Mueller and Frost
579	2006). The six Paleoproterozoic ages at 1.88-1.83 Ga (Table 4) are consistent with the Trans-
580	Hudson Orogen during Hearne-Medicine Hat-Superior convergence in central Canada, and
581	reported ages for xenoliths and granitic rocks of the Great Falls tectonic zone (Highwood and
582	Little Belt Mountains), northwest of the Wyoming craton (Carlson and Irving 1994; Rudnick et
583	al. 1999; Mueller et al. 2002; Vogl et al. 2002). Three of the six grains with 207 Pb/ 206 Pb ages at
584	1.88-1.83 Ga are highly discordant (CF7100V-14, CF7100V-15, CF7100V-24), which is
585	probably a result of radiogenic Pb loss during the local Paleogene magmatic-hydrothermal event.
586	Ages between 1.8 and 1.9 Ga, and local influence of the Trans-Hudson Orogen are
587	reasonably expected, considering the inferred boundary of the Trans-Hudson Suture Zone is
588	approximately 20 km east of the BLAC. However, there is little evidence of a ca. 1860-1845 Ma
589	or 1825-1790 Ma thermotectonic event in the western Dakotas region aside from ~1845-1810
590	Ma total-Pb ages of in situ monazite growth in metapelites of the Black Hills (Dahl et al. 1999,
591	2005a, 2005b). Instead, this area appears to have been affected by a distinctly younger (1800-
592	1700 Ma) event (Black Hills orogeny), which postdates terminal Hearne-Superior collision in the
593	northern Trans-Hudson Orogen and is contemporaneous with the Wyoming-(Dakota)-Superior
594	cratonic collision and N-NW directed accretion along the southern Wyoming craton margin
595	(Sims and Peterman 1986; Bickford et al. 1990; Dahl and Frei 1998; Dahl et al. 2005b). To our

596	knowledge, there are an insufficient number of U-Pb ages for Archean granite-hosted zircon
597	from the BLAC to determine whether the granites recorded either the 1.9-1.8 Ga Trans-Hudson
598	or 1.8-1.7 Ga Black Hills orogenic events.
599	Three older Paleoproterozoic ages at 1.97-2.11 Ga, recorded by zircons of the CHO,
600	would predate the Trans-Hudson Orogen and are probably the result of inherited \sim 2.7-2.6 Ga
601	zircon cores and \sim 1.9-1.7 Ga rims unresolved due to limited spatial resolution during analysis by
602	LA-ICP-MS. Alternatively, this age may represent a separate zircon population or overgrowth
603	domain related to a period of craton-wide extension and continental rifting indicated by 2.1-2.0
604	Ga mafic dike swarms exposed in the Wind River Range, Granite Mountains, and Laramie
605	Mountains (Cox et al. 2000; Chamberlain et al. 2003; Frost and Fanning 2006).
606	The two definitive 207 Pb/ 206 Pb age populations at 2.60-2.75 Ga and 1.83-1.88 Ga, and
607	lack of relict Trans-Hudson dates in the Black Hills concurrent with the latter, suggest
608	xenocrystic zircons of the CHO were derived from surrounding Cambrian-Ordovician quartz
609	sandstones, either being dislodged by fluids which precipitated HREE- and HFSE-bearing
610	minerals, or by gravity separation during transport and formation of a placer-type deposit. Its
611	abundance in CHO rocks suggests that zircon was preferentially and mechanically removed
612	(possibly with K-feldspar) by a fluid in which quartz was soluble, as rocks of the CHO contain
613	no quartz. Selective incorporation of zircon with no other xenocrystic component is improbable,
614	and the fragmented nature of K-feldspar suggests its incorporation concomitantly with zircon.
615	Although the CHO is enriched in nearly all HFSEs, the radiogenic U-Pb isotope analyses show
616	that Zr and Hf were enriched due to a mechanical concentration of zircon, physiochemically
617	independent of the Ti-Nb, Th-Y-P, and F mineralization.

618

Source of HFSEs and HREEs and constraints on fluid chemistry

619	The HREE-enrichment patterns of brockite, xenotime-(Y), and fluorite suggest that all
620	three phases precipitated from the same chemically unique fluid. The high TiO_2 concentrations,
621	predominance of HREE-dominant phosphates, and low Y/Ho ratios of CHO fluorite, suggest
622	fluids of significantly different chemistry are responsible for mineralization at the CHO
623	compared with other distinct episodes of hydrothermal REE mineralization (i.e., Ca-REE
624	fluorocarbonate mineralization in the oxidized carbonatites) in the BLAC. Parameters such as
625	temperature, pH, and host rock lithology may also have influenced the resulting REE
626	assemblage. Although quite limited, the following observations suggest a link between
627	hydrothermal mineralization at the CHO and the central Bear Lodge carbonatites:
628	1) REE mineralization: Although a majority of the REE mineralization in carbonatites is
629	represented by carbonates and fluorocarbonates, oxidized portions contain REE
630	phosphates of the rhabdophane group, including brockite. The abundance of REEs in
631	general support a link between REE-rich carbonatites and the CHO, although significant
632	fractionation of the REEs is required. The trace amounts of xenotime-(Y) and monazite
633	in sedimentary rocks at Bear Lodge may be of diagenetic rather than
634	carbonatitic/hydrothermal origin, but appear to be an insufficient source of REEs.
635	2) Th concentration: Geochemical mapping based on thousands of surface rock and soil
636	samples and drill core assays clearly shows that Paleogene alkaline intrusions
637	(carbonatites specifically) are the principal source of elevated Th at Bear Lodge
638	(communication, Jeffrey Jaacks, Geochemical Applications International, Inc.; John Ray,
639	Rare Element Resources, Ltd.). The unoxidized carbonatite samples analyzed during this
640	study have an average Th concentration of 467 ppm (Appendix Table 2). A second and

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5532

Revision 1

641	completely unrelated source for the 0.34-2.63 wt% Th in the CHO would be an
642	extraordinary coincidence.

Furthermore, we suggest that the concentration of HREEs in a residual fluid may be the result of 643 fractional crystallization and selective removal of LREEs in REE-carbonates and 644 fluorocarbonates within the central carbonatite dike swarm. La, Ce, Pr, and Nd are at or below 645 detection limits for xenotime-(Y), brockite, and fluorite, suggesting fluids were impoverished in 646 LREEs before reaching sedimentary units ~2 km outward from the carbonatites. 647 If CHO minerals are indicative of HFSE and HREE transport in a F-rich hydrothermal 648 fluid, then the phosphatic shales and calcareous siltstones may have supplied the required Ca and 649 P to promote fluorite and REE phosphate precipitation. Fluorite crystallization may destabilize 650 HREE- and HFSE-fluoride complexes, resulting in deposition of xenotime-(Y), brockite, and 651 652 anatase. Destabilization of HFSE-fluoride complexes as a result of fluorite crystallization is a suggested model for Zr-Y-Nb-REE mineralization in some peralkaline igneous complexes (Salvi 653 and Williams-Jones 1996, 2005). The sedimentary units exposed near the CHO are the first Ca-654 655 rich lithologies moving outward from the central carbonatites, which might explain how HFSEs and HREEs could remain in solution until fluorite saturation. Interaction of oxidizing fluids with 656 reduced lithologies is an alternative mechanism known to promote precipitation of hydrothermal 657 minerals, and shales near the CHO, with slightly more pronounced negative Eu anomalies, are 658 indicative of such conditions. 659

660 Secondary hydrated Ca-phosphate and -vanadate minerals such as sincosite

661 $[CaV_2(PO_4)_2O_2 \cdot 5H_2O]$ and phosphovanadylite-Ca $[Ca(V_4P_2O_{12}(OH)_4) \cdot 12H_2O]$ are not

uncommon in phosphatic and black carbonaceous shales. The chemical similarity of these

663 minerals to brockite and vanadatian brockite is relevant considering the proximity of the CHO to

shales of the Deadwood and Winnipeg Formations. The few other occurrences of brockite
throughout the BLAC also occur in close proximity to Paleozoic sedimentary rocks which seems
to point toward a lithologic control on REE+Th precipitation and mineral speciation (phosphates
rather than fluorocarbonates) as REE,Th-enriched fluids emanated outward toward the Paleozoic
section.

669 Recent studies (e.g., Migdisov et al. 2009) question the importance of fluoride complexes 670 as REE transport ligands in hydrothermal solutions, and suggest that chloride complexes may 671 play a vital role in REE transport, particularly in peralkaline granite and syenite complexes 672 (Williams-Jones et al. 2012). These conclusions are based on the stability of REE-fluoride 673 complexes at typical hydrothermal temperatures, high Cl⁻ concentrations and availability relative 674 to other ligands trapped in fluid inclusions (cf., Banks et al. 2004), and tendency toward fluocerite [(Ce,La,Nd)F₃] saturation as a result of HF disassociation with increasing pH or 675 676 decreasing temperature. Unfortunately, fluorite at the CHO appears to be one of the few 677 generations of fluorite at Bear Lodge that does not contain fluid inclusions, preventing estimates of chloride or phosphate concentrations in fluids which precipitated fluorite and possibly REE 678 phosphates. While LREEF²⁺ species are more stable than HREEF²⁺ species above 150° C. 679 HREE F^{2+} species are more stable below this temperature (Williams-Jones et al. 2012). There is 680 some evidence that minerals at the CHO precipitated from low temperature fluids approaching 681 150°C; for example, the predominance of anatase over other TiO₂ polymorphs. In epithermal Au 682 683 systems the anatase to rutile transformation occurs at 150-200°C (Hendenquist et al. 2000), and recent studies (Smith et al. 2009) confirm that crystallization of anatase requires low P-T, 684 aqueous conditions. The incorporation of H_2O or OH^2 in phosphates and presence of 685

concentrically banded fluorite are further evidence for low temperature mineralization at theCHO.

Studies of the solubility and aqueous complexation of Ti⁴⁺ and Nb⁵⁺ place further 688 689 constraints on fluid chemistry, as their solubility is relatively high in F- and P-rich solutions 690 known to transport REEs in alkaline igneous complexes (M ller 1989; Morteani 1989 and references therein). As hard Lewis acids, Ti⁴⁺ and Nb⁵⁺ are expected to form strong electrostatic 691 692 complexes with a hard Lewis base like F⁻, even more so than Cl⁻, a base of lesser hardness 693 (Pearson 1963, 1968; Rapp et al. 2010). Although Cl has recently received consideration as an 694 important REE transport ligand in hydrothermal fluids, Nb-chloride and Nb-sulfate complexes are relatively weak and improbable transport ligands for Nb⁵⁺, while Nb-fluoride complexes are 695 696 relatively strong (Babko and Shimadina 1959; Wood 2005). Highly acidic solutions with high free-fluoride activities are thought to be more favorable for such complexes, although mixed Nb-697 hydroxyfluoride complexes may permit Nb transport in more typical hydrothermal fluids (Wood 698 2005; Timofeev et al. 2015). These conclusions are also in agreement with studies of Ti⁴⁺ 699 solubility in F-rich solutions. Hydroxyfluoride complexes with Ti⁴⁺ were predominant in the 700 simple experimental solutions of Barsukova et al. (1979) and Purtov and Kotel'nikova (1993), 701 who found that Ti solubility increases with increasing m_{HE}^0/m_{HCI}^0 and decreasing pH, although at 702 temperatures (400-700°C) much higher than those predicted for mineralization at the CHO. 703 More recent experiments exploring the solubility of rutile and Nb₂O₅ and mobility of Ti⁴⁺ and 704 Nb⁵⁺ (cf., Rapp et al. 2010; Tanis et al. 2015; Timofeev et al. 2015) are mostly performed 705 beyond the T and P range expected for the CHO, but reveal several relevant conclusions: 1) 706 rutile and Nb_2O_5 solubility and thus hydrothermal mobility of Ti and Nb is strongly dependent 707 on fluid chemistry, particularly halogen content, 2) Solubility is highest in F-rich solutions 708

709	relative to Cl-rich solutions, and increases with increasing $a(F)$, 3) removal of F during
710	precipitation of fluorite or fluorapatite will decrease Ti+Nb solubility and promote crystallization
711	of Ti+Nb minerals, and 4) Ti+Nb should not be ubiquitously regarded as immobile, particularly
712	in fluids with elevated halogen concentrations. The unusually high concentrations of Nb and Ti,
713	and high Nb/Ti ratios of the CHO suggest that Paleozoic sediments are an improbable solitary
714	source of HFSEs. Although anatase is a common weathering product of Fe-Ti oxides in heavy
715	mineral sands and other sedimentary environments, high Nb/Ti ratios suggest either an
716	alternative source or fractionating process (i.e., preferential transport of Nb in hydrothermal
717	solution).
718	Acidic solutions with significant HF could explain the lack of quartz in rocks of the
719	CHO, and presence of late recrystallized quartz in local breccias. Many of the secondary quartz-
720	filled breccias and veins throughout the BLAC probably formed from solutions that dissolved
721	SiO ₂ from the Cambrian-Ordovician quartz sandstones or Archean granite, particularly the
722	smoky quartz veins that transect the sandstones themselves. Our model for transport of HFSEs
723	and HREEs in an acidic, low temperature, $F(\pm P)$ -rich fluid hinges on the assumption that
724	anatase, xenotime-(Y), brockite, and fluorite precipitated during Paleogene hydrothermal
725	activity, and that no component crystallized during diagenesis of Cambrian-Ordovician
726	sediments.
727	Implications

Fluid evolution in carbonatitic systems 728

This study demonstrates the extreme REE fractionation possible in carbonatite-derived 729 fluids, and the possible role interaction with wall-rock lithologies may have on the precipitation 730 of REE and Ti+Nb oxide minerals. Mineralization at the CHO is most consistent with formation 731

732	under low-temperature hydrothermal conditions, and while the CHO shares geochemical and
733	mineralogical similarities to placer-type Ti+REE occurrences or heavy mineral sands and
734	authigenic phosphate and Ti-oxide mineralization related to sedimentary diagenesis, a
735	carbonatitic source of REEs and HFSEs is more plausible. Although it seems improbable that a
736	fluid of such peculiar chemistry could travel more than 2 km through a variety of lithologies
737	without precipitating assemblages of similar hydrothermal minerals, an diagenetic origin for such
738	high concentrations of HREEs, Th, Ti, and Nb seems equally improbable, as the local
739	sedimentary units appear to be insufficient sources of these elements.
740	The unusual chemistry of the CHO is best explained by fractionation processes related to
741	carbonatites and carbo-hydrothermal fluids. LREEs are removed during crystallization of REE
742	carbonates and fluorocarbonates within the central carbonatite stockwork, leaving residual fluids
743	enriched in the most incompatible elements (HFSEs and HREEs). The abundance of REE
744	phosphates and REE fluorocarbonates in oxidized/altered carbonatite suggests increasing PO_4^{3-}
745	$/CO_3^{2-}$ and F ⁻ /CO ₃ ²⁻ ratios in late-stage fluids evolving toward a PO ₄ - and F-enriched and CO ₃ -
746	depleted composition consistent with CHO mineralogy. Studies addressing the solubility and
747	aqueous complexation of REEs, Ti, and Nb with Cl ⁻ , F ⁻ , CO_3^{2-} , SO_4^{2-} , and PO_4^{3-} suggest that F ⁻ is
748	the mutual ligand with which REEs, Ti, and Nb all form relatively strong complexes, and that F-
749	rich hydrothermal fluids are capable of concentrating these elements. Major enrichment of Nb,
750	Y, F, Ti, Th, U, and to a lesser extent, Sc, Be, Sn, W, Se, and Li in the CHO is probably
751	analogous to the chemical evolution involving fractional crystallization and concentration of the
752	most incompatible elements similar to that proposed for NYF-type pegmatites.
753	The complexity of lithologic contacts near the CHO make it difficult to ascertain one
754	specific mechanism for REE deposition, but fluid interaction with shale, calcareous siltstone, and

755	sandstone probably played an important role. We suggest HFSEs and HREEs are transported in
756	highly fractionated F-rich fluids of high ionic strength that originated from carbonatite intrusions
757	or associated carbohydrothermal residua. With falling temperature and interaction with
758	calcareous Paleozoic sedimentary rocks, HFSEs and HREEs precipitate as Nb-anatase,
759	xenotime-(Y), brockite, and fluorite. The suspected lithologic control on REE precipitation
760	makes the outer rim of Paleozoic sediments an attractive target for economic HFSE(+HREE)
761	mineralization, and is a potentially useful model in similar alkaline-carbonatite complexes where
762	late-stage HREE enrichment is observed.

763

REE phosphate mineralogy

The extraordinary HREE+Th concentrations of the CHO are consistent with the high 764 modal abundance of xenotime-(Y) and brockite. Incorporation of Th, U, Ca, Si, and V in 765 766 xenotime-(Y) may be more complicated than previously thought and a growing body of evidence suggests that substitution of these elements involves the incorporation of F, OH and/or H₂O. 767 Compositional zoning in CHO xenotime-(Y) arises from cheralite-type substitution, where Th 768 769 and Ca are introduced at the expense of REE+Y. Th/Ca-rich domains in xenotime-(Y) overgrowths deviate significantly from ideal stoichiometry, and are highly beam sensitive 770 probably due to the presence of OH^{-} or $H_{2}O$. The suspected hydration of xenotime-(Y) may be 771 related to co-precipitation with the H₂O-bearing phosphate, brockite, which is supported by the 772 concomitant increase of Th and Ca within the most beam sensitive domains. Alternatively, H₂O 773 or OH⁻ may have been introduced later by fluids that weakened and disrupted layers adjacent to 774 the zircon substrate. Understanding actinide incorporation is important as xenotime receives 775 considerable attention as a U-Pb geochronometer by in situ techniques. Further crystallographic 776 and spectroscopic studies are required to understand actinide substitution and hydration in 777

778 xenotime-(Y) of the CHO, but it is clear that zones of variable actinide concentrations may have 779 a considerable effect on U-Pb ages determined by even the smallest diameter beam. Although 780 xenotime-(Y) outgrowths in local sandstones have a considerably different morphology 781 compared to CHO xenotime-(Y), their nearly indistinguishable compositions support a single 782 generation of xenotime-(Y) growth as fluids responsible for the CHO permeated the adjacent 783 sandstones. An earlier episode of xenotime-(Y) precipitation related to diagenesis of the 784 Cambrian-Ordovician sediments cannot be ruled out without in situ dating techniques. Electron microprobe analyses show substantial VO_4^{3-} substitution for PO_4^{3-} in both 785 xenotime-(Y) and brockite, which further supports a sedimentary influence on REE precipitation, 786 787 as local clayshales contain the highest V concentrations of all Bear Lodge lithologies. Our 788 analyses of an undefined Ca-Th-Y-Ln phosphovanadate composition suggests a solid-solution range may exist between brockite $[(Ca, Th, Ln)(PO_4) \cdot H_2O]$ and a theoretical V-dominant end 789 790 member $[(Ca,Th,Ln)(VO_4) \cdot H_2O]$, similar to the suspected miscibility between xenotime-(Y) 791 [YPO₄] and wakefieldite-(Y) [YVO₄]. 792 Acknowledgments The authors thank Washington State University's GeoAnalytical Laboratory and 793 794 technical staff. We especially thank Scott Boroughs for help with trace element analysis by LA-795 ICP-MS, and Chris Fisher and Jeff Vervoort for help with U-Pb zircon analysis by LA-ICP-MS. Anthony Mariano and Anthony Mariano Jr. are gratefully acknowledged for their guidance and 796 797 contributions. This research was funded primarily by Rare Element Resources Ltd. We thank 798 all RER personnel involved with this project. Helpful reviews by Olga Vasyukova and an anonymous reviewer are greatly appreciated. We also extend our thanks to Associate Editor, 799 800 Peter Burns, for the editorial support.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5532

Revision 1

801	References cited
802	Andersen, A.K., Cosca, M.A., and Larson, P.B. (2013a) Timing of carbonatite magmatism in the
803	Bear Lodge alkaline complex, WY. Geological Society of America Abstracts with
804	Programs, 45, 499.
805	
806	Andersen, A.K., Larson, P.B., and Clark, J.G. (2013b) Rare earth element zonation and
807	fractionation at the Bear Lodge REE Deposit, Wyoming. Geological Society of America,
808	Rocky Mountain Section Meeting, Abstracts with Programs, 45, 42.
809	
810	Andersen, A.K., Larson, P.B., and Rowe, M.C. (2013c) REE fractionation at the Bear Lodge
811	REE+Au deposit, USA: Evidence from mineral chemistry. Mineralogical Magazine,
812	Goldschmidt Abstracts, 77, 592.
813	
814	Andrade, F.R.D., Möller, P., Lüders, V., Dulski, P., and Gilg, H.A. (1999) Hydrothermal rare
815	earth elements mineralization in the Barra do Itapirapuã carbonatite, southern Brazil:
816	behaviour of selected trace elements and stable isotopes (C, O). Chemical Geology, 155,
817	91–113.
818	
819	Babko, A.K., and Shimadina, L.G. (1959) The stability of some fluoro metal complexes. Russian
820	Journal of Inorganic Chemistry, 4, 482–485.
821	
822	Banks, D.A., Yardley, B.W.D., Campbell. A.R., and Jarvis, K.E. (1994) REE composition of an
-----	--
823	aqueous magmatic fluid: A fluid inclusion study from the Capitan Pluton, New Mexico,
824	U.S.A. Chemical Geology, 113, 259–272.
825	
826	Barsukova, M.L., Kuznetsov, V.A., Dorofeyeva, V.A., and Khodakovskiy, I.L. (1979)
827	Measurement of the solubility of rutile TiO ₂ in fluoride solutions at elevated
828	temperatures. Geochemistry International, 16, 41-49 (translated from Geokhimiya, 7,
829	1017–1027, 1979).
830	Bastos Neto, A.C., Pereira, V.P., Pires, A.C., Barbanson, L., and Chauvet, A. (2012) Fluorine-
831	rich xenotime from the world-class Madeira Nb-Ta-Sn deposit associated with the albite-
832	enriched granite at Pitinga, Amazonia, Brazil. Canadian Mineralogist, 50, 1453-1466.
833	
834	Bau, M. (1996) Controls on the fractionation of isovalent trace elements in magmatic and
835	aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions
836	to Mineralogy and Petrology, 123, 323-333.
837	
838	Bau, M. (1999) Scavenging of dissolved yttrium and rare earths by precipitating iron
839	oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and
840	lanthanide tetrad effect. Geochimica et Cosmochimica Acta, 63, 67-77.
841	
842	Bau, M., and Dulski P. (1995) Comparative study of yttrium and rare-earth element behaviors in
843	fluorine-rich hydrothermal fluids. Contributions to Mineralogy and Petrology, 119, 213-
844	223.

845	
-----	--

846	Bau, M., and Dulski, P., (1999) Comparing yttrium and rare earths in hydrothermal fluids from
847	the Mid-Atlantic Ridge: implications for Y and REE behavior during near vent mixing
848	and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology, 155, 77-79.
849	
850	Bau, M., Romer R. L., Lüders V., and Dulski P. (2003) Tracing element sources of hydrothermal
851	mineral deposits: REE and Y distribution and Sr-Nd-Pb isotopes in fluorite from MVT
852	deposits in the Pennine Orefield, England. Mineralium Deposita, 38, 992-1008.
853	
854	Berger, A., Gnos, E., Janots, E., Fernandez, A., and Giese, J. (2008) Formation and composition
855	of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: Implications
856	for geochronology and low-temperature processes. Chemical Geology, 254, 238-248.
857	
858	Bickford, M.E., Collerson, K.D., Lewry, J.F., van Schmus, W.R., and Chiarenzelli, J.R. (1990)
859	Proterozoic collisional tectonism in the Trans-Hudson orogen, Saskatchewan. Geology,
860	18, 14–18.
861	
862	Bühn, B. (2008) The role of the volatile phase for REE and Y fractionation in low-silica
863	carbonate magmas: implications from natural carbonatites, Namibia. Mineralogy and
864	Petrology, 92, 453–470.
865	

866	Byrne, R.H., and Kim, K.H. (1993) Rare earth precipitation and coprecipitation behavior. The
867	limiting role of PO4 ³⁻ on dissolved rare earth concentrations in seawater. Geochimica et
868	Cosmochimica Acta, 57, 519–526.
869	
870	Byrne, R.H., and Li, B. (1995) Comparative complexation behavior of the rare earths.
871	Geochimica et Cosmochimica Acta, 59, 4575–4589.
872	
873	Carlson, R.W., and Irving, A.J. (1994) Depletion and enrichment history of subcontinental
874	lithospheric mantle: an Os, Sr, Nd, Pb isotopic study of ultramafic xenoliths from the
875	northwestern Wyoming Craton. Earth and Planetary Science Letters, 126, 457-472.
876	
877	Cetiner, Z.S. (2003) Experimental investigation of the solubility of the REE phosphate minerals
878	monazite/xenotime and chloride complexation in hydrothermal solutions at 23°C, 50°C,
879	and 150°C and saturated water vapor pressure,154 p. Ph.D. thesis, University of Idaho,
880	Moscow, U.S.A.
881	
882	Chakhmouradian, A.R., and Mitchell, R.H. (1998) Lueshite, pyrochlore and monazite-(Ce) from
883	apatite-dolomite carbonatite, Lesnaya Varaka complex, Kola Peninsula, Russia.
884	Mineralogical Magazine, 62, 769–782.
885	
886	Chamberlain, K.R., Frost, C.D., and Frost, B.R. (2003) Early Archean to Mesoproterozoic
887	evolution of the Wyoming Province: Archean origins to modern lithospheric architecture.
888	Canadian Journal of Earth Sciences, 40, 1357–1374.

889	
890	Chang, Z., Vervoort, J.D., McClelland, W.C., and Knaack, C. (2006) U-Pb dating of zircon by
891	LA-ICP-MS. Geochemistry, Geophysics, Geosystems, 7, 1–14.
892	
893	Corfu, F., Hanchar, J.M., Hoskin, P.W.O., and Kinny, P. (2003) Atlas of zircon textures. In J.M.
894	Hanchar and P.W.O. Hoskin, Eds., Zircon, 53, p. 469–500. Reviews in Mineralogy and
895	Geochemistry, Mineralogical Society of America, Chantilly, Virginia.
896	
897	Cox, D.M., Frost, C.D., and Chamberlain, K.R. (2000) 2.01 Ga Kennedy dike swarm,
898	southeastern Wyoming: record of a rifted margin along the southern Wyoming province.
899	Rocky Mountain Geology, 35, 7–30.
900	
901	Dahl, P.S., and Frei, R. (1998) Single-phase dating of coexisting garnet and staurolite in the
902	Black Hills collisional orogen (South Dakota), with implications for Early Proterozoic
903	tectonism. Geology, 26, 111–114.
904	
905	Dahl, P.S., Holm, D.K., Gardner, E.T., Hubacher, F.A., and Foland, K.A. (1999) New constraints
906	on the timing of Early Proterozoic tectonism in the Black Hills (South Dakota), with
907	implications for the docking of the Wyoming province with Laurentia. Geological
908	Society of America Bulletin, 111, 1335–1349.
909	
910	Dahl, P.S., Hamilton, M.A., Jercinovic, M.J., Terry, M.P., Williams, M.L., and Frei, R. (2005a)
911	Comparative isotopic and chemical geochronometry of monazite, with implications for

912	U-Th-Pb dating by electron microprobe: An example from metamorphic rocks of the
913	eastern Wyoming craton (U.S.A.). American Mineralogist, 90, 619-638.
914	
915	Dahl, P.S., Terry, M.P., Jercinovic, M.J., Williams, M.L., Hamilton, M.A., Foland, K.A.,
916	Clement, S.M., and Friberg, L.M. (2005b) Electron probe (Ultrachron) microchronometry
917	of metamorphic monazite: unraveling the timing of polyphase thermotectonism in the
918	easternmost Wyoming Craton (Black Hills, South Dakota). American Mineralogist, 90,
919	1712–1728.
920	
921	Dahlberg, P.S., Noble, A.C., Pickarts, J.T., Rose, W.L., Jaacks, J.A. (2014) Technical Report on
922	the Reserves and Development of the Bul Hill Mine, Wyoming. Rare Element Resources,
923	Ltd. Bear Lodge Project Canadian NI 43-101 Pre-Feasibility Technical Report, Oct. 9,
924	2014.
925	
926	Donovan, J.J., Synder, D.A., and Rivers, M.L. (1993) An improved intereference correction for
927	trace element analysis. Microbeam Analysis, 2, 23-28.
928	
929	Donovan, J.J., Kremser, D., and Fournelle, J.H. (2007) Probe for Windows User's Guide and
930	Reference, Enterprise Edition., 355 p. Probe Software, Inc., Eugene, Oregon.
931	
932	Duke, G.I. (2005) Geochemistry and Geochronology of Paleocene-Eocene Alkalic Igneous
933	Rocks, Northern Black Hills, South Dakota and Wyoming, 291 p. Ph.D. thesis, South
934	Dakota School of Mines and Technology, Rapid City, U.S.A.

935	
936	Firsching, F.H., and Brune, S.N. (1991) Solubility products of the trivalent rare-earth phosphates.
937	Journal of Chemical and Engineering Data, 36, 93–95.
938	
939	Fisher, F.G., and Meyrowitz, R. (1962) Brockite, a new calcium thorium phosphate from the Wet
940	Mountains, Colorado. American Mineralogist, 47, 1346–1355.
941	
942	Force, E.R. (1991) Geology of Titanium-Mineral Deposits. Geological Society of America
943	Special Paper, 259, 112 p.
944	
945	Förster, HJ. (1998a) The chemical composition of REE-Y-Th-U-rich accessory minerals in
946	peraluminous granites of the Erzgebirge–Fichtelgebirge region, Germany. I. The
947	monazite-(Ce)-brabantite solid-solution series. American Mineralogist, 83, 259-272.
948	
949	Förster, HJ. (1998b) The chemical composition of REE-Y-Th-U-rich accessory minerals in
950	peraluminous granites of the Erzgebirge–Fichtelgebirge region, Germany. II. Xenotime.
951	American Mineralogist, 83, 1302–1315.
952	
953	Förster, HJ. (2006) Composition and origin of intermediate solid solutions in the system
954	thorite-xenotime-zircon-coffinite. Lithos, 88, 35-55.
955	
956	Frost, C.D., and Fanning, C.M. (2006) Archean geochronological framework of the Bighorn
957	Mountains, Wyoming. Canadian Journal of Earth Sciences, 43, 1399–1418.

Revision 1

958

959	Göb, S., Wenzel, T., Bau, M., Jacob, D.E., Loges, A., and Markl, G. (2011) The redistribution of
960	rare-earth elements in secondary minerals of hydrothermal veins, Schwarzwald, SW
961	Germany. Canadian Mineralogist, 49, 1305–1333.
962	
963	Goldstein, J., Newbury, D., Echlin, P., Joy, D., Fiori, D., and Lifshin, E. (1984) Scanning
964	Electron Microscopy and X-ray Microanalysis, 690 p. Plenum, New York.
965	
966	Gramaccioli, C.M., and Segalstad, T.V. (1978) A uranium- and thorium-rich monazite from a
967	south-alpine pegmatite at Piona, Italy. American Mineralogist, 63, 757-761.
968	
969	Harlov, D.E., and Wirth, R. (2012) Experimental incorporation of Th into xenotime at middle to
970	lower crustal <i>P-T</i> utilizing alkali-bearing fluids. American Mineralogist, 97, 641–652.
971	
972	Hay, D.C., Dempster, T.J., Lee, M.R., and Brown, D.J. (2010) Anatomy of a low temperature
973	zircon outgrowth. Contributions to Mineralogy and Petrology, 159, 81-92.
974	
975	Hedenquist, J.W., Arribas, A., and Eliseo, GU. (2000) Exploration for Epithermal Gold
976	Deposits. In S.G. Hagemann and P.E. Brown, Eds., Gold in 2000, 13, 245-277. Society
977	of Economic Geologists Reviews, Littleton, CO.
978	

979	Hetherington C.J., and Harlov, D.E. (2008) Metasomatic thorite and uraninite inclusions in
980	xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern
981	Norway: mechanics and fluid chemistry. American Mineralogist, 93, 806-820.
982	
983	Hetherington, C.J., Jercinovic, M.J., Williams, M.L., and Mahan, K. (2008) Understanding
984	geologic processes with xenotime: Composition, chronology, and a protocal for electron
985	probe microanalysis. Chemical Geology, 254, 133-147.
986	
987	Ixer, R.A., Turner, P., and Waugh, B. (1979) Authigenic iron and titanium oxides in Triassic red
988	beds: (St. Bees Sandstone), Cumbria, Northern England. Geological Journal, 14, 179-
989	192.
990	
991	Ixer, R.A., and Vaughan, D.J. (1982) The primary ore mineralogy of the Alderley Edge deposit,
992	Cheshire. Mineralogical Magazine, 46, 485–492.
993	
994	Johan, Z., and Johan, V. (2004) Accessory minerals of the Cínovec (Zinnwald) granite cupola,
995	Czech Republic: indicators of petrogenetic evolution. Mineralogy and Petrology, 83,
996	113–150.
997	
998	Jackson, S.E., Longerich, H.P., Dunning, G.R., Fryer, B.J. (1992) The application of laser-
999	ablation microprobe – inductively coupled plasma – mass spectrometry (LAM-ICP-MS)
1000	to in situ trace-element determinations in minerals. Canadian Mineralogist, 30, 1049-
1001	1064.

1002	
1003	Jonasson, R.G., Bancroft, G.M., and Nesbitt, H.W. (1985) Solubilities of some hydrous REE
1004	phosphates with implications for diagenesis and seawater concentrations. Geochimica et
1005	Cosmochimica Acta, 49, 2133–2139.
1006	
1007	Kolitsch, U., and Holtstam, D. (2004) Crystal chemistry of REEXO ₄ compounds (X=P,As,V). II.
1008	Review of REEXO ₄ compounds and their stability fields. European Journal of
1009	Mineralogy, 16, 117–126.
1010	
1011	Kositcin, N., McNaughton, N.J., Griffin, B.J., Fletcher, I.R., Groves, D.I. and Rasmussen, B.
1012	(2003) Textural and geochemical discrimination between xenotime of different origin in
1013	the Archaean Witwatersrand Basin, South Africa. Geochimica et Cosmochimica Acta,
1014	67, 709–731.
1015	
1016	Krenn, E., and Finger, F. (2007) Formation of monazite and rhabdophane at the expense of
1017	allanite during Alpine low temperature retrogression of metapelitic basement rocks from
1018	Crete, Greece: Microprobe data and geochronological implications. Lithos, 95, 130-147.
1019	
1020	Lee, J.H., and Byrne, R.H. (1992) Examination of comparative rare earth element complexation
1021	behavior using linear free-energy relationships. Geochimica et Cosmochimica Acta, 56,
1022	1127–1137.
1023	
1024	Linnen, R.L., Samson, I.M., Williams-Jones, A.E., and Chakhmouradian, A.R. (2014)

1025	Geochemistry of the rare-earth elements, Nb, Ta, Hf, and Zr deposits. In H.D. Holland
1026	and K.K. Turekian, Eds., Treatise on Geochemistry, Second Edition. Geochemistry of
1027	Mineral Deposits, 13, p. 543-568. Elsevier, Oxford.
1028	
1029	Linthout, K. (2007) Tripartite division of the system 2REEPO ₄ -CaTh(PO ₄) ₂ -2ThSiO ₄ ,
1030	discreditation of brabantite, and recognition of cheralite as the name for members
1031	dominated by CaTh(PO ₄) ₂ . Canadian Mineralogist, 45, 503–508.
1032	
1033	Liu, X., and Byrne, R.H. (1997) Rare earth and yttrium phosphate solubilities in aqueous
1034	solution. Geochimica et Cosmochimica Acta, 61, 1625–1633.
1035	
1036	Loges, A., Wagner, T., Barth, M., Bau, M., Göb, S., and Markl, G. (2012) Negative Ce
1037	anomalies in Mn oxides: the role of Ce ⁴⁺ mobility during water-mineral interaction.
1038	Geochimica et Cosmochimica Acta, 86, 296–317.
1039	
1040	Lumpkin, G.R, and Chakoumakos, B.C. (1986) Thorite group minerals from the Harding mine,
1041	Taos County, New Mexico (abs.). Geological Association of Canada-Mineralogical
1042	Association of Canada Joint Annual Meeting, 11, 96–97.
1043	
1044	Lumpkin, G.R., and Chakoumakos, B.C. (1988) Chemistry and radiation effects of thorite-group
1045	minerals from the Harding pegmatite, Taos County, New Mexico. American
1046	Mineralogist, 73, 1405–1419.
1047	

1048	Luo, Y-R., and Byrne, R.H. (2001) Yttrium and rare earth element complexation by chloride ions
1049	at 25°C. Journal of Solution Chemistry, 30, 837-845.
1050	
1051	Mariano, A.N. (1981) Rare earth mineralization in the Bear Lodge carbonatite complex, Crook
1052	County, Wyoming. Confidential Report to Molycorp Inc., 52 p.
1053	
1054	Mariano, A.N. (1989a) Economic geology of rare earth elements. In B.R. Lipin and G.A. McKay
1055	Eds., Geochemistry and Mineralogy of Rare Earth Elements, 21, p 309–337. Reviews in
1056	Mineralogy and Geochemistry. Mineralogical Society of America, Chantilly, Virginia.
1057	
1058	Mariano, A.N. (1989b) Nature of economic mineralization in carbonatites and related rocks. In
1059	K. Bell, Ed., Carbonatites—Genesis and Evolution, p. 149–176. Unwin Hyman, London.
1060	
1061	Mariano, A.N. (2009) Carbocernaite, a major REE mineral in the Bear Lodge carbonatite rock
1062	units. Confidential Report to Rare Element Resources Ltd., 11 p.
1063	
1064	Mariano, A.N., and Mitchell, R.M. (2009) Large-scale development of supergene anatase-rich
1065	soils on carbonatite-associated pyroxenites in Brazil (abs.). In S.R. Titley, Ed., Supergene
1066	Environments, Processes, and Products. Society of Economic Geologists, Special
1067	Publication 14, 149.
1068	
1069	McDonough, W.F., and Sun, Ss. (1995) The composition of the Earth. Chemical Geology, 120,
1070	223–253.

1071	
1072	McDowell, F.W. (1971) K-Ar ages of igneous rocks from the western United States:
1073	Isochron/West, 2, 1–16.
1074	
1075	Migdisov A. A., Williams-Jones A. E., and Wagner T. (2009) An experimental study of the
1076	solubility and speciation of the Rare Earth Elements (III) in fluoride- and chloride-
1077	bearing aqueous solutions at temperatures up to 300°C. Geochimica et Cosmochimica
1078	Acta, 73, 7087–7109.
1079	
1080	M ller, P. (1989) REE(Y), Nb, and Ta enrichment in pegmatites and carbonatite-alkalic rock
1081	complexes. In P. Möller, P. Černý, and F. Saupé, Eds., Lanthanides, Tantalum, and
1082	Niobium. Proceedings of a workshop in Berlin, November 1986, p. 103–144. Special
1083	Publication No. 7 of the Society for Geology Applied to Mineral Deposits, Springer-
1084	Verlag, Berlin.
1085	
1086	Moore, M., Chakhmouradian, A.R., Mariano, A.N., and Sidhu, R. (2014) Evolution of rare-earth
1087	mineralization in the Bear Lodge carbonatite, Wyoming: Mineralogical and isotopic
1088	evidence. Ore Geology Reviews, 64, 499-521.
1089	
1090	Morad, S., and Aldahan, A.A. (1982) Authigenesis of titanium minerals in two Proterozoic
1091	sedimentary rocks from southern and central Sweden. Journal of Sedimentary Geology,
1092	52, 1295–1305.
1093	

1094	Morteani, G. (1989) Prospection for niobium-rich alkaline rocks. In P. Möller, P. Černý, and F.
1095	Saupé, Eds., Lanthanides, Tantalum, and Niobium. Proceedings of a workshop in Berlin,
1096	November 1986, p. 311–320. Special Publication No. 7 of the Society for Geology
1097	Applied to Mineral Deposits, Springer-Verlag, Berlin.
1098	
1099	Mueller, P.A., and Frost, C.D. (2006) The Wyoming Province: a distinctive Archean craton in
1100	Laurentian North America. Canadian Journal of Earth Sciences, 43, 1391–1397.
1101	
1102	Mueller, P.A., Heatherington, A.L., Kelly, D.M., Wooden, J.L., and Mogk, D.W. (2002)
1103	Paleoproterozoic crust within the Great Falls tectonic zone: implications for the assembly
1104	of southern Laurentia. Geology, 30, 127–130.
1105	
1106	Olin, P.H., and Wolff, J.A. (2010) Rare earth and high field strength element partitioning
1107	between iron-rich clinopyroxenes and felsic liquids. Contributions to Mineralogy and
1108	Petrology, 160, 761–775.
1109	
1110	Olin, P.H., and Wolff, J.A. (2012) Partitioning of rare earth and high field strength elements
1111	between titanite and phonolitic liquid. Lithos, 128, 46-54.
1112	
1113	Pearson, R.G. (1963) Hard and soft acids and bases. Journal of the American Chemical
1114	Society, 85, 3533–3539.
1115	
1116	Pearson, R.G. (1968) Hard and soft acids and bases HSAB 1. Fundamental principles. Journal of

Revision 1

1117	Chemical Education, 45, 581–587.
1118	
1119	Pointer, C.M., Ashworth, J.R., and Ixer, R.A. (1988) The zircon-thorite mineral group in
1120	metasomatized granite, Ririwai, Nigeria 1. Geochemistry and metastable solid solution
1121	of thorite and coffinite. Mineralogy and Petrology, 38, 245-262.
1122	
1123	Purtov, V.K., and Kotel'nikova, A.L. (1993) Solubility of titanium in chloride and fluoride
1124	hydrothermal solutions. International Geology Review, 35, 279-287.
1125	
1126	Pyle, J., Spear, F., and Wark, D.A. (2002) Electron Microprobe analysis of REE in apatite,
1127	monazite and xenotime: protocols and pitfalls. In M.L. Kohn, J. Rakovan, J.M. Hughes,
1128	Eds., Phosphates: Geochemical, Geobiological, and Materials Importance, 48, p. 337-
1129	362. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America,
1130	Chantilly, Virginia.
1131	
1132	Rapp, J.F., Klemme, S., Butler, I.B., and Harley, S.L. (2010) Extremely high solubility of rutile
1133	in chloride and fluoride-bearing metamorphic fluids: An experimental investigation.
1134	Geology, 38, 323–326.
1135	
1136	Rasmussen, B. (1996) Early-diagenetic REE-phosphate minerals (florencite, gorceixite,
1137	crandallite, and xenotime) in marine sandstones: A major sink for oceanic phosphorus.
1138	American Journal of Science, 296, 601–632.
1139	

1140	Rasmussen, B. (2005) Radiometric dating of sedimentary rocks: the application of diagenetic
1141	xenotime geochronology. Earth-Science Reviews, 68, 197-243.
1142	
1143	Rasmussen, B., and Glover, J.E. (1994) Diagenesis of low-mobility elements (Ti, REE and Th)
1144	and solid bitumen envelopes in Permian Kennedy Group sandstone, Western Australia.
1145	Journal of Sedimentary Research, 64, 572–583.
1146	
1147	Rasmussen, B., and Glover, J.E. (1996) Fluid evolution interpreted from diagenetic assemblages
1148	and salinity data in Permo – Triassic sandstone, northern Perth Basin, Western Australia.
1149	Journal of Sedimentary Research, 66, 492–500.
1150	
1151	Roder, P.L. (1985) Electron-microprobe analysis of minerals for rare-earth elements: Use of
1152	calculated peak-overlap corrections. Canadian Mineralogist, 23, 263–271.
1153	
1154	Rudnick, R.L., Ireland, T.R., Gehrels, G., Irving, A.J., Chelsey, J.T., and Hanchar, J.M. (1999)
1155	Dating mantle metasomatism: U-Pb geochronology of zircons in cratonic mantle
1156	xenoliths from Montana and Tanzania. In J.J. Gurney, J.L. Gurney, M.D. Pascoe, and
1157	S.H. Richardson, Eds., Proceedings of the VIIth International Kimberlite Conference, 2,
1158	p. 728–735.
1159	
1160	Salvi, S., and Williams-Jones, A. (1996) The role of hydrothermal processes in concentrating
1161	high-field strength elements in the Strange Lake peralkaline complex, northeastern
1162	Canada. Geochimica et Cosmochimica Acta, 60, 1917–1932.

1	1	63

1164	Salvi, S., and Williams-Jones, A. (2005) Alkaline granite-syenite deposits. In R.L. Linnen and
1165	I.M. Samson, Eds., Rare-Element Geochemistry and Mineral Deposits. Geological
1166	Association of Canada, Short Course Notes, 17, 315–341.
1167	
1168	Schijf, J., and Byrne, R.H. (1999) Determination of stability constants for the mono- and
1169	difluoro-complexes of Y and the REE, using a cation-exchange resin and ICP-MS.
1170	Polyhedron, 18, 2839–2844.
1171	
1172	Selleck, B.W. (2008) Stratigraphy, sedimentology and diagenesis of the Potsdam formation,
1173	Southern Lake Champlain Valley, New York. New York State Geological Association,
1174	Fieldtrip Guidebook, 80th Annual Meeting, 1–13.
1175	
1176	Selleck, B.W., Williams, M., and Jercinovic, M. (2008) In situ U-Th-Pb microprobe dating of
1177	authigenic monazite and xenotime in the Potsdam sandstone, eastern New York: A new
1178	approach to dating hydrothermal fluid flow and dolomitization. Eastern Section AAPG
1179	Abstracts, 2008.
1180	
1181	Shoji, H., and Akai, J. (1994) Brockite from Ishikawa, Fukushima Prefecture, Japan. Science
1182	Reports of Niigata University, Series E, 9, 89–96.
1183	
1184	Sims, P.K., and Peterman, Z.E. (1986) Early Proterozoic Central Plains orogen: A major buried
1185	structure in the north-central United States. Geology, 14, 488-491.

Revision 1

1	1	8	6
- -	-	0	v

1187	Smith, M.P., Henderson, P., and Campbell, L.S. (2000) Fractionation of the REE during
1188	hydrothermal processes: Constraints from the Bayan Obo Fe-REE-Nb deposit, Inner
1189	Mongolia, China. Geochimica et Cosmochimica Acta, 64, 3141-3160.
1190	
1191	Smith, S.J., Stevens, R., Liu, S., Li, G., Navrotsky, A., Boerio-Goates, J., and Woodfield, B.F.
1192	(2009) Heat capacities and thermodynamic functions of TiO ₂ anatase and rutile: Analysis
1193	of phase stability. American Mineralogist, 94, 236–243.
1194	
1195	Staatz, M.H. (1983) Geology and Description of Thorium and Rare-Earth Deposits in the
1196	Southern Bear Lodge Mountains, Northeastern Wyoming, 52 p. U.S. Geological Survey
1197	Professional Paper 1049-D.
1198	
1199	Tanis, E.A., Simon, A., Tschauner, O., Chow, P., Xiao, Y., Burnley, P., Cline, C.J. II, Hanchar,
1200	J.M., Pettke, T., Shen, G., and Zhao, Y. (2015) The mobility of Nb in rutile-saturated
1201	NaCl- and NaF-bearing aqueous fluids from 1–6.5 GPa and 300–800°C. American
1202	Mineralogist, 100, 1600–1609.
1203	
1204	Taylor, S.R., and McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution,
1205	312 p. Blackwell, Oxford.
1206	

1207	Timofeev, A., Migdisov, A.A., and Williams-Jones, A.E. (2015) An experimental study of the
1208	solubility and speciation of niobium in fluoride-bearing aqueous solutions at elevated
1209	temperature. Geochimica et Cosmochimica Acta, 158, 103-111.
1210	
1211	Liu, T., Wang, G., and Gong, J. (1987) Study on brockite first found in Bayan Obo, China. Acta
1212	Mineralogica Sinica 7 (2), 177–182 (in Chinese).
1213	
1214	Vallini, D., Rasmussen, B., Krapez, B., Fletcher, I.R., and McNaughton, N.J. (2002) Obtaining
1215	diagenetic ages from metamorphosed sedimentary rocks: U-Pb dating of unusually
1216	coarse xenotime cement in phosphatic sandstone. Geology, 30, 1083-1086.
1217	
1218	Vallini, D., Rasmussen, B., Krapez, B., Fletcher, I.R., and McNaughton, N.J. (2005)
1219	Microtextures, geochemistry and geochronology of authigenic xenotime: constraining the
1220	cementation history of a Palaeoproterozoic metasedimentary sequence. Sedimentology,
1221	52, 101–122.
1222	
1223	van Emden, B., Thornber, M.R., Graham, J., and Lincoln, F.J. (1997) The incorporation of
1224	actinides in monazite and xenotime from placer deposits in western Australia. Canadian
1225	Mineralogist, 35, 95–104.
1226	
1227	Van Wambeke, L. (1977) The Karonge rare earth deposits, Republic of Burundi: New
1228	mineralogical-geochemical data and origin of the mineralization. Mineralium Deposita,
1229	12, 373–380.

1231	Vogl, J.J., Foster, D.A., Mueller, P.A., Mogk, D.W., and Wooden, J.L. (2002) Age and character
1232	of Precambrian basement in the Little Belt Mountains, Montana; implications for the role
1233	of the Great Falls tectonic zone in the Paleoproterozoic assembly of North America.
1234	Geological Society of America Abstracts with Programs, 34.
1235	
1236	Wall, F., Niku-Paavola, V.N., Storey, C., Muller, A., and Jefferies, T. (2008) Xenotime-(Y) from
1237	carbonatite dykes at Lofdal, Namibia: unusually low LREE/HREE ratio in carbonatite,
1238	and the first dating of xenotime overgrowths on zircon. Canadian Mineralogist, 46, 861-
1239	877.
1240	
1241	Walter, AV., Flicoteaux, R., Parron, C., Loubet, M., and Nahon, D. (1995) Rare-earth elements
1242	and isotopes (Sr, Nd, O, C) in minerals from the Juquiá carbonatite (Brazil): tracers of a
1243	multistage evolution. Chemical Geology, 120, 27-44.
1244	
1245	Watt, G.R. (1995) High-thorium monazite-(Ce) formed during disequilibrium melting of
1246	metapelites under granulite-facies conditions. Mineralogical Magazine, 59, 735–743.
1247	
1248	Williams, C.T. (1996) Analysis of rare earth minerals. In A.P. Jones, F. Wall, C.T. Williams,
1249	Eds., Rare Earth Minerals: Chemistry, Origin and Ore Deposits. Mineralogical Society
1250	Series, 7, 327–348.
1251	

1252	Williams-Jones A. E., Migdisov A. A., and Samson I. M. (2012) Hydrothermal mobilisation of
1253	the Rare Earth Elements – a Tale of "Ceria" and "Yttria". Elements, 8, 355–360.
1254	
1255	Wood, S. A. (1990a) The aqueous geochemistry of the rare-earth elements [REE] and yttrium. 1.
1256	Review of available low temperature data for inorganic complexes and the inorganic REE
1257	speciation of natural waters. Chemical Geology, 82, 159–186.
1258	
1259	Wood, S. A. (1990b) The aqueous geochemistry of the rare-earth elements and yttrium. 2.
1260	Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation
1261	water vapor pressure. Chemical Geology, 88, 99–125.
1262	
1263	Wood, S.A. (2003) The geochemistry of rare earth elements and yttrium in geothermal waters. In
1264	S.F. Simmons and I. Graham, Eds., Volcanic, Geothermal and Ore-forming Fluids:
1265	Rulers and Witnesses of Processes within the Earth. Special Publication, 10, p. 133–158.
1266	Society of Economic Geologists, Littleton, CO.
1267	
1268	Wood, S.A. (2005) The Aqueous Geochemistry of Zirconium, Hafnium, Niobium and Tantalum.
1269	In R. Linnen and I. Samson, Eds., Rare-Element Geochemistry and Mineral Deposits.
1270	Geological Association of Canada Short Course Notes, 17, 217–251.
1271	
1272	Figure Captions
1273	Figure 1. Simplified geologic map of the Bear Lodge alkaline complex (BLAC) showing
1274	position of the Cole HFSE(+HREE) Occurrence (CHO) relative to central REE-rich carbonatite
1275	intrusions. Inset map (lower left) shows position of the BLAC in the northern Black Hills region

Revision 1

1276	near the South Dakota-Wyoming border. Dashed black circle encompasses a majority of REE
1277	mineralization hosted by carbonatite veins and dikes and their oxidized equivalents. The CHO
1278	occurs near the first outward occurrence of Paleozoic sedimentary rocks.
1279	
1280	Figure 2. BSE images of minerals and textures from the Cole HFSE(+HREE) Occurrence. (a)
1281	Typical morphology of anatase in the CHO. (b) Typical mineralogy and texture of CHO rocks
1282	including zircon (zrn) with xenotime-(Y) (xtm) outgrowths, anatase (ant) coating corroded K-
1283	feldspar (Kfs), brockite (bro), and interstitial fluorite (fl). (c) Nb-zoned anatase on K-feldspar.
1284	(d) Anatase druses on fragmented K-feldspar and late void-filling botryoidal fluorite. (e) Nb-
1285	zoned anatase nucleating from zircon with zoned xenotime-(Y) outgrowths. (f) Cluster of
1286	hexagonal brockite crystals. (g) Void-filling xenotime-(Y) (gray) and brockite (white). Note the
1287	intergrown texture of xenotime-(Y) and brockite and innermost crust which is predominately
1288	brockite. (h,i) Sections through striated/banded dipyramidal xenotime-(Y) overgrowths on zircon
1289	substrate. (j,k) Serrated and bulbous diagenetic xenotime-(Y) outgrowths on zircon in Cambrian-
1290	Ordovician sandstones adjacent to the CHO. (I) Secondary electron image of triangular voids left
1291	when xenotime-(Y) outgrowths are dislodged during thin section sample preparation.
1292	
1293	Figure 3. (a) Whole rocks trace element concentrations of CHO rocks normalized to average
1294	unoxidized Bear Lodge carbonatite. (b) Chondrite normalized trace element pattern of CHO

1295 rocks compared with potential source rocks at Bear Lodge (Appendix Table 2). Chondrite values

1296 of McDonough and Sun (1995).

Revision 1

1298	Figure 4. Chondrite normalized REE pattern of brockite, and an exsolved Ca-Th-Y-REE
1299	phosphovanadate phase from the CHO compared with brockite form the type locality. The Y
1300	depletion relative to adjacent REEs of similar charge and radius (Dy and Ho) in CHO brockite
1301	probably results from co-crystallization with xenotime-(Y) and/or fluorite. However, this trend
1302	is also observed in brockite from the Wet Mountains, CO (Fisher and Meyrowitz, 1962) which
1303	may suggest a crystal structural control rather than co-crystallization of an Y-dominant phase like
1304	xenotime-(Y). Chondrite values of Taylor and McLennan (1985).
1305	
1306	Figure 5. Possible substitution vectors in xenotime-(Y) and brockite from the CHO. Filled
1307	circles: banded xenotime-(Y) overgrowths, open circles: disseminated xenotime, squares:
1308	sandstone-hosted xenotime-(Y) outgrowths, filled rhombs: brockite, open rhombs: Ca-Th-Y-REE
1309	phosphovanadate. TREO = total rare earth oxide. Plots include additional data available in
1310	Appendix Tables 3 and 4. Note: In Figs. 5b and 5c, strong correlation is observed only for
1311	xenotime-(Y) overgrowths, not disseminated xenotime.
1312	
1313	Figure 6. BSE images of xenotime-(Y) overgrowths and V-rich exsolution in brockite from the
1314	Cole HFSE(+HREE) Occurrence. (a) Bright white patches are portions of brockite where
1315	significant VO ₄ has substituted for PO ₄ . (b) banded xenotime-(Y) outgrowth showing alternating
1316	zones of variable hydration. Solid white circles show spots with little degradation under electron
1317	beam, while darker Th/Ca-rich hydrated zones show significant damage under the same beam
1318	conditions (20 kV, 15 nA). (c) Arrow points toward remobilized, hydrated layers within
1319	xenotime-(Y) outgrowth. (d) Disaggregated, recrystallized xenotime-(Y) adjacent to zircon

1320	substrate. (e) Dipyramidal xenotime-(Y) overgrowth with anatase (arrows) along boundary
1321	between irregular, disaggregated xenotime-(Y) and uniformly banded xenotime-(Y).
1322	
1323	Figure 7. Chondrite normalized REE patterns for xenotime-(Y) and brockite. Shaded region
1324	includes banded xenotime-(Y) overgrowths including low H ₂ O domains. Xenotime-(Y)
1325	outgrowths from adjacent sandstone (white boxes) have similar REE distributions to xenotime-
1326	(Y) from the CHO. Brockite from the CHO contains slightly higher concentrations of LREEs.
1327	Xenotime-(Y) and brockite exhibit opposing trends, particularly between Gd and Ho, as a result
1328	of co-crystallization. Chondrite values of Taylor and McLennan (1985).
1329	
1330	Figure 8. Chondrite normalized REE patterns for fluorite hosted by different lithologies
1331	throughout the BLAC. Data were calculated using Ca as an internal standard at concentrations
1332	previously determined by EPMA. Fluorite at the CHO is HREE-dominant, while fluorite hosted
1333	by all other lithologies throughout the BLAC are LREE-dominant. Sample numbers correspond
1334	to descriptions and data in Table 3. Sample 12BL09, an additional fluorite vein near the CHO, is
1335	similarly enriched in HREEs. Chondrite values of Taylor and McLennan (1985).
1336	
1337	Figure 9. Soil geochemistry map of the BLAC showing circular Y-anomaly which corresponds
1338	with Mississippian Pahasapa (Madison) limestone (figure courtesy of Jeffrey Jaacks,
1339	Geochemical Applications International, Inc.). Elevated Y concentrations are probably a
1340	product of the high abundance of fluorite which crystallized as outward emanating F-rich fluids
1341	interacted with Ca-rich lithologies. Some karst cavities within the Pahasapa (Madison) limestone
1342	are partially filled with fluorite.

Revision 1

1343

1344

Table 1a. Representative analyses of brockite

	71-bro-1	71-bro-2	71-bro-4	71-bro-5	71-bro-10	71-bro-10b	71-bro-11	23-bro-1	23-bro-3	23-bro-4	23-bro-9	23-bro-9b
SiO ₂	0.21	0.16	0.20	0.16	0.08	0.22	0.24	0.16	0.14	0.17	0.13	0.20
P_2O_5	27.27	26.25	26.88	26.78	27.08	26.18	26.91	26.01	27.00	25.71	27.20	26.30
SO_3	0.18	0.96	0.32	0.82	0.43	0.67	0.32	1.24	0.65	0.68	0.67	1.68
V_2O_5	0.11		0.08		0.08	0.15	0.10	0.08	0.11	0.60	0.36	0.04
CaO	11.80	13.55	13.62	14.64	9.79	11.52	11.11	14.59	14.40	14.49	13.86	15.91
FeO	0.66	0.22	0.68	0.41	0.16	0.86	0.36	0.26	0.16	0.07	0.10	0.28
SrO	1.11	1.24	0.92	1.09	1.65	1.17	1.03	1.43	1.12	1.12	1.08	1.40
BaO	1.14	0.82	0.99	0.88	0.82	0.96	1.00	0.77	0.88	0.58	0.74	0.68
Y_2O_3	4.81	3.77	4.86	3.88	5.24	4.28	4.95	3.16	3.84	3.30	3.86	3.23
La_2O_3	0.32	0.15	0.39	0.26	0.25	0.23	0.52	0.31	0.31	0.29	0.33	0.25
Ce_2O_3	0.50	0.26	0.37	0.37	0.50	0.41	0.66	0.58	0.45	0.58	0.47	0.52
Pr_2O_3	0.06		0.10	0.06	0.07		0.08		0.06	0.12		
Nd_2O_3	0.35	0.19	0.38	0.27	0.25	0.26	0.37	0.36	0.26	0.34	0.29	0.25
Sm_2O_3	0.65	0.35	0.58	0.39	0.60	0.38	0.40	0.46	0.38	0.39	0.46	0.30
Eu_2O_3	0.40	0.25	0.36	0.22	0.40	0.28	0.28	0.33	0.25	0.27	0.31	0.28
Gd_2O_3	1.59	1.02	1.59	1.18	1.57	1.23	1.28	1.24	1.12	1.16	1.18	1.05
Tb_2O_3	0.32	0.22	0.34	0.27	0.27	0.20	0.28	0.19	0.23	0.20	0.22	0.21
Dy_2O_3	1.61	1.34	1.78	1.37	1.52	1.42	1.56	1.26	1.36	1.11	1.27	1.28
Ho_2O_3	0.19	0.21	0.22	0.12	0.29	0.15	0.28	0.16	0.22	0.19	0.08	0.29
Er_2O_3	0.41	0.37	0.43	0.33	0.38	0.42	0.47	0.21	0.30	0.23	0.39	0.35
Tm_2O_3												
Yb_2O_3	0.23	0.13	0.20	0.16	0.23	0.19	0.22	0.14	0.12	0.17	0.16	0.09
Lu_2O_3												
PbO		0.15		0.17						0.28		
ThO_2	34.03	33.23	33.94	33.08	31.79	34.91	34.05	34.78	33.58	31.53	33.60	32.95
UO_2	2.12	0.99	0.86	0.76	3.18	1.77	1.53	0.77	0.80	0.78	0.87	0.74
F	1.37	1.08	1.69	1.11	1.04	1.15	1.24	0.64	1.15	1.46	1.09	1.05
-O ≡ F	0.58	0.45	0.71	0.47	0.44	0.48	0.52	0.27	0.49	0.62	0.46	0.44
Total	90.87	86.47	91.06	88.31	87.22	88.51	88.72	88.85	88.43	85.21	88.26	88.89
*H ₂ O	9.13	13.53	8.94	11.69	12.78	11.49	11.28	11.15	11.57	14.79	11.74	11.11

Notes: Brockite compositons are determined by EPMA. Results are not converted to atoms per formula unit as the structure and H_2O/OH^- content remain undetermined. Tm_2O_3 and Lu_2O_3 were analyzed but routinely below detection limit. The presence of ferric iron, reduced sulfur, and hexavalent uranium will have marginal affect on calcualted compositons. * H_2O calculated by difference; - - : below detection limit.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

broV-1 broV-2 broV-3 broV-4 broV-4b broV-5 broV-6 broV-6b broV-6c broV-7 broV-7b SiO₂ 0.63 0.46 0.46 0.81 0.72 0.45 0.49 0.38 0.48 0.61 0.68 P_2O_5 9.59 9.93 7.83 12.18 15.11 8.95 8.35 14.62 11.23 11.16 8.59 SO₃ 0.24 0.25 0.20 0.24 0.18 0.22 0.26 0.23 0.17 0.16 0.16 V_2O_5 17.56 15.03 11.66 19.52 19.84 18.73 12.27 17.29 15.01 19.73 18.48 CaO 9.78 10.30 12.02 10.98 10.33 10.54 9.67 10.92 10.29 11.08 10.46 FeO 1.38 0.29 1.95 0.36 0.39 0.11 0.31 0.31 0.96 1.26 0.70 SrO 0.22 0.39 0.13 0.09 0.12 0.30 0.17 0.22 0.08 0.05 0.10 BaO 0.42 0.05 0.33 0.05 0.09 0.19 0.11 0.14 0.26 - - -- - - Y_2O_3 4.84 6.40 6.06 4.77 4.71 4.52 6.81 5.62 5.74 4.68 4.55 La_2O_3 0.06 0.08 0.14 0.11 0.08 0.11 0.14 0.12 0.09 0.07 0.06 Ce_2O_3 0.79 0.53 0.36 0.65 0.63 0.61 0.30 0.47 0.36 0.51 0.49 Pr_2O_3 - - -- - -- - -- - -- - -- - -- - -0.10 - - -- - -0.10 Nd_2O_3 0.29 0.28 0.22 0.30 0.14 0.26 0.26 0.20 0.18 0.18 0.19 Sm_2O_3 0.28 0.37 0.38 0.28 0.29 0.26 0.24 0.37 0.19 0.16 0.35 Eu_2O_3 0.34 0.28 0.27 0.26 0.28 0.30 0.19 0.26 0.26 0.21 0.18 Gd_2O_3 1.11 1.39 1.28 1.07 1.07 1.24 1.32 0.91 0.91 1.17 1.06 Tb₂O₃ 0.26 0.25 0.26 0.23 0.19 0.21 0.28 0.25 0.27 0.18 0.16 Dy_2O_3 1.92 2.13 1.97 1.76 1.67 1.93 2.08 1.90 1.94 1.69 1.72 Ho₂O₃ 0.31 0.32 0.24 0.36 0.23 0.18 0.20 0.22 0.27 0.27 0.34 Er_2O_3 0.52 0.56 0.50 0.40 0.46 0.53 0.51 0.41 0.56 0.41 0.35 Tm_2O_3 - - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -Yb₂O₃ 0.38 0.20 0.21 0.22 0.26 0.33 0.19 0.24 0.24 0.19 0.16 Lu_2O_3 - - -- - -- - -- - -- - -- - -- - -- - -- - -- - -- - -PbO 0.56 0.40 0.32 0.48 0.28 0.60 0.38 - - -0.47 - - -0.44 ThO₂ 39.57 39.73 38.30 37.41 36.13 40.06 40.61 36.11 38.81 34.22 42.15 UO₂ 1.05 1.02 1.01 0.82 1.01 1.08 1.07 1.02 1.03 0.96 1.05 F 2.09 1.91 1.22 1.77 1.89 1.83 2.07 1.57 1.87 1.59 2.03 0.51 0.74 0.77 0.87 0.66 0.67 -O ≡ F 0.88 0.80 0.79 0.79 0.86 93.47 Total 92.82 91.32 90.55 94.22 93.54 94.69 88.58 92.10 85.61 92.57 *H₂O 7.18 8.68 9.45 6.46 5.31 11.42 7.90 7.43 6.53 5.78 14.39

Table 1b. Analyses of unnamed intermediate brockite-vanadate solid solution

Table 2. Representative analyses of complex xenotime-(Y) outgrowths/overgrowths at the CHO and adjacent sandstone

	xenotime-(Y) overgrowths from CHO with alternating porous, hydrated banding													
-	xog-21	xog-20	xog-7	xog-25	xog-19	xog-3	xog-22	xog-16	xog-11	xog-30	xog-5	xog-27	xog-12	xog-10
SiO ₂	0.60	0.38	0.63	2.86	3.49	0.36	0.80	0.46	0.33	0.45	0.36	0.46	0.36	0.32
P_2O_5	27.22	27.45	27.99	26.99	25.79	25.30	27.09	28.57	28.24	26.56	28.42	24.02	25.58	27.03
SO_3	0.23	0.26	0.13	0.07	0.12	0.27	0.10	0.02	0.02	0.08	0.06	0.18	0.11	0.16
V_2O_5	0.60	0.47	0.35	0.87	0.72	0.95	0.58	0.38	0.39	0.85	0.37	0.63	0.55	0.43
CaO	4.27	4.09	3.28	3.42	3.78	5.47	3.77	2.56	2.02	4.09	3.12	5.01	3.55	3.34
FeO	0.42	0.33	0.21	0.13	0.29	0.26	0.17	0.07	0.04	0.08	0.09	0.30	0.13	0.12
BaO	0.08	0.07	0.10	0.17	0.11	0.11	0.12	0.13	0.11	0.11	0.11	0.09	0.10	0.07
Y_2O_3	40.37	40.53	39.90	36.67	35.62	33.77	35.79	38.43	36.89	33.51	34.19	33.93	34.12	32.60
Nd_2O_3														
Sm_2O_3	0.13	0.15	0.14	0.13	0.10	0.12	0.13	0.09	0.15	0.13	0.11	0.15	0.13	0.05
Eu_2O_3	0.18	0.23	0.14	0.20	0.18	0.22	0.18	0.15	0.17	0.19	0.19	0.12	0.20	0.10
Gd_2O_3	1.53	1.92	1.24	1.76	1.18	1.77	1.36	1.27	1.53	1.44	1.39	1.25	1.36	1.02
Tb_2O_3	0.56	0.64	0.48	0.67	0.51	0.58	0.47	0.43	0.55	0.49	0.46	0.41	0.54	0.41
Dy_2O_3	4.92	5.22	4.47	5.52	4.53	5.18	4.49	4.14	4.63	4.32	4.06	4.03	4.21	3.39
Ho_2O_3	0.94	1.03	0.89	1.19	1.04	1.05	0.88	1.27	0.95	0.88	0.91	0.78	0.96	0.86
Er_2O_3	2.56	2.75	2.71	2.91	2.99	2.64	2.41	2.42	2.54	2.17	2.15	2.07	2.29	1.95
Tm_2O_3	0.31	0.24	0.45	0.33	0.41	0.23	0.33	0.32	0.37	0.33	0.39	0.21	0.29	0.44
Yb_2O_3	1.72	1.96	2.03	2.08	2.57	1.88	1.79	1.75	1.81	1.49	1.59	1.43	1.72	1.47
Lu_2O_3	0.13	0.18	0.22	0.21	0.28	0.17	0.16	0.24	0.17	0.16	0.20	0.13	0.13	0.25
PbO			0.45		0.14		0.39		0.39	0.38	0.35	0.23	0.19	0.41
ThO_2	7.30	5.38	4.59	4.34	4.36	7.42	5.82	3.91	4.48	6.49	4.46	7.51	4.31	4.26
UO ₂	0.84	0.80	0.96	0.83	1.29	0.81	0.82	0.62	0.80	0.66	0.88	0.72	0.90	0.92
F	2.32	2.21	2.60	2.22	2.64	3.01	2.44	2.52	2.53	2.51	2.28	2.62	3.02	2.82
-O ≡ F	0.98	0.93	1.10	0.93	1.11	1.27	1.03	1.06	1.07	1.06	0.96	1.10	1.27	1.19
Total	96.24	95.39	92.86	92.66	91.02	90.31	89.09	88.69	88.04	86.33	85.17	85.18	83.49	81.23
*H ₂ O	3.76	4.61	7.14	7.34	8.98	9.69	10.91	11.31	11.96	13.67	14.83	14.82	16.51	18.77

Notes: Xenotime-(Y) compositons determined by EPMA are presented in order of increasing H_2O (increasingly low totals). Results are not converted to atoms per formula unit as compositons represent alternating xenotime-(Y) and porous zones which contain excess H_2O or OH^2 and may represent a distinct hydrated Th-Ca phase. SrO, La_2O_3 , Ce_2O_3 , Pr_2O_3 were analyzed but below detection limit. The presence of ferric iron, reduced sulfur, and hexavalent uranium will have a marginal affect on calcualted compositons. $*H_2O$ calculated by difference; - -: below detection limit.

Table 2. continued

		low H ₂ O dor	mains of xe	sandstone-	hosted xeno	otime-(Y) ou	tgrowths			
-	xog-17	xog-17b	xog-6	xog-7b	xog-3b	xog-6b	sxog-1	sxog-2	sxog-9	sxog-10
SiO ₂	0.25	0.40	0.75	0.53	0.45	0.21	1.09	2.78	9.78	4.94
P_2O_5	31.63	30.95	30.05	33.37	28.98	30.49	32.05	28.35	27.59	28.76
SO_3	0.09	0.01	0.17	0.01	0.02	0.04	0.03	0.05	0.02	0.07
V_2O_5	0.34	0.02	0.31	0.03	0.53	0.16		0.27		0.19
CaO	1.91	1.00	2.14	0.89	2.85	2.91	1.31	2.19	1.05	1.97
FeO	0.29	0.09	0.07	0.07	0.02	0.07	0.07	0.11	3.13	0.60
BaO	0.10	0.06	0.11	0.11	0.07	0.08	0.08	0.07	0.11	0.09
Y_2O_3	46.42	46.63	43.99	49.97	42.81	44.53	43.96	39.96	38.91	40.23
Nd_2O_3							0.11	0.12	0.05	
Sm_2O_3	0.02	0.09	0.02	0.03	0.10	0.02	0.11	0.12	0.06	0.06
Eu_2O_3	0.04	0.13	0.12	0.06	0.18	0.06	0.16	0.10	0.03	0.14
Gd_2O_3	0.51	1.15	1.45	0.96	1.41	0.46	1.44	1.40	0.72	1.28
Tb_2O_3	0.36	0.50	0.52	0.50	0.54	0.31	0.63	0.67	0.32	0.57
Dy_2O_3	4.43	5.27	5.06	5.04	5.47	4.11	5.48	5.53	3.93	5.14
Ho_2O_3	1.20	1.16	1.10	1.18	1.20	1.19	1.17	1.12	0.93	1.07
Er_2O_3	4.15	3.11	2.97	3.24	3.19	3.97	3.31	3.11	3.26	2.90
Tm_2O_3	0.45	0.29	0.33	0.29	0.31	0.55	0.35	0.35	0.12	0.27
Yb_2O_3	3.59	2.05	2.16	2.30	2.26	3.65	2.33	2.40	2.88	2.15
Lu_2O_3	0.42	0.20	0.24	0.27	0.23	0.38	0.28	0.20	0.35	0.28
PbO	0.16									
ThO_2	3.30	2.42	3.99	1.76	4.04	2.91	2.15	3.32	1.36	2.31
UO_2	1.20	0.47	0.76	0.48	0.55	1.31	0.53	0.82	0.78	0.71
F	2.08	2.05	2.23	1.96	2.84	2.43	1.83	2.11	0.98	1.84
-O ≡ F	0.88	0.86	0.94	0.83	1.20	1.02	0.77	0.89	0.41	0.77
Total	102.03	97.19	97.59	102.22	96.86	98.79	97.67	94.28	95.95	94.80
*H ₂ O		2.81	2.41		3.14	1.21	2.33	5.72	4.05	5.20

Sample #:	12BL23		13BL09		12BL33		R11-32		R11-32		WBD10-475		S121-945	
Mineral:	fluo	rite	fluo	rite	fluo	orite	fluor	ite	fluo	rite	fluo	rite	fluo	rite
Description:	Cole HFSE(+HREE)		HREE) additonal vein at CHO		karst cavity filling in Mississippian limestone		inclusion-rich hydrothermal veining		inclusion-poor hydrothermal veining		REE-poor carbonatite		carbonate vein carbonatite?	
	n=11	1σ	n=8	1σ	n=9	1σ	n=6	1σ	n=6	1σ	n=12	1σ	n=9	1σ
Ca (wt.%)*	48.27	0.48	49.39	0.26	49.71	0.26	49.16	0.12	49.22	0.19	49.02	0.64	48.92	0.32
Sr (ppm)	6049.7	1982.5	113.7	31.9	218.7	208.5	2984.3	187.2	2573.9	1240.3	13152.9	2422.8	5789.9	3050.6
Y	95.7	50.9	92.9	34.7	41.5	26.3	123.4	12.3	93.3	31.0	22.9	10.2	43.5	22.5
La	1.1	1.0	10.9	9.5	9.2	4.6	15.6	4.3	5.4	1.9	8.8	4.8	3.7	3.6
Ce	1.8	1.7	25.5	18.9	16.6	8.0	39.9	10.5	15.7	5.1	21.5	10.7	8.7	7.5
Pr	0.2	0.2	3.1	2.1	2.5	1.1	7.0	1.9	3.3	1.3	3.8	1.9	1.5	1.1
Nd	0.7	0.9	13.3	8.8	12.1	5.0	40.9	9.9	21.2	8.6	16.9	7.7	8.6	5.2
Sm	1.3	0.5	3.2	1.5	3.2	1.5	10.3	2.9	5.7	2.6	3.2	1.1	2.6	1.6
Eu	0.9	0.5	1.0	0.5	1.1	0.6	2.3	0.4	1.4	0.6	0.8	0.3	0.9	0.7
Gd	6.2	2.6	4.5	2.2	4.2	2.3	11.4	2.3	6.9	2.8	2.1	1.0	3.5	2.3
Tb	1.8	0.8	0.9	0.4	0.6	0.4	1.3	0.4	0.7	0.3	0.2	0.2	0.4	0.3
Dy	14.5	7.6	6.8	3.4	3.7	2.4	6.5	1.1	4.4	1.7	0.8	0.8	2.7	2.2
Но	2.9	1.6	1.5	0.7	0.7	0.5	1.5	0.3	0.9	0.3	0.2	0.1	0.5	0.3
Er	7.3	3.9	4.6	2.2	1.6	1.1	3.6	1.0	2.3	0.8	bdl		0.8	1.0
Tm	0.9	0.5	0.6	0.4	0.2	0.1	0.3	0.0	0.2	0.1	bdl		0.1	0.1
Yb	4.7	2.4	3.6	2.3	1.0	0.8	1.1	0.2	0.9	0.3	bdl		0.6	0.5
Lu	0.5	0.3	0.5	0.3	0.1	0.1	0.1	0.0	0.1	0.0	bdl		bdl	
Th	36.5	27.2	8.4	9.8	1.3	1.5	bdl	0.2	0.2	0.3	bdl		bdl	
U	13.1	5.3	2.8	2.9	0.4	0.5	0.2	0.1	0.1	0.1	bdl		0.1	0.1
Y/Ho	33.2		62.4		58.6		84.9		102.5		95.9		89.3	

Table 3. LA-ICP-MS trace element data from fluorites throughout the BLAC

Notes: *Ca concentration obtained by electron microprobe and reported in elemental weight percent. All other elements reported in ppm. of averaged analyses.

n = number

Table 4. Results of in-situ LA-ICP-MS U-Pb geochronology

			Isotopi	ic Ratios and Er	rors			Ag	es				
Sample-spot	Mineral/rock	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ (Ma)	²⁰⁶ Pb/ ²³⁸ U	±2σ (Ma)	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ (Ma)
CF7100V-14	zircon/CHO	2.09108	0.06288	0.13524	0.00319	0.11215	0.00164	1145.9	20.6	817.7	18.1	1834.6	26.4
CF7100V-15	zircon/CHO	1.16770	0.10156	0.07440	0.00636	0.11384	0.00189	785.6	47.0	462.6	38.1	1861.6	29.8
CF7100V-24	zircon/CHO	2.02358	0.06835	0.12774	0.00348	0.11490	0.00188	1123.5	22.8	774.9	19.9	1878.3	29.3
CF7100V-23	zircon/CHO	5.35553	0.23195	0.34583	0.01280	0.11232	0.00220	1877.8	36.7	1914.6	61.2	1837.3	35.3
CF7100V-26	zircon/CHO	4.69427	0.13766	0.30026	0.00685	0.11339	0.00163	1766.2	24.4	1692.6	33.9	1854.5	25.9
CF7100V-31	zircon/CHO	5.05434	0.12903	0.32314	0.00532	0.11345	0.00176	1828.5	21.5	1805.1	25.9	1855.4	27.8
CF7100V-18	zircon/CHO	5.66530	0.16380	0.34029	0.00671	0.12075	0.00211	1926.1	24.8	1888.1	32.2	1967.4	31.0
CF7100V-12	zircon/CHO	7.13619	0.17248	0.39987	0.00624	0.12944	0.00184	2128.6	21.4	2168.4	28.7	2090.4	24.9
CF7100V-13	zircon/CHO	7.23483	0.16721	0.40172	0.00588	0.13063	0.00176	2140.8	20.5	2176.9	27.0	2106.4	23.5
CF7100V-21	zircon/CHO	12.06146	0.39979	0.49729	0.01397	0.17592	0.00239	2609.2	30.8	2602.1	60.0	2614.8	22.5
CF7100V-17	zircon/CHO	14.04836	0.34929	0.53573	0.00911	0.19020	0.00263	2753.0	23.4	2765.6	38.2	2743.9	22.6
CF7100V-30	zircon/CHO	13.56289	0.35036	0.51532	0.00942	0.19090	0.00267	2719.7	24.3	2679.3	40.0	2749.9	22.9
Staatz (1983)	zircon/granite	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	939.00	n.a.	389.00	n.a.	2628.00	n.a.

Figure 1.

Figure 2. continued

Figure 3.

Figure 4.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5532

Figure 5.
This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5532

Figure 6.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5532

Figure 7.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5532

Figure 8.

Figure 9.