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ABSTRACT 26 

The accuracies of two different approaches to model thermodynamic mixing properties of 27 

solid-solutions are explored using the rutile-cassiterite solid solution as an example. Both 28 

methods employ an expansion of the configurational enthalpy in terms of pairwise 29 

interactions energies. In the first method the partition function is directly computed from 30 

the excess energies of all Ti/Sn configurations within a 2 × 2 × 4 supercell. In the second 31 

method the free energy of mixing is calculated by a thermodynamic integration of the 32 

thermally averaged enthalpies computed with the Monte Carlo method using an 8 × 12 × 33 

16 supercell. The phase relations derived from Monte Carlo simulations agree well with 34 

the available experimental data, under the condition that the free energy is corrected for 35 

the effect of the excess vibrational entropy. The direct calculation of the partition 36 

function provides reasonable phase relations only when the configurational entropy is 37 

corrected to be consistent with the ideal mixing in the high-temperature limit. Advantages 38 

and drawbacks of the both approaches are discussed. The findings are generally 39 

applicable to models of isostructural solid solutions. 40 

41 
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1. INTRODUCTION46 

Rutile-based solid solutions are important as geothermometers. The concentrations of 47 

certain trace elements, such as Zr, in rutile serve as indicators of the formation 48 

temperatures of its host rock (Cherniak et al., 2007; Watson et al., 2006; Zack et al., 49 

2004a, 2004b). Rutile is also one of the main mineral phases of synroc, the synthetic 50 

ceramics proposed for nuclear waste storage (Ringwood et al., 1979a, 1979b; Xu and 51 

Wang, 2000; Zhang et al., 2001). Solid solutions with the rutile structure also attract 52 

attention as promising candidate materials for photocatalytic and photoelectrochemical 53 

energy conversion (Carp et al., 2004; Fujishima and Honda, 1972). The photocatalytic 54 

and semiconducting properties of TiO2 can be modified by doping with various elements. 55 

Hence, it is important to understand the thermodynamic properties of this solid solution, 56 

and it is well suited as a benchmark to test different modelling approaches aimed at 57 

elucidating the properties of isostructural solid solutions. 58 

In this study, a variety of state-of-the-art modelling approaches is applied to predict the 59 

extent of the miscibility gap in the rutile-cassitertite solid solution. The main focus is on 60 

methodical issues. Thermodynamic functions, which determine the stability of a solid 61 

solution, could be computed with methods of statistical mechanics if the energy spectrum 62 

of possible configurations of exchangeable atoms is known with sufficient detail. In 63 

essence, a model must provide the possibility to evaluate the energy and the Boltzmann 64 

weight of any configuration of exchangeable atoms within a supercell of a reasonably 65 

large size. However, practically, this detailed configuration-dependent information can be 66 

obtained only by computations based on first principles, while a direct sampling of all 67 

configurations within a large supercell (i.e. the computation of their energies ab initio) is 68 
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currently not feasible. In general, two main strategies are used to overcome this problem. 69 

One strategy is to directly compute the energies of all configurations, but within a 70 

supercell of manageable (smaller) size. The alternative way is to take a sufficiently large 71 

supercell, explicitly compute a small set of configurations and employ an interpolation 72 

method with which the energy of any configuration can be approximately estimated. For 73 

the second alternative there are two further options. Using an interpolation equation one 74 

can calculate the energies of all configurations and directly compute the partition function 75 

(Becker et al., 2000; Prieto et al., 2000), or apply a Monte Carlo (importance sampling) 76 

algorithm to compute approximately the equilibrium enthalpy of mixing and then 77 

evaluate the free energy indirectly by a thermodynamic integration (Bosenick et al., 2001; 78 

Dove, 2001; Myers, 1998; Reich and Becker, 2006; Warren et al., 2001). One of the aims 79 

of this study is to compare the advantages and disadvantages of the last two approaches. 80 

We adopt the following strategy. At first we explicitly compute the excess energies of 20 81 

specially chosen structures within a 2 × 2 × 4 supercell (32 cations) using density 82 

functional theory (DFT). Then we employ an interpolation method known as the J-83 

formalism (Becker et al., 2000; Bosenick et al., 2000, 2001; Dove, 2001; Dove et al., 84 

1996, 2000) to compute the pairwise interactions (i.e. the energies of the exchange 85 

reactions SnSn + TiTi = 2SnTi) at all distances within a 2 × 2 × 4 supercell of rutile. 86 

These energies are then used to derive a generalized Ising-type Hamiltonian of this 87 

system, to compute the energies of all possible configurations of Sn and Ti in the 2 × 2 × 88 

4 supercell of rutile and to evaluate the partition function. A correction procedure after 89 

Becker et al. (2000) is applied to thermodynamics of mixing to make it consistent with 90 

the regular mixing behavior in the high-temperature limit. The same Hamiltonian is then 91 
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applied to compute the thermodynamic functions of the system with the aid of the Monte 92 

Carlo method by employing an 8 × 12 × 16 supercell. Finally, phase diagrams predicted 93 

with the both methods are compared to available experimental data (Garcia and Speidel, 94 

1972; Naidu and Virkar, 1998; Padurow, 1956; Park et al., 1975). 95 

96 

2. STATE-OF-THE-ART MODELLING APPROACHES97 

2.1. Configuration dependent and configuration independent approaches.  98 

Although all configurations are needed for an adequate model, a variety of configuration-99 

independent approaches exist. At an infinitely high temperature the Boltzmann weights of 100 

all configurations are equal and the distribution of exchangeable atoms over the lattice is 101 

perfectly random. The mixing behavior of such a solid solution can be assessed with the 102 

help of a quasi-random structure (Jiang, 2008; Wei et al., 1990; Zunger et al., 1990). A 103 

similar randomization occurs in a diluted solution, although for a different reason. The 104 

mixing properties in the dilute limit can be accurately estimated from the excess energy 105 

of a supercell structure of a pure (host) phase containing a single substitutional defect of a 106 

solute component (Sluiter and Kawazoe, 2003; Vinograd et al., 2013). The solid solution 107 

behavior both in the dilute and high-temperature limits can be adequately modeled with 108 

the regular or subregular model (Ganguly, 2001). The configuration independent methods 109 

provide very useful information on the limiting cases and can serve as good tests for the 110 

performance of more sophisticated models. 111 

Configuration dependent approaches can be subdivided into two groups. The first group 112 

of methods attempts a direct evaluation of the partition function and the related 113 

thermodynamic quantities by sampling all configurations within a supercell (Grau-114 
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Crespo et al., 2004, 2007; Liu et al., 2015; Todorov et al., 2004), while other methods 115 

compute the energies of only a limited set of configurations and, based on this set, 116 

evaluate the energies of the remaining majority of configurations via a parameterized 117 

equation (Becker et al., 2000; de Fontaine, 1992, 1994;; Finel, 1994; Laks et al., 1992; 118 

Sanchez and de Fontaine, 1978; Sanchez et al., 1984; van de Walle and Ceder, 2002a; 119 

Vinograd et al., 2007). Within the second group of methods there are variants, which 120 

depend on the approach chosen for the parameterization. One approach, which is now 121 

extensively used within materials science, is known as the cluster expansion (de Fontaine, 122 

1994; de Fontaine et al., 1992; Finel, 1994; Laks et al., 1992; Sanchez and de Fontaine, 123 

1978; Sanchez et al., 1984; van de Walle and Asta, 2002; van de Walle and Ceder, 2002a, 124 

2002b). A similar approach, known as the J-formalism became popular in geosciences 125 

(Becker et al., 2000; Bosenick et al., 2000; Bosenick et al., 2001; Dove, 2001; Dove et 126 

al., 1996, 2000; Ferriss et al., 2010; Jung et al., 2010; Kulik et al., 2010; Reich and 127 

Becker, 2006; Renock and Becker, 2011; Vinograd et al., 2007, 2009). Both approaches 128 

are briefly outlined below. 129 

130 

2.2. Cluster expansion method and the J-formalism method.  131 

The formalism of the cluster expansion method introduces the occupation variables σi, 132 

which take values 1 or –1 depending on whether a lattice point i is occupied by A or B 133 

atom. A cluster α is defined as a set of points i,j,k…, which has a certain fixed location 134 

within the lattice and forms a figure of a certain shape (point, pair, triangle, tetrahedron, 135 

etc.). The configuration σi, σj, σk… of a cluster α can be associated with the cluster 136 

function 137 
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  ϕα (σ ) = σ iσ jσ k ...   (1) 138 

It is shown that the cluster functions are orthonormal with respect to the scalar product 139 

〈φα(σ)φβ(σ)〉 defined as the normalized sum of products φα(σ)φβ(σ) over all cluster140 

configurations (de Fontaine, 1994; de Fontaine et al., 1992; Sanchez et al., 1984). From 141 

this orthonormality it follows that any function of configuration of a supercell, such as its 142 

enthalpy, can be expanded as 143 

H(σ) = Jαϕα (σ)
α
∑   (2) 144 

where  145 

  Jα = ϕα (σ)H(σ)    (3) 146 

The macroscopic ensemble averaged enthalpy of a model system (a phase) can be then 147 

written as 148 

H = Jαξα
α
∑  (4) 149 

where ξα is the ensemble averaged cluster function, which is called the correlation 150 

function of the cluster α. The practical advantage of Eq. 4 consists in its rapid conversion 151 

with respect to an addition of terms corresponding to clusters of larger size. This 152 

mathematically rigorous expansion method includes a rigorous definition of the effective 153 

cluster interactions via Eq. 3. From this definition, the effective pair cluster interaction 154 

energy takes the form 155 

J pair(n) =
1
4

HAA(n) + HBB(n) − HAB(n) − HBA(n)( )   (5)156 

where Hij(n) is the energy of a supercell with an ij pair in a fixed n-th location within a 157 

supercell at the fixed distance, dn, between the atoms i and j, while the average is taken 158 



8

over all possible configurations of the other atoms in the supercell. An important property 159 

of the cluster expansion is that all correlation functions of a completely disordered 160 

(A,B)R solid solution with the composition of xA= 0.5 are equal to zero. Thus, when all 161 

quantities are measured relative to a mechanical mixture of end-members, it appears 162 

necessary to introduce a constant, J0, the so-called zero cluster interaction, and postulate 163 

that the correlation function of the zero cluster is equal to 1. J0 is equal to the enthalpy of 164 

mixing of a completely disordered (uncorrelated) solid solution with the composition of 165 

xA= 0.5. This completely disordered state (J0 ≠ 0, ξ0 = 1, ξn = 0, n > 0) represents the 166 

central point of the cluster expansion of Sanchez et al. (1984) The terms of the cluster 167 

expansion with n > 0 describe deviations of the enthalpy of a real solid solution from this 168 

reference state. In this sense the end-members and ordered intermediate compounds are 169 

treated on equal grounds as different examples of extremely correlated states.  170 

The J-formalism (Bosenick et al., 2000, 2001; Dove, 1999, 2001; Dove et al., 1996, 2000; 171 

Palin et al., 2001; Warren et al., 2001; Will, 1998) is often understood as a restricted form 172 

of the cluster expansion, in which the cluster size is limited to a pair of points. However, 173 

this is not exactly true. Aside from being limited to pairs, the J-formalism assumes also a 174 

different reference state. The reference state of the J-expansion is not a disordered state 175 

with xA = 0.5, but rather a mechanical mixture of the end-members AR and BR. 176 

Consequently, a constant, J0, term is not required in the J-formalism. The basic idea of 177 

the J-formalism is that any deviation of the enthalpy of a solid solution from the enthalpy 178 

of a mechanical mixture is correlated with the production of pairs of AB type. Therefore, 179 

in the J-expansion the J terms are coupled not to correlation functions, but to probabilities 180 

of AB pairs. The pairwise interaction is thus defined as a contribution to the excess 181 
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enthalpy of a solid solution due to the formation of one AB pair (or one mole of AB 182 

pairs). As the production of two AB pairs is necessarily related to an annihilation of a 183 

couple of AA and BB pairs, the pairwise interaction is defined as 184 

    J(n) = 2 HAB(n) − HAA(n) − HBB(n)   (6) 185 

where the quantities in brackets have the same meaning as in Eq. 5. The J(n) terms are 186 

thus proportional to the effective pair interactions in the cluster expansion (de Fontaine, 187 

1994; de Fontaine et al., 1992), but have a different sign. Similarly to the cluster 188 

expansion, the J-formalism can include clusters, which are larger than pairs. Indeed, the 189 

probabilities of AAB, ABB, AAAB, AABB, ABAB and ABBB are also constrained to be 190 

identically zero in the state of a mechanical mixture and thus the relevant ternary and 191 

quaternary terms could be easily included in the J-expansion. This is not done because of 192 

practical reasons. Ternary or higher-order interactions are usually much weaker than the 193 

pair interactions. The reason for the complete exclusion of the higher order interactions in 194 

applications to minerals comes from the observation that in oxides, silicates, carbonates 195 

or phosphates the exchangeable atoms (typically represented by cations) never appear in 196 

close contact with each other, as they do in alloys. In minerals the cations are usually 197 

separated by anion groups that remain inert to the mixing. Strong specific ternary or 198 

quaternary interactions, which could appear due to an association of several cations in a 199 

close proximity of each other, become less likely. The enthalpy of mixing for a 200 

configuration i is written as 201 

Hi =1/2 JnZnPAB(n)
n=1

N

∑    (7) 202 

where Zn is the coordination number within a sublattice occupied by neighbors of the 203 

order n. The order of neighbors, n, usually corresponds to the distance between the atoms. 204 
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205 

2.3. Determination of the Js.  206 

The methods for the evaluation of the J terms are similar in the cluster expansion and in 207 

the J-formalism. The cluster inversion (Connolly and Williams, 1983; de Fontaine, 1994; 208 

de Fontaine et al., 1992) procedure is based on the assumption that the quantities defined 209 

by Eq. 5 are relatively insensitive to the number and types of configurations included in 210 

the summation, such that they could be considered as configuration and composition 211 

independent constants. Thus, one is allowed to expand the energies of several compounds 212 

differing in symmetry and composition using the same set of the cluster terms by 213 

assuming that the effective interactions are the same in all compounds. In alloys these 214 

compounds are usually selected based on experimentally observed ordered phases. In this 215 

way one obtains a set of equations, which can be solved for the effective interactions. The 216 

J-formalism is typically applied to low-symmetry lattices, where the selection of ordered217 

compounds is difficult. Therefore, the anchor structures/configurations are often selected 218 

at random within a supercell of a certain shape. The averaged normalized numbers of AB 219 

pairs in all these structures are counted at all distances and the system of equations of the 220 

type of Eq. 7 is solved for the Jn with the least-squares method (Becker et al., 2000; 221 

Ferriss et al., 2010; Reich and Becker, 2006; Renock and Becker, 2011; Vinograd et al., 222 

2006, 2007). 223 

An alternative way of evaluation of the Js is to consider three supercells with the 224 

specified AA, BB and AB configurations and with the rest atoms in the same 225 

configurations and directly apply Eq. 5 or 6. Keeping the AA, BB and AB arrangement 226 

fixed, the rest atoms are permuted and the calculation is repeated.  The J value can be 227 
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computed as the averaged energy obtained by a summation over a limited set of these 228 

configurations. It has been shown that this procedure can give converged values by 229 

averaging over about 20-50 randomly chosen configurations with fixed AA, BB and AB 230 

arrangements (de Fontaine et al., 1992; Wolverton et al., 1991). The double defect 231 

method (DDM) (Asato et al., 2001; Hoshino et al., 1993, 1996; Vinograd et al., 2009; 232 

Vinograd and Winkler, 2010) is a variant of this approach, where only two unique 233 

configurations are considered, namely, the configurations with “all A” and with “all B”. 234 

In the “all A” case the AB, AA and BB pairs are inserted in the supercell of the AR end-235 

member. As in this case the A atoms of the pair cluster are indistinguishable from the rest 236 

A atoms of the host supercell, Eq. 5 or 6 effectively requires the computation of the 237 

energy difference between two supercells with a single defect B, a supercell of the pure 238 

end-member AR and a supercell with a double BB defect with the B atoms fixed at a 239 

certain distance from each other. When the energies of all structures are counted relative 240 

to the mechanical mixture of AR and BR, end-members, the recipe can be further 241 

simplified as follows  242 

    JA(n) = (2ΔHB − ΔHBB) /Dn  (8) 243 

where ΔHB and ΔHBB are the excess enthalpies of the supercells with a single, B, or a 244 

double, BB, defect, respectively, and Dn is the degeneracy factor, which counts the 245 

multiplicity of BB pairs due to the use of periodic boundary conditions in the model 246 

calculations. An analogous equation is written for the “all B” case  247 

    JB(n) = (2ΔHA − ΔHAA) /Dn  (9) 248 

As the DDM naturally provides two sets of the Jn values, it is convenient to model 249 

intermediate compositions by a linear mixing of JA(n) and JB(n) 250 
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    Jn = xAJA(n) + xBJB(n) (10) 251 

The composition dependence appears to be an important advantage of the DDM over the 252 

standard J-formalism. The method also allows to significantly reduce the number of 253 

supercell structures to be computed. Effectively, the determination of a single pairwise 254 

interaction requires the computation of a single supercell structure with a paired defect. 255 

256 

2.4. Calculation of thermodynamic quantities via direct sampling of all 257 

configurations.  258 

Here we assume that the total excess Gibbs free energy can be split into the 259 

configurational and vibrational parts, while the vibrational free energy is insensitive to 260 

configuration, but depends on the composition. This simplification can be justified when 261 

the excess vibrational free energy is small and its effect is expected to be significant only 262 

at high temperatures. This effect is modeled here with the aid of quasi-random structures. 263 

The configurational part is modeled with the J-formalism. First the Jn values are 264 

substituted into Eq. 7 to compute the energies of all possible configurations of a given 265 

supercell. When the energies of all configurations are known, the free energy per 1 mole 266 

of exchangeable atoms at a temperature T (K) can be computed as 267 

  G = −(1/ p)RT lnZ     (11) 268 

where p is the number of exchangeable sites within the supercell, R=8.314 J/K/mol is the 269 

gas constant and 270 

Z = exp −Hi /(RT)( )
i
∑  (12) 271 

is the partition function. The summation is often taken only over symmetry non-272 

equivalent configurations, which could be enumerated with available programs, for 273 
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example, SOD (Site Occupancy Disorder) (Grau-Crespo et al., 2004, 2007). Each 274 

exponential term is then counted with its multiplicity. The ensemble average enthalpy is 275 

computed as 276 

H =
1
pZ

exp −Hi /(RT)( )Hi
i
∑ (13) 277 

The configurational entropy is then calculated as  278 

S =
H −G

T
 (14) 279 

It should be noted that the entropy computed with this approach would deviate from the 280 

ideal mixing entropy even in the high-temperature limit. Due to the limited size of the 281 

supercell, the maximum entropy is given by  282 

Smax = (R / p)ln
p
k
⎛ 

⎝ 
⎜ 

⎞ 

⎠
⎟  (15)283 

where k is the number of atoms of type B. For a small cell this value could be 284 

significantly smaller than the entropy of ideal mixing  285 

    Sideal = −R(xA ln xA + xB ln xB) (16) 286 

For example, for a cell containing 24 sites, the maximum entropy computed with Eq. 16 287 

is about 11% smaller than the ideal mixing value. Becker et al. (2000) suggested an 288 

elegant procedure, which corrects for this drawback. In their procedure, the manifold of 289 

configurations is viewed as the probability vs. energy distribution scaled by the total 290 

number of configurations. The sum in Eq. 12 is then substituted with an integral over this 291 

distribution, while the number of configurations is taken out of the integral sign. The 292 

Gibbs free energy can be then written as 293 
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G = −
RT
p

ln
p
k
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −

RT
p

ln
exp −H /(RT )( )p(H )dH

0

∞∫
p(H )dH

0

∞∫
 (17) 294 

The correction consists in the replacement of the first term with the negative of the ideal 295 

entropy times T 296 

G = RT (xA ln xA + xB ln xB) −
RT
p

ln
exp −H /(RT )( )p(H )dH

0

∞∫
p(H )dH

0

∞∫ .
 (18) 297 

Eq. 18 correctly predicts the regular mixing behavior only in the high-temperature limit. 298 

The correction does not remove all drawbacks of a small-supercell model. An important 299 

problem of such a model is its inability to represent a proper relationship between the 300 

frequencies of ordered and disordered configurations. Indeed, in a small supercell the 301 

ratio of disordered to ordered configurations is inevitably underestimated. Consequently, 302 

in a small supercell short-range order has a weaker effect on the free energy of the 303 

disordered state. As the free energy of the disordered phase cannot be effectively 304 

decreased on cooling by SRO effects, it becomes less stable relative to an ordered phase 305 

(or to the mixture of end-members) at a rather high temperature. The order/disorder 306 

transition temperature is thus overestimated.  307 

308 

2.5. Calculation of thermodynamic quantities via Monte Carlo simulations.  309 

The obvious remedy for the former method is to enlarge the supercell size. However, the 310 

alternative large-cell models have to deal with the problem of an intolerable increase in 311 

the number of configurations. There have been attempts to deal with the problem of 312 

“configurational explosion” by limiting the number of sampled configurations. A feasible 313 

approach is to select a subset of a few hundred of configurations by sampling them at 314 
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random (Allan et al., 2001, 2006; Purton et al., 2006; Todorov et al., 2004). This 315 

approach, however, often predicts free energies, which only marginally deviate from the 316 

regular mixing model. Configurations sampled in this way typically represent the largest 317 

pool of highly probable high-energy configurations. These configurations have similar 318 

(high) energies and similar Boltzmann weights. Therefore, configurational entropy 319 

computed from such a reduced set appears to be close to that of the ideal mixing model, 320 

while the configurational enthalpy closely follows the Margules model. A similar result 321 

can be more easily obtained with a quasi-random structure. Recently, D’Arco et al. 322 

(2013) offered a modified algorithm, in which the subset of states is obtained by random 323 

sampling over classes of symmetry independent configurations. The applicability of this 324 

algorithm to large supercells and thus for accurate computation of phase diagrams is still 325 

to be demonstrated. 326 

The importance sampling via a Monte Carlo algorithm (Metropolis et al., 1953) can be 327 

conveniently applied to much larger supercells than those typically employed in direct 328 

methods. The average enthalpy of the sampled set energy is correctly shifted to a lower 329 

value, which reflects higher weights of low energy configurations at a finite temperature. 330 

The configurational enthalpy computed with a supercell containing few thousands of 331 

exchangeable sites is essentially correct. However, the entropy value computed from such 332 

a limited subset would still be close to that of the ideal mixing model as the energies of 333 

the converged set of configurations fluctuate only slightly from this average (although 334 

correct) value of the enthalpy. The evaluation of the correct entropy value requires 335 

computation of the partition function or the Gibbs free energy. While a direct evaluation 336 

of the former is difficult, the equilibrium Gibbs free energy can be computed relatively 337 
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easily using thermodynamic relations under the assumption that the average enthalpy 338 

computed by the Monte Carlo method is correct. The relationship between the free 339 

energy and the enthalpy is given by the integral (Dove, 2001; Myers, 1998; Warren et al., 340 

2001): 341 

0

λ∫
    G = RT(xA ln xA + xB ln xB) + H 0 + H λ dλ 

 (19) 342 

where λ , 0 < λ <1, is an artificial variable used to scale the magnitude of the effective 343 

pairwise interactions down, and 〈H〉λ is the enthalpy averaged over an ensemble, in which 344 

the probability distribution of all configurations corresponds to the effective pairwise 345 

interactions scaled by λ value. In the application to the J-formalism, the evaluation of 346 

〈H〉λ requires a Monte Carlo simulation of a system, in which the pairwise interactions are347 

scaled by λ . It should be remembered the converged enthalpies resulting from the 348 

simulation should be rescaled back (i.e. divided by the same λ value). The first two terms 349 

in Eq. 19 correspond to the Gibbs free energy of the solid solution in the state of a 350 

complete disorder, which is known theoretically, while the integral describes the 351 

deviation of the real free energy at the given temperature from the reference state.  352 

The power of the integration method is based on the ability of the Metropolis algorithm 353 

to arrive at the correct average (equilibrium) energy without the need of sampling all 354 

possible states. Consequently, the method can be applied to a sufficiently large cell, such 355 

that the averages are indistinguishable from the case of the thermodynamic limit. When 356 

the Markov chain of Monte Carlo stated converges to the Boltzmann distribution, each 357 

symmetry independent configuration occurs with the correct probability. Thus the correct 358 

average enthalpy can be computed by sampling a sufficient number of successive states. 359 

For example, the computation of an enthalpy value at a high temperature does not require 360 
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sampling of the ground state configuration. The probability of this configuration at a high 361 

temperature is vanishingly low and its contribution to the average energy is similarly 362 

small. This configuration, however, becomes very important at a low temperature, thus, 363 

as noted, for example, by d’Arco et al., 2013, there is a possibility that such a rare 364 

configuration could be missed in a simulation. The art of the simulation thus consists in 365 

gradually decreasing the temperature and in restarting from previously equilibrated 366 

configurations. Our experience suggests that the finding of the correct ground state is 367 

always possible in supercells containing less than about 4000 sites. There are different 368 

means that help to ensure that the correct state is found. One possibility is to check that 369 

the same final enthalpy is achieved in runs that start from different initial configurations. 370 

In the present case, where the ground state is represented by a miscibility gap, there 371 

appears a possibility to observe fine features within the isotherm shape, that are related to 372 

changes in the form of the interface between the two phases. Observing these fine 373 

features, in fact, means that true equilibration has been achieved.  374 

375 

3. COMPUTATIONAL DETAILS376 

The pairwise interactions were computed from the excess energies of 2 × 2 × 4 supercells 377 

of rutile structure (TiO2 or SnO2) containing substitutional defects of Ti and Ti-Ti in the 378 

case SnO2 being the host or Sn and Sn-Sn defects in the case of TiO2. The paired defects 379 

were placed at 10 different distances in the range of 2-9 Å. The size of the supercell was 380 

chosen such that the computed interaction between the pair of defects placed at the 381 

longest distance practically vanishes. The total energies of the single- and double-defect 382 

structures were calculated with density functional theory in the Wu-Cohen (WC GGA) 383 
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approximation (Wu and Cohen, 2006) using the “on-the-fly” ultrasoft pseudopotentials 384 

integrated in the CASTEP distribution, version 7.03 (Clark et al., 2005; Segall et al., 385 

2002). The plane wave expansion cutoff was 900 eV. The k-space was sampled using a 3 386 

× 3 × 3 Monkhorst-Pack grid. 387 

Although Eqs. 8 and 9 could be directly applied for computing the pairwise interactions, 388 

the resulting values of the Js often lack self-consistency (Vinograd et al., 2009; Vinograd 389 

and Winkler, 2010). The requirement of self-consistency is based on the observation that 390 

although the Js are directly determined by the excess energies of the defect structures via 391 

Eqs. 8 and 9, the excess energies themselves are functions of the Js via Eq. 7.  This 392 

implies that the excess energies of the single- and double-defect structures should be 393 

exactly reproduced via Eq. 7.  This requirement is often violated due to slight 394 

inaccuracies in the computed excess energies of the single- and double-defect structures 395 

or due to the presence of higher-order interactions. The self-consistency can be restored 396 

397 

1 2

by a slight variation in the excess energies of the single defect structures, which occur in 

Eqs. 8 and 9. Practically, small parameters δ  and δ  are added to ΔΗA and ΔHB 398 

respectively, and their values are varied until the excess energies of the double-defect 399 

structures are reproduced exactly via Eqs. 7-10.  400 

Monte Carlo simulations were performed with an 8 × 12 × 16 supercell containing 3072 401 

exchangeable atoms. The size of the supercell was chosen based on previous experience. 402 

It can be shown that the critical temperature in the well-studied two-dimensional square 403 

lattice with nearest-neighbor interactions [Onsager, 1944] can be reproduced with a 404 

relative accuracy of better than 5% using supercell containing about 2500 lattice sites. 405 

However, to our experience, a significant increase over this number could cause 406 
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difficulties in finding correct ground states.  Our previous experience (Jung at al., 2010; 407 

Vinograd et al., 2007) with various three-dimensional lattices suggest that the optimal 408 

supercell should contain about 3000 or 4000 sites. The average enthalpy at a given 409 

composition and temperature was calculated assuming a canonical ensemble using the 410 

Metropolis algorithm (Metropolis et al., 1953). At each simulation step a pair of different 411 

atoms was chosen at random and the swap was attempted. The swap was either accepted 412 

or rejected depending on the enthalpy change due to the swap, ΔH. A new configuration 413 

was accepted for ΔH ≤ 0 or with the probability of exp(-ΔH/kBT) for ΔH > 0. The 414 

distribution was assumed to converge to the Boltzmann probability distribution after 415 

2×107 steps. The next 2×107 steps were used to calculate the averages. The simulations 416 

were performed with the J values computed with Eq. 10, the temperature was varied 417 

between 600 K and 2500 K with an interval of 100 K and the composition was varied 418 

with a step of 0.03125. For each temperature and composition the calculations were 419 

repeated 26 times at different λ values, where λ was varied from 0 to 1 with a step of 420 

0.04.  421 

The excess vibrational entropy of mixing was calculated with an empirical force-field 422 

model. The interatomic potentials were fitted to the structure data of rutile (Swope et al., 423 

1995), brukite (Baur, 1961), anatase (Horn et al., 1972) and cassiterite (Baur, 1956), and 424 

to the elastic stiffness tensors of rutile and cassiterite (Ahrens, 1995). The parameters are 425 

listed in Table 1. The unit-cell parameters and the elastic stiffness constants of rutile and 426 

cassiterite calculated with these potentials are given in Table 2. The vibrational free 427 

energies of the end-member structures and of the quasi-random structures (QRS) were 428 

computed with the GULP program (Gale, 1997, 2005; Gale and Rohl, 2003). using the 429 
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zero static internal stress approximation (ZSISA) (Allan et al., 1996). The force-field 430 

model was tested against the ab initio data (Sikora, 2005) for pure rutile. The 431 

thermodynamic properties (entropy and heat capacity at constant volume) of rutile 432 

deviate over the temperature interval of 300-2500 K by less than 3% from the DFT 433 

results. The effective excess vibrational entropy of the QRS was computed as the 434 

negative of the excess vibrational free energy divided by T. The entropies were averaged 435 

in the temperature range of 1473-1773 K and fitted to the equation 436 

    Svib = xAxB(xAW12
s + xBW21

s ) (20) 437 

where xA and xB are mole fractions of rutile and cassiterite in the solid solution, 438 

respectively. The contribution of the excess vibrational free energy to the free energy of 439 

mixing was computed as  –TSvib.  440 

The quasi-random structures (xSn=0.25, xSn=0.5 and xSn=0.75) were found by a direct 441 

search among all possible configurations within a 2 × 2 × 4 supercell. During the search 442 

the frequencies of Ti-Sn pairs at 10 different distances were compared to their theoretical 443 

probabilities. The misfit function was defined as the total squared difference between the 444 

actual and the theoretical frequencies. Structures (configurations) corresponding to the 445 

minimum misfit were selected. 446 

447 

4. RESULTS448 

4.1. Quasi-random and single-defect structures.  449 

The excess enthalpies of the structures with single defects (0.3899 eV per supercell for Ti 450 

in SnO2 and 0.4056 eV per supercell for Sn in TiO2) provide constraints for the 451 

subregular model of the enthalpy of mixing  452 
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    H∞ = xAxB(xAW12
h + xBW21

h )          (21) 453 

The Margules parameters   W12
h  = 39.13 kJ/mol and  W21

h = 37.62 kJ/mol are 454 

straightforwardly computed by applying the conversion factor of 96.485 kJ/mol/eV to the 455 

excess enthalpies of the single-defect structures (Vinograd et al., 2013). The slightly 456 

larger value of W12 reflects the increased difficulty of inserting a larger cation (Sn) into a 457 

structure with a smaller mole volume (TiO2). The excess energies of the quasi-random 458 

structures are similar to that obtained from Eq. 21 (Fig. 1), because the structures with 459 

single defects comply with the criteria of QRS. This consistency between the excess 460 

enthalpies confirms the good quality of the QRSs. These structures can hence be used for 461 

modelling the properties of a completely disordered solution. The same conclusion 462 

applies to the single-defect structures as well. 463 

The regular model of the enthalpy of mixing, (  W12
h +  W21

h )/2 = 38.4 kJ/mol, 464 

straightforwardly predicts the critical temperature of the phase separation at xSn = 0.5 as 465 

Tc=W/2R, i.e. 2309 K (Glynn, 2000; Park et al., 1975; Urusov et al., 1996). This value 466 

significantly overestimates the experimental temperatures of 1703±5 K (Park et al., 1975) 467 

and 1689 K (Naidu and Virkar, 1998), showing that the regular (or subregular) model is 468 

not adequate for this system. Within the regular model description this temperature could 469 

be brought into correspondence with the experiment only under the assumption that the 470 

excess vibrational entropy constitutes about 25% of the configurational entropy. As we 471 

will show below, the vibrational contribution appears to be much smaller. A more 472 

adequate model requires consideration of short-range order (SRO) effects. Indeed, SRO 473 

effects allow a significant stabilization of the disordered phase, which leads to a decrease 474 

in the transition temperature. SRO is primarily driven by pairwise interaction energies. 475 
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476 

4.2. Parwise interactions.  477 

Fluctuations in excess energies of the paired defects Ti-Ti in rutile and Sn-Sn in 478 

cassiterite reflect variations in the defect-defect interaction at different distances (Table 479 

3). As these interactions should decrease with the increase of the distance between the 480 

defects, the excess energies of the defect-defect structures are expected to converge to 481 

twice the excess energy of the single-defect structure. Simultaneously, the effective 482 

interactions should converge to zero value (Fig. 2). This behavior is indeed observed. 483 

The small final values of the δ1 and δ2 parameters, -0.000081 and 0.000011 eV, 484 

respectively, show that the computed excess energies of the single- and double-defect 485 

structures are very close to internal consistency. The small deviations could be caused by 486 

the presence of interactions of higher order although these interactions must be very 487 

weak. The J values determined from this fit are listed in Table 3. Fast convergence of the 488 

J values as a function of interatomic separation (Fig. 2) implies the applicability of these 489 

parameters for the calculation of the excess enthalpies using much larger supercell. 490 

491 

4.3. Direct method with a 2 × 2 × 4 supercell.  492 

All configurations were permuted with a self-written C program and their excess energies 493 

were evaluated via Eq. 7. Figure 3a, 4a and 5a show the results of the excess enthalpy, 494 

the free energy and the configurational entropy computed via Eqs. 13, 11 and 14, 495 

respectively.  496 

The wavy shapes of the low temperature isotherms reflect ordering, which would have 497 

occurred in the system if the phase separation were forbidden (Fig. 3a, 5a,b). The minima 498 
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correspond to structures with alternating layers fully filled with Sn or Ti atoms, which are 499 

parallel to (100) or (010). Figure 4a shows that the phase separation at intermediate 500 

compositions occurs at about 2000 K. Thus the ordered states are never stable with 501 

respect to a mixture of Ti- and Sn-rich phases. Figure 5a shows also that at high 502 

temperatures the configurational entropy converges to values, which are significantly 503 

smaller relative to the ideal mixing model. This drawback of the 2 × 2 × 4 model leads to 504 

a significant overestimation of the free energy of the disordered phase at high 505 

temperatures and, consequently, to an overestimation of the solvus temperature.  506 

507 

4.4. Direct method with a 2 × 2 × 4 supercell and with the entropy correction.  508 

In the method of Becker et al. (2000) the free energy is evaluated via Eq. 18. This leads 509 

to a significantly more negative free energy of mixing at high temperatures and, 510 

consequently, to a lower temperature of the solvus closure (Fig. 4b). The corrected 511 

configurational entropy becomes consistent with the high-temperature limit of the ideal 512 

mixing model (Fig. 5b). However, the low-temperature entropy isotherms shift to larger 513 

values. 514 

515 

4.5. Monte Carlo simulation using an 8 × 12 × 16 supercell.  516 

The enthalpy of mixing, the free energy and the configurational entropy resulting of these 517 

simulations are given in Figure 3b, 4c and 5c, respectively. The shapes of low-518 

temperature isotherms differ significantly from those computed with the direct method. 519 

This is the consequence of the phase separation (Fig. 6), which occurred during the 520 

Monte Carlo simulation runs. In contrast, in the direct method the phase separation does 521 
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not occur within the small supercells and thus does not affect the shape of the isotherms. 522 

The direct method includes configurations, which formally could be interpreted to 523 

represent phase separation. However, due to the relatively large interface energy, the 524 

energies of these configurations appear to be higher than the corresponding ordered 525 

structures and thus do not contribute much to the shapes of low-temperature isotherms. 526 

527 

4.6. Vibrational entropy correction and the phase diagram.  528 

Figures 3-5 correspond to the model, which is based on static energies only. However, 529 

each configuration is also characterized by its own vibrational entropy and free energy. 530 

Our calculations based on quasi-random structures suggest that the vibrational entropy 531 

adds about 10% to the total entropy of mixing at high temperatures and intermediate 532 

compositions (Fig. 7). The curve of the vibrational entropy is asymmetric (    W12
s =1.66, 533 

    W21
s =3.02 J/K/mol). The sense of asymmetry is similar to that of the enthalpy of mixing. 534 

The phase diagram of rutile-cassiterite solid solution can be computed from the free 535 

energy isotherms via common tangent analysis. The phase relations derived from the 536 

different methods are shown in Figure 8 together with the experimental data (Naidu and 537 

Virkar, 1998; Park et al., 1975). It is shown that the addition of the –TSvib term 538 

significantly stabilizes the disordered phase, causing a shift of the solvus line to lower 539 

temperatures by about 250 K. The solvus line calculated based on Monte Carlo 540 

simulations shows a critical temperature of 1800 K, which agrees well with the 541 

experimental data, 1703±5 K reported by Park et al. (1975) and 1689 K reported by 542 

Naidu and Virkar (1998). 543 

544 
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5. DISCUSSION545 

The results obtained with the Monte Carlo method differ noticeably from those obtained 546 

via a direct calculation of the partition function. First of all, the comparison of Figures 3a 547 

and 3b shows that the enthalpy of the disordered phase in the Monte Carlo model 548 

decreases more rapidly. This is the result of SRO, which appears to be more important in 549 

the simulations involving a realistically large supercell. The stabilizing effect of SRO 550 

seems to be the main cause of the smaller value of the critical temperature predicted with 551 

the Monte Carlo simulations. In the disordered limit the enthalpies of mixing calculated 552 

with the both methods are similar. Secondly, the low-temperature isotherms in Figures 5b 553 

and 5c are strikingly different. This difference can be easily explained. It is important to 554 

note that direct calculations apply to a much smaller supercell, in which phase separation 555 

typically cannot occur. Indeed, the phase separation implies the contribution of an 556 

interface energy. As the formation of such an interface in a small cell is much more 557 

unfavorable than in a large cell, the energy of such a cell appears to be much higher than 558 

that of a mixture of two phases. Consequently, configurations with the occurrence of such 559 

interfaces contribute very little to the total free energy and the entropy. On the other 560 

hand, in Monte Carlo simulations, where a much larger supercell is employed, the phase 561 

separation occurs. In supercells with approximately intermediate composition the 562 

interface is parallel to (100) or (010) (Fig. 6b). These are the same planes across which 563 

the compositional fluctuation occurs in the ordered layered structures. This shows that the 564 

same interatomic interactions are responsible for both the ordering and the phase 565 

separation effects. A phase separated structure can be viewed as an ordered structure 566 

composed of layers of infinitely large thickness.  567 
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The free energy of a system with a composition falling within a miscibility gap is 568 

necessarily a combination of the free energies of the two phases. Ideally, this 569 

combination should be represented by a straight line connecting the properties of the two 570 

phases. Such straight lines are indeed observed in the Figures 3b, 4c, 5c, however, they 571 

occur within a rather narrow intervals at intermediate compositions. The common tangent 572 

analysis predicts the phase separation over much wider composition ranges. Small 573 

inflections in the isotherms within the miscibility gap are related to changes in the shape 574 

of the interface boundary. At intermediate compositions the interface (i.e. the surface 575 

which separates phases (slabs) with different compositions) is represented by two parallel 576 

planes (Fig. 6b), while at more diluted compositions the interface is a closed curved 577 

surface. A similar observations were made by Vinograd and Winkler (2010) when 578 

modelling the system NaCl-KCl. Indeed, when the amount of the solute phase is small, 579 

there are not enough atoms to make a continuous slab throughout the supercell. As the 580 

amount of the second phase increases, the interface area grows until a slab is formed, and 581 

further becomes constant. Transitions between these regimes are marked with breaks in 582 

the isotherms. It is important to note that in an ideal case of an infinitely large supercell, 583 

the interface energy would not have any influence on the thermodynamic functions. This 584 

implies that although a reasonably large supercell was employed in our Monte Carlo 585 

simulations, our results still correspond to a constrained equilibrium, because the 586 

interface energy still matters. Due to the presence of the interface, the enthalpy of the 587 

Monte Carlo simulated two-phase assemblage is about 1 kJ/mol higher than this expected 588 

for a mechanical mixture.  589 
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The metastability that is caused by a formation of an interface or by an inability of a cell 590 

to phase separate can be removed by a post-simulation common tangent analysis of the 591 

shape of the predicted free energy surface. The phase diagram shows that the Monte 592 

Carlo simulations agree quite well with the experimental data, while the direct 593 

calculations based on a 2 × 2 × 4 supercell considerably overestimate the size of the 594 

miscibility gap. The latter is certainly related to the underestimation of the 595 

configurational entropy of the disordered phase. The method of Becker at al. (2000) 596 

improves the result significantly by decreasing the solvus temperature by 100-200 K. 597 

However, the solvus predicted with the direct method still occurs about 100-200 K higher 598 

relative to the Monte Carlo result. This effect is likely caused by an underestimation of 599 

the relative importance of high-energy configurations within a small cell. Consequently, 600 

SRO effects develop to a lesser extent than in a larger cell leading to an overestimation of 601 

the free energy of the disordered phase. 602 

603 

6. IMPLICATIONS604 

Currently, two groups of methods offer feasible strategies for the calculation of 605 

thermodynamic mixing properties of solid solutions, the direct methods, and the cluster 606 

expansion based Monte Carlo methods. The first group of methods is attractive due to the 607 

very straightforward computational algorithm, i.e. the direct evaluation of the partition 608 

function, and due to a similarly straightforward possibility of evaluation of functions 609 

other than the enthalpy and the Gibbs free energy. It appears, however, that direct 610 

computation could be performed for rather small supercells only. It also appears that a 2 611 

× 2 × 4 supercell (32 exchangeable atoms) is still too small to model correctly the 612 
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configurational statistics. The correction procedure proposed by Becker et al. (2000) can 613 

significantly improve the description of the disordered phase. Monte Carlo simulations 614 

provide an alternative indirect approach to the evaluation of the Gibbs free energy, and 615 

since a much bigger supercell can be involved in the calculation, the configurational 616 

statistics can be treated more accurately. The present study compared the free energies in 617 

the rutile-cassiterite system computed with the direct sampling and with the Monte Carlo 618 

methods. The same the cluster expansion model was used in the both approaches. This 619 

exercise suggested that the Monte Carlo simulations provide a superior description of the 620 

free energy of mixing. Thus, in cases when the enthalpy of mixing cannot be computed 621 

directly, and where an expansion (parameterization) of the enthalpy should be employed, 622 

Monte Carlo simulations seem to offer the best strategy. We note, however, that even an 623 

8 × 12 × 16 supercell does not allow achieving a fully adequate description of the phase 624 

separation. The interface energy still matters and affects the shape of free energy 625 

isotherms. A small metastability caused by the presence of the interface can be removed 626 

by a post-simulation analysis of the curvature of the free energy surface. Our study also 627 

shows that including the effect of excess vibrational entropy is important for bringing the 628 

results of simulation in an agreement with experiments. In conclusion, we wish to note 629 

that the currently available methods of atomistic simulations already provide means for 630 

accurate computation of phase diagrams in oxide systems. The present ability to compute 631 

an equilibrium content of a solute component in a mineral at a given temperature and 632 

pressure offers the possibility of developing geothermometers and geobarometers fully ab 633 

initio.  634 

635 
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868 
Figure 1. Enthalpy of mixing in the rutile-cassitertite system at an infinitely high 869 

temperature. The solid line is a subregular (two-parameter) fit to the excess energies of 870 

the structures with single defects. 871 

872 

Figure 2. Pairwise interactions computed from the excess enthalpies of the structures 873 

with single and paired defects. 874 

875 

Figure 3. (a) Isotherms of enthalpy of mixing in the rutile-cassitertite solid solution 876 

computed with the direct method (DM) using a 2 × 2 × 4 supercell. The enthalpies of the 877 

individual configurations are computed with Eq. 7. (b) Isotherms of the enthalpy of 878 

mixing computed with Monte Carlo simulations using an 8 × 12 × 16 supercell. 879 

Isotherms are 100 K apart. 880 

881 

Figure 4. Isotherms of Gibbs free energy of mixing in the rutile-cassitertite solid 882 

solution, (a) computed with the direct method using a 2 × 2 × 4 supercell, (b) computed 883 

with the direct method with the correction after Becker et al. (2000) using a 2 × 2 × 4 884 

supercell, (c) computed with Monte Carlo simulations using an 8 × 12 × 16 supercell. 885 

Isotherms are 100 K apart. 886 

887 

888 

Figure 5. Isotherms of the configurational entropy of mixing in the rutile-cassitertite 889 

solid solution, (a) computed with the direct method (DM) using a 2 × 2 × 4 supercell, (b) 890 

computed with the direct method with the correction after Becker et al. (2000) using a 2 × 891 
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2 × 4 supercell, (c) computed with Monte Carlo simulations using an 8 × 12 × 16 892 

supercell. Isotherms are 100 K apart. 893 

 894 

Figure 6. Phase separation occurred during the Monte Carlo simulation runs for different 895 

compositions simulated at 600 K, (a) xSn=3/32 and (b) xSn=16/32. Blue and brown balls 896 

represent Ti and Sn atoms, respectively. O atoms are not shown.  897 

 898 

Figure 7. Excess vibrational entropy computed from the force-field model. The vertical 899 

bars reflect the variation of the values within the temperature interval of 1473-1773 K. 900 

 901 

Figure 8. The subsolidus phase diagram of the rutile-cassitertite system. Dash lines and 902 

solid lines are the results of the simulations before and after vibrational entropy 903 

correction, respectively. Squares and the black curve denote the experimental data. 904 
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 911 
Table 1. Parameters of the interatomic potentials for rutile and cassiterite. 912 
Buckingham potential Α, eV ρ, Å C, eV *Å6 cutoff, Å 

Ti core - O shell 84045.732 0.159447 0.000 12.0 
Sn core - O shell 376724.00 0.148615 0.000 12.0 
O shell - O shell 1294.9157 0.317190 27.961 12.0 
Charge and Spring potential core shell K2, eV/Å2  
Ti 2.239195    
Sn 2.239195    
O 0.517015 -1.636611 25.830181  
 913 

Table 2. Structural and elastic properties of TiO2 and SnO2: experimental data and results 914 
of the force-field calculation. 915 
 TiO2 SnO2 

experimenta calculation experimentb calculation 
a, Å 4.592 4.569 4.737 4.755 
c, Å 2.957 2.994 3.185 3.160 
V, Å3 62.366 62.497 71.468 71.450 
C11, GPa 269.0 306.8 261.7 285.9 
C 12, GPa 177.0 175.2 177.2 199.8 
C 13, GPa 146.0 147.4 155.5 151.7 
C 33, GPa 480.0 462.5 449.6 427.7 
C 44, GPa 124.0 125.1 103.1 103.4 
C 66, GPa 192.0 179.1 207.4 198.0 
a: Structure properties are from Swope et al. (1995) and elastic properties are from 916 
Ahrens (1995). 917 
b: Structure properties are from Baur (1956) and elastic properties are from Ahrens 918 
(1995).. 919 
 920 

Table 3. Excess enthalpies of double defects and the J values. 921 

n Distance, Å Dn 
ΔH, eV per supercell J values, kJ/mol 

Ti-Ti defects in SnO2 Sn-Sn defects in TiO2 JTi JSn 
1 2.959 1 0.6816 0.7286 7.4613 9.5523
2 3.569 1 0.7616 0.7855 1.9713 1.8335
3 4.593 2 0.6964 0.7122 4.5218 4.0621
4 5.464 2 0.7428 0.7496 2.7175 1.8237
5 5.500 1 0.7681 0.7854 1.9809 1.2063
6 5.918 2 0.8064 0.9465 -6.7814 -1.2445
7 6.495 4 0.8003 0.8377 -0.7663 -0.4751
8 7.138 4 0.7801 0.8247 -0.4527 0.0121
9 7.491 4 0.7545 0.7508 1.3298 0.6296
10 8.787 8 0.7790 0.7938 0.1463 0.0193
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