Computational study of pressure behaviour to 6 GPa of the $2M_1$ muscovite-paragonite series

N. HERNÁNDEZ-HARO, 1 D. MUÑOZ-SANTIBURCIO, 1,4 C. PÉREZ DEL VALLE, 2 J. ORTEGA-CASTRO, 3 C. I. SAINZ-DÍAZ, 1 C. J. GARRIDO, 1 AND A. HERNÁNDEZ-LAGUNA 1,*

1 Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Av. de las Palmeras 4, 18100-Armilla, Granada, Spain.
2 Université Grenoble Alpes, DCM F-38000 Grenoble Cedex 9, France.
3 Departament de Química, Institut d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain.
4 Present address: Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany

* Corresponding author: Alfonso Hernández-Laguna, Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Av. de las Palmeras 4, 18100 Armilla, Granada, Spain, Tlph: +34958230000 ext 190211, ahlaguna@ugr.es; alfonso.hernandez@iact.ugr-csic.es
Abstract

The muscovite (Ms)-paragonite (Pg) series \([\text{K}_{1-x}\text{Na}_x\text{Al}_2(\text{Si}_{4-y}\text{Al}_y)\text{O}_{10}(\text{OH})_2]\) is a group of micas with end members of Ms (\(x = 0\), \(y \approx 1\)) and Pg (\(x = 1\), \(y \approx 1\)). This mineral series is found in the Earth’s crust and upper mantle. The series shows a wide immiscibility gap between the end members.

Density Functional Theory (DFT) is used to show the compression in five models of the \(2M_1\) polytype Ms-Pg series to 6 GPa. Bulk moduli and cell-parameter moduli were obtained from a least square fitting of pressures and volumes to a third-order Birch-Murnaghan equation of state. Bulk-modulus values of the end members of the series agree with the range of experimental values. Bond lengths and atomic-group geometries were studied as a function of the pressure and composition of the series by determining the moduli. Compression mechanism has been determined.

The excess volumes, \(V^{\text{ex}}\), were higher for the Na-rich members than for the K-rich members than the solid solution. \(V^{\text{ex}}\) follow a Redlich-Kister behaviour. The excess free energy, \(G^{\text{ex}}\), was calculated isobarically in a semiempirical way: the DFT excess volume data were calculated in one experimental model (A from Roux and Hovis, 1996) in a Redlich-Kister function. The \(G^{\text{ex}}\) as a function of the composition of the Ms-Pg join of the A model show two minima with constant composition to 0.75 GPa, evolving to richer end member compositions at greater pressures. Therefore, the solvus should increase the gap of immiscibility at high pressure.

Keywords: Muscovite-paragonite series; DFT calculations; pressure behaviour of atomic groups and crystal geometry; bulk modulus; cell-parameter moduli; bonds and atomic-group moduli; compression mechanism; excess volume; excess free energy.
The muscovite (Ms)–paragonite (Pg) join is a series of dioctahedral phyllosilicates of the true, white-mica group, with Na⁺ and K⁺ substitutions in the interlayer, with a general formula \([\text{K}_{1-x}\text{Na}_x\text{Al}_2(\text{Si}_{4-y}\text{Al}_y)\text{O}_{10}(\text{OH})_2]\). These minerals, found in the Earth’s crust and upper mantle, are among the most common and abundant minerals in metamorphic rocks. Ms \((x = 0, y \approx 1)\) and Pg \((x = 1, y \approx 1)\) are the end members of the series where an immiscibility gap exists (Guidotti et al., 1992). Natural samples show minor concentration of cations, which involve sites in the interlayer (Ca²⁺, Ba²⁺, Sr²⁺, etc.), octahedra (Oc/VI) (Mg²⁺, Fe²⁺, Fe³⁺, Ti²⁺, and Mn²⁺) and tetrahedra (T/IV) sheets. The effect of cation substitutions in the Oc, T sheets and interlayer on the cell dimensions was studied by Guidotti et al. (1992). The Ms-Pg series has the potential to be a geothermometer and a geobarometer (Guidotti et al., 1994; Blencoe et al., 1994).

Pressure behaviour of Ms was studied by different techniques, revealing a strong anisotropy in the compressional behaviour (Comodi and Zanazzi, 1995). Table 1 presents the values of the bulk modulus of Ms and Pg with different experimental techniques. Bulk-modulus values of Ms are given from 49.0 GPa (Holland and Powell, 1998, 2011) to 61.4 GPa (Faust and Knittle, 1994). These variations in results may be attributed to different samples, such as heterogeneities of composition, techniques, and use of powder or single-crystal samples. In addition, in powder samples subject to high pressure, preferred orientations of crystallites are possible. The bulk modulus of Pg was also studied, showing more rigid values (65.5 GPa, Comodi and Zanazzi, 1997) than Ms.

Ortega-Castro et al. (2010) by means of DFT calculations of Ms with increasing pressure to 6 GPa determined a bulk-modulus value of 60.1 GPa. They studied each atomic group as a function of pressure to yield the compression mechanism. This value is close to that of Faust and Knittle (1994). Teich-McGoldrick et al. (2012), by means of dynamical simulations, obtained a bulk modulus of Ms of 59.8 GPa (0.01 GPa of pressure and T=298 K). They found that the bulk moduli decreased with increasing temperature and increased with increasing pressure, as expected. From DFT-calculated...
elastic constants, polycrystalline bulk moduli of the series have been found to be slightly larger than the known experimental values (Hernández-Haro et al. 2013).

Atomic-group variations as a function of pressure was also studied (Comodi and Zanazzi, 1995, 1997, and Guidotti et al., 2000). The micro-environments crystal-chemical and structural properties evolve as a function of the concentration of one cation in a solid solution, pressure, and temperature and they are related to the thermodynamic properties, stability, and evolution of the minerals. However, most of the experiments use macroscopic and thus heterogeneous samples, giving average values of the inter-atomic geometry and properties of the crystal. The use of crystal models free of order/disorder, average compositional effects, heterogeneity, and different experimental preparations can give values of inter-atomic geometry and properties that could be the key to accounting for the nano- and micro-behaviour, and design of new materials. DFT studies, can offer a detailed explanation for the crystal-chemical behaviour of the solid solutions (Geiger, 2008) without the cited drawbacks of the experimental methods.

Owing to the effects of pressure on the stability of Ms-Pg pairs and the K/Na ratios of Na-saturated Ms, practical application of the Ms-Pg solvus thermometry is restricted to equilibrated quasi-binary Ms-Pg pairs at pressures between ca. 0.2 and 0.8 GPa (Blencoe et al. 1994). The effect of pressure on the Ms-Pg solvus is manifested by the effect on the excess Gibbs free energy (G^{ex}), which varies with the Margules’ coefficients (W_G) of excess volume (V^{ex}) (Ganguly, 2008, and references therein). There are major disparities in the literature for experimental molar excess volume data of the Ms-Pg system, making it difficult to constrain the functional form (quadratic, cubic, etc. polynomial) of V^{ex} (Eugster et al.1972; Blencoe, 1977; Chatterjee, 1974; Flux and Chatterjee, 1986, Chatterjee and Flux, 1986; Chatterjee and Froese, 1975; and Chatterjee and Johannes, 1974). Because natural Ms-Pg micas are unstable below the solvus, experimental work in synthetic and natural micas only constrain the volumes in the compositional ranges near the end members. Furthermore, V^{ex} of Ms-Pg micas are small (commonly < 0.13 J/bar), so minor errors in the experimental molar volume affect significantly the accuracy of the V^{ex}. Phase equilibrium data indicate a larger positive V^{ex} than X-Ray measurements, particularly on micas synthesized at very high pressures (Roux and Hovis, 1996). Because there is no such limitation in theoretical methods, the present study may constrain the functional form of V^{ex} of Ms-Pg micas.
We have previously studied the pressure behaviour of Ms (Ortega-Castro et al., 2010) and the elastic properties of the Ms-Pg series (Hernández-Haro et al., 2013) by DFT methods. From the elastic constants, the calculated bulk moduli correspond to the average polycrystalline bulk moduli from a Hill average (Hill, 1952) of the upper and lower Hashin and Shtrikman limits (Hashin and Shtrikman, 1962a and b). In this article, we study the pressure behaviour of the series in a periodic single-crystal model, increasing the pressure sequentially with the following aim: to ascertain theoretically how the crystal structure, geometry of the atomic groups, mixing behaviour, and incompressibility moduli evolve with pressure and composition; and to clarify the influence of pressure on the Ms-Pg solvus.
METHODS

Crystal model

Each Ms-Pg series model is defined by the following: \([K_{1-x}Na_xAl_2(Si_3Al)O_{10}(OH)_2]\) (\(x\) between 0 and 1). Crystal models used are similar to Hernández-Haro et al. (2013). The models of the 2\(M_1\) polytypes are monoclinic. Figure 1 shows the model of \(X_{Na} = \frac{Na}{(Na+K)} = 0.5\) (atomic fraction of the mica). In Ms with \(X_{Na} = 0\), cations in both interlayers are \(K^+\) and they are increasingly substituted by \(Na^+\) to produce the five studied compositions of the Ms-Pg series to \(X_{Na} = 1\) for Pg. A supercell of 1x1x2 is used for the 2\(M_1\) polytype \(X_{Na} = 0, 0.5,\) and 1. Interlayer cations with the same atomic number are in opposite sides of the layer in both interlayers for \(X_{Na} = 0.5\) (Fig. 1). Compositions with \(X_{Na} = 0.25\) and 0.75 require a 2x1x2 supercell, with cations of the same atomic number in opposite sides in both interlayers (Hernández-Haro et al. 2013).

Computational methods

The Density Functional Theory (Hohenberg and Kohn 1964; Kohn and Sham 1965) calculations were performed with the SIESTA2.0.2 code (Sánchez-Portal et al. 1997; and Artacho et al. 1999; Soler et al., 2002). Periodic boundary conditions were applied to the crystal cells. The atomic groups and cell parameters were optimized together in the same simulation. Generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (Perdew et al. 1996) (PBE) correlation-exchange functional was used. A mesh cut-off of 500 Ry and 15 and 9 \(k\)-points in the Monkhorst Pack grid were found to be adequate to produce rapid convergence in the 84 and 168 atom cells, respectively. Our calculations were performed with numerical atomic orbitals, and double-\(\zeta\) plus polarization basis sets. Troullier-Martins norm-conserving pseudopotentials (Troullier and Martins 1991) were used. Muscovite-2\(M_1\) is monoclinic with a C2/c space group. All calculations were performed by fixing the desired pressure, and then optimizing cell parameters and atomic positions to reach convergence thresholds of forces and stresses (0.005 eV/Å and 0.002 GPa, respectively). The applied pressures ranged from -1 to 6.
GPa (negative values are tractions) in increments of 0.25 GPa between -1 and 1 GPa, and 0.5 GPa between 1 and 6 GPa.

The pseudopotentials and basis sets used here were previously optimized for a set of dioctahedral 2:1 phyllosilicates (Ortega-Castro et al. 2008, 2009). In a previous paper, the high-pressure behaviour of Ms was calculated in the local density approximation (LDA) with the Ceperley-Alder exchange-correlation functional (Ceperley and Alder 1980) and the GGA-PBE approach. The results showed that the GGA yielded cell parameters closer to the experimental data than LDA (Ortega-Castro et al. 2010; Hernández-Haro et al. 2013). In addition, White et al. (2009) demonstrated that the GGA functional yielded low energies and accurate geometries in kaolinite. Tunega et al. (2012) analysed the role of dispersion corrections in DFT calculations in talc, pyrophyllite, kaolinite and lizardite, employing different functionals with and without dispersion forces, and found that using the dispersion corrections produced better results, especially for c axis values. In those systems, where no cation substitutions were present, the atoms across the interlayer were linked mainly by van der Waals forces, whereas in the mica systems, where cations are present in the interlayer, the most important forces are the Coulomb forces, well described by DFT methods.

Equation of state

The bulk modulus, B_0, at P=0 GPa was calculated by fitting a Birch-Murnaghan (BM) equation of state to volumes and pressures [Birch, 1947, EOSFIT5.2 (Angel, 2000, 2001)]. The incompressibility of the cell-parameter linear moduli was also calculated by using a cubic crystal with a cell parameter equal to one of the monoclinic cell parameters, and fitting with the aid of EOSFIT 5.2 code (Angel 2000 and 2001). Most of the B_0 values were calculated from a third-order Birch-Murnaghan equation fitting (BM3).

Solid solutions
In a solid solution, the value of any cell parameter of any member, \(i \), of the solution can be expressed with respect to the end members by an ideal mixing law, which, for any cell parameter, is defined by Vegard’s law:

\[
a_i = \sum_j X_{ij} a_j
\] \hspace{1cm} (1)

where \(X_{ij} \) is the molar fraction of the \(j \) end member of the solid solution in any \(i \) member of solid solution. In our solid solution the numbers of end-members are two. A similar law is given for the volume of the crystal cell:

\[
V_i = \sum_j X_{ij} V_j
\] \hspace{1cm} (2)

Non-ideality can be expressed by mixing excess terms (Waldbaum and Thompson 1968), which for the case of two components in the solid solution can be written as:

\[
\Delta V_i^{\text{ex}} = W_{ij}(1 - X_{ij})
\] \hspace{1cm} (3a)

\[
\Delta V_i^{\text{ex}} = X_{ij}(1 - X_{ij})[W_1(1 - X_{ij}) + W_2 X_{ij}]
\] \hspace{1cm} (3b)

\(W \) are the Margules’ coefficients, where \(W \) at Eq. (3a) is considered a symmetric excess mixing term of a regular mixing model. In the Eq. (3b), \(W_1 \) and \(W_2 \) are asymmetric excess mixing terms (Waldbaum and Thompson 1968, Hernández-Haro et al. 2013) belonging to a subregular mixing model; \(W_1 \) is associated with the increasing concentration cation considered in the function, and \(W_2 \) is associated with the other cation.

The systematization of the bulk modulus as a function of the substitution-cation in the solid solution is established from Eq. (2) by calculating the derivative with respect to pressure, resulting in (Takahashi et al. 1970):

\[
\frac{V_i}{B_{0i}} = \sum_j X_{ij} \frac{V_j}{B_{0j}}
\] \hspace{1cm} (4)

where \(B_{0i} \) and \(B_{0j} \) are the bulk modulus of any member and one of the end members of the solid solution, respectively. This equation can be extrapolated to any modulus of the cell parameters, and to any other bond or atomic group \((u) \) of the crystal:
The Gibbs free energy of any member, i, of a solid solution, at a temperature (T) and pressure (P) is given by (Saxena et al. 1993, Fabrichnaya et al. 2004):

$$\Delta G_i^{\text{mix}}(T, P) = \sum_{j=1}^{n} X_{ij} G_j(T, P) + R T \left(\sum_{j=1}^{n} X_{ij} \ln X_{ij} \right) + \Delta G_i^{\text{ex}}(T, P)$$ \hspace{1cm} (6)

where n is the number of end members and G_j is the free energy of any end member forming the solid solution in an ideal mixing equation. The second term is the configurational entropy of the solid solution terms, and the last term is the excess free energy.

The excess of free energy is given by a Redlich-Kister approach (Redlich and Kister 1948, Ganguly 2008) by a function:

$$\Delta G_i^{\text{ex}}(T, P) = X_{ij} (1 - X_{ij}) \left[A + B \left(1 - 2X_{ij} \right) + C \left(1 - 2X_{ij} \right)^2 \right]$$ \hspace{1cm} (7)

Where the A, B and C coefficients are divided in enthalpy, entropy and volume contributions, such as: $A=A_{ij}+A_i T + A_i P$, and with B and C being coefficients of the same partition. Chatterjee and Flux (1986) and Roux and Hovis (1996) used this equation to study the Ms-Pg system.

Although the free energy and the dependence with temperature of the free energy can be calculated theoretically from zero point energy (ZPE) and thermal effects, the number of atoms of our crystal models requires substantial computational resources. For these reasons, excess free energy is calculated isobarically by a classical and semiempirical approach, adding our computational excess free energy coefficients (Eq. 7) depending on the pressure to the experimental enthalpy and entropy coefficients of Eq. (7).
Crystal structure at room pressure

Cell parameters and volume variation as a function of the Na\(^+\) content was studied in Hernández-Haro et al. (2013). The main results of that study are summarized and used here (Table 2) for consistency and for comparison purposes. Cell parameters \(a\), \(b\), \(0.5csin\beta\) and volumes in Ms and Pg at a pressure of 0 GPa were in agreement with the experimental and average. Tetrahedral cation-oxygen bond averages \(<\mathrm{T-O}>\) and octahedral aluminium–oxygen linkages averages \(<\mathrm{VIAl}^{3+}-\mathrm{O}>\) were in agreement with the experimental values \(<1\%\). Si and Al\(^{3+}\) tetrahedra, Al\(^{3+}\) octahedra volumes, and the Oc-, T-sheet, and interlayer thicknesses (Table 2) yielded values close to the experimental results. Average distances of interlayer cations with the further (outer) and closer (inner) basal oxygen atoms \(<\mathrm{X}^{-}\cdot\cdot\cdot\mathrm{O}_{\text{outer/inner}}\rangle\), \(\mathrm{X}^{-}=\mathrm{Na}^{+}\) or \(\mathrm{K}^{+}\) were consistent with the experimental data (Table 2). The behaviour of these distances with respect to \(X_{\mathrm{Na}}\) was approximately linear, decreasing with the Na\(^+\) content. Tetrahedral rotation, \(\alpha\), linearly increased with \(X_{\mathrm{Na}}\) (Table 2), the average values and slope of \(<\alpha>_{\mathrm{Na}}\) being higher than \(<\alpha>_{\mathrm{K}}\). This effect may be related to the highest charge/radius ratio of Na\(^+\) with respect to K\(^+\), which increases the tetrahedral rotation (Muñoz-Santiburcio et al. 2011).

The calculations were performed at 0 K and 0 GPa without any calculation of ZPE and thermal effects, although the experimental data are from samples at room temperature and pressure. The agreement may be related to error cancellation, owing to the basis set size, pseudopotentials, correlation-exchange functional parameters, and the remaining approximations. Nonetheless, the PBE correlation-exchange functional is a nonempirical GGA functional, which yields reliable results (Goerigk & Grimme, 2011), especially for cell volumes (Kurth et al. 1999).

Crystal structure at high pressure

\(Ms\)
The a axis values of Ms decrease as a function of pressure, being approximately linear from -1 GPa (Fig. 2a). They are compared with the experimental values in Fig. 2a. The calculated value of the a axis incompressibility modulus is 490.6 GPa (Table 3), which is larger than the experimental value of 337.8 GPa (Comodi and Zanazzi, 1995), and 400 GPa (Curetti et al., 2006). In this case, no temperature correction was applied to our value, which could yield smaller values of the modulus of the axis, and possibly be closer to the experimental value. In addition, the minerals of Comodi et al. 2002, Curetti et al. (2006), and Gatta et al. (2010) showed phengitic substitutions that could justify the differences with respect to our values. The value of the b axis as a function of pressure is close to the experimental values (Fig. 2a). The calculated incompressibility modulus (413.7 GPa, Table 3) of the b axis differs from the experimental values of 295.0 GPa (Comodi and Zanazzi, 1995) and 342 GPa (Curetti et al. 2006).

Values of $0.5csin\beta$ as a function of pressure show a small nonlinear behaviour (Fig. 2b), and values of compressibility show a quasi-parallel behaviour with the experimental values. However, experimental and computational values slightly diverge at high pressures. The incompressibility modulus of $0.5csin\beta$ shows a sharp decrease with respect to the a and b axes, 79.9 GPa (Table 3), which agree with the experimental value (88.2 GPa, Comodi and Zanazzi, 1995). This sharp decrease is related to the weak Coulomb forces in the interlayer, which soften the incompressibility modulus.

The differences between the calculated incompressibility moduli of a and b and experimental values may be related to three factors: 1) approximations of the DFT methods; 2) the EoS fitting procedure; and 3) a temperature correction is not applied to these calculated values. The temperature correction would surely soften the moduli, thereby making the computational values closer to the experimental values.

The volume as a function of pressure also agrees with the experimental values (Fig 2b). The calculated bulk modulus shows values of 60.0 GPa and 55.6 GPa (with temperature correction from Comodi et al. 2002), which agree with the range of experimental values (Table 1). The value of the first derivative of the bulk modulus with respect to pressure, B'_0, is 7.9 (Table S1), which may be consistent with the experimental value of phengite of 6.97 from Curetti et al. (2006), and Gatta et al. (2010), and 6.9 of Faust and Knittle (1994). The closer values between the bulk moduli and the $0.5csin\beta$ moduli indicate that the c cell parameter modulus determines the bulk
modulus. Thus, when pressure is applied to the crystal, the stiffness of the entire structure is dominated by the softest direction of the crystal, and this is where the interlayer is located in the phyllosilicates.

Na-rich Ms

The natural sample with a known experimental bulk modulus has $X_{Na} = 0.37$ (Comodi and Zanazzi, 1995, 1997), which is between the $X_{Na} = 0.25 – 0.5$ models. Values of a and b of the $X_{Na} = 0.25$ member as a function of pressure are in agreement with known experimental values (computational and experimental values of a, b, $0.5c\sin\beta$, and volume are seen in Figures S1a and S1b).

The values of a and b moduli of $X_{Na} = 0.25$ decrease as a function of the Na$^+$ content in the series (Table 3). Natural Na-rich Ms shows values (Comodi and Zanazzi, 1995) lower than both calculated values, following the same trend as in Ms (Table 3). An additional softening is expected with a temperature correction. In general, the values of B'_a for $X_{Na} = 0.25$ and $= 0.50$ are the lowest of the series (Table S1). The value of $0.5c\sin\beta$ modulus increases as a function of the Na$^+$ content (84.5 and 95.9 GPa, for $X_{Na} = 0.25$ and 0.50, respectively), owing to the smaller interlayer as a consequence of shorter ionic radius of the Na$^+$, the repulsive forces of the negative charged basal O atoms of both layers becoming greater. The experimental value of the c modulus for Na-rich Ms ($X_{Na} = 0.37$) is 98.9 GPa (Comodi and Zanazzi, 1995), which is close to our results for $X_{Na} = 0.5$.

Our calculated bulk moduli for X_{Na} is equal to 0.25 and 0.50 (60.3 and 62.7 GPa, respectively). The former is slightly higher than the Ms bulk modulus (Table 3). Both values are higher than the experimental bulk modulus of the Na-rich Ms sample, which is 60 GPa (Table 1 and 3). The temperature corrections (Comodi et al. 2002) yield values smaller than the experimental value (Table 3). Values of B'_0 of both models are similar to the value for Ms, indicating a similar variation rate for the resistance to the increasing hydrostatic pressure for this series of minerals (Table S1).
The values of B_{a0} and B_{b0} for $X_{Na} = 0.75$ and Pg ($X_{Na} = 1$) are lower than previous models, (Table 3), reaching values of 284.4 and 246.3 GPa, respectively. The 284.4 value agrees with the experimental value of Pg ($X_{Na} = 0.88$, Comodi and Zanazzi 1997). Values of B'_{0} of cell axes are close to the above models but, in general, they are the largest in the series (Table S1). The value of $B_{0.5scin\beta}$ is the largest in the series, reaching 128.4 GPa for Pg. The experimental value (Table 3) is between the values of $X_{Na} = 0.75$ and Pg. This large resistance of Pg to the compression along [001] may be a consequence of the shortest distances between the layers because of the smallest ionic radius of the full substitutions of K$^+$ by Na$^+$.

The bulk moduli of both samples are 65.1 and 65.2 GPa, which are equal to the experimental value of Comodi and Zanazzi (1997). By using a temperature correction (Comodi et al. 2002), these values are approximately 3 GPa lower than the experimental values.

The equilibrium volumes are generally calculated by minimization of the electronic energy, forces and stresses at 0 K. Small errors in the calculated 0 GPa and 0 Kelvin volumes would be magnified when calculating the bulk modulus; if V_0 is overestimated, B_0 is underestimated (Kurth et al. 1999). Nonetheless, we obtained consistent results, and where the errors seem to be larger, as in the cell parameter incompressibility moduli, they affect the bulk moduli minimally.

When the bulk moduli of polycrystalline samples of the series are determined from the computational elastic constants from the average (Hill, 1952) of the upper and lower limits of the Hashin-Shtrikman approach (Hashin and Shtrikman, 1962) different results are found: 68.4 and 68.8 GPa for Ms and Pg, respectively (with a minimum at the middle content of Na$^+$) (Hernández-Haro et al. 2013). However, when temperature corrections were empirically introduced, values are closer to the experimental results. Variations might be related to the approaches intrinsic to DFT calculations, the Hashin-Shtrikman model (Hashin and Shtrikman 1962) and the Hill average (Hill, 1952).

Compression process
Atomic groups compression

In general, the hydrostatic pressure compresses the entire crystal structure, the bonds, bond angles, atomic groups and polyhedra. Incompressibility moduli of bonds and atomic groups are calculated as the inverse of the compressibility values of the average deformations of bonds and atomic groups and fitted by the least square method to first, second and third order polynomials.

Our calculated Si/Al – Obasal/apical average distances decrease with pressure (average values as a function of pressure are in Figure S2), and have very high incompressibility moduli (Table 4). The Si – Oapical bonds are shorter than the Si – Obasal bonds. The IVAl - O bond distances are larger than the Si - O bonds, and the moduli smaller than for Si – O bonds (-33%). Overall, Al - O bonds show a similar behaviour as Si - O bonds. The Si/Al – O bond lengths as a function of pressure were studied by Comodi and Zanazzi (1995, 1997) and Guidotti et al. (2000), who found small negative compressibilities. Positive compressibilities were found in our work with high incompressibility moduli, distinguishing Si/Al – Obasal or Oapical bonds. It is well known that Si –O bonds are mostly incompressible (Levien and Prewitt, 1981; and Hazen and Finger, 1977) although, in some cases, this is dependent on the pressure range (Ralph and Ghose, 1980; and Hugh-Jones and Angel, 1994). Our high values of incompressibility in the Si/Al – O bonds may be considered the limit where a small compressibility could change from positive to negative values with small changes in the DFT electronic parameters.

The calculated <OH> bond distances are around 0.974 Å, which agrees with the experimental values of 0.998 Å (Mookherjee et al. 2002 in a 2M1 phengite). They are constants in the Ms-Pg series model (Hernández-Haro et al. 2013). When pressure is applied to the crystal, OH bonds enlarge, and a negative compressibility occurs, decreasing linearly with the Na⁺ content from \(X_{Na} = 0.25 \). The negative compressibility was observed in Ms by vibrational spectroscopy as a “bond softening” (Butler and Frost, 2006). From IR spectra, Williams et al. (2012) found that hydrogen bonding increases with pressure.

Volumes of the Si tetrahedra and their trend in the series agree with the experimental values (Table 4). Volumes decline with increasing pressure, whereas the experimental Si tetrahedron volumes show a minor increase for Pg, which is consistent
with the behaviour of Si/Al – O bonds. Volumes of Al\(^{3+}\) tetrahedra are larger and incompressibility moduli are smaller than the Si tetrahedra and show the same trend (Table 4).

The tetrahedral-sheet thickness (T-thick) values also agree with the experimental values (Table 4), decreasing with increasing pressure, similar to the experimental results; values of their moduli are higher than the experimental values.

Volumes of the octahedral polyhedra agree with the experimental values in Ms, but, in Pg, calculated volumes are slightly higher than the experimental values (Table 4), which decrease with pressure, in agreement with experimental values. The modulus of the octahedral volumes decreases with the Na\(^{+}\) content in the series, and they are higher than the experimental values. Octahedral-sheet thickness in Ms shows values similar to the experimental values (Table 4). Calculated incompressibility moduli are larger than the experimental values but they show the same behaviour with increasing Na\(^{+}\) content. The octahedral-sheet thickness is much more compressible than the tetrahedral sheet.

The \(\alpha\) angle increases with pressure. Calculated values at room pressure agree with the experimental observation (Table 2), and \(\alpha_K\) values (Fig. 3a) and slopes as a function of \(X_{Na}\) are smaller than \(\alpha_{Na}\). When pressure is higher, interlayer cations are introduced into the ring cavity, but because the ionic radius of Na\(^{+}\) is smaller than K\(^{+}\), tetrahedra must change their rotation to allow a better fit of the smaller Na\(^{+}\). Because the K\(^{+}\) cavities are located near the Na\(^{+}\) cavities, the former change their tetrahedral rotation as a consequence of the rotation of the latter, and this effect is propagated along the layer, causing a stabilizing/destabilizing effect in the cavities. At high pressures, this effect is magnified because the increasing value of \(\alpha\) as a function of pressure, \(\alpha_{K/Na}\) show negative compressibility. The incompressibility moduli of both \(\alpha_K\) and \(\alpha_{Na}\) are negative and decline as a function of the Na\(^{+}\) content in the series (Fig. 3b, Table 4). This effect is more pronounced in \(\alpha_K\).

The K\(^{+}/Na^{+}\) \(\cdots\) O\(_{\text{outer/inner}}\) bond distances yield moduli between 64 and 336 GPa (Table 4). The moduli of K\(^{+}/Na^{+}\) \(\cdots\) O\(_{\text{outer}}\) are larger than K\(^{+}/Na^{+}\) \(\cdots\) O\(_{\text{inner}}\), and Na\(^{+}\) \(\cdots\) O\(_{\text{outer}}\) modulus in Pg is the largest. Although the outer distances might be expected to be more compressible than the inner distances because they are larger, the inner O atoms
are more greatly affected by the Coulomb field of interlayer cations than the outer O, consequently showing greater compressibility. In general, Na\(^+\) \(\cdots\) O\(_{\text{outer/inner}}\) shows lower incompressibility moduli than K\(^+\) \(\cdots\) O\(_{\text{outer/inner}}\), with the exception of Na \(\cdots\) O\(_{\text{outer}}\) of Pg.

The key structural feature in phyllosilicates is the interlayer, which decreases as a function of Na\(^+\) content (Fig. 3c, Tables 1 and 4), but the slopes of the functions

\[
\text{interlayer thickness} = f(X_{Na})
\]

are smaller at increasing pressure. This behaviour is due to the small ionic radius of the Na\(^+\), which reduces the interlayer with its increasing of Na content. In the Pg end members the basal O atoms of both layers are sufficiently close and repulsion is larger. Thus the values at different pressures of the interlayer thicknesses are closer together at the Pg side than at the Ms side of Figure 3c.

The interlayer thickness incompressibility moduli are the smallest of the structure and agree with the experimental data (Table 4). In Ms, Williams et al. (2012) found two possible mechanisms of compression in the interlayer, below and above the range of 5-8 GPa. The interlayer-thickness/interlayer-thickness-modulus relationship [Eq. (5)] of the series decreases with \(X_{Na}\) (Fig. 3d), and is in agreement with the volume/bulk modulus relationship [Eq. (4)] of the series (Fig. 3e). This behaviour shows asymmetric mixing terms, indicating different mixing behaviour for the Ms and Pg sides of the Ms-Pg join.

There is disagreement between the calculated and experimental moduli of some structural features of the crystal but not with the interlayer moduli, indicating that the key structural feature determining the bulk modulus is the interlayer.

Compression mechanism

This series shows great anisotropy, with the bulk moduli of the \(a\) and \(b\) axes being 6.1-2.2 (Ms-Pg) times larger than \(B_{0.5\text{csio}}\). When pressure is applied, the interlayer decreases substantially, interlayer cations penetrate into the tetrahedral ring cavities, and \(\alpha\) changes accordingly. In addition, the K\(^+\)/Na\(^+\) \(\cdots\) O\(_{\text{inner/outer}}\) distances decrease (more for K\(^+\)/Na\(^+\) \(\cdots\) O\(_{\text{inner}}\) than K\(^+\)/Na\(^+\) \(\cdots\) O\(_{\text{outer}}\)). In the layer, the Oc sheet compresses to a larger extent than the T sheets, but to a much lesser extent than the interlayer. Pg members of the series show more resistance to hydrostatic pressure than Ms members of the series.
Solid solutions

Excess Volume of the Ms-Pg join

Chatterjee and Flux (1986) and Roux and Hovis (1996) used a Redlich-Kister mixing equation [Eq. (7)] to account for the G^{ex} of micas in the Ms-Pg join. In Eq (7)I^{ex} was reduced to a subregular model [Eq (3b)] because the coefficient dependent on the volume, C_v, was set to 0. Hernández-Haro et al. (2013) showed that the mixing volume of micas in the Ms-Pg join at 0 GPa followed a regular mixing law with small positive mixing terms. Our choice of a regular mixing volume equation instead of a subregular model equation was based on the smaller standard deviations obtained by the quadratic polynomial fitting relative to those obtained by the cubic polynomial. As shown below, the calculated excess volumes of micas in the Ms-Pg join indicate that neither the regular nor the subregular models are appropriate.

The excess volume of mixing on the Ms-Pg join is (Blencoe, 1977):

$$V^{ex}_{pi} = V_{pi} - \sum_{j=1}^{2} X_{ij} V_{pj}$$ \hspace{1cm} (16)

where V_{pi} are the calculated volumes of any member of the solid solution, V_{pj} are the volumes of the end members of the Ms-Pg join at the temperature and pressure of interest. For comparison to previous studies, we report the pressure in kbar and X_{ij} is the atomic fraction of K in the mica (V_{ex}-X_K) instead of the Na atomic fraction (V_{ex}-X_Na) which we have previously used. V_{ex} is calculated at 0, 2.5, 5.0, 7.5, 15, 30 and 60 kbar. V_{ex} at 0 and 60 kbar is depicted in Figs. 4a-b (in Figure S3 pressures of 7.5 and 15 kbar are shown). In general, the V_{ex} shows higher values for Na-rich than for K-rich members, and V_{ex} shows relative minima for pressures \leq7.5 kbar, and maxima for pressures \geq15 kbar. The largest V_{ex} for the richest Pg compositions may be related to the highest repulsions between the layers as a consequence of the smallest distances between them, because of the lower ionic radius of Na$^+$. The minima at the approximate center K$^+$ concentration at the low pressure Ms-Pg joins may arise from the symmetrical cation configurations imposed in our computational models. This result occurs from a balance of empty space in the K$^+$ and Na$^+$ cavities with the models being more consistent with the ideal mixing behaviour than its lower and upper concentration solid.
solution members. At high pressure, V^{ex} of the Pg-rich members are the largest in the series.

The high asymmetry indicates that the V^{ex} of the Ms-Pg solid solution could be better fitted to a Redlich-Kister model instead of subregular models, as determined by Blencoe (1977) for the $1M$ and $2M_1$ polytypes, Chatterjee and Froese (1975) for the $2M_1$ polytype for the end members of the solid solution, and Eugster et al. (1972) for the $1M$ polytype. Furthermore, in contrast to previous studies (Chatterjee and Flux 1986; and Roux and Hovis, 1996), the Redlich-Kister fitting of DFT V^{ex} requires $C_V \neq 0$, implying that a fourth degree polynomial is required to account for the variation of V^{ex} on the Ms-Pg join (Fig. 4a and d). However, the limited data points in the V^{ex}–X_K functions do not allow fitting except by a quartic polynomial interpolation of the DFT data. The A_V, B_V and C_V terms in Eq. (7) obtained with this interpolation are given in Table 5. The DFT A_V and B_V values are similar to those reported in previous experimental and thermodynamic studies using the Redlich-Kister model (Chatterjee and Flux 1986; Roux and Hovis, 1996), and those derived from Margules’ parameters of the subregular model for $1M$ polytypes (Bencloe, 1977; Chatterjee and Froese, 1975) (cf. Table 5). DFT results show the high asymmetry of V^{ex} and its strong pressure dependence. The V^{ex} data were obtained from the DFT calculations at 0 K, but the volumes at different temperatures were corrected by thermal expansion coefficients (Holland and Powell, 1998). The A_V, B_V and C_V are given in Table 5 at different temperatures (298 - 993 K). A_V and C_V present qualitatively distinct behaviour for low and high pressures (Table 5). In contrast, the B_V does not show any clear systematic variation with pressure and is always the smallest of the three coefficients.

Excess Free energy

Chatterjee and Flux (1986) and Roux and Hovis (1996) computed the G^{ex}, and the corresponding enthalpy, entropy and volume excess coefficients using a Redlich-Kister mixing model [Eq. (7)]. Roux and Hovis (1996) presented four models for the G^{ex}, depending on the number of variables, measurements, and samples introduced in the fitting. In their model A, they included all variables, measurements, and samples. Here, we compute G^{ex} in a semiempirical way, using in Eq. (7) the Roux and Hovis’ (1996) coefficients for excess enthalpy and excess entropy and our DFT coefficients for V^{ex}. Figure 5 shows the computed G^{ex} as a function of X_K for the A model of Roux and
Hovis (1996) at constant temperature (693 K) and selected pressures to 60 kbar. The
$G^e - X_k$ functions for Model A (Fig. 5) have two minima at all pressures, one for the Pg-
rich micas and the other for the Ms-rich micas. These minima are related to the bimodal
compositions of the Pg-Ms solvus at different pressures. The maxima between both
minima is approximately located at the center-composition phase, increasing their
relative values with respect to the minima at increasing pressure. The composition of
the minima are nearly constant to 7.5 kbar, and are increasingly displaced towards the
end-member components at higher pressures, indicating that the solvus and miscibility
gap in the Ms-Pg join widen with increasing pressure. This behaviour is consistent with
the observed evolution of the Pg-Ms solvus with pressure (Roux and Hovis, 1996).

The behaviour of the model with our V^{ex} coefficients is similar to the behaviour
found by Roux and Hovis’ (1996), but giving a quantitative change, especially at high
pressure, where more pure phases at high pressure are expected to be produced,
widening the gap of immiscibility of the join.

IMPLICATIONS

In this work, we compute for the first time the volume behaviour of this solid solution
using an atomistic approach based on first principle computational methods. We
demonstrate that this approach predicts accurately the volume and compressional
behaviour of the solid solution and compares well with macroscopic experimentally
derived parameters. Future work will apply first-principle modelling to more complex
solid solutions of white micas, to make possible the study of the behaviour of these
material in the Earth’s interior with high precision. Results will include the magnitudes
of solid solutions, structure, and elasticity as a function of pressure at the atomic level.
We further show that macroscopic parameters derived from first principles can be
combined with thermodynamic data in a semi-empirical way to better understand the
volume behaviour of the solid solution with pressure. This will allow the precise
determination of the solvus at high pressure with special applications to subduction
zone metamorphism.
In this work, the evolution of the solvus has been presented only at one temperature, because the dependence with temperature is obtained from experimental data. However, with less complex systems, where the free energy can be easily calculated, the solvus will be able to be calculated, which opens an important computational field to the study of solid solutions.

ACKNOWLEDGEMENTS

The authors thank Prof. S. Guggenheim for his kind and detailed review of this article. We would also like to thank to the “Centro de Supercomputación de Galicia” (CESGA), and “Centro de Servicios de Informática y Redes de Comunicaciones (CSIRC), Universidad de Granada”, for providing the computing time. This work was supported by Spanish MCINN and European FEDER grants CGL2005-02681 CGL2008-02850/BTE, FIS2013-48444-C2-2P, RMN1897 and TRA2009-0205, and by the regional agency ‘Junta de Andalucía’ for the RNM-264 and -363 PAI-grants.
References

Captions for the figures

Figure 1.- Crystal structure of the $X_{Na} = 0.5$ model of the Ms – Pg series. Sky- and navy-blue polyhedrons represent the Al$^{3+}$ and Si$^{4+}$ cation polyhedrons, respectively; the O, H, Na, and K atoms are represented by red, white, yellow, and purple spheres, respectively.

Figure 2.- (a) and (c) variation of a and b [Å], (b) and (d) 0.5csinβ (Å) (0.5csinbe or 0.5csb in the insets) and volume (V, Å3) of Ms and Pg, respectively, as a function of pressure. In the insets: jCZ1995 means values of parameter j from Comodi and Zanazzi (1995); j298Co2002 means values at 298K from Comodi et al. (2002); jGat2010 means from Gatta et al. (2010); and j20MRZ2001 means values at 20 °C from Mookherjee et al. (2001); where j is either a, b, 0.5csinβ/0.5csb or volume (Vol).

Figure 3.- (a) tetrahedral rotation ($α$, in degrees) in the Na$^+$ and K$^+$ cavities at 0, 3, and 6 GPa; (b) incompressibility modulus×(-1) (GPa) of tetrahedral rotation, $α$, in the Na$^+$ and K$^+$ cavities; (c) interlayer thickness (Å) at 0, 3, and 6 GPa; (d) Interlayer thickness/interlayer thickness modulus (Å/GPa); and (e) volume/bulk modulus ($Å^3$/GPa) as a function of Na$^+$ content in the series. Insets: least-square fitting equations, correlation coefficients (R or R^2), standard deviations (SD), and Margules’ coefficients (W_i).

Figure 4.- Excess volume V^{ex} (J/bar) at different pressures. (a) 0, and (b) 60 kbar as a function of X_K. Values in the insets are from interpolated quadratic polynomial, and A_V, B_V and C_V are the coefficients of Eq. (7) for the V^{ex}, at 298 K. Volumes have been corrected as a function of temperature (Holland and Powell, 1998).
Figure 5.- Excess free energy G^e (KJ/mol) at different pressures. Coefficients of enthalpy and entropy of Eq. (7) was taken from the Model A of Roux and Hovis (1996). Model A is calculated at 693 K.

Captions for the supplementary material figures

Figure S1.- (a) variation of a and b, (b) $0.5csin\beta$ (Å) ($0.5csin\beta$ or $0.5csb$ in the insets) and volume (V or Vol, Å3), of $X_{Na} = 0.25$ (Na-Ms), respectively, as a function of pressure. In the insets: $jCZ1995$ means values of parameter j from Comodi and Zanazzi (1995); where j is either a, b, $0.5csin\beta$ or $0.5csb$ or volume.

Figure S2.- Variation of SiIVAl – $O_{b(basal)/a(apical)}$ average distances (Å) as a function of pressure (GPa). Ms/Pg/NaMsT/OCZ95/97 mean tetrahedral cation O bond (Ti-O) distances from Ms, Pg or Na-rich Ms from Comodi and Zanazzi (1995) or (1997), where i means site 1 or 2.

Figure S3.- Excess volume V^e (J/bar) at different pressures as a function of X_K. (a) 7.5 kbar, and (b) 15 kbar. Values in the insets are from interpolated quadratic polynomial, and A_V, B_V and C_V are the coefficients of Eq. (7) for the V^e, at 298 K. Volumes have been corrected as a function of temperature (Holland and Powell, 1998).
Table 1.- Bulk modulus (B_0 in GPa) and their derivatives with respect to pressure [B_0', B_0'' (GPa$^{-1}$)] first and second derivative of B_0 with respect to pressure in brackets] values for Ms and Pg from different experimental and computational studies.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Ms</th>
<th>Pg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaughan et al. (1986)</td>
<td>58.2a</td>
<td></td>
</tr>
<tr>
<td>Sekine et al. (1991)</td>
<td>52b (3.2)</td>
<td></td>
</tr>
<tr>
<td>Faust and Knittle (1994)</td>
<td>61.4cd (6.9)</td>
<td></td>
</tr>
<tr>
<td>Catti et al. (1994)</td>
<td>56e (4)</td>
<td></td>
</tr>
<tr>
<td>Comodi & Zanazzi (1995, 1997)</td>
<td>56.0cf, 60.0cf,g</td>
<td>65.5cf,h</td>
</tr>
<tr>
<td>Smyth et al., (2000) Phengite</td>
<td>57c (9.2)</td>
<td></td>
</tr>
<tr>
<td>Comodi et al. (2002)</td>
<td>57.0cd</td>
<td>59.9cd</td>
</tr>
<tr>
<td>Curetti et al. (2006), Phengite</td>
<td>57.3cd (6.97)</td>
<td></td>
</tr>
<tr>
<td>Gatta et al. (2010)</td>
<td>57.3cf (6.97)</td>
<td></td>
</tr>
<tr>
<td>Phengite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ortega-Castro et al. (2010)</td>
<td>60.1l (7.3), 55.7l</td>
<td></td>
</tr>
<tr>
<td>Holland & Powell (2011)</td>
<td>49.0 (4.15, -0.085), 51.5 (6.51, -0.126)</td>
<td></td>
</tr>
<tr>
<td>Teich-McGoldrick et al. (2012)</td>
<td>59.8k</td>
<td></td>
</tr>
<tr>
<td>Hernández-Haro et al. (2013)</td>
<td>68.4l, 64.0l</td>
<td>68.8l, 65.5l</td>
</tr>
</tbody>
</table>

a Brillouin scattering.

b Shock wave.

c X-Ray diffraction.

d Neutron diffraction.

e Powdered sample.

f Monocrystal sample.

g Na-rich Ms, Na 0.37 per formula unit (pfu).

h Na 0.88 pfu.
DFT.

An estimate of the bulk modulus at 298 K from Comodi et al. (2002).

Molecular dynamics simulations.

DFT and Hashin-Shtrikman (1962)-Hill (1952) approaches.
Table 2. Calculated and experimental structural parameters of Ms-Pg series (lengths in Å, angles in degrees, and volumes in Å³). $X_{Na} = Na^+/(Na^++K^+)$.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Experimental</th>
<th>Experimental</th>
<th>$X_{Na} =$0.0</th>
<th>0.25</th>
<th>0.5</th>
<th>0.75</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>5.174-5.226</td>
<td>5.128-5.135</td>
<td>5.187</td>
<td>5.176</td>
<td>5.160</td>
<td>5.152</td>
<td>5.123</td>
</tr>
<tr>
<td>β</td>
<td>95.59-95.84</td>
<td>94.35-94.6</td>
<td>95.44</td>
<td>95.55</td>
<td>95.55</td>
<td>94.08</td>
<td>94.02</td>
</tr>
<tr>
<td>Volume</td>
<td>926-945.4</td>
<td>877.51-883.6</td>
<td>936.999</td>
<td>922.829</td>
<td>906.007</td>
<td>889.581</td>
<td>868.767</td>
</tr>
<tr>
<td>T-O</td>
<td>1.64</td>
<td>1.653</td>
<td>1.651, 1.757</td>
<td>1.649, 1.758</td>
<td>1.675, 1.761</td>
<td>1.653, 1.763</td>
<td>1.655, 1.766</td>
</tr>
<tr>
<td>M-O</td>
<td>1.927-1.94</td>
<td>1.908-2.221</td>
<td>1.934</td>
<td>1.922</td>
<td>1.931</td>
<td>1.920</td>
<td>1.926</td>
</tr>
<tr>
<td>M-OH</td>
<td>1.911</td>
<td>1.896</td>
<td>1.918</td>
<td>1.918</td>
<td>1.912</td>
<td>1.911</td>
<td>1.903</td>
</tr>
<tr>
<td>K···Oouter</td>
<td>3.272-3.373</td>
<td>-</td>
<td>3.427</td>
<td>3.402</td>
<td>3.384</td>
<td>3.372</td>
<td>-</td>
</tr>
<tr>
<td>K···Oinner</td>
<td>2.832-2.934</td>
<td>-</td>
<td>2.759</td>
<td>2.721</td>
<td>2.680</td>
<td>2.624</td>
<td>-</td>
</tr>
<tr>
<td>ΔK</td>
<td>0.426-0.509</td>
<td>-</td>
<td>0.668</td>
<td>0.681</td>
<td>0.704</td>
<td>0.748</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Na···Oinner</td>
<td>2.624-2.642</td>
<td>2.680</td>
<td>2.618</td>
<td>2.514</td>
<td>2.474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ΔNa</td>
<td>0.746-0.732</td>
<td>0.758</td>
<td>0.789</td>
<td>0.838</td>
<td>0.883</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrahedral rotation αK, αNa(º)</td>
<td>10.3 - 11.3</td>
<td>16,16.2 - 19</td>
<td>14.6</td>
<td>15.1, 15.8</td>
<td>15.5, 16.7</td>
<td>16.5, 17.5</td>
<td>18.8</td>
</tr>
<tr>
<td>V(T) Si,Al (Å³)</td>
<td>2.32</td>
<td>2.273, 2.774</td>
<td>2.274, 2.784</td>
<td>2.282, 2.794</td>
<td>2.283, 2.810</td>
<td>2.298, 2.824</td>
<td></td>
</tr>
<tr>
<td>Tetrahedral-sheet thickness (Å)</td>
<td>2.262</td>
<td>2.243</td>
<td>2.277</td>
<td>2.265</td>
<td>2.271</td>
<td>2.248</td>
<td>2.237</td>
</tr>
<tr>
<td>Octahedral-sheet thickness (Å)</td>
<td>2.083</td>
<td>2.078-2.085</td>
<td>2.093</td>
<td>2.090</td>
<td>2.089</td>
<td>2.115</td>
<td>2.144</td>
</tr>
<tr>
<td>Interlayer thickness (Å)</td>
<td>3.375</td>
<td>3.053-3.090</td>
<td>3.361</td>
<td>3.273</td>
<td>3.128</td>
<td>3.021</td>
<td>2.867</td>
</tr>
</tbody>
</table>

a V(T) means volume of the tetrahedral sheet, V(Oc) is the volume of octahedral sheet; τ = Obasal-T-Oapical bond angles; Tetrahedral rotation α(º) = \(\frac{1}{6}\sum_{i=1}^{6}[120º - (O_T-O_T-O_T)i]\); Tetrahedral-sheet thickness (Å) = \((\text{mean z coordinate of the "upper" basal O}) - (\text{mean z coordinate of the "lower" apical O})\)\(\text{csinβ}\); octahedral-sheet thickness (Å) = \((\text{mean z coordinate of "upper" O or OH in the octahedral sheet}) - (\text{mean z coordinate of "lower" O or OH in the octahedral sheet})\)\(\text{csinβ}\).

b Burnham and Radoslovish (1964) K_{0.66}Na_{0.34}Al_2(AlSi_3)O_{10}(OH)_2; Rothbaher (1971) K_{0.85}Na_{0.1}Al_{1.81}Fe_{0.14}Mg_{0.12}(Al_{0.9}Si_{3.1})O_{10}(OH)_2; Guggenheim et al. (1987) K_{0.93}Na_{0.08}Al_{1.83}Fe_{0.16}Mg_{0.01}(Al_{0.90}Si_{3.10})O_{10}(OH)_{1.83}F_{0.17}; Catti et al. (1989) K_{0.86}Na_{0.1}(Al_{1.93}Fe_{0.07}Mg_{0.02})(Al_{0.92}Si_{3.08})O_{10}(OH)_2; Catti et al. (1994) K_{0.90}Na_{0.07}Al_{1.63}Fe_{0.23}Mg_{0.16}Ti_{0.03}(Al_{0.91}Si_{3.09})O_{10}(OH)_2; Guidotti et al. (1992); Brigatti et al. (1998) Different compositions; Mukherjee and Redfern (2002) K_{0.95}Na_{0.05}Al_{0.75}Fe_{0.14}Mg_{0.10}(Al_{0.75}Si_{3.25})O_{10}(OH)_{1.96}F_{0.04}.

c Comodi and Zanazzi (1997) Na_{0.88}K_{0.10}Ca_{0.02}B_{0.01}Fe_{0.02}Si_{3.01}Al_{0.99}O_{10}(OH)_2; Guidotti et al. (1992); Lin & Baley (1984) K_{0.04}Na_{0.16}Ca_{0.02}Si_{2.93}Al_{1.06}O_{10}(OH)_2.

d Comodi and Zanazzi (1995) K_{0.9}Na_{0.07}Ba_{0.02}Fe_{0.01}Si_{3.01}Al_{0.99}O_{10}(OH)_2.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Table 3.- Bulk moduli (\(B_0\) in GPa) and cell parameter moduli (\(B_a\), \(B_b\), and \(B_0.5\sin\beta\) in GPa) at 0 and 6 Gpa of the Ms-Pg series. Temperature correction for bulk moduli comes from Comodi et al. (2002), considering, in an initial approach, linearity from 0K.

<table>
<thead>
<tr>
<th></th>
<th>(x = 0.0)</th>
<th>(x = 0.25)</th>
<th>(x = 0.5)</th>
<th>(x = 0.75)</th>
<th>(x = 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0 GPa)</td>
<td>490.6</td>
<td>444.9</td>
<td>369.8</td>
<td>324.6</td>
<td>284.4</td>
</tr>
<tr>
<td>(6 GPa)</td>
<td>444.9</td>
<td>452.7</td>
<td>386.0</td>
<td>356.4</td>
<td>319.84</td>
</tr>
<tr>
<td>(exp)</td>
<td>337.8(^a), 400(^b)</td>
<td>342.5(^c)</td>
<td>285.7(^d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B_b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0 GPa)</td>
<td>413.7(^c)</td>
<td>365.8</td>
<td>322.1</td>
<td>276.5</td>
<td>246.3</td>
</tr>
<tr>
<td>(6 GPa)</td>
<td>437.7</td>
<td>385.0</td>
<td>349.1</td>
<td>304.7</td>
<td>284.1</td>
</tr>
<tr>
<td>(exp)</td>
<td>295.0(^a), 342(^b)</td>
<td>287.3(^c)</td>
<td></td>
<td></td>
<td>277.8(^d)</td>
</tr>
<tr>
<td>(B_0.5\sin\beta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0 GPa)</td>
<td>79.9</td>
<td>84.5</td>
<td>95.9</td>
<td>115.8</td>
<td>128.4</td>
</tr>
<tr>
<td>(6 GPa)</td>
<td>111.7</td>
<td>122.9</td>
<td>137.9</td>
<td>151.2</td>
<td>166.8</td>
</tr>
<tr>
<td>(exp)</td>
<td>88.2(^e), 86.9b(^f)</td>
<td>98.9c(^e),f</td>
<td>120.4d(^f)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B_0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0 GPa)</td>
<td>60.0</td>
<td>60.3</td>
<td>62.7</td>
<td>65.1</td>
<td>65.2</td>
</tr>
<tr>
<td>(0 GPa, 298K)</td>
<td>55.6</td>
<td>56.2</td>
<td>58.9</td>
<td>61.6</td>
<td>62.0</td>
</tr>
<tr>
<td>(B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6 GPa)</td>
<td>93.8</td>
<td>94.4</td>
<td>97.1</td>
<td>97.5</td>
<td>98.2</td>
</tr>
<tr>
<td>(6 GPa, 298K)</td>
<td>103.12</td>
<td>105.3</td>
<td>106.1</td>
<td>101.1</td>
<td>103.6</td>
</tr>
</tbody>
</table>

\(^a\) From K\(_{0.9}\)Na\(_{0.05}\)Ba\(_{0.01}\)O\(_{10}\)(OH)\(_2\) Comodi and Zanazzi (1995)

\(^b\) From K\(_{0.98}\)Na\(_{0.02}\)(Al\(_{1.55}\)Mg\(_{0.24}\)Fe\(_{0.21}\)Ti\(_{0.02}\))O\(_{10}\)(OH)\(_2\) Curetti et al. (2006).

\(^c\) From K\(_{0.6}\)Na\(_{0.37}\)O\(_{10}\)(Al\(_{1.84}\)Ti\(_{0.02}\)Mg\(_{0.06}\)Mn\(_{0.002}\)Fe\(_{0.002}\))O\(_{10}\)(OH)\(_2\) Comodi and Zanazzi (1995)

\(^d\) From K\(_{0.01}\)Fe\(_{0.01}\)Mg\(_{0.002}\)Si\(_{0.002}\)O\(_{10}\)(OH)\(_2\) Comodi and Zanazzi (1997)

\(^e\) Birch-Murnagham second-order equation

\(^f\) c axe.
Table 4.- Values of average \(<i>\) bond distances (Å), volumes (Å³) tetrahedral distortion angle (α °), and atomic groups at a pressure of 0 and 6 GPa, incompressibility moduli of the average variable \(<i>\) (GPa) of Ms (Mod. Ms) and Pg (Mod. Pg); a and b subindexes under O mean apical and basal oxygens, respectively.

<table>
<thead>
<tr>
<th>Group</th>
<th>Ms (<i>0,6>)</th>
<th>Pg (<i>0,6>)</th>
<th>Mod. Ms</th>
<th>Mod. Pg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 GPa</td>
<td>6 GPa</td>
<td>0 GPa</td>
<td>6 GPa</td>
</tr>
<tr>
<td>Si-O_b</td>
<td>1.653, 1.640</td>
<td>1.659, 1.651</td>
<td>775.2</td>
<td>1802.8</td>
</tr>
<tr>
<td>Si-O_a</td>
<td>1.646, 1.637</td>
<td>1.647, 1.639</td>
<td>1173.7</td>
<td>1000.0</td>
</tr>
<tr>
<td>IVI-Al-O_b</td>
<td>1.754, 1.737</td>
<td>1.768, 1.754</td>
<td>520.8</td>
<td>751.9</td>
</tr>
<tr>
<td>IVI-Al-O_a</td>
<td>1.763, 1.750</td>
<td>1.760, 1.748</td>
<td>781.2</td>
<td>925.9</td>
</tr>
<tr>
<td>T – O exp</td>
<td>1.646, 1.64</td>
<td>1.652, 1.66 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K···O inner</td>
<td>2.760, 2.611</td>
<td>2.680, 2.551 c</td>
<td>74.8</td>
<td>88.3 c</td>
</tr>
<tr>
<td>K···O outer</td>
<td>3.442, 3.356</td>
<td>3.310, 3.256 c</td>
<td>156.2</td>
<td>290.0 c</td>
</tr>
<tr>
<td>Na···O inner</td>
<td>2.706, 2.535 d</td>
<td>2.535, 2.370 d</td>
<td>64 d</td>
<td>64.7</td>
</tr>
<tr>
<td>V(Td)Si</td>
<td>2.273, 2.221</td>
<td>2.297, 2.265</td>
<td>262</td>
<td>463</td>
</tr>
<tr>
<td>V(T)Si V(T)Si exp</td>
<td>2.28, 2.27 a</td>
<td>2.31, 2.35 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V(T)Al</td>
<td>2.774, 2.697</td>
<td>2.824, 2.760</td>
<td>210.1</td>
<td>267.4</td>
</tr>
<tr>
<td>V(Oc) e</td>
<td>9.388, 9.212</td>
<td>9.283, 9.065</td>
<td>318</td>
<td>224</td>
</tr>
<tr>
<td>V(Oc) exp</td>
<td>9.319,0.04 a</td>
<td>9.10, 8.6 b</td>
<td>105 f</td>
<td>65.9 f</td>
</tr>
<tr>
<td>α_K</td>
<td>14.6, 15.2</td>
<td>16.5, 18.4 c</td>
<td>- 92</td>
<td>- 40 c</td>
</tr>
<tr>
<td>α_Na</td>
<td>15.8, 17.6 d</td>
<td>18.9, 21.3 d</td>
<td>- 47 d</td>
<td>- 33.5</td>
</tr>
<tr>
<td>T-thick e</td>
<td>2.277, 2.262 a</td>
<td>2.237, 2.226 b</td>
<td>917</td>
<td>1828.1</td>
</tr>
<tr>
<td>T-thick exp</td>
<td>2.262, 2.237</td>
<td>2.243, 2.25</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>Oc-thick e</td>
<td>2.093, 2.069</td>
<td>2.144, 2.107</td>
<td>483</td>
<td>248.7</td>
</tr>
<tr>
<td>Oc-thick exp</td>
<td>2.083, 2.047 a</td>
<td>2.085, 1.98 b</td>
<td>159 f</td>
<td>78 f</td>
</tr>
<tr>
<td>Interlayer-thick e</td>
<td>3.361, 2.954</td>
<td>2.867, 2.632</td>
<td>32</td>
<td>51.1</td>
</tr>
<tr>
<td>Interlayer-thick exp</td>
<td>3.375, 3.128 a</td>
<td>3.090, 2.81 b</td>
<td>37.6 f</td>
<td>44.7 f</td>
</tr>
</tbody>
</table>
a Ms at 0.0001 and 2.8 GPa, Comodi and Zanazzi (1995)
b Pg at 0.0001 and 4.05 GPa, Comodi and Zanazzi (1997)
c Values $X_{Na} = 0.75$
d Values $X_{Na} = 0.25$
e $V(T)Si/Al = Volume$ of the Si/Al tetrahedra, $V(Oc) = Volume$ of the octahedral, T/Oc-thick = Tetrahedral/Octahedral-sheet thickness, Interlayer-thick = Interlayer thickness
f Incompressibility modulis estimated from the values of Comodi and Zanazzi (1995) and (1997)
Table 5.- A_V, B_V and C_V coefficients (J/bar) of Eq. (7) at different pressures (kbar) and temperatures (K).

<table>
<thead>
<tr>
<th>Mod</th>
<th>P (kbar)</th>
<th>T (K)</th>
<th>A_V</th>
<th>B_V</th>
<th>C_V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>8</td>
<td>677-943</td>
<td>0.2760</td>
<td>-0.0372</td>
<td>-</td>
</tr>
<tr>
<td>C&Fb</td>
<td>1-7</td>
<td>848-1008</td>
<td>0.1044</td>
<td>-0.5606</td>
<td>-</td>
</tr>
<tr>
<td>C&Fc</td>
<td>5-7</td>
<td>723-893</td>
<td>0.2359</td>
<td>-0.084</td>
<td>-</td>
</tr>
<tr>
<td>A (R&H)d</td>
<td>1.0-9.0</td>
<td>853-973</td>
<td>0.350</td>
<td>0.037</td>
<td>-</td>
</tr>
<tr>
<td>This worke</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>298</td>
<td></td>
<td>0.190</td>
<td>0.070</td>
<td>0.315</td>
</tr>
<tr>
<td>0.0</td>
<td>693</td>
<td></td>
<td>0.196</td>
<td>0.071</td>
<td>0.320</td>
</tr>
<tr>
<td>0.0</td>
<td>793</td>
<td></td>
<td>0.198</td>
<td>0.072</td>
<td>0.322</td>
</tr>
<tr>
<td>0.0</td>
<td>893</td>
<td></td>
<td>0.200</td>
<td>0.072</td>
<td>0.323</td>
</tr>
<tr>
<td>0.0</td>
<td>993</td>
<td></td>
<td>0.202</td>
<td>0.073</td>
<td>0.325</td>
</tr>
<tr>
<td>2.5</td>
<td>298</td>
<td></td>
<td>0.181</td>
<td>0.050</td>
<td>0.390</td>
</tr>
<tr>
<td>5.0</td>
<td>298</td>
<td></td>
<td>0.192</td>
<td>0.056</td>
<td>0.390</td>
</tr>
<tr>
<td>7.5</td>
<td>298</td>
<td></td>
<td>0.188</td>
<td>0.047</td>
<td>0.332</td>
</tr>
<tr>
<td>15.0</td>
<td>298</td>
<td></td>
<td>0.217</td>
<td>0.119</td>
<td>0.139</td>
</tr>
<tr>
<td>30.0</td>
<td>298</td>
<td></td>
<td>0.226</td>
<td>0.092</td>
<td>0.161</td>
</tr>
<tr>
<td>60.0</td>
<td>298</td>
<td></td>
<td>0.213</td>
<td>0.065</td>
<td>0.079</td>
</tr>
</tbody>
</table>

a Blencoe (1977), from his Margules’ coefficients.

b Chatterjee and Froese (1975), from their Margules’ coefficients.

c Chatterjee and Flux (1986).

e Volumes have been corrected as a function of temperature (Holland and Powell, 1998).
Figure 1

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Figure 2a
Figure 2c
Figure 3b

mod. $\alpha_K = 91-72x$
R=-0.99; SD=4.3

mod. $\alpha_{Na} = 50-19x$
R=-0.92; SD=3.2

Na/(Na+K)
Figure 3c

Int thickness$^{0\text{GPa}} = 3.38 - 0.50x$

R = -0.996; SD = 0.019

Int thickness$^{6\text{GPa}} = 2.97 - 0.32x$

R = -0.99; SD = 0.023
interlayer thick./Interlayer thick. modulus = 0.104 - 0.13X^2 + 0.09 X^3
R^2 = 0.9994; SD = 0.0010
W_1 = -0.04; W_2 = 0.05

Figure 3d
$Y = 15.62 + 0.3X - 7.7X^2 + 5.2X^3$

$R^2 = 0.9998; SD = 0.026$

$W_1 = 2.5; W_2 = 2.7$
\[Y = 0.575 X - 1.977 X^2 + 2.664 X^3 - 1.262 X^4 \]
\[A_V = 0.190 \quad B_V = 0.070 \quad C_V = 0.315 \]
$Y = +0.358 \times -0.805 \times X + 0.764 \times X^2 - 0.317 \times X^3$

$A_v = 0.213; B_v = 0.065; C_v = 0.079$