1	Revision 1				
2	Joegoldsteinite: A new sulfide mineral (MnCr ₂ S ₄) from the IVA iron meteorite,				
3	Social Circle				
$\frac{4}{5}$	Junko Isa ^{1*} , Chi Ma ^{2*} and Alan E. Rubin ^{1,3}				
6					
7	¹ Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles,				
8	California 90095-1567, USA				
9	² Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena				
11	California 91125, USA				
12					
13	³ Institute of Geophysics and Planetary Physics, University of California, Los Angeles,				
14	California 90095-1567, USA				
10					
17	*e-mail: jisa@ucla.edu; chi@gps.caltech.edu; aerubin@ucla.edu				
18	ABSTRACT				
19	Joegoldsteinite, a new sulfide mineral of endmember formula MnCr ₂ S ₄ , was				
20	discovered in the Social Circle IVA iron meteorite. It is a thiospinel, the Mn analogue of				
21	daubréelite ($Fe^{2+}Cr_2S_4$), and a new member of the linnaeite group. Tiny grains of				
22	joegoldsteinite were also identified in the Indarch EH4 enstatite chondrite. The chemical				
23	composition of the Social Circle sample by electron microprobe is (wt%) S 44.3, Cr 36.2, Mn				
24	15.8, Fe 4.5, Ni 0.09, Cu 0.08, total 101.0, giving rise to an empirical formula of				
25	$(Mn_{0.82}Fe_{0.23})Cr_{1.99}S_{3.95}$. The crystal structure, determined by electron backscattered				
26	diffraction, is a <i>Fd3m</i> spinel-type structure with $a = \text{\AA}$, $V = 1033.4 \text{\AA}^3$, and $Z = 8$.				
27	Keywords: Joegoldsteinite, MnCr ₂ S ₄ , new sulfide mineral, thiospinel, Social Circle IVA iron				
28	meteorite, Indarch EH4 enstatite chondrite				

29

1

INTRODUCTION

30	Thiospinels have a general formula of AB_2X_4 where A is a divalent metal, B is a
31	trivalent metal and X is a -2 anion, typically S, but in some cases Se or Te. Some
32	thiospinels are magnetic semiconductors and have been studied extensively by materials
33	scientists. Synthetic $MnCr_2S_4$ is known to be a ferrimagnetic insulator (Menyuk et al. 1965;
34	Darcy et al. 1968; Lotgering 1968; Plumier 1980; Denis et al. 1970) and recent single crystal
35	measurements have documented two different anomalies in heat capacity that correlate with
36	magnetic phase transformations (Tsurkan et al. 2003). The complex behavior of thiospinel
37	magnetism results from ferrimagnetic ordering of the Cr and Fe sublattices (Bertinshaw et al.
38	2014).
39	Joegoldsteinite is the first known natural occurrence of $MnCr_2S_4$. It is present as two
40	$13-15-\mu$ m-size subhedral inclusions in the Social Circle IVA iron meteorite. The meteorite
41	itself was found as a single ~100-kg mass in Georgia, USA in 1926 during ploughing
42	(Buchwald 1975).
43	The IVA irons constitute the third largest "magmatic" iron-meteorite group; each
44	magmatic group is modeled as having formed by fractional crystallization in the metallic core
45	of a differentiated asteroid (e.g., Scott et al. 1996). IVA iron meteorites are fine octahedrites
46	showing Widmanstätten patterns (Buchwald 1975). The bulk Ni concentrations range from
47	\sim 60 to \sim 120 mg/g. Studies of the metallographic cooling rates in IVA iron meteorites have
48	been controversial for several decades (e.g., Willis and Wasson, 1978a,b; Moren and

49	Goldstein, 1978). Relative to other magmatic irons, the IVA group has large depletions in S
50	Ga and Ge (Wasson and Richardson 2001). The Ir-rich IVA samples are characterized by
51	lower bulk Ir/Au ratios than comparable members of other iron-meteorite groups (Wasson
52	and Richardson 2001).
53	The Mn-Cr thiospinel, joegoldsteinite, was approved as a new mineral by the
54	International Mineralogical Association (IMA) in August 2015. It was named in honor of
55	Joseph (Joe) I. Goldstein (1939-2015), Distinguished Professor emeritus of mechanical and
56	industrial engineering and former dean of the College of Engineering at the University of
57	Massachusetts, Amherst. Before arriving at Amherst, Goldstein was the T. L. Diamond
58	Distinguished Professor of Metallurgy and R. D. Stout Professor of Materials Science and
59	Engineering at Lehigh University; he served as vice president for graduate studies and
60	research and as director of Lehigh's Electron Optical Laboratory. Goldstein was well
61	known for his fundamental contributions to research on iron meteorites, metallographic
62	cooling rates, Fe-Ni phase equilibria, electron microscopy and microanalysis.
63	
64	SAMPLES AND ANALYTICAL METHODS
65	A polished thick section of Social Circle (TK 724) was made from a $2 \times 3 \times 5$ -mm-size
66	aliquot from the UCLA meteorite collection. It was examined in reflected light with an
67	Olympus BX60 petrographic microscope and by backscattered-electron (BSE) imaging using

68	a VEGA Tescan SEM at UCLA and a Zeiss 1550VP field-emission SEM at Caltech. Phases
69	were analyzed by energy-dispersive X-ray spectroscopy (EDX) with the SEM and by a JEOL
70	8200 electron microprobe (EPMA) (WDS mode, 15 kV, 15 nA, focused beam mode using
71	ZAF corrections) at UCLA. The chemical composition is shown in Table 1. A synthesized
72	FeCr ₂ S ₄ single crystal, grown by a chemical transport reaction method similar to that of
73	Tsurkan et al. (2001), was used as a standard for S, Cr and Fe measurements.
74	Single-crystal electron backscatter diffraction (EBSD) analyses at a sub-micrometer
75	scale using methods described in Ma and Rossman (2008, 2009) were performed using an
76	HKL EBSD system on the Zeiss 1550VP SEM at Caltech, operated at 20 kV and 6 nA in
77	focused-beam mode with a 70° tilted stage and in a variable-pressure mode (20 Pa). The
78	EBSD system was calibrated using a single-crystal silicon standard. The structure was
79	determined and cell constants were obtained by matching the experimental EBSD patterns
80	with structures of synthetic MnCr ₂ S ₄ and daubréelite.
81	
82	RESULTS
83	Petrography and mineral chemistry
84	Joegoldsteinite occurs as two subhedral inclusions, 13 μ m and 15 μ m in diameter, in
85	Social Circle thick section TK 724 (Fig. 1). Physical properties were not measured because
86	of the small grain size; however, they are likely to be close to those of daubréelite. Optical

87	properties of joegoldsteinite were assessed in reflected light and compared to daubréelite
88	grains that are adjacent to metallic Fe-Ni in the Aliskerovo and NWA 4704 IIIE iron
89	meteorites (e.g., Breen et al. 2015). Both minerals have similar reflectivity and color.
90	More accurate comparisons could be made if a single section were available that contained
91	grains of both phases. Electron microprobe data indicate that the empirical formula (based
92	on 7 atoms) is $(Mn_{0.82}Fe_{0.23})Cr_{1.99}S_{3.95}$; the general formula is $(Mn,Fe)Cr_2S_4$ and the
93	end-member formula is $MnCr_2S_4$. The calculated density, based on the empirical formula, is
94	3.71 g cm^{-3} .
95	Joegoldsteinite is a thiospinel, the Mn analogue of daubréelite (Fe ²⁺ Cr ₂ S ₄), and a new
96	member of the linnaeite group. In joegoldsteinite and daubréelite, Fe and Mn probably have
97	a +2 valence and occupy the tetrahedral (A) sites. Chromium may have a +3 valence and
98	occupy the octahedral (B) sites. Because joegoldsteinite is Fd3m spinel type, we do not
99	think there is S-S bonding in the structure (a requirement if Cr were +2; McCoy et al., 2014).
100	It thus seems likely that Cr in both daubréelite and joegoldsteinite is located in the octahedral
101	site; Cr3+ should thus be thermodynamically stable at a sufficiently high sulfur fugacity. It
102	seems reasonable that enstatite chondrites could contain both Cr3+ and Cr2+ in different
103	minerals. (Along with nearly pure forsterite and enstatite, some E3 chondrites contain
104	oxidized mafic silicates, i.e., moderately ferroan olivine (Fa11) and low-Ca pyroxene (Fs18)
105	grains; Weisberg and Kimura 2012).

 $\mathbf{5}$

106 Some tiny grains of joegoldsteinite associated with troilite (FeS) and niningerite 107 ((Mg,Fe)S) were also observed in the Indarch EH4 enstatite chondrite (Fig. 2), but the grains are too small for accurate quantitative analysis by EPMA. 108 109110 **Crystal structure** The EBSD patterns match the cubic space group Fd3m spinel-type structure (a =111 10.11, $V = 1033.4 \text{ Å}^3$, Z = 8) and give a best fit using the MnCr₂S₄ structure from Raccah et al. 112 (1966) (Fig. 3), with a mean angular deviation of 0.40° to 0.45° . The cell parameters are 113taken from data for the matching phase in Raccah et al. (1966). X-ray powder diffraction 114data (Table 2, in Å for $CuK\alpha_1$, Bragg-Brentano geometry) were calculated from the cell 115parameters of Raccah et al. (1966) with the empirical formula, using Powder Cell version 2.4. 116117118 DISCUSSION 119 Other Mn- and Cr-bearing phases in irons and reduced meteorites 120The only known phases with detectable Mn in IVA irons besides joegoldsteinite are 121daubréelite (~0.2-0.8 wt.% Mn) in Maria da Fé (this study) and orthopyroxene (~0.5-0.6 122wt.% MnO) and clinopyroxene (~0.5 wt.% MnO) in Steinbach and São João Nepomuceno (Scott et al. 1996). 123Social Circle contains a few Cr-rich phases in addition to joegoldsteinite; these 124

125	include daubréelite (FeCr ₂ S ₄), chromite (FeCr ₂ O ₄), and possibly, brezinaite (Cr ₃ S ₄)
126	(Buchwald 1975). Additional Cr-rich phases reported in magmatic iron meteorites (but not
127	in the IVA group) include carlsbergite (CrN) in several IIIAB samples and kosmochlor
128	(NaCrSi ₂ O ₆) in a few IIA samples (Buchwald 1975).
129	Enstatite chondrites, such as EH4 Indarch (in which small grains of joegoldsteinite
130	were found), formed under low f_{O2} conditions. These rocks contain mafic silicates
131	(predominantly enstatite, with minor forsterite in unequilibrated samples) with very low FeO,
132	Si-bearing metallic Fe-Ni, and sulfide phases containing cations (e.g., Na, Mg, K, Ca, Ti, Cr,
133	Mn, Fe) that partition mainly into silicates and oxides in more-oxidized assemblages (e.g.,
134	Keil 1968; Rubin and Keil 1983; Wasson et al. 1994). For example, sulfide in ordinary
135	chondrites (OC), meteorites that are much more oxidized than enstatite chondrites, is Mn free
136	(e.g., Williams et al. 1985; Rubin et al. 2002); Mn in OC occurs principally in olivine, low-Ca
137	pyroxene, Ca-pyroxene and chondrule mesostasis (e.g., Brearley and Jones 1998).
138	Additional Mn-bearing sulfides in enstatite chondrites (and related impact-melt rocks
139	and impact-melt breccias) include daubréelite (with 0.7-4.0 wt.% Mn), troilite (FeS:
140	0.02-0.39 wt.% Mn), oldhamite (CaS: 0.18-1.3 wt.% Mn), niningerite ((Mg,Fe)S: 6.1-12.9
141	wt.% Mn), keilite ((Fe,Mg)S: 3.4-23.7 wt.% Mn), rudashevskyite ((Fe,Zn)S: 1.6-3.6 wt.%
142	Mn), buseckite ((Fe,Zn,Mn)S, ~10 wt.% Mn), browneite (MnS, ~62 wt.% Mn) and
143	pentlandite ((Fe,Ni) ₉ S ₈ : 0.66-1.1 wt.% Mn) (Keil 1968, 2007; Lin et al. 1991; Britvin et al.

144 2008; Ma et al. 2012a,b).

145

146 Shock effects

- 147 The presence of Neumann lines in Social Circle kamacite indicates that the sample
- 148 was shocked to at least 10 kb after cooling (Buchwald 1975). A later shock event caused
- 149 widespread heating of the meteorite: (a) kamacite throughout the mass recrystallized,
- 150 partially obliterating the Neumann lines (and forming "parallel ghost-lines"), (b) taenite and
- 151 plessite fields partly decomposed and underwent minor spheroidization, and (c) troilite-metal
- 152 eutectic shock melts formed (Buchwald 1975). It seems plausible that impact melting of the
- 153 sulfide assemblages increased the Mn concentration in portions of the S-rich melts,
- 154 facilitating the crystallization of joegoldsteinite.
- 155 After the formation of joegoldsteinite in Social Circle, a minor shock event caused
- 156 shearing in the grain in the top image of Fig. 1. Displacement by $\sim 0.2 \,\mu m$ occurred along a
- 157 kamacite grain boundary (also probably produced by shearing) running diagonally from SW
- 158 to NE-ENE.
- 159

160 Implications

161 It has been shown that MnCr₂S₄ can transform from the spinel structure (where
 162 two-thirds of the cations are octahedrally coordinated) to the defect NiAs structure (where all

163	cations are octahedrally coordinated) at temperatures of 1000°C and pressures of 65 kb (6.5
164	GPa) (Bouchard 1967). The high-pressure structure is reversible (Vaqueiro et al. 2001).
165	Because of this structural reversibility, empirical observations of thiospinel minerals are
166	unlikely to be useful for constraining the formation temperatures and pressures of asteroidal
167	materials. Nevertheless, chalcospinels, thiospinels and selenospinels have been used for
168	geophysical studies because their phase transitions are good analogs for those of oxyspinel
169	compounds. These are known to show phase transitions in high-pressure regimes (e.g., 29
170	GPa for FeCr ₂ O ₄ ; Shu et al., 2007), while thiospinel transitions occur at lower pressure (e.g.,
171	9 GPa for FeCr ₂ S ₄ ; Amiel et al. 2011) (Manjon et al. 2014; Santamaría-Pérez et al. 2012).
172	It seems probable that additional occurrences of joegoldsteinite in enstatite
173	chondrites and IVA irons could be identified by making Mn x-ray maps of enstatite chondrite
174	thin sections and running EDS scans of sulfide grains in sections of iron meteorites. In
175	enstatite chondrites, joegoldsteinite is most likely to be found in association with other sulfide
176	phases; in IVA irons, it could be found as isolated crystals as in Social Circle or as parts of
177	polymineralic sulfide assemblages.
178	
179	ACKNOWLEDGMENTS
180	We thank V. Tsurkan for providing a synthesized FeCr ₂ S ₄ crystal that greatly
181	facilitated analysis of the new mineral by EPMA. We are grateful to F. T. Kyte and R.

182	Esposito for their patience and for technical support with the electron microprobe. We thank
183	K. D. McKeegan for useful suggestions about finding inclusions in iron meteorites. We also
184	thank J. T. Wasson for comments on the manuscript. Helpful reviews and suggestions were
185	provided by T. J. McCoy, K. Keil, P. R. Buseck and Associate Editor S. B. Simon. SEM and
186	EBSD analyses were carried out at the Caltech Analytical Facility at the Division of
187	Geological and Planetary Sciences, which is supported, in part, by grant NSF EAR-0318518
188	and the MRSEC Program of the NSF under DMR-0080065. This work was supported in
189	part by NASA grant NNX14AF39G (A. E. Rubin).

REFERENCES CITED

192Amiel Y., Rozenberg G. K., Nissim N., Milner A., Pasternak M. P., Hanfland M., and Taylor 193 R. D. (2011) Intricate relationship between pressure-induced electronic and structural 194transformations in FeCr₂S₄. Physical Review B, 84(9), 224114. 195Bertinshaw, J., Ulrich, C., Günther, A., Schrettle, F., Wohlauer, M., Krohns, S. and Deisenhofer, J. (2014). FeCr₂S₄ in magnetic fields: possible evidence for a multiferroic 196 197 ground state. Scientific Reports, 4, 6079. Bouchard, R. J. (1967). Spinel to defect NiAs structure transformation. Materials Research 198199 Bulletin, 2(4), 459–464. 200 Brearley, A. J., and Jones, R. H. (1998) Chondritic meteorites. In: Planetary Materials (ed. 201Papike, J. J.), pp. 3-1-3-398, Mineralogical Society of America, Washington, D.C. 202Breen J. P., Rubin A. E. and Wasson J. T. (2015) Shock effects in IIIE iron meteorites: 203 Implications for parent-body history. Meteoritics & Planetary Science, 50, 204 abstract#5083. 205Britvin S. N., Bogdanova A. N., Boldyreva M. M. and Aksenova G. Y. (2008) 206 Rudashevskyite, the Fe-dominant analogue of sphalerite, a new mineral: Description 207and crystal structure. American Mineralogist, 93, 902-909. Buchwald, V. F. (1975). Handbook of iron meteorites, their history, distribution, composition, 208 209and structure. Center for Meteorite Studies, Arizona State University. 210Darcy, L., Baltzer, P. K., and Lopatin, E. (1968). Magnetic and Crystallographic Properties of 211the System MnCr₂S₄–MnInCrS₄. Journal of Applied Physics, 39(2), 898-899. 212Denis, J., Allain, Y., and Plumier, R. (1970). Magnetic behavior of MnCr2S4 in high 213magnetic fields. Journal of Applied Physics, 41(3), 1091-1093. Keil, K. (1968). Mineralogical and chemical relationships among enstatite chondrites. Journal 214of Geophysical Research, 73(22), 6945-6976. 215

- 216 Keil, K. (2007) Occurrence and origin of keilite, (Fe_{>0.5},Mg_{<0.5})S, in enstatite chondrite
- 217 impact-melt rocks and impact-melt breccias. Chemie der Erde, 67, 37-54.
- Lin, Y. T., Nagel, H-J., Lundberg, L. L., and El Goresy, A. (1991) MAC88136 The first EL3
 chondrite (abstract). Lunar and Planetary Science, 22, 811-812.
- 220 Lotgering, F. K. (1968). Spin canting in MnCr₂S₄. Journal of Physics and Chemistry of Solids,
- 221 29(12), 2193–2197.
- Ma, C., and Rossman, G.R. (2008) Barioperovskite, BaTiO₃, a new mineral from the Benitoite Mine, California. American Mineralogist, 93, 154-157.
- Ma, C., and Rossman, G.R. (2009) Tistarite, Ti₂O₃, a new refractory mineral from the Allende meteorite. American Mineralogist, 94, 841-844.
- Ma, C., Beckett, J. R., and Rossman, G. R. (2012a) Buseckite, (Fe,Zn,Mn)S, a new mineral from the Zakłodzie meteorite. American Mineralogist, 97, 1226-1233.
- Ma, C., Beckett, J. R., and Rossman, G. R. (2012b) Browneite, MnS, a new sphalerite-group mineral from the Zakłodzie meteorite. American Mineralogist, 97, 2056-2059.
- 230 Manjon, F. J., Tiginyanu, I. and Ursaki, V. (2014) Pressure-Induced Phase Transitions in
- AB₂X₄ Chalcogenide Compounds, Springer Series in Materials Science, 189, Springer,
 Berlin, 243 pp.
- 233 McCoy T. J., McKeown D. A., Buechele A. C., Tappero R. and Gardner-Vandy K. G. (2014)
- Do enstatite chondrites record multiple oxidation states? Lunar and Planetary Science,
 45, abstract#1983.
- Menyuk, N., Dwight, K., and Wold, A. (1965) Magnetic properties of MnCr₂S₄. Journal of
 Applied Physics, 36(3), 1088-1089.
- Moren A. E. and Goldstein J. I. (1978) Cooling rate variations of group IVA iron meteorites.
 Earth and Planetary Science Letters, 40, 151-161.

240Plumier, R. (1980) The magnetic structure of sulfur spinel MnCr₂S₄ under applied magnetic 241field. Journal of Physics and Chemistry of Solids, 41(8), 871-873. 242Raccah, P. M., Bouchard, R. J., and Wold, A. (1966) Crystallographic study of chromium 243spinels. Journal of Applied Physics, 37, 1436-1437. 244Rubin, A. E., and Keil, K. (1983) Mineralogy and petrology of the Abee enstatite chondrite 245breccia and its dark inclusions. Earth Planet. Sci. Lett., 62, 118-131. 246Rubin, A. E., Zolensky, M. E., and Bodnar, R. J. (2002) The halite-bearing Zag and 247Monahans (1998) meteorite breccias: Shock metamorphism, thermal metamorphism 248and aqueous alteration on the H-chondrite parent body. Meteorit. Planet. Sci., 37, 249125-141. 250Santamaría-Pérez, D., Amboage, M., Manjón, F. J., Errandonea, D., Muñoz, A., 251Rodríguez-Hernández, P., Mújica, A., Radescu, S., Ursaki, V. V., and Tiginyanu, I. M. 252(2012) Crystal chemistry of CdIn₂S₄, MgIn₂S₄, and MnIn₂S₄ thiospinels under high 253pressure. Journal of Physical Chemistry C, 116, 14078-14087. 254Scott, E. R. D., Haack, H., and McCoy, T. J. (1996) Core crystallization and silicate-metal mixing in the parent body of the IVA iron and stony-iron meteorites. Geochimica et 255Cosmochimica Acta, 60, 1615-1631. 256257Shu J., Mao L., Hemley R. J., and Mao H. (2007) Pressure-induced distortive phase transition 258in chromite-spinel at 29 GPa. Materials Research Society Symposium Proceedings, 259987. Tsurkan, V., Hemberger, J., Klemm, M., Klimm, S., Loidl, A., Horn, S. and Tidecks, R. 260261(2001) Ac susceptibility studies of ferrimagnetic $FeCr_2S_4$ single crystals. Journal of 262Applied Physics, 90, 4639-4644 263Tsurkan, V., Mücksch, M., Fritsch, V., Hemberger, J., Klemm, M., Klimm, S., Körner, S., 264Krug von Nidda, H.-A., Samusi, D., Scheidt, E.-W., Loidl, A., Horn, S. and Tidecks,

- 265 R. (2003). Magnetic, heat capacity, and conductivity studies of ferrimagnetic $MnCr_2S_4$
- single crystals. Physical Review B, 68(13), 134434.
- 267 Vaqueiro, P., Powell, A. V., Hull, S., and Keen, D. A. (2001). Pressure-induced phase
- transitions in chromium thiospinels. Physical Review B, 63(6), 064106.
- 269 Wasson, J. T., and Richardson, J. W. (2001). Fractionation trends among IVA iron
- meteorites: contrasts with IIIAB trends. Geochimica et Cosmochimica Acta, 65(6),
 951–970.
- 272 Wasson, J. T., Kallemeyn, G. W. and Rubin, A. E. (1994) Equilibration temperatures of EL
- 273 chondrites: A major downward revision in the ferrosilite contents of enstatite.
- 274 Meteoritics, 29, 658-661.
- Weisberg, M. K. and Kimura, M. (2012) The unequilibrated enstatite chondrites. Chemie der
 Erde, 72, 101-115.
- 277 Williams, C. V., Rubin, A. E., Keil, K., and San Miguel, A. (1985) Petrology of the Cangas
- de Onis and Nulles regolith breccias: Implications for parent body history. Meteoritics,
 20, 331-345.
- Willis J. and Wasson J. T. (1978a) Cooling rates of Group IVA iron meteorites. Earth and
 Planetary Science Letters, 40, 141-150.
- Willis J. and Wasson J. T. (1978b) A core origin for Group IVA iron meteorites: A reply to
 Moren and Goldstein. Earth and Planetary Science Letters, 40, 162-167.
- 284
- 285

Constituent	wt.%	Range	sd
S	44.3	43.6-44.7	0.35
Cr	36.2	35.7-36.5	0.32
Mn	15.8	15.4-16.0	0.21
Fe	4.5	4.2-5.2	0.30
Ni	0.09	0.02-0.13	0.04
Cu	0.08	0.05-0.11	0.02
Со	<0.03		
total	101.0		

Table 1. Analytical data for type specimen of joegoldsteinite.

d [Å] h k l **I**_{rel} 5.837 3.574 3.048 2.919 2.528 2.064 1.946 1.946 1.787 1.709 1.599 1.542 1.459 1.416 1.351 1.316 1.316

Table 2. Calculated X-ray powder diffraction data for joegoldsteinite ($I_{rel} > 1$).

8	0	0	1.264	13
7	3	3	1.235	1
8	2	2	1.191	2
6	6	0	1.191	2
7	5	1	1.167	8
5	5	5	1.167	4
8	4	0	1.130	12
9	1	1	1.110	2
9	3	1	1.060	12
8	4	4	1.032	27
7	7	1	1.016	1
10	2	0	0.991	2
8	6	2	0.991	2
9	5	1	0.977	17
9	5	3	0.943	2
10	4	2	0.923	1
11	1	1	0.912	1
7	7	5	0.912	1
8	8	0	0.894	12

11	3	1	0.883	1
9	5	5	0.883	3
8	8	2	0.880	1
8	6	6	0.867	2
9	7	3	0.858	7
12	0	0	0.843	2
8	8	4	0.843	9
7	7	7	0.834	1
12	2	2	0.820	1
10	6	4	0.820	9
9	7	5	0.812	13
11	5	3	0.812	3
12	4	0	0.799	40

289

290

292	FIGURE CAPTIONS
293	Fig. 1. Backscattered electron (BSE) images showing two joegoldsteinite grains in Social
294	Circle thick section UCLA TK 724.
295	Fig. 2. BSE image showing the (Mn,Fe)Cr ₂ S ₄ phase in Caltech Indarch section ICM3.
296	Fig. 3. (left) EBSD patterns of the joegoldsteinite crystals in Figure 1, and (right) the patterns
297	indexed with the $Fd3m$ MnCr ₂ S ₄ structure.

298

 View field: 23.4 μm
 Det: BSE
 5 μm

 SEM MAG: 8.89 kx
 Date(m/d/y): 11/29/15
 UCLA - EPSS

20

300

302 Fig. 1.

304

305

306 Fig. 2.

307

308

309

310

311 Fig. 3.