# 1 Revision 1

 $\mathbf{2}$ 

# Compressional and shear wave velocities for polycrystalline bcc-Fe up to 6.3 GPa and 800 K

- $\mathbf{5}$
- 6 Yuki Shibazaki<sup>1, 2</sup>, Keisuke Nishida<sup>3</sup>, Yuji Higo<sup>4</sup>, Mako Igarashi<sup>2</sup>, Masaki Tahara<sup>2</sup>,
- 7 Tatsuya Sakamaki<sup>2</sup>, Hidenori Terasaki<sup>5</sup>, Yuta Shimoyama<sup>5</sup>, Souma Kuwabara<sup>5</sup>,
- 8 Yusaku Takubo<sup>5</sup>, Eiji Ohtani<sup>2</sup>
- 9
- <sup>1</sup>Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aoba,

- <sup>12</sup> <sup>2</sup>Department of Earth and Planetary Material Sciences, Tohoku University, 6-3 Aoba,
- 13 Aramaki, Aoba-ku, Sendai 980-8578, Japan.
- <sup>14</sup> <sup>3</sup>Department of Earth and Planetary Science, University of Tokyo, Hongo 7-3-1,
- 15 Bunkyo-ku, Tokyo 113-0033, Japan.
- <sup>4</sup>Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo 679-5198, Japan.
- <sup>5</sup>Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama-cho,

- 18 Toyonaka, Osaka 560-0043, Japan.
- 19
- 20 Corresponding author: Yuki Shibazaki
- 21 Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aoba,
- 22 Aramaki, Aoba-ku, Sendai 980-8578, Japan.
- 23 E-mail: <u>yshibazaki@m.tohoku.ac.jp</u>
- 24 Tel: +81-22-795-6687

25

- 26 Keywords: bcc-Fe, high pressure, planetary core, sound velocity, ultrasonic method
- 27 Running title: Sound velocities for bcc-Fe
- 28

### 29 Abstract

The cores of the Earth and other differentiated bodies are believed to comprise iron and various amounts of light elements. Measuring the densities and sound velocities of iron and its alloys at high pressure and high temperature is crucial for understanding the structure and composition of these cores. In this study, the sound velocities ( $V_P$  and  $V_S$ ) and density measurements of body-centered cubic (*bcc*)-Fe were determined experimentally up to 6.3

| 35 | GPa and 800 K using ultrasonic and X-ray diffraction methods. Based on the measured $V_{\rm P}$ ,                                            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------|
| 36 | $V_{\rm S}$ , and density, we obtained the following parameters regarding the adiabatic bulk $K_{\rm S}$ and                                 |
| 37 | shear G moduli of <i>bcc</i> -Fe: $K_{S0} = 163.2(15)$ GPa, $\partial K_S / \partial P = 6.75(33)$ , $\partial K_S / \partial T = -0.038(3)$ |
| 38 | GPa/K, $G_0 = 81.4(6)$ GPa, $\partial G/\partial P = 1.66(14)$ , and $\partial G/\partial T = -0.029(1)$ GPa/K. Moreover, we                 |
| 39 | observed that the sound velocity-density relationship for bcc-Fe depended on temperature                                                     |
| 40 | in the pressure and temperature ranges analyzed in this study and the effect of temperature                                                  |
| 41 | on $V_{\rm S}$ was stronger than that on $V_{\rm P}$ at a constant density, e.g., 6.0% and 2.7% depression for                               |
| 42 | $V_{\rm S}$ and $V_{\rm P}$ , respectively, from 300 K to 800 K at 8000 kg/m <sup>3</sup> . Furthermore, the effects of                      |
| 43 | temperature on both $V_{\rm P}$ and $V_{\rm S}$ at a constant density were much greater for <i>bcc</i> -Fe than for                          |
| 44 | $\varepsilon$ -FeSi (cubic B20 structure), according to previously obtained measurements, which may                                          |
| 45 | be attributable to differences in the degree of thermal pressure. These results suggest that                                                 |
| 46 | the effects of temperature on the sound velocity-density relationship for Fe alloys strongly                                                 |
| 47 | depend on their crystal structures and light element contents in the range of pressure and                                                   |
| 48 | temperature studied.                                                                                                                         |
| 49 |                                                                                                                                              |

- 50
- 51

# 52 Introduction

| 53 | Observations of seismic wave propagation and normal mode oscillation are the                          |
|----|-------------------------------------------------------------------------------------------------------|
| 54 | most powerful probes for examining the Earth's interior, allowing us to obtain physical               |
| 55 | information on the Earth's interior such as distributions of densities and sound velocities           |
| 56 | (both compressional ( $V_P$ ) and shear ( $V_S$ ) wave velocities) (e.g., Preliminary Reference Earth |
| 57 | Model (PREM), proposed by Dziewonski and Anderson (1981)). According to                               |
| 58 | observation-based geophysical data and laboratory-based studies, the Earth's core is                  |
| 59 | considered to comprise metallic iron (Fe) with various amounts of light elements, such as             |
| 60 | hydrogen (H), carbon (C), oxygen (O), silicon (Si), and sulfur (S) (e.g., Birch 1952; Poirier         |
| 61 | 1994). Thus, iron alloyed with light elements is widely accepted as a basis for the chemical          |
| 62 | models of other planetary cores (e.g., Zharkov et al. 2009; Dumberry and Rivoldini 2015).             |
| 63 | To constrain the species of major light elements and their abundances in the core,                    |
| 64 | many studies have investigated the density and sound velocity of Fe as well as its alloys             |
| 65 | with light elements at the high pressures and high temperatures characteristic of interior            |
| 66 | planetary conditions (see the review by Li and Fei 2014). At high pressure and temperature,           |
| 67 | sound velocities have been measured mainly using shock compression (e.g., Brown and                   |
| 68 | McQueen 1986), high-energy resolution inelastic X-ray scattering (IXS) (e.g., Fiquet et al.           |

| 69 | 2001; Badro et al. 2007), and nuclear resonant inelastic X-ray scattering (NRIXS) (e.g.,                      |
|----|---------------------------------------------------------------------------------------------------------------|
| 70 | Mao et al. 2001; Lin et al. 2003). Most recently, measurements by picosecond acoustics                        |
| 71 | have been reported (Decremps et al. 2014). However, to estimate $V_{\rm S}$ (and also $V_{\rm P}$ in the      |
| 72 | case of NRIXS), those measurements require other physical quantities (e.g., density and                       |
| 73 | bulk modulus) that must be obtained in separate experiments. That is, $V_{\rm S}$ (and $V_{\rm P}$ of         |
| 74 | NRIXS) must be obtained indirectly, and thus the accuracy of the estimated value depends                      |
| 75 | on the uncertainties of these physical quantities as well as the velocity measurement itself.                 |
| 76 | Therefore, most core compositional models have been developed using only $V_{\rm P}$ data,                    |
| 77 | although the proposed physical models for the Earth's interior (e.g., PREM) provide us                        |
| 78 | with both $V_{\rm P}$ and $V_{\rm S}$ for the solid inner core. To constrain the abundances of light elements |
| 79 | in the core more tightly, direct measurements of $V_{\rm S}$ for Fe and Fe alloys and core                    |
| 80 | compositional analyses using both $V_{\rm P}$ and $V_{\rm S}$ are necessary.                                  |
| 81 | Analyses based on $V_{\rm P}$ have also led to another issue, i.e., disagreements in the                      |

Analyses based on  $V_P$  have also led to another issue, i.e., disagreements in the temperature dependence of sound velocities between previous studies (see the review by Antonangeli and Ohtani (2015)). The sound velocity–density relationship has been used widely to compare experimental results with proposed physical models for the Earth's interior (e.g., Lin et al. 2004; Gao et al. 2008; Fiquet et al. 2009, Antonangeli et al. 2010;

| 86  | Shibazaki et al. 2012; Murphy et al. 2013; Kamada et al. 2014). Assuming a                                       |
|-----|------------------------------------------------------------------------------------------------------------------|
| 87  | quasi-harmonic approximation, this relationship is expected to exhibit linearity regardless                      |
| 88  | of the pressure and temperature conditions, which is known as Birch's law (Birch 1961).                          |
| 89  | On the other hand, when a nonharmonic temperature effect appears, the velocity-density                           |
| 90  | relationship is likely to change significantly with the temperature. Recent studies have                         |
| 91  | investigated the effects of temperature on the sound velocity-density relationship for Fe                        |
| 92  | and Fe alloys at high pressures using the IXS (Kantor et al. 2007; Antonangeli et al. 2012;                      |
| 93  | Mao et al. 2012; Ohtani et al. 2013; Liu et al. 2014; Antonangeli et al. 2015) and NRIXS                         |
| 94  | (Lin et al. 2005; Gao et al. 2011) techniques, but no consensus has been reached regarding                       |
| 95  | the effects of temperature. Previous ab initio molecular dynamics simulations showed that                        |
| 96  | the effect of temperature on $V_P$ is small compared with that on $V_S$ (e.g., Vočadlo et al. 2009;              |
| 97  | Sha and Cohen 2010). Then, the experimental temperatures used in previous studies might                          |
| 98  | be too low to observe clearly that on $V_{\rm P}$ . In contrast, measuring $V_{\rm S}$ is expected to facilitate |
| 99  | clear analyses of the effects of temperature on the velocity-density relationship, even at                       |
| 100 | relatively low temperatures.                                                                                     |

101 In this study, as a first step toward addressing these issues (i.e., discussions on the 102 temperature dependence of sound velocities and the core compositions using both  $V_{\rm P}$  and

| 103 | $V_{\rm S}$ ), we directly measured both $V_{\rm P}$ and $V_{\rm S}$ and the density of body-centered cubic ( <i>bcc</i> )-Fe |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| 104 | up to 6.3 GPa and 800 K using an ultrasonic technique, X-ray radiography, and X-ray                                           |
| 105 | diffraction methods. The bcc phase is a low-pressure and -temperature phase and the most                                      |
| 106 | fundamental structure for Fe (e.g., Bundy 1965). Recently, Liu et al. (2014) and                                              |
| 107 | Antonangeli et al. (2015) obtained high-pressure and high-temperature data of $V_{\rm P}$ for                                 |
| 108 | <i>bcc</i> -Fe using IXS techniques, but they reported different temperature dependences for $V_{\rm P}$ ,                    |
| 109 | and there were no discussions on $V_{\rm S}$ . In the present study, we analyzed the effects of                               |
| 110 | temperature on the sound velocity-density relationships of both $V_{\rm P}$ and $V_{\rm S}$ for <i>bcc</i> -Fe and            |
| 111 | discussed the difference in the effects of temperature between Fe and Fe compounds.                                           |

112

113

114

## 115 **Experimental Methods**

High-pressure and high-temperature ultrasonic measurements and X-ray
radiography and diffraction experiments were performed simultaneously using the 1500-ton
Kawai-type multianvil apparatus (SPEED-1500) with synchrotron X-ray radiation at the
BL04B1 beamline of the SPring-8 facility in Japan. The experimental pressure range was

| 120 | 2.0 to 6.3 GPa at temperatures up to about 800 K. We used a 14/8 cell assembly (14 mm      |
|-----|--------------------------------------------------------------------------------------------|
| 121 | octahedron edge length and 8 mm truncated edge length of tungsten carbide cubic anvils).   |
| 122 | Figure 1a is a schematic illustration of the cell assembly used in this study. Iron powder |
| 123 | (99.99% purity, Rare Metallic Co. Ltd.) was used as a starting material, which was         |
| 124 | sandwiched between an yttrium-stabilized zirconia (YSZ) buffer rod and backing plate       |
| 125 | (mirrored on both surfaces), and surrounded by cup-shaped hexagonal boron nitride (hBN).   |
| 126 | A powdered mixture of magnesium oxide (MgO) and hBN, placed just behind the hBN cup,       |
| 127 | was used as a pressure marker. High temperatures were generated using a cylindrical        |
| 128 | graphite heater.                                                                           |
| 129 | The experimental temperatures and pressures were estimated simultaneously based            |
| 130 | on two equations of state, i.e., that for MgO (Tange et al. 2009) and that for hBN         |
| 131 | (Wakabayashi and Funamori 2015), as the pressure marker, as follows. Using the test        |
| 132 | assembly with a W3%Re-W25%Re thermocouple (TC) (Fig. 1b), we performed an in situ          |
| 133 | X-ray diffraction experiment and measured the transition temperature between the bcc and   |
| 134 | face-centered cubic (fcc) phases of Fe at approximately 2 GPa, thereby determining the     |
| 135 | temperature difference between the sample and TC positions in the assembly. The results    |
| 136 | showed that the TC temperature was approximately 120 K lower than the bcc-fcc transition   |

| 137 | temperature reported by Claussen (1960), whereas the temperature based on the two            |
|-----|----------------------------------------------------------------------------------------------|
| 138 | equations of state for the pressure marker was consistent with the reported temperature.     |
| 139 | This difference probably occurred because the TC position was off-center and away from       |
| 140 | the sample. Additional experiments were performed, in which the pressure markers were        |
| 141 | placed in both the sample and original pressure marker positions at approximately 1 GPa up   |
| 142 | to 800 K and at approximately 5.5 GPa up to 1000 K, using the cell assembly used for         |
| 143 | simultaneous sound velocity and density measurements (Fig. 1a). The differences in           |
| 144 | temperature between the two positions were less than 40 K under both pressure conditions,    |
| 145 | being less than the uncertainty in the temperature estimates. Therefore, we considered the   |
| 146 | temperatures and pressures by the two equations of state to be most appropriate as the       |
| 147 | experimental conditions in this study.                                                       |
| 148 | Ultrasonic $V_P$ and $V_S$ measurements were performed using a pulse-echo overlap            |
| 149 | technique (see Higo et al. (2009) for details of the experimental setup). Both P- and S-wave |
| 150 | signals were generated and received by a 10° Y-cut LiNbO3 transducer with a thickness of     |
|     |                                                                                              |

151 0.05 mm and diameter of 3.2 mm. An electrical sine wave (three cycles) was generated by a

- 152 waveform generator, and a series of reflected P- and S-wave signals were acquired by a
- digital oscilloscope at a sampling rate of  $1.0 \times 10^{10}$  points/s (0.1 ns at each data point). The

| 154 | frequencies used in this study were 57 MHz and 30 MHz for P- and S-waves, respectively,                    |
|-----|------------------------------------------------------------------------------------------------------------|
| 155 | because we could obtain the reflected signals with best signal-to-noise ratio using these                  |
| 156 | frequencies. The P- and S-wave travel times in the sample were estimated using the signals                 |
| 157 | reflected from the buffer-rod/sample and sample/backing. The sample lengths at high                        |
| 158 | pressure and high temperature were measured from an X-ray radiography image using a                        |
| 159 | high-resolution CCD camera. The resolution of the optical setup was about 2 $\mu\text{m/pixel}.$           |
| 160 | Then, $V_{\rm P}$ and $V_{\rm S}$ were obtained simply by dividing the sample length by the P- and S-wave  |
| 161 | travel times, respectively, under each of the pressure and temperature conditions. In this                 |
| 162 | study, the typical travel times (two way) were 240 ns for P-waves and 440 ns for S-waves,                  |
| 163 | and the typical sample length was 700 $\mu$ m. The sampling rate for the ultrasonic                        |
| 164 | measurements (0.1 ns at each data point) and the optical resolution for X-ray radiography                  |
| 165 | (about 2 $\mu$ m/pixel) were sufficient to determine $V_P$ and $V_S$ precisely. The uncertainties in $V_P$ |
| 166 | and $V_{\rm S}$ were derived mainly from the uncertainty in the sample length determination, i.e.,         |
| 167 | approximately $\pm 1\%$ (2 $\sigma$ ) in this study (Table 1).                                             |
| 168 | The unit-cell volumes of the sample and the pressure marker were determined                                |

- 169 based on an energy-dispersive X-ray diffraction measurement. A Ge solid-state detector
- 170 was placed at a fixed angle of approximately 6° from the incident X-ray beam. The incident

and receiving X-ray slit sizes were  $0.1 \times 0.05$  mm and  $2.0 \times 0.2$  mm, respectively. The collection time of diffraction patterns was 120 s.

| 173 | First, we increased the pressure to approximately 3 GPa and the temperature to              |
|-----|---------------------------------------------------------------------------------------------|
| 174 | approximately 800 K to reduce the deviatoric stress imposed on the sample during            |
| 175 | compression. We then collected the ultrasonic, X-ray radiography, and X-ray diffraction     |
| 176 | data every 100-150 K while decreasing the temperature. After cooling the sample to room     |
| 177 | temperature, it was then re-pressurized and re-heated to the next target pressure and       |
| 178 | temperature conditions, and then data were again collected while decreasing temperature.    |
| 179 | We repeated this procedure at pressures up to approximately 7 GPa. All of the pressure and  |
| 180 | temperature conditions were in the stability field for the <i>bcc</i> phase (Bundy 1965).   |
| 181 | The chemical composition of the recovered sample was analyzed using a                       |
| 182 | wavelength-dispersive electron microprobe (JEOL, JXA-8800M), installed at Tohoku            |
| 183 | University, Japan, to check for contamination of the Fe sample, especially oxidization. The |
| 184 | accelerating voltage and beam current were 15 kV and 20 nA, respectively. The beam size     |
| 185 | was 1 $\mu m$ in diameter. The sample grain size was observed using a scanning electron     |
| 186 | microscope (JEOL, JSM-5410) at Tohoku University.                                           |

187

188

189

#### 190 **Results**

#### 191 Experimental results

192The experimental conditions and results are summarized in Table 1. The chemical composition of the recovered sample (number of analyses = 21) was 99.77(51) wt% Fe and 1930.22(3) wt% O, but other elements, such as Zr and Y, were not detected in the iron grains. 194 The grain size was approximately 5 µm. Oxides such as FeO were not observed. Oxygen 195196 could increase the value of  $V_{\rm P}$  for Fe and decrease its density (Badro et al. 2007), but, as 197 described in detail in later sections, the values of  $V_{\rm P}$ ,  $V_{\rm S}$ , density (unit-cell volume), and elastic moduli were consistent with previously reported values for *bcc*-Fe within the known 198 199 margins of error. Thus, we considered the effect of 0.22(3) wt% O on these values to be negligible in this study. 200

Figure 2 shows the diffraction patterns obtained for the samples at ambient conditions and at the highest pressure of 6.3 GPa and 640 K. We observed the diffraction lines for *bcc*-Fe throughout the experiments, which indicated that the experimental conditions did not cross any phase boundaries (i.e., *bcc–fcc* or *bcc*–hexagonal close-packed

| 205 | ( <i>hcp</i> ) boundaries). Moreover, the intensity and width (full width at half maximum) of each |
|-----|----------------------------------------------------------------------------------------------------|
| 206 | peak were almost the same at high pressure and high temperatures as those at ambient               |
| 207 | conditions (Fig. 2). These results suggest that the deviatoric stress and preferred orientation    |
| 208 | of the sample were minimal in this study.                                                          |
| 209 | Examples of the P- and S-wave signals obtained at 6.3 GPa and 640 K are shown                      |
| 210 | in Fig. 3a and 3b, respectively. The amplitudes of the echoes from the buffer-rod/sample           |
| 211 | and sample/backing were low compared with others, such as those from the                           |
| 212 | anvil/buffer-rod and backing/hBN, due to the small difference in impedance between the             |
| 213 | sample and YSZ, but the signal-to-noise ratios were sufficient to determine the precise            |
| 214 | travel times for both P- and S-waves (Fig. 3 inserts).                                             |
| 215 |                                                                                                    |
| 216 | Pressure and temperature dependences of the unit-cell volume and sound velocities for              |
| 217 | bcc-Fe                                                                                             |
| 218 | Figure 4 shows the unit-cell volumes obtained in the present study and the                         |
| 219 | compressional curves for <i>bcc</i> -Fe reported by Zhang and Guyot (1999) and volume data         |

- from previous IXS studies (Liu et al. 2014; Antonangeli et al. 2015). The unit-cell volumes
- around 6 GPa in the present study were slightly lower than the compressional curves, but

| 222 | they were consistent within errors for the pressure and temperature. The volumes obtained                     |
|-----|---------------------------------------------------------------------------------------------------------------|
| 223 | from IXS studies by X-ray diffraction method (Liu et al. 2014; Antonangeli et al. 2015)                       |
| 224 | were higher than the compressional curve (Zhang and Guyot 1999). Those inconsistencies                        |
| 225 | may have been due to the use of different pressure scales, i.e., Liu et al. (2014) used a Au                  |
| 226 | pressure scale (Fei et al. 2007), whereas Antonangeli et al. (2015) employed a ruby                           |
| 227 | fluorescence method at ambient temperature as well as the <i>bcc</i> -Fe equation of state, which             |
| 228 | they derived fitting the volume data from Huang et al. (1987) with a third-order                              |
| 229 | Birch-Murnaghan equation of state, at high temperature, although there might also be some                     |
| 230 | issues with the volume measurements and temperature determinations by Liu et al. (2014)                       |
| 231 | and Antonangeli et al. (2015). Figures 5a and 5b show the pressure dependences of $V_{\rm P}$ and             |
| 232 | $V_{\rm S}$ , respectively, for <i>bcc</i> -Fe in the present study, together with picosecond acoustics       |
| 233 | (Decremps et al. 2014), IXS studies (Liu et al. 2014; Antonangeli et al. 2015), and an                        |
| 234 | ambient-pressure study, where the sound velocities were estimated with the single-crystal                     |
| 235 | elastic constants given by Dever (1972) using the Voigt-Reuss-Hill average. The pressure                      |
| 236 | values of the IXS studies were re-estimated based on the bcc-Fe equation of state described                   |
| 237 | by Zhang and Guyot (1999). Those of picosecond acoustics were measured using ruby                             |
| 238 | fluorescence (Decremps et al. 2014). The values obtained for $V_{\rm P}$ and $V_{\rm S}$ in the present study |

| 239 | increased with pressure and decreased with increasing temperature. These trends agree with             |
|-----|--------------------------------------------------------------------------------------------------------|
| 240 | previous studies (Dever 1972; Decremps et al. 2014; Liu et al. 2014; Antonangeli et al.                |
| 241 | 2015), but the absolute values of $V_{\rm P}$ obtained in the present study were different from the    |
| 242 | picosecond acoustics (Decremps et al. 2014) and IXS data (Liu et al. 2014; Antonangeli et              |
| 243 | al. 2015) (Fig. 5a). We discuss the differences in the values for $V_{\rm P}$ in the present study and |
| 244 | previous studies in detail in the "Comparison with previous high-pressure results" section             |
| 245 | in the Discussions.                                                                                    |
| 246 |                                                                                                        |

247 Elastic moduli for bcc-Fe

We calculated the adiabatic bulk ( $K_S$ ) and shear (G) moduli using the following relationships:

250 
$$K_{\rm S} = \left(V_{\rm P}^2 - \frac{4}{3}V_{\rm S}^2\right)\rho,$$
 (1)

$$G = V_{\rm S}^2 \rho, \tag{2}$$

where  $\rho$  is the density. The calculated values of  $K_{\rm S}$  and G are listed in Table 1 and shown in Fig. 6. They seem to increase monotonically with pressure and decrease with increasing temperature in the pressure and temperature ranges considered in this study. Assuming linear pressure and temperature dependences for  $K_{\rm S}$  and G, we fitted  $K_{\rm S}$  and G in this study using the following equation:

257 
$$M = M_0 + \frac{\partial M}{\partial P} (P - P_0) + \frac{\partial M}{\partial T} (T - T_0), \qquad (3)$$

where *M* and *M*<sub>0</sub> denote *K*<sub>S</sub> or *G* in high-pressure and high-temperature conditions and in  
ambient conditions, respectively. 
$$\partial M/\partial P$$
 and  $\partial M/\partial T$  are the pressure and temperature  
derivatives, respectively. *P* is the pressure in gigapascal and *P*<sub>0</sub> = 0 GPa. *T* is the  
temperature in kelvin and *T*<sub>0</sub> = 300 K. We obtained *K*<sub>S0</sub> = 163.2(15) GPa,  $\partial K_S/\partial P$  =  
6.75(33),  $\partial K_S/\partial T = -0.038(3)$  GPa/K, *G*<sub>0</sub> = 81.4(6) GPa,  $\partial G/\partial P = 1.66(14)$ , and  $\partial G/\partial T =$   
-0.029(1) GPa/K (Table 2). The fitting lines at 300 K, 400 K, 500 K, 600 K, and 700 K are  
shown in Fig. 6.

We can convert an adiabatic bulk modulus  $K_{\rm S}$  to an isothermal bulk modulus  $K_{\rm T}$ using the thermodynamic relationship:

$$267 K_{\rm S} = (1 + \alpha \gamma T) K_{\rm T}, (4)$$

where  $\alpha$  and  $\gamma$  are a thermal expansion coefficient and a thermodynamic Grüneisen parameter, respectively. We estimated  $K_{\rm T}$  (Table 1) by assuming that these parameters were constant ( $\alpha = 4.51 \times 10^{-5}$  K<sup>-1</sup> from Zhang and Guyot (1999) and  $\gamma = 1.65$  from Quareni and Mulargia (1988)). Using the estimated values of  $K_{\rm T}$  and equation (3), we obtained  $K_{\rm T0} =$ 159.9(15) GPa,  $\partial K_{\rm T}/\partial P = 6.52(32)$ , and  $\partial K_{\rm T}/\partial T = -0.049(3)$  GPa/K. All of the estimated

| 273 | elastic moduli and the previously obtained values for single-crystal and polycrystalline                                                                        |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 274 | <i>bcc</i> -Fe are summarized in Table 2. The elastic moduli values obtained in the present study                                                               |
| 275 | agreed with the previously reported values, except for the pressure derivatives $(\partial K_S / \partial P)$ ,                                                 |
| 276 | $\partial K_{\rm T}/\partial P$ , and $\partial G/\partial P$ ). However, if we assumed the same values as previous studies ( $\partial K_{\rm S}/\partial P$ ) |
| 277 | = 6.0 (Rotter and Smith 1966), $\partial K_T / \partial P = 5.5$ (Takahashi et al. 1968), and $\partial G / \partial P = 1.9$                                   |
| 278 | (Rotter and Smith 1966)), we could obtain similar values for $K_{S0}$ , $K_{T0}$ , and $G_0$ , as well as                                                       |
| 279 | their temperature derivatives, to those reported previously (Rotter and Smith 1966;                                                                             |
| 280 | Takahashi et al. 1968), as shown in Table 2.                                                                                                                    |
| 281 |                                                                                                                                                                 |

282

283

## 284 **Discussions**

285 Temperature dependences of  $V_P$ ,  $V_S$ , the bulk sound velocity ( $V_{\Phi}$ ), and elastic moduli ( $K_S$ 

and G) for bcc-Fe

287 The bulk sound velocity  $(V_{\Phi})$  is defined as follows:

$$288 V_{\Phi} = \sqrt{\frac{K_{S}}{\rho}}, (5)$$

289 The values of  $V_{\Phi}$  calculated in each of the pressure and temperature conditions are listed in

| 290 | Table 1, and Fig. 7a shows the temperature dependences of $V_{\rm P}$ , $V_{\rm S}$ , and $V_{\Phi}$ at approximately            |
|-----|----------------------------------------------------------------------------------------------------------------------------------|
| 291 | constant pressure (2-3 GPa). In the pressure and temperature range analyzed in this study,                                       |
| 292 | $V_{\Phi}$ exhibited a relatively small temperature dependence (2.5% depression from 300 K to                                    |
| 293 | 700 K), whereas $V_{\rm S}$ exhibited a large dependence (6.0% depression). This smaller                                         |
| 294 | temperature dependence of $V_{\Phi} = \sqrt{K_{\rm S}/\rho}$ than $V_{\rm S} = \sqrt{G/\rho}$ reflects the smaller effect of the |
| 295 | temperature on $K_S$ than G (Fig. 7b). The large temperature dependence of $V_S$ for <i>bcc</i> -Fe                              |
| 296 | observed in this study is the same as that for hcp-Fe (e.g., Vočadlo et al. 2009), while the                                     |
| 297 | temperature dependence of $V_{\Phi}$ for <i>bcc</i> -Fe is different from that for <i>hcp</i> -Fe (e.g., Vočadlo et              |
| 298 | al. 2009) and liquid Fe (Ichikawa et al. 2014), which reported that $V_{\Phi}$ was quite                                         |
| 299 | independent of temperature at approximately 300 GPa and even several thousand kelvin                                             |
| 300 | based on ab initio molecular dynamics simulations. This $V_{\Phi}$ difference between <i>bcc</i> -Fe and                         |
| 301 | <i>hcp</i> -Fe (and liquid Fe) may be due to the difference of the temperature dependence of $K_{\rm S}$ .                       |
| 302 | As shown in Fig. 7b, the $K_S$ of <i>bcc</i> -Fe clearly decreased with increasing temperature (6%                               |
| 303 | depression from 300 K to 700 K at 2–3 GPa). In contrast, Vočadlo et al. (2009) showed that                                       |
| 304 | the $K_S$ of <i>hcp</i> -Fe exhibited only 4% depression even with increasing temperature from 0 K                               |
| 305 | to 5500 K at approximately 300 GPa. Thus, the difference of the temperature dependence                                           |
| 306 | of $V_{\Phi}$ between <i>bcc</i> -Fe and <i>hcp</i> -Fe may result from a decrease in effect of the temperature                  |

307 on  $K_{\rm S}$  with increasing pressure.

| 308 | In the present study, both $K_S$ and G decreased linearly as the temperature increased        |
|-----|-----------------------------------------------------------------------------------------------|
| 309 | up to 700 K at approximately 2-3 GPa. These trends agreed well with previously reported       |
| 310 | results obtained at ambient pressure (Dever 1972), as shown in Fig. 7b. Dever (1972)          |
| 311 | showed that $K_{\rm S}$ and G at ambient pressure monotonically decreased with increasing     |
| 312 | temperature in the ferromagnetic region and rapidly dropped near the magnetic transition      |
| 313 | (1043 K, the Curie temperature of Fe), indicating that magnetism influences the elastic       |
| 314 | constants of <i>bcc</i> -Fe at ambient pressure. Because $K_S$ and G at 2–3 GPa in this study |
| 315 | exhibited the same temperature dependences as those in the ferromagnetic region at            |
| 316 | ambient pressure (Fig. 7b), the elastic moduli at 2-3 GPa might also be influenced by         |
| 317 | magnetism. In order to verify the magnetic contributions to the elastic moduli of Fe at high  |
| 318 | pressure, additional measurements of the elastic moduli and magnetism in the wide range of    |
| 319 | pressure and temperature conditions must be conducted.                                        |

320

321 Effect of temperature on the sound velocity–density relationship for bcc-Fe

- Figure 8 shows the values of  $V_{\rm P}$  and  $V_{\rm S}$ , obtained as a function of density, together
- 323 with previously reported *bcc*-Fe single-crystal data at ambient pressure (Dever 1972). Our

 $V_{\rm P}$  and  $V_{\rm S}$  data appeared to depend not only on density but also temperature, which clearly indicates that the temperature affected the sound velocity–density relationship for *bcc*-Fe in the pressure and temperature ranges analyzed in this study. We assumed the following linear temperature dependence for the velocity–density relationship as the first-order approximation:

329 
$$V_{\rm P,S} = a^{\rm P,S} \rho + b^{\rm P,S}(T),$$
 (6)

$$b^{\mathrm{P},\mathrm{S}}(T) = b_0^{\mathrm{P},\mathrm{S}} + b_1^{\mathrm{P},\mathrm{S}}(T - T_0), \tag{7}$$

where  $a^{P,S}$ ,  $b_0^{P,S}$ , and  $b_1^{P,S}$  are constant parameters for  $V_P$  and  $V_S$ , respectively. After fitting 331our results with relationships (6) and (7), we obtained  $a^{P} = 1100(56)$ ,  $b_{0}^{P} = -2753(454)$ , and 332 $b_1^{P} = -0.33(4)$  for  $V_P$  and  $a^{S} = 304(46)$ ,  $b_0^{S} = 831(369)$ , and  $b_1^{S} = -0.39(3)$  for  $V_S$ . The 333 calculated lines are shown in Fig. 8. The values of  $V_{\rm S}$  drop more at high temperatures ( $b_1^{\rm S}$  = 334-0.39(3)) than that of  $V_{\rm P}$  ( $b_1^{\rm P} = -0.33(4)$ ), e.g., 6.0% and 2.7% depression for  $V_{\rm S}$  and  $V_{\rm P}$ , 335respectively, from 300 K to 800 K at 8000 kg/m<sup>3</sup>. The effects of temperature on the sound 336 velocity-density relationship for both  $V_{\rm P}$  and  $V_{\rm S}$  were consistent with the data obtained at 337 ambient pressure (Dever 1972), although the lines for  $V_P$  extrapolated to the ambient 338 pressure were slightly lower than the reported ambient pressure results (though the results 339 340 were consistent within error).

341

#### 342 Comparison with previous high-pressure results

| 343 | We compared the results of the present study with previously reported picosecond                     |
|-----|------------------------------------------------------------------------------------------------------|
| 344 | acoustics (Decremps et al. 2014) and IXS studies (Liu et al. 2014; Antonangeli et al. 2015)          |
| 345 | using the sound velocity-density relationship because both the sound velocities and                  |
| 346 | densities were measured directly, except the densities of Decremps et al. (2014) which were          |
| 347 | obtained from the equation of state of Fe. Figure 9 compares the results of this ultrasonic          |
| 348 | study and previous picosecond acoustics and IXS studies. The densities of Decremps et al.            |
| 349 | (2014) plotted in Fig. 9 were estimated based on the equation of state of <i>bcc</i> -Fe reported by |
| 350 | Zhang and Guyot (1999). Our results at 300 K were consistent with the results of the                 |
| 351 | picosecond acoustics and IXS at 300 K reported by Antonangeli et al. (2015). High                    |
| 352 | temperature data of Antonangeli et al. (2015) seemed to be too scattered to define a high            |
| 353 | temperature trend, and Antonangeli et al. (2015) reported a temperature-independent linear           |
| 354 | velocity-density relationship up to 1020 K. On the other hand, the IXS data of Liu et al.            |
| 355 | (2014) were systematically higher than our results both at 300 K and at higher temperatures.         |
| 356 | The density derivative of the IXS data of Liu et al. (2014) was also greater than that of our        |
| 357 | results, whereas the effects of temperature were almost consistent, e.g., 2.2% and 2.4%              |

| 358 | decreases in the present study and the IXS data of Liu et al. (2014), respectively, from 300          |
|-----|-------------------------------------------------------------------------------------------------------|
| 359 | K to 700 K at 8000 kg/m <sup>3</sup> . The exact reason for the difference between the results of the |
| 360 | present study and the IXS data (even between IXS studies (Liu et al. 2014; Antonangeli et             |
| 361 | al. 2015)) is unclear. Liu et al. (2014) stated that their Fe sample did not contain any              |
| 362 | detectable chemical impurities according to electron microprobe analyses, although the                |
| 363 | actual chemical composition was not shown. Antonangeli et al. (2015) reported that the                |
| 364 | upper limit for possible carbon inclusion in their samples was about 0.6 wt% carbon. It was           |
| 365 | shown that the presence of carbon increased the value of $V_{\rm P}$ and decreased the density of Fe  |
| 366 | (Fiquet et al. 2009), similar to the effects of oxygen (Badro et al. 2007). However,                  |
| 367 | Antonangeli et al. (2015) concluded that the incorporation of carbon had negligible effects           |
| 368 | on the measured velocities and densities because their velocities and densities for fcc-Fe            |
| 369 | were consistent with results obtained in another study at ambient pressure and high                   |
| 370 | temperature (Zarestky and Stassis 1987). The sample of Decremps et al. (2014) was                     |
| 371 | deposited iron, the chemical composition of which was not shown. Because the chemical                 |
| 372 | compositions of those Fe samples seem not to show clear difference to influence the sound             |
| 373 | velocity and density, the chemical composition might not explain the disagreement between             |
| 374 | the results of the present study and previous IXS studies.                                            |

| 375 | Another possible explanation for these differences is the possible frequency                      |
|-----|---------------------------------------------------------------------------------------------------|
| 376 | dependence of sound velocity. Ultrasonic measurements, including this study, are usually          |
| 377 | performed at MHz frequencies, whereas the frequencies used for picosecond acoustics are           |
| 378 | GHz (e.g., Decremps et al. 2014), and for IXS, exceed THz (e.g., Fiquet et al. 2004; Liu et       |
| 379 | al. 2014). The agreement on absolute values of $V_{\rm P}$ between the present study and          |
| 380 | picosecond acoustics (Decremps et al. 2014) and disagreement between the present study            |
| 381 | and the IXS study (Liu et al. 2014) might indicate that the frequency dependence of $V_{\rm P}$   |
| 382 | becomes marked over THz. Furthermore, the differences in the density evolution for $V_{\rm P}$ in |
| 383 | the present study and that of Liu et al. (2014) might suggest that the frequency dependence       |
| 384 | also exhibits a density (or pressure) dependence. However, many factors (grain size,              |
| 385 | impurities, etc.) could affect the frequency dependence. To clarify the frequency                 |
| 386 | dependence and its density (or pressure) dependence, further careful measurements (e.g.,          |
| 387 | using the same grain size and pure samples with various frequencies) are required.                |

388

#### 389 Comparison with the temperature dependence for ε-FeSi

390 Very limited numbers of high-pressure and high-temperature data sets are available 391 for both  $V_{\rm P}$  and  $V_{\rm S}$  for Fe alloys and Fe compounds. Whitaker et al. (2009) carried out

| 392 | ultrasonic measurements for polycrystalline $\varepsilon$ -FeSi (cubic B20 structure) up to 8 GPa and                          |
|-----|--------------------------------------------------------------------------------------------------------------------------------|
| 393 | 1273 K. The reported values of $V_P$ and $V_S$ for $\varepsilon$ -FeSi as a function of density are plotted in                 |
| 394 | Fig. 10. For $\varepsilon$ -FeSi, the values of $V_S$ decreased as the temperature increased at a constant                     |
| 395 | density, which agreed with our results for bcc-Fe, but the temperature depression was                                          |
| 396 | smaller than that obtained in our study, e.g., only 1.9% from 308 K to 873 K at 6200 kg/m <sup>3</sup>                         |
| 397 | for $\varepsilon$ -FeSi, whereas we determined a depression of 6.0% from 300 K to 800 K at 8000                                |
| 398 | kg/m <sup>3</sup> for <i>bcc</i> -Fe. In contrast, the value of $V_P$ for $\varepsilon$ -FeSi was almost constant or increased |
| 399 | slightly (at the very least, it did not decrease) as the temperature increased at a constant                                   |
| 400 | density, which differed greatly from that for <i>bcc</i> -Fe.                                                                  |

Martorell et al. (2013) reported that the sound velocities of Fe would drastically drop near melting temperature ( $T_m$ ) due to a premelting effect (when  $T/T_m > 0.96$ ). The temperature conditions in this study were  $T/T_m < 0.42$  ( $T_m$  of Fe reported by Liu and Bassett (1975)), and those of  $\varepsilon$ -FeSi by Whitaker et al. (2009) were  $T/T_m < 0.58$  ( $T_m$  of FeSi by Lord et al. (2010)) or  $T/T_m < 0.75$  ( $T_m$  by Santamaría-Pérez and Boehler (2008)). As such, the premelting effect would not be significant for both measurements of *bcc*-Fe and  $\varepsilon$ -FeSi. We considered the difference in the effect of temperature on the sound

408 velocity-density relationship for  $V_{\rm P}$  (= $\sqrt{(K_{\rm S} + 4G/3)/\rho}$ ) between *bcc*-Fe and *\varepsilon*-FeSi to be

| 409 | attributable, possibly, to the different effects of temperature on the $K_{\rm S}$ -density relationship.                                        |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 410 | Figures 11b and 11d show that for both <i>bcc</i> -Fe and $\varepsilon$ -FeSi, respectively, <i>G</i> decreased as the                           |
| 411 | temperature increased at a constant density, but the high-temperature $K_{\rm S}$ behavior at a                                                  |
| 412 | constant density was extremely different between bcc-Fe and $\varepsilon$ -FeSi (Figs. 11a and 11c,                                              |
| 413 | respectively). The value of $K_{\rm S}$ for <i>bcc</i> -Fe appeared to change in a linear manner with                                            |
| 414 | density, regardless of the temperature (Fig. 11a), whereas that for $\varepsilon$ -FeSi increased with                                           |
| 415 | temperature at a constant density (Fig. 11c).                                                                                                    |
| 416 | The difference in the behavior of $K_S$ between <i>bcc</i> -Fe and $\varepsilon$ -FeSi at a constant                                             |
| 417 | density may have been due to differences in the value of $(\partial P/\partial T)_V$ related to thermal                                          |
| 418 | pressure $\Delta P_{\text{th}}$ . For example, for <i>bcc</i> -Fe at 8000 kg/m <sup>3</sup> , we found that the pressure increased               |
| 419 | from 2 GPa to 3 GPa ( $\Delta P_{\text{th}} = 1$ GPa) as the temperature increased from 300 K to 800 K ( $\Delta T$                              |
| 420 | = 500 K). However, for $\varepsilon$ -FeSi at 6200 kg/m <sup>3</sup> , the pressure increased from 1 GPa to 5 GPa                                |
| 421 | $(\Delta P_{\rm th} = 4 \text{ GPa})$ as the temperature increased from 308 K to 873 K ( $\Delta T = 565 \text{ K}$ ) according                  |
| 422 | to a previous study (Whitaker et al. 2009), which is much larger than the thermal pressure                                                       |
| 423 | for <i>bcc</i> -Fe. Thus, for $\varepsilon$ -FeSi, the increase in $K_S$ induced by the effect of pressure was                                   |
| 424 | considered to be larger than the decrease due to the effect of temperature (i.e., $\partial K_S / \partial P \times$                             |
| 425 | $\Delta P_{\text{th}} + \partial K_S / \partial T \times \Delta T > 0$ ), and $K_S$ increased with temperature at a constant density (Fig. 11c). |

| 426 | In contrast, the value of $K_S$ for <i>bcc</i> -Fe was almost constant because the effects of pressure                      |
|-----|-----------------------------------------------------------------------------------------------------------------------------|
| 427 | and temperature on $K_S$ were thought to cancel each other out at a constant density (i.e.,                                 |
| 428 | $\partial K_S / \partial P \times \Delta P_{\text{th}} + \partial K_S / \partial T \times \Delta T \approx 0$ ) (Fig. 11a). |
| 429 | Therefore, under the pressure and temperature conditions analyzed in this study,                                            |
| 430 | the velocity-density relationship of $V_P$ for $\varepsilon$ -FeSi had an almost negligible dependence on                   |
| 431 | temperature because the effects of temperature on $K_S$ and $G$ at a constant density balanced                              |
| 432 | each other out, and that for $bcc$ -Fe was negative in the same manner as the behavior of $G$ .                             |
| 433 |                                                                                                                             |
| 434 |                                                                                                                             |
| 435 |                                                                                                                             |

## 436 **Implications**

We may qualitatively predict the effects of temperature on the sound velocity ( $V_P$ )-density relationship based on the degree of thermal pressure for Fe and Fe compounds. The fundamental thermodynamic relationship gives  $(\partial P/\partial T)_V = \alpha K_T$ .  $\alpha K_T$  is correlated with the thermal pressure  $\Delta P_{th}$  according to the following relationship (Anderson et al. 1989).

441 
$$\Delta P_{\rm th} = P_{\rm th}(V,T) - P_{\rm th}(V,300)$$

442 
$$= \left[ \alpha K_{\rm T}(V_{300},T) + \left(\frac{\partial K_{\rm T}}{\partial T}\right)_V \ln\left(\frac{V_{300}}{V}\right) \right] (T-300) \tag{8}$$

| 443 | Zhang and Guyot (1999) reported $\alpha K_T(V_{300},T) = 6.5(1) \times 10^{-3}$ GPa/K for <i>bcc</i> -Fe. For <i>\varepsilon</i> -FeSi,           |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 444 | we fitted the data reported by Guyot et al. (1997) using equation (8) to estimate $\alpha K_T(V_{300},T)$                                         |
| 445 | as 7.6(1) × 10 <sup>-3</sup> GPa/K. We simply assumed that when $\alpha K_T(V_{300},T)$ for Fe compounds < ~7                                     |
| 446 | $\times$ 10 <sup>-3</sup> GPa/K (intermediate between 6.5(1) $\times$ 10 <sup>-3</sup> and 7.6(1) $\times$ 10 <sup>-3</sup> ), then the effect of |
| 447 | temperature on the $V_{\rm P}$ -density relationship is negative, similar to <i>bcc</i> -Fe. In contrast, the                                     |
| 448 | effect is small or negligible when $\alpha K_T(V_{300},T) > \sim 7 \times 10^{-3}$ GPa/K, similar to $\varepsilon$ -FeSi.                         |
| 449 | Yamazaki et al. (2012) reported a valuable pressure-volume-temperature data set                                                                   |
| 450 | for hcp-Fe up to 80 GPa and 1900 K. After fitting these data using equation (8), we                                                               |
| 451 | obtained $\alpha K_T(V_{300},T) = 12(1) \times 10^{-3}$ GPa/K. This indicates that the effect of temperature on                                   |
| 452 | the $V_P$ -density relationship might be quite small for <i>hcp</i> -Fe, as found for $\varepsilon$ -FeSi. This small                             |
| 453 | effect of temperature was also reported for hcp-Fe in previous IXS studies by Antonangeli                                                         |
| 454 | et al. (2012) and Ohtani et al. (2013). To discuss the temperature effect on the $V_P$ -density                                                   |
| 455 | relationship for hcp-Fe quantitatively based on experimental results, higher temperature                                                          |
| 456 | conditions (> 2000 K) may be necessary.                                                                                                           |
| 457 | For iron–sulfur compounds, Fe <sub>3</sub> S, we estimated $\alpha K_{\rm T}(V_{300},T)$ to be $15(2) \times 10^{-3}$                             |
| 458 | GPa/K after fitting the thermal pressure data given by Seagle et al. (2006) using equation                                                        |

(8), thereby implying a small effect of temperature on the  $V_{\rm P}$ -density relationship. Gao et al.

| 460 | (2011) reported $V_P$ and $V_S$ data for Fe <sub>3</sub> C up to 47 GPa and 1450 K using NRIXS. It is                        |
|-----|------------------------------------------------------------------------------------------------------------------------------|
| 461 | difficult to verify the quantitative effect of temperature on the velocity-density relationship                              |
| 462 | for Fe <sub>3</sub> C due to the limited data available, but $V_{\rm S}$ appears to decrease as the temperature              |
| 463 | increases at a constant density, whereas the effect of temperature on $V_{\rm P}$ falls within the                           |
| 464 | uncertainty of measurements. Using the pressure-volume-temperature data for Fe <sub>3</sub> C given                          |
| 465 | by Litasov et al. (2013), we estimated $\alpha K_{\rm T}(V_{300},T)$ to be 2.6(3) × 10 <sup>-3</sup> GPa/K and 8.9(1) ×      |
| 466 | 10 <sup>-3</sup> GPa/K for ferromagnetic and paramagnetic Fe <sub>3</sub> C, respectively. Thus, ferromagnetic               |
| 467 | Fe <sub>3</sub> C might exhibit a clear negative effect of temperature on the $V_P$ -density relationship,                   |
| 468 | whereas paramagnetic Fe <sub>3</sub> C might exhibit a small effect.                                                         |
| 469 | <i>hcp</i> -Fe, Fe <sub>3</sub> S, and paramagnetic Fe <sub>3</sub> C with large $\alpha K_T$ values are high-pressure       |
| 470 | phases, and ferromagnetic Fe <sub>3</sub> C and <i>bcc</i> -Fe with small $\alpha K_{\rm T}$ values are low-pressure phases. |

These results imply that a high-pressure phase may generally exhibit a small temperature 471effect on the  $V_{\rm P}$ -density relationship. Therefore, at ultra-high pressures pertinent to Earth's 472core conditions, the effects of temperature on the  $V_{\rm P}$ -density relationship for Fe alloys 473might be small regardless of light element contents. However, it should be noted that the 474aforementioned discussion of the effects of temperature on the  $V_{\rm P}$ -density relationship for 475

Fe compounds is still speculative. Thus, to achieve a more quantitative analysis of the 476

| 477 | effects of temperature, further sound velocity measurements (of both $V_{\rm P}$ and $V_{\rm S}$ ) are |
|-----|--------------------------------------------------------------------------------------------------------|
| 478 | required under a wide range of pressure and temperature conditions with various                        |
| 479 | compositions. Understanding differences and/or common points regarding the effects of                  |
| 480 | temperature on the sound velocity-density relationship for various Fe alloys and                       |
| 481 | compounds will be important for constraining the abundances of light elements in planetary             |
| 482 | cores and for elucidating planetary interiors.                                                         |
| 483 |                                                                                                        |
| 484 |                                                                                                        |
| 485 |                                                                                                        |
| 486 | Acknowledgements                                                                                       |
| 487 | We thank Y. Nakajima for useful suggestions and discussions. We also thank Y. Ito for                  |

chemical analysis. This work was supported by JSPS KAKENHI Grant Numbers 26887006

and 15K17784 for YS and 22000002 for EO. This work was carried out under the Visiting

490 Researcher's Program of Geodynamics Research Center, Ehime University (PRIUS). The

491 synchrotron radiation experiments were performed at the BL04B1 beamline at the SPring-8

492 facility with the approval of the Japan Synchrotron Radiation Research Institute (JASRI)

493 (proposal nos. 2014A1472 and 2014B1378).

494

495

496

# 497 **References cited**

- 498 Adams, J.J., Agosta, D.S., Leisure, R.G., and Ledbetter, H. (2006) Elastic constants of
- 499 monocrystal iron from 3 to 500 K. Journal of Applied Physics, 100, 113530.
- 500 Anderson, O.L., Isaak, D.G., and Yamamoto, S. (1989) Anharmonicity and the equation of

state for gold. Journal of Applied Physics, 65, 1534–1543.

- 502 Antonangeli, D., Komabayashi, T., Occelli, F., Borissenko, E., Walters, A.C., Fiquet, G.,
- and Fei, Y. (2012) Simultaneous sound velocity and density measurements of hcp iron
- <sup>504</sup> up to 93 GPa and 1100 K: An experimental test of the Birch's law at high temperature.
- Earth and Planetary Science Letters, 331–332, 210–214.
- 506 Antonangeli, D., Morard, G., Schmer, N.C., Komabayashi, T., Krisch, M., Fiquet, G., and
- 507 Fei, Y. (2015) Toward a mineral physics reference model for the Moon's core.
- 508 Proceedings of the National Academy of Sciences, 112, 3916–3919.
- 509 Antonangeli, D., Siebert, J., Badro, J., Farber, D.L., Fiquet, G., Morard, G., and Ryerson,
- 510 F.J. (2010) Composition of the Earth's inner core from high-pressure sound velocity

| 511 | measurements in Fe-Ni-Si alloys. Earth and Planetary Science Letters, 295, 292–296.                  |
|-----|------------------------------------------------------------------------------------------------------|
| 512 | Antonangeli, D., and Ohtani, E. (2015) Sound velocity of hcp-Fe at high pressure:                    |
| 513 | experimental constraints, extrapolations and comparison with seismic models. Progress                |
| 514 | in Earth and Planetary Science, 2, 3, doi:10.1186/s40645-015-0034-9.                                 |
| 515 | Badro, J., Fiquet, G., Guyot, F., Gregoryanz, E., Occelli, F., Antonangeli, D., and d'Astuto,        |
| 516 | M. (2007) Effect of light elements on the sound velocities in solid iron: implications               |
| 517 | for the composition of Earth's core. Earth and Planetary Science Letters, 254, 233–238.              |
| 518 | Birch, F. (1952) Elasticity and constitution of the Earth's interior. Journal of Geophysical         |
| 519 | Research, 52, 227–286.                                                                               |
| 520 | Birch, F. (1961) Composition of the Earth's mantle. Geophysical Journal of the Royal                 |
| 521 | Astronomical Society, 4, 295–311.                                                                    |
| 522 | Brown, J.M., and McQueen, R.G. (1986) Phase transitions, Grüneisen parameter, and                    |
| 523 | elasticity for shocked iron between 77 GPa and 400 GPa. Journal of Geophysical                       |
| 524 | Research, 91, 7485–7494.                                                                             |
| 525 | Bundy, F.P. (1965) Pressure-temperature phase diagram of iron to 200 kbar, 900 °C. Journal           |
| 526 | of Applied Physics, 36, 616–620.                                                                     |
| 527 | Claussen, W.F. (1960) Detection of the $\alpha$ - $\gamma$ iron phase transformation by differential |
|     | 31                                                                                                   |

| 528 | thermal conductivity analysis. Review of Scientific Instruments, 31, 878-881.                          |
|-----|--------------------------------------------------------------------------------------------------------|
| 529 | Decremps, F., Antonangeli, D., Gauthier, M., Ayrinhac, S., Morard, M., Le Marchand, G.,                |
| 530 | Bergame, F., and Philippe, J. (2014) Sound velocity of iron up to 152 GPa by                           |
| 531 | picosecond acoustics in diamond anvil cell. Geophysical Research Letters, 41,                          |
| 532 | 1459–1464.                                                                                             |
| 533 | Dever, D.J. (1972) Temperature dependence of the elastic constants in αiron single crystals:           |
| 534 | relationship to spin order and diffusion anomalies. Journal of Applied Physics, 43,                    |
| 535 | 3293–3301.                                                                                             |
| 536 | Dumberry, M., and Rivoldini, A. (2015) Mercury's inner core size and core-crystallization              |
| 537 | regime. Icarus, 248, 254–268.                                                                          |
| 538 | Dziewonski, A.M., and Anderson, D.L. (1981) Preliminary reference Earth model. Physics                 |
| 539 | of the Earth and Planetary Interiors, 25, 297–356.                                                     |
| 540 | Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward                |
| 541 | an internally consistent pressure scale. Proceedings of the National Academy of                        |
| 542 | Sciences, 104, 9182–9186.                                                                              |
| 543 | Fiquet, G., Badro, J., Gregoryanz, E., Fei, Y., and Occelli, F. (2009) Sound velocity in iron          |
| 544 | carbide (Fe <sub>3</sub> C) at high pressure: implications for the carbon content of the Earth's inner |
|     | 32                                                                                                     |

| 545 COLC. FILYSICS OF THE EARTH AND FIGHETALY INTERIORS, $1/2$ , $123$ | 545 | core. Physics of the Earth and I | Planetary Interiors, 172 | 2, 125–129 |
|------------------------------------------------------------------------|-----|----------------------------------|--------------------------|------------|
|------------------------------------------------------------------------|-----|----------------------------------|--------------------------|------------|

| 545 | core. Physics of the Earth and Planetary Interiors, 172, 125–129.                                |
|-----|--------------------------------------------------------------------------------------------------|
| 546 | Fiquet, G., Badro, J., Guyot, F., Bellin, Ch., Krisch, M., Antonangeli, D., Requardt, H.,        |
| 547 | Mermet, A., Farber, D., Aracne-Ruddle, A., and Zhang, J. (2004) Application of                   |
| 548 | inelastic X-ray scattering to the measurements of acoustic wave velocities in                    |
| 549 | geophysical materials at very high pressure. Physics of the Earth and Planetary                  |
| 550 | Interiors, 143–144, 5–18.                                                                        |
| 551 | Fiquet, G., Badro, J., Guyot, F., Requardt, H., and Krisch, M. (2001) Sound velocities in        |
| 552 | iron to 110 gigapascals. Science, 291, 468–471.                                                  |
| 553 | Gao, L., Chen, B., Wang, J., Alp, E.E., Zhao, J., Lerche, M., Sturhahn, W., Scott, H.P.,         |
| 554 | Huang, F., Ding, Y., Sinogeikin, S.V., Lundstrom, C.C., Bass, J.D., and Li, J. (2008)            |
| 555 | Pressure-induced magnetic transition and sound velocities of Fe <sub>3</sub> C: Implications for |
| 556 | carbon in the Earth's inner core. Geophysical Research Letters, 35, L17306,                      |
| 557 | doi:10.1029/2008GL034817.                                                                        |
| 558 | Gao, L., Chen, B., Zhao, J., Alp, E.E., Sturhahn, W., and Li, J. (2011) Effect of temperature    |
| 559 | on sound velocities of compressed Fe <sub>3</sub> C, a candidate component of the Earth's inner  |
| 560 | core. Earth and Planetary Science Letters, 309, 213-220.                                         |
| 561 | Guinan, M.W., and Beshers, D.N. (1968) Pressure derivatives of the elastic constants of          |
|     | 33                                                                                               |

| 302 u-non to to kos. Journal of this side and Chemistry of Solids, $27$ , $341-34$ | 562 | α-iron to 10 kbs. | Journal of Physi | ics and Chemistry | of Solids, 29 | , 541–549. |
|------------------------------------------------------------------------------------|-----|-------------------|------------------|-------------------|---------------|------------|
|------------------------------------------------------------------------------------|-----|-------------------|------------------|-------------------|---------------|------------|

- 563 Guyot, F., Zhang, J., Martinez, I., Matas, J., Ricard, Y., and Javoy, M. (1997) P-V-T
- 564 measurements of iron silicide ( $\epsilon$ -FeSi): Implications for silicate-metal interactions in
- the early Earth. European Journal of Mineralogy, 9, 277–285.
- 566 Higo, Y., Kono, Y., Inoue, T., Irifune, T., and Funakoshi, K. (2009) A system for measuring
- elastic wave velocity under high pressure and high temperature using a combination of
- 568 ultrasonic measurement and the multi-anvil apparatus at SPring-8. Journal of
- 569 Synchrotron Radiation, 16, 762–768.
- 570 Huang, E., Bassett, W.A., and Tao, P. (1987) Pressure-temperature-volume relationship for
- 571 hexagonal close packed iron determined by synchrotron radiation. Journal of

| 572 | Geophysical | Research, | 92, | 8129- | 8135. |
|-----|-------------|-----------|-----|-------|-------|
|-----|-------------|-----------|-----|-------|-------|

- 573 Ichikawa, H., Tsuchiya, T., and Tange, Y. (2015) The P-V-T equation of state and
- thermodynamic properties of liquid iron. Journal of Geophysical Research, 119,
- 575 240–252.
- 576 Isaak, D.G., and Masuda, K. (1995) Elastic and viscoelastic properties of α iron at high
- temperatures. Journal of Geophysical Research, 100, 17689–17698.
- 578 Kamada, S., Ohtani, E., Fukui, H., Sakai, T., Terasaki, H., Takahashi, S., Shibazaki, Y.,

| 579 | Tstsui, S., Baron, A.Q.R., Hirao, N., and Ohishi, Y. (2014) The sound velocity                    |
|-----|---------------------------------------------------------------------------------------------------|
| 580 | measurements of Fe <sub>3</sub> S. American Mineralogist, 99, 98–101.                             |
| 581 | Kantor, A.P., Kantor, I.Y., Kurnosov, A.V., Kuznetsov, A.Y., Dubrovinskaia, N.A., Krisch,         |
| 582 | M., Bossak, A.A., Dmitriev, V.P., Urusov, V.S., and Dubrovinsky, L.S. (2007) Sound                |
| 583 | wave velocities of fcc Fe-Ni alloy at high pressure and temperature by mean of                    |
| 584 | inelastic X-ray scattering. Physics of the Earth and Planetary Interiors, 164, 83-89.             |
| 585 | Klotz, S., and Braden, M. (2000) Phonon dispersion of bcc iron to 10 GPa. Physical                |
| 586 | Review Letters, 85, 3209–3212.                                                                    |
| 587 | Leese, J., and Lord, Jr., A.E. (1968) Elastic stiffness coefficients of single-crystal iron from  |
| 588 | room temperature to 500 °C. Journal of Applied Physics, 30, 3986–3988.                            |
| 589 | Li, Y., and Fei, Y. (2014) Experimental constraints on core composition. In R.W. Carlson,         |
| 590 | Eds., The mantle and core, Treatise on geochemistry, 2nd ed., vol. 3, p. 527-557.                 |
| 591 | Elsevior, U.K.                                                                                    |
| 592 | Lin, JF., Fei, Y., Sturhahn, W., Zhao, J., Mao, HK., and Hemley, R.J. (2004) Magnetic             |
| 593 | transition and sound velocities of Fe <sub>3</sub> S at high pressure: Implications for Earth and |
| 594 | planetary cores. Earth and Planetary Science Letters, 226, 33-40.                                 |
|     |                                                                                                   |

595 Lin, J.-F., Struzhkin, V.V., Sturhahn, W., Huang, E., Zhao, J., Hu, M.Y., Alp, E.E., Mao,

- H.-K., Boctor, N., and Hemley, R.J. (2003) Sound velocities of iron-nickel and
  iron-silicon alloys at high pressures. Geophysical Research Letters, 30, 2112,
  doi:10.1029/2003GL018405.
- Lin, J.-F., Sturhahn, W., Zhao, J., Shen, G., Mao, H.-K., and Hemley, R.J. (2005) Sound
- velocities of hot dense iron: Birch's law revisited. Science, 308, 1892–1894.
- 601 Litasov, K.D., Sharygin, I.S., Dorogokupets, P.I., Shatskiy, A., Gavryushkin, P.N.,
- 602 Sokolova, T.S., Ohtani, E., Lie, J., and Funakoshi, K. (2013) Thermal equation of state
- and thermodynamic properties of iron carbide Fe<sub>3</sub>C to 31 GPa and 1473 K. Journal of
- 604 Geophysical Research, 118, 1–11.
- Liu, J., Lin, J.-F., Alatas, A., and Bi, W. (2014) Sound velocities of bcc-Fe and Fe<sub>0.85</sub>Si<sub>0.15</sub>
- alloy at high pressure and temperature. Physics of the Earth and Planetary Interiors,233, 24–32.
- Liu, L.-G., and Bassett, W.A. (1975) The melting of iron up to 200 kbar. Journal of
  Geophysical Research, 80, 3777–3782.
- Lord, O.T., Walter, M.J., Dobson, D.P., Armstrong, L., Clark, S.M., and Kleppe, A. (2010)
- The FeSi phase diagram to 150 GPa. Journal of Geophysical Research, 115, B06208,
- 612 doi:10.1029/2009JB006528.

| 613 | Mao, HK., Bassett, W.A., and Takahashi, T. (1967) Effect of pressure on crystal structure      |
|-----|------------------------------------------------------------------------------------------------|
| 614 | and lattice parameters of iron up to 300 kbar. Journal of Applied Physics, 38, 272–276.        |
| 615 | Mao, HK., Xu, J., Struzhkin, V.V., Shu, J., Hemley, R.J., Sturhahn, W., Hu, M.Y., Alp,         |
| 616 | E.E., Vočadlo, L., Alfè, D., Price, G.D., Gillan, M.J., Schwoerer-Böhning, M.,                 |
| 617 | Häusermann, D., Eng, P., Shen, G., Giefers, H., Lübbers, R., and Wortmann, G. (2001)           |
| 618 | Phonon density of states of iron up to 153 gigapascals. Science, 292, 914–916.                 |
| 619 | Mao, Z., Lin, JF., Liu, J., Alatas, A., Gao, L., Zhao, J., and Mao, HK. (2012) Sound           |
| 620 | velocities of Fe and Fe-Si alloy in the Earth's core. Proceedings of the National              |
| 621 | Academy of Sciences, 109, 10239–10244.                                                         |
| 622 | Martorell, B., Vočadlo, L., Brodholt, J., and Wood, I.G. (2013) Strong premelting effect in    |
| 623 | the elastic properties of hcp-Fe under inner-core conditions. Science, 342, 466–468.           |
| 624 | Murphy, C.A., Jackson, J.M., and Sturhahn, W. (2013) Experimental constraints on the           |
| 625 | thermodynamics and sound velocities of hcp-Fe to core pressures. Journal of                    |
| 626 | Geophysical Research, 118, 1999–2016.                                                          |
| 627 | Ohtani, E., Shibazaki, Y., Sakai, T., Mibe, K., Fukui, H., Kamada, S., Sakamaki, T., Seto, T., |
| 628 | Tsutsui, S., and Baron, A.Q.R. (2013) Sound velocity of hexagonal close-packed iron            |
| 629 | up to core pressures. Geophysical Research Letters, 40, 1–6.                                   |
|     | 37                                                                                             |

- 630 Poirier, J.-P. (1994) Light elements in the Earth's outer core: A critical review. Physics of
- 631 the Earth and Planetary Interiors, 85, 319–337.
- 632 Quareni, F., and Mulargia, F. (1988) The validity of the common approximate expressions
- 633 for the Grüneisen parameter. Geophysical Journal, 93, 505–519.
- Rotter, C.A., and Smith, C.S. (1966) Ultrasonic equation of state of iron: I. low pressure,
- room temperature. Journal of Physics and Chemistry of Solids, 27, 267–276.
- 636 Santamaría-Pérez, D., and Boehler, R. (2008) FeSi melting curve up to 70 GPa. Earth and
- 637 Planetary Science Letters, 265, 743–747.
- 638 Seagle, C.T., Campbell, A.J., Heinz, D.L., Shen, G., and Prakapenka, V.B. (2006) Thermal
- 639 equation of state of Fe<sub>3</sub>S and implications for sulfur in Earth's core. Journal of
- 640 Geophysical Research, 111, B06209, doi:10.1029/2005JB004091.
- 641 Sha, X., and Cohen, R.E. (2010) Elastic isotropy of  $\varepsilon$ -Fe under Earth's core conditions.
- 642 Geophysical Research Letters, 37, L10302, doi:10.1029/2009GL042224.
- 643 Shibazaki, Y., Ohtani, E., Fukui, H., Sakai, T., Kamada, S., Ishikawa, D., Tsutsui, S., Baron,
- A.Q.R., Nishitani, N., Hirao, N., and Takemura, K. (2012) Sound velocity
- 645 measurements in dhcp-FeH up to 70 GPa with inelastic X-ray scattering: Implications
- for the composition of the Earth's core. Earth and Planetary Science Letters, 313–314,

- 647 **79–85**.
- Takahashi, T., Bassett, W.A., and Mao, H.-K. (1968) Isothermal compression of the alloys
- of iron up to 300 kilobars at room temperature: Iron-nickel alloys. Journal of
- 650 Geophysical Research, 73, 4717–4725.
- Tange, Y., Nishihara, Y., and Tsuchiya, T. (2009) Unified analyses for P-V-T equation of
- state of MgO: A solution for pressure-scale problems in high P-T experiments. Journal
- 653 of Geophysical Research, 114, B03208, doi:10.1029/2008JB005813.
- Vočadlo, L., Dobson, D.P., and Wood, I.G. (2009) Ab initio calculations of the elasticity of
- hcp-Fe as a function of temperature at inner-core pressure. Earth and Planetary Science
  Letters, 288, 534–538.
- 657 Wakabayashi, D., and Funamori, N. (2015) Solving the problem of inconsistency in
- reported equations of state for h-BN. High Pressure Research, 35, 123–129.
- 659 Whitaker, M.L., Liu, W., Liu, Q., Wang, L., and Li, B. (2009) Thermoelasticity of ε-FeSi to
- 660 8 GPa and 1273 K. American Mineralogist, 94, 1039–1044.
- 661 Wilburn, D.R., and Bassett, W.A. (1978) Hydrostatic compression of iron and related
- 662 compounds: an overview. American Mineralogist, 63, 591–596.
- 663 Yamazaki, D., Ito, E., Yoshino, T., Yoneda, A., Guo, X., Zhang, B., Sun, W., Shimojuku, A.,

| 664 | Tsujino, N | N., Kunimoto, | T., Higo, | Y., and | Funakoshi, | К. | (2012) | P-V-T | equation | of state |
|-----|------------|---------------|-----------|---------|------------|----|--------|-------|----------|----------|
|     |            |               |           |         |            |    |        |       |          |          |

- for  $\varepsilon$ -iron up to 80 GPa and 1900 K using the Kawai-type high pressure apparatus
- equipped with sintered diamond anvils. Geophysical Research Letters, 39, L20308,
- 667 doi:10.1029/2012GL053540.
- Zaresky, J., and Stassis, C. (1987) Lattice dynamics of γ-Fe. Physical Review B, 35,
  4500–4502.
- <sup>670</sup> Zhang, J., and Guyot, F. (1999) Thermal equation of state of iron and Fe<sub>0.91</sub>Si<sub>0.09</sub>. Physics
- and Chemistry of Minerals, 26, 206–211.
- 672 Zharkov, V.N., Gudkova, T.V., and Molodensky, S.M. (2009) On models of Mars' interior
- and amplitudes of forced nutations: 1. the effects of deviation of Mars from its
- equilibrium state on the flattening of the core-mantle boundary. Physics of the Earth
- and Planetary Interiors, 172, 324–334.
- 676
- 677
- 678

### 679 Figure captions

680 Fig. 1. Schematic illustrations of cell assemblies used for: (a) simultaneous sound velocity

and density measurements and (b) thermocouple (TC) tests.

682

Fig. 2. Diffraction patterns obtained from the samples at ambient conditions (0 GPa and
300 K) and at the highest pressure (6.3 GPa and 640 K).

685

Fig. 3. Examples of: (a) P- and (b) S-wave signals observed at 6.3 GPa and 640 K.

687

Fig. 4. Pressure–volume–temperature data obtained in this study (solid circles), together
with the equation of state for *bcc*-Fe reported by Zhang and Guyot (1999) (gray lines) and
previous IXS studies (open squares, Liu et al. (2014); open stars, Antonangeli et al. (2015)).

691

Fig. 5. (a)  $V_P$  and (b)  $V_S$ , obtained as a function of pressure, for polycrystalline *bcc*-Fe in this study (solid circles), together with previous IXS data (open squares, Liu et al. (2014); open stars, Antonangeli et al. (2015)), picosecond acoustics (PA) at frequencies of about 100 GHz (Decremps et al. 2014) (open down triangles), and ambient-pressure results for *bcc*-Fe single-crystal, measured using an ultrasonic technique at frequencies of 20–70 MHz (Dever 1972) (open diamonds). The pressure values for the IXS studies were re-estimated

- based on the equation of state for *bcc*-Fe reported by Zhang and Guyot (1999). Those for
  picosecond acoustics were measured using ruby fluorescence (Decremps et al. 2014). The
  error bars fall within symbols for the data of Decremps et al. (2014).
- 701

Fig. 6. Calculated adiabatic (a) bulk ( $K_S$ ) and (b) shear (G) moduli obtained in this study, as

a function of pressure, with the fitting lines at each temperature (300 K, 400 K, 500 K, 600

K, and 700 K) for polycrystalline *bcc*-Fe.

705

Fig. 7. (a) Temperature dependences obtained in this study for  $V_{\rm P}$ ,  $V_{\rm S}$ , and  $V_{\Phi}$  at approximately 2–3 GPa for polycrystalline *bcc*-Fe. (b) Temperature dependences obtained in this study for  $K_{\rm S}$ , G, and  $\rho$  at approximately 2–3 GPa, together with  $K_{\rm S}$  and G from a previous ambient-pressure study (Dever 1972). The vertical axis shows the value normalized against that at 300 K. Lines are provided as guides.

- 711
- Fig. 8.  $V_{\rm P}$  and  $V_{\rm S}$  as functions of density with the fitted lines. The solid circles and open
- 713 diamonds denote the results obtained in the present study (polycrystalline bcc-Fe) and
- previously reported ambient pressure results (bcc-Fe single-crystal) (Dever 1972),

715respectively. The extrapolation of the lines obtained in the present study for  $V_{\rm S}$  to ambient pressure agreed well with the ambient data (Dever 1972). The lines for  $V_{\rm P}$  were slightly 716 lower than the ambient data, but they were consistent within errors for velocity and 717 718 temperature. 719 Fig. 9. Comparison of the dependences of  $V_{\rm P}$  on density and temperature for polycrystalline 720 *bcc*-Fe according to the present ultrasonic study and previous picosecond acoustics (PA) 721 (Decremps et al. 2014) and IXS studies (Liu et al. 2014; Antonangeli et al. 2015). Densities 722723 of Decremps et al. (2014) were estimated based on the equation of state of bcc-Fe reported 724by Zhang and Guyot (1999). The solid lines are the fitted lines obtained in the present study at 300 K, 500 K, and 700 K. The dotted lines represent the IXS results obtained by Liu et al. 725726 (2014). The open down triangles and stars denote the PA (Decremps et al. 2014) and IXS (Antonangeli et al. 2015) results, respectively. The typical errors of this study and Liu et al. 727 728 (2014) are shown in the insert figure. The error bars fall within symbols for the data of Decremps et al. (2014). 729

730

Fig. 10.  $V_{\rm P}$  and  $V_{\rm S}$  as functions of density for polycrystalline  $\varepsilon$ -FeSi, obtained by Whitaker

| 732 | et al. | (2009). |
|-----|--------|---------|
|     |        | · /     |

| 734 | Fig. | 11. | (a) | $K_{\rm S}$ | and | (b) | G | as | functi | ons | of | density | for | poly | crysta | lline | bcc- | Fe | in | the | presen | t |
|-----|------|-----|-----|-------------|-----|-----|---|----|--------|-----|----|---------|-----|------|--------|-------|------|----|----|-----|--------|---|
|-----|------|-----|-----|-------------|-----|-----|---|----|--------|-----|----|---------|-----|------|--------|-------|------|----|----|-----|--------|---|

- study, and previously reported results for (c)  $K_{\rm S}$  and (d) G for polycrystalline  $\varepsilon$ -FeSi
- 736 (Whitaker et al. 2009).

- 1 10

| Table 1. Experimental pressures ( $P$ ) and temperatures ( $T$ ), and determined unit-cell volume ( $V$ ), density ( $ ho$ ), $P$ - ( $V_P$ ) and S-wave ( $V_S$ ), and |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bulk sound (V <sub>o</sub> ) velocities, and adiabatic bulk (K <sub>S</sub> ), shear (G), and isothermal bulk (K <sub>T</sub> ) moduli for <i>bcc</i> -Fe.              |

| ant ee ana (         | τ φ) τοισσιαίο            | o, ana aanaba       |                             |                   |                      | () ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) |                      |          |           |
|----------------------|---------------------------|---------------------|-----------------------------|-------------------|----------------------|----------------------------------------|----------------------|----------|-----------|
| P (GPa) <sup>a</sup> | <i>T</i> (K) <sup>a</sup> | V (Å <sup>3</sup> ) | $\rho$ (kg/m <sup>3</sup> ) | $V_{\rm P}$ (m/s) | V <sub>s</sub> (m/s) | $V_{\Phi}$ (m/s)                       | K <sub>S</sub> (GPa) | G (GPa)  | K⊤ (GPa)  |
| 3.0(5)               | 814(84)                   | 23.57(2)            | 7872(5)                     | 5705(59)          | -                    | -                                      | -                    | -        | -         |
| 2.7(5)               | 706(78)                   | 23.54(3)            | 7881(9)                     | 5786(58)          | 3066(31)             | 4576(77)                               | 165.1(57)            | 74.1(15) | 156.8(55) |
| 2.4(5)               | 544(72)                   | 23.43(1)            | 7917(4)                     | 5881(62)          | 3147(33)             | 4624(84)                               | 169.3(62)            | 78.4(17) | 162.7(60) |
| 2.2(5)               | 409(67)                   | 23.28(4)            | 7968(13)                    | 5955(60)          | 3210(33)             | 4660(83)                               | 173.0(61)            | 82.1(17) | 167.9(60) |
| 2.0(5)               | 300 <sup>b</sup>          | 23.26(2)            | 7976(5)                     | 6018(61)          | 3262(33)             | 4693(84)                               | 175.7(63)            | 84.9(17) | 171.8(61) |
|                      |                           |                     |                             |                   |                      |                                        |                      |          |           |
| 4.5(5)               | 651(84)                   | 23.11(2)            | 8028(8)                     | 5969(50)          | 3120(26)             | 4759(67)                               | 181.8(51)            | 78.1(13) | 173.4(50) |
| 4.5(5)               | 620(82)                   | 23.07(1)            | 8042(4)                     | 5998(51)          | 3147(27)             | 4772(68)                               | 183.1(52)            | 79.6(14) | 175.1(51) |
| 4.2(5)               | 536(78)                   | 23.06(2)            | 8045(7)                     | 6030(52)          | 3185(27)             | 4779(69)                               | 183.7(53)            | 81.6(14) | 176.7(52) |
| 4.0(5)               | 421(73)                   | 22.97(1)            | 8076(2)                     | 6090(51)          | 3244(27)             | 4801(69)                               | 186.1(54)            | 85.0(14) | 180.5(53) |
| 3.7(5)               | 309(68)                   | 22.89(2)            | 8105(6)                     | 6146(59)          | 3274(31)             | 4846(79)                               | 190.4(62)            | 86.9(17) | 186.1(62) |
|                      |                           |                     |                             |                   |                      |                                        |                      |          |           |
| 6.3(5)               | 635(91)                   | 22.79(2)            | 8142(6)                     | 6087(51)          | 3193(27)             | 4843(68)                               | 191.0(54)            | 83.0(14) | 182.4(53) |
| 5.8(5)               | 503(82)                   | 22.74(3)            | 8158(10)                    | 6113(65)          | 3207(34)             | 4863(87)                               | 192.9(69)            | 83.9(18) | 186.0(67) |
| 5.5(5)               | 367(75)                   | 22.71(1)            | 8169(4)                     | 6193(61)          | 3275(32)             | 4905(82)                               | 196.5(66)            | 87.6(17) | 191.3(65) |
| 5.4(2)               | 300 <sup>b</sup>          | 22.68(2)            | 8180(8)                     | 6255(52)          | 3332(28)             | 4933(70)                               | 199.0(57)            | 90.8(15) | 194.7(56) |
|                      |                           |                     |                             |                   |                      |                                        |                      |          | -         |

Number in parenthesis represents the uncertainties in the last digit.

<sup>a</sup> Most of uncertainties in pressures and temperatures originate in uncertainties in equation of state for hBN (Wakabayashi and Funamori 2015). <sup>b</sup> Fixed values.

| 750 |  |  |  |
|-----|--|--|--|
| 751 |  |  |  |
| 752 |  |  |  |
| 753 |  |  |  |
| 754 |  |  |  |
| 755 |  |  |  |
| 756 |  |  |  |
| 757 |  |  |  |
| 758 |  |  |  |
| 759 |  |  |  |

| Table 2. C | Compariso | on of elasti    | c paramet            | ters for bco         | :-Fe.             |                             |                             |                 |                      |                                |                  |             |                   |
|------------|-----------|-----------------|----------------------|----------------------|-------------------|-----------------------------|-----------------------------|-----------------|----------------------|--------------------------------|------------------|-------------|-------------------|
| P range    | T range   | K <sub>S0</sub> | ∂K <sub>s0</sub> /∂P | ∂K <sub>s0</sub> /∂T | G <sub>0</sub>    | $\partial G_0 / \partial P$ | $\partial G_0 / \partial T$ | K <sub>T0</sub> | ∂K <sub>т0</sub> /∂P | $\partial K_{T0} / \partial T$ | Method           | Sample      | Ref. <sup>a</sup> |
| (GPa)      | (K)       | (GPa)           |                      | (GPa/K)              | (GPa)             |                             | (GPa/K)                     | (GPa)           |                      | (GPa/K)                        |                  |             |                   |
| 2.0-6.3    | 300-800   | 163.2(15)       | 6.75(33)             | -0.038(3)            | 81.4(6)           | 1.66(14)                    | -0.029(1)                   | 159.9(15)       | 6.52(32)             | -0.049(3)                      | Ultrasonic       | Polycrystal | This study        |
| 2.0-6.3    | 300-800   | 166.1(9)        | 6 <sup>b</sup>       | -0.037(4)            | 80.4(3)           | 1.9 <sup>b</sup>            | -0.029(1)                   | 163.8(10)       | 5.5 <sup>b</sup>     | -0.048(4)                      | Ultrasonic       | Polycrystal | This study        |
| 0–0.36     | 300       | 166.9           | 5.97                 | -                    | 81.8 <sup>c</sup> | 1.91                        | -                           | -               | -                    | -                              | Ultrasonic       | Single      | 1                 |
| 0–1        | 300       | 166.4           | 5.29                 | -                    | 81.4 <sup>c</sup> | 1.82                        | -                           | -               | -                    | -                              | Ultrasonic       | Single      | 2                 |
| 0          | 298–773   | 168.7           | -                    | -0.041               | 72.1 <sup>c</sup> | -                           | -0.015                      | -               | -                    | -                              | Ultrasonic       | Single      | 3                 |
| 0          | 298–773   | 167.8           | -                    | -0.035               | 82.0 <sup>c</sup> | -                           | -0.029                      | -               | -                    | -                              | Ultrasonic       | Single      | 4                 |
| 0          | 298-800   | 165.7           | -                    | -0.046               | 82.0 <sup>c</sup> | -                           | -0.034                      | -               | -                    | -                              | Ultrasonic       | Single      | 5                 |
| 0          | 300–500   | 166.2           | -                    | -0.029               | 81.5 <sup>c</sup> | -                           | -0.025                      | -               | -                    | -                              | Ultrasonic       | Single      | 6                 |
| 0-10       | 300       | 159.0           | -                    | -                    | 77.9 <sup>c</sup> | -                           | -                           | -               | -                    | -                              | INS <sup>d</sup> | Single      | 7                 |
| 0–15       | 296       | -               | -                    | -                    | -                 | -                           | -                           | 156.3           | 5.62                 | -                              | XRD <sup>d</sup> | Polycrystal | 8                 |
| 0–30       | 296       | -               | -                    | -                    | -                 | -                           | -                           | 162             | 5.5                  | -                              | XRD              | Polycrystal | 9                 |
| 0–11       | 298       | -               | -                    | -                    | -                 | -                           | -                           | 164             | 4 <sup>b</sup>       | -                              | XRD              | Polycrystal | 10                |
| 0–12       | 298–723   | -               | -                    | -                    | -                 | -                           | -                           | 171             | 4 <sup>b</sup>       | -0.010                         | XRD              | Polycrystal | 11                |
| 0–9        | 298–774   | -               | -                    | -                    | -                 | -                           | -                           | 159             | 4 <sup>b</sup>       | -0.043                         | XRD              | Polycrystal | 12                |

Number in parenthesis represents the uncertainties in the last digit. <sup>a</sup> References: 1 = Rotter and Smith (1966); 2 = Guinan and Beshers (1968); 3 = Leese and Lord (1968); 4 = Dever (1972); 5 = Isaak and Masuda (1995); 6 = Adams et al. (2006); 7 = Klotz and Braden (2000); 8 = Mao et al. (1967); 9 = Takahashi et al. (1968); 10 = Wilburn and Bassett (1978); 11 = Huang et al. (1987); 12 = Zhang and Guyot (1999). <sup>b</sup> Fixed values.

<sup>c</sup> Voight-Reuss-Hill average.

760

<sup>d</sup> INS = inelastic neutron scattering; XRD = X-ray diffraction.

| P (GPa) <sup>a</sup> | 7 (K) <sup>a</sup> | V (Å <sup>3</sup> ) | ho (kg/m <sup>3</sup> ) | V <sub>P</sub> (m/s) | V <sub>s</sub> (m/s) | $V_{\Phi}$ (m/s) | К <sub>S</sub> (GPa) | G (GPa)  | K⊤(GPa)   |
|----------------------|--------------------|---------------------|-------------------------|----------------------|----------------------|------------------|----------------------|----------|-----------|
| 3.0(5)               | 814(84)            | 23.57(2)            | 7872(5)                 | 5705(59)             | -                    | -                | -                    | -        | -         |
| 2.7(5)               | 706(78)            | 23.54(3)            | 7881(9)                 | 5786(58)             | 3066(31)             | 4576(77)         | 165.1(57)            | 74.1(15) | 156.8(55) |
| 2.4(5)               | 544(72)            | 23.43(1)            | 7917(4)                 | 5881(62)             | 3147(33)             | 4624(84)         | 169.3(62)            | 78.4(17) | 162.7(60) |
| 2.2(5)               | 409(67)            | 23.28(4)            | 7968(13)                | 5955(60)             | 3210(33)             | 4660(83)         | 173.0(61)            | 82.1(17) | 167.9(60) |
| 2.0(5)               | 300 <sup>b</sup>   | 23.26(2)            | 7976(5)                 | 6018(61)             | 3262(33)             | 4693(84)         | 175.7(63)            | 84.9(17) | 171.8(61) |
|                      |                    |                     |                         |                      |                      |                  |                      |          |           |
| 4.5(5)               | 651(84)            | 23.11(2)            | 8028(8)                 | 5969(50)             | 3120(26)             | 4759(67)         | 181.8(51)            | 78.1(13) | 173.4(50) |
| 4.5(5)               | 620(82)            | 23.07(1)            | 8042(4)                 | 5998(51)             | 3147(27)             | 4772(68)         | 183.1(52)            | 79.6(14) | 175.1(51) |
| 4.2(5)               | 536(78)            | 23.06(2)            | 8045(7)                 | 6030(52)             | 3185(27)             | 4779(69)         | 183.7(53)            | 81.6(14) | 176.7(52) |
| 4.0(5)               | 421(73)            | 22.97(1)            | 8076(2)                 | 6090(51)             | 3244(27)             | 4801(69)         | 186.1(54)            | 85.0(14) | 180.5(53) |
| 3.7(5)               | 309(68)            | 22.89(2)            | 8105(6)                 | 6146(59)             | 3274(31)             | 4846(79)         | 190.4(62)            | 86.9(17) | 186.1(62) |
|                      |                    |                     |                         |                      |                      |                  |                      |          |           |
| 6.3(5)               | 635(91)            | 22.79(2)            | 8142(6)                 | 6087(51)             | 3193(27)             | 4843(68)         | 191.0(54)            | 83.0(14) | 182.4(53) |
| 5.8(5)               | 503(82)            | 22.74(3)            | 8158(10)                | 6113(65)             | 3207(34)             | 4863(87)         | 192.9(69)            | 83.9(18) | 186.0(67) |
| 5.5(5)               | 367(75)            | 22.71(1)            | 8169(4)                 | 6193(61)             | 3275(32)             | 4905(82)         | 196.5(66)            | 87.6(17) | 191.3(65) |
| 5.4(2)               | 300 <sup>b</sup>   | 22.68(2)            | 8180(8)                 | 6255(52)             | 3332(28)             | 4933(70)         | 199.0(57)            | 90.8(15) | 194.7(56) |

Table 1. Experimental pressures (*P*) and temperatures (*T*), and determined unit-cell volume (*V*), density ( $\rho$ ), P- (*V*<sub>P</sub>) and S-wave (*V*<sub>S</sub>), and bulk sound (*V*<sub> $\phi$ </sub>) velocities, and adiabatic bulk (*K*<sub>S</sub>), shear (*G*), and isothermal bulk (*K*<sub>T</sub>) moduli for *bcc*-Fe.

Number in parenthesis represents the uncertainties in the last digit.

<sup>a</sup> Most of uncertainties in pressures and temperatures originate in uncertainties in equation of state for hBN (Wakabayashi and Funamori 2015). <sup>b</sup> Fixed values.

| P range<br>(GPa) | T range<br>(K) | K <sub>so</sub><br>(GPa) | ∂K <sub>s0</sub> /∂ <b>P</b> | ∂K <sub>so</sub> /∂T<br>(GPa/K) | G <sub>0</sub><br>(GPa) | $\partial G_0 / \partial P$ | ∂G <sub>0</sub> /∂ <i>T</i><br>(GPa/K) | К <sub>то</sub><br>(GPa) | ∂K <sub>T0</sub> /∂ <b>P</b> | ∂K <sub>T0</sub> /∂T<br>(GPa/K) | Method           | Sample      | Ref. <sup>a</sup> |
|------------------|----------------|--------------------------|------------------------------|---------------------------------|-------------------------|-----------------------------|----------------------------------------|--------------------------|------------------------------|---------------------------------|------------------|-------------|-------------------|
| 2.0–6.3          | 300–800        | 163.2(15)                | 6.75(33)                     | -0.038(3)                       | 81.4(6)                 | 1.66(14)                    | -0.029(1)                              | 159.9(15)                | 6.52(32)                     | -0.049(3)                       | Ultrasonic       | Polycrystal | This study        |
| 2.0–6.3          | 300-800        | 166.1(9)                 | 6 <sup>b</sup>               | -0.037(4)                       | 80.4(3)                 | 1.9 <sup>b</sup>            | -0.029(1)                              | 163.8(10)                | 5.5 <sup>b</sup>             | -0.048(4)                       | Ultrasonic       | Polycrystal | This study        |
| 0–0.36           | 300            | 166.9                    | 5.97                         | -                               | 81.8 <sup>c</sup>       | 1.91                        | -                                      | -                        | -                            | -                               | Ultrasonic       | Single      | 1                 |
| 0–1              | 300            | 166.4                    | 5.29                         | -                               | 81.4 <sup>c</sup>       | 1.82                        | -                                      | -                        | -                            | -                               | Ultrasonic       | Single      | 2                 |
| 0                | 298–773        | 168.7                    | -                            | -0.041                          | 72.1 <sup>c</sup>       | -                           | -0.015                                 | -                        | -                            | -                               | Ultrasonic       | Single      | 3                 |
| 0                | 298–773        | 167.8                    | -                            | -0.035                          | 82.0 <sup>c</sup>       | -                           | -0.029                                 | -                        | -                            | -                               | Ultrasonic       | Single      | 4                 |
| 0                | 298–800        | 165.7                    | -                            | -0.046                          | 82.0 <sup>c</sup>       | -                           | -0.034                                 | -                        | -                            | -                               | Ultrasonic       | Single      | 5                 |
| 0                | 300–500        | 166.2                    | -                            | -0.029                          | 81.5 <sup>c</sup>       | -                           | -0.025                                 | -                        | -                            | -                               | Ultrasonic       | Single      | 6                 |
| 0-10             | 300            | 159.0                    | -                            | -                               | 77.9 <sup>c</sup>       | -                           | -                                      | -                        | -                            | -                               | INS <sup>d</sup> | Single      | 7                 |
| 0–15             | 296            | -                        | -                            | -                               | -                       | -                           | -                                      | 156.3                    | 5.62                         | -                               | $XRD^{d}$        | Polycrystal | 8                 |
| 0–30             | 296            | -                        | -                            | -                               | -                       | -                           | -                                      | 162                      | 5.5                          | -                               | XRD              | Polycrystal | 9                 |
| 0–11             | 298            | -                        | -                            | -                               | -                       | -                           | -                                      | 164                      | 4 <sup>b</sup>               | -                               | XRD              | Polycrystal | 10                |
| 0–12             | 298–723        | -                        | -                            | -                               | -                       | -                           | -                                      | 171                      | 4 <sup>b</sup>               | -0.010                          | XRD              | Polycrystal | 11                |
| 0–9              | 298–774        | -                        | -                            | -                               | -                       | -                           | -                                      | 159                      | 4 <sup>b</sup>               | -0.043                          | XRD              | Polycrystal | 12                |

#### Table 2. Comparison of elastic parameters for *bcc*-Fe.

Number in parenthesis represents the uncertainties in the last digit.

<sup>a</sup> References: 1 = Rotter and Smith (1966); 2 = Guinan and Beshers (1968); 3 = Leese and Lord (1968); 4 = Dever (1972); 5 = Isaak and Masuda (1995); 6 = Adams et al. (2006); 7 = Klotz and Braden (2000); 8 = Mao et al. (1967); 9 = Takahashi et al. (1968); 10 = Wilburn and Bassett (1978); 11 = Huang et al. (1987); 12 = Zhang and Guyot (1999).

<sup>b</sup> Fixed values.

<sup>c</sup> Voight-Reuss-Hill average.

<sup>d</sup> INS = inelastic neutron scattering; XRD = X-ray diffraction.







Figure 4



Figure 5 revised



Figure 6





Figure 8 revised



Figure 9 revised



Figure 10



Figure 11

**bcc-Fe** (this study) **O** 300-350 K O 400-450 K O 600-650 K O 700-750 K (C) (a) ● 350-400 K ● 500-550 K ● 650-700 K 220 220 K<sub>S</sub> 210 210 200 200 Ks (GPa) 190 190 Ks (GPa) 180 180 170 170 160 · 160 150 · 150 140 -140 8200 7800 8000 8100 7900 8300 6100 Density (kg/m<sup>3</sup>) (d) (b) 95 135 G 90 130 ·  $\bigcirc$ 85 125 G (GPa) G (GPa) 80 -120 -75 -115 · н 110 · 70 65 · 105 – 6100 8200 7800 7900 8000 8100 8300 Density (kg/m<sup>3</sup>)





