Revision 1:

A single-crystal X-ray and Raman spectroscopic study of hydrothermally synthesized arsenates and vanadates with the descloizite and adelite structure types

TAMARA ĐORĐEVIĆ, ${ }^{\mathbf{1}}$ UWE KOLITSCH, ${ }^{\mathbf{2 , 1}}$ AND LUTZ NASADALA ${ }^{\mathbf{1}}$

${ }^{1}$ Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstraße 14, 1090 Wien, Austria
${ }^{2}$ Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, A-1010 Wien, Austria

Abstract

Studying the reason for the formation of two structural sub-types, seven arsenate and vanadate compounds of descloizite and adelite groups, $\mathrm{CdCo}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)(\mathbf{1}), \mathrm{CdCu}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)(\mathbf{2})$, $\mathrm{SrCo}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)(\mathbf{3}), \operatorname{SrZn}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)(4), \mathrm{SrCu}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)(5), \mathrm{CdCo}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)$ (6), and $\mathrm{CdCu}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)$ (7) were synthesized under low-temperature hydrothermal conditions. 1-2 and 6-7 are isostructural with descloizite- and 3-5 with adelite- group minerals and several synthetic compounds. Together with a sample of conichalcite, $\mathrm{CaCu}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)(\mathbf{8})$, they were investigated using single-crystal X-ray diffraction $[R(F)=0.0153-0.0283$ for $\mathbf{1}-\mathbf{5}$ and $\mathbf{8 ;}$ for 6 and $7, R(F)=0.0603$ and 0.0444 , respectively] and Raman spectroscopy. Although crystallizing in different orthorhombic space groups, the atomic arrangements of descloizite-

(Pnam) and adelite- $\left(P 2_{1} 2_{1} 2_{1}\right)$ type compounds adopt the same topology: the atomic arrangement is characterized by $M 2 \mathrm{O}_{6}$ octahedrons $\left(M 2=\mathrm{Mg}^{2+}, \mathrm{Al}^{3+}, \mathrm{Mn}^{2+, 3+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}\right.$, $\mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}$) edge-linked into chains. These chains are interconnected by XO_{4} tetrahedrons $\left(X=\mathrm{Si}^{4+}, \mathrm{P}^{5+}, \mathrm{V}^{5+}, \mathrm{As}^{5+}, \mathrm{Mo}^{6+}\right)$ into a three-dimensional framework. Cavities host $M 1$ atoms $\left(M 1=\mathrm{Na}^{+}, \mathrm{Ca}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Hg}^{2+}, \mathrm{Pb}^{2+}\right)$; their coordination varies from [7] for descloizite-type representatives to [8] for adelite-type structures. The OH stretching frequencies in the Raman spectra are in good agreement with the observed $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ donoracceptor distances. A detailed discussion of the crystal chemistry of these compounds and its influence on the space-group symmetry indicate a distinct dependence of the structural changes on the average ionic radii $\left(r_{M 1}+r_{X}\right) / 2$.

INTRODUCTION

The descloizite supergroup of minerals currently comprise 17 members (Table 1 and references therein). The large majority of the members are arsenates and vanadates occurring in a considerable variety of ore deposits and on mine dumps. They were formed either by weathering of the primary ores or by hydrothermal processes. Up to now, there were just a few reports on hydrothermally synthesized synthetic members of these compounds (Clearfield et al. 1977, Moini et al. 1986, Permer et al. 1993, Healey et al. 1999, Effenberger 2002, Weil 2004).

The general formula of descloizite supergroup of minerals and compounds is $M 1^{1+, 2+} M 2^{2+, 3+}(\mathrm{OH}, \mathrm{O})\left[X^{4+, 5+, 6+}\left(\mathrm{O}_{4}, \mathrm{O}_{3} \mathrm{OH}\right)\right]\left(M 1=\mathrm{Na}^{+}, \mathrm{Ca}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Hg}^{2+}, \mathrm{Pb}^{2+} ; M 2=\mathrm{Mg}^{2+}\right.$, $\left.\mathrm{Al}^{3+}, \mathrm{Mn}^{2+, 3+}, \mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+} ; X=\mathrm{Si}^{4+}, \mathrm{P}^{5+}, \mathrm{V}^{5+}, \mathrm{As}^{5+}, \mathrm{Mo}^{6+}\right)$. Representatives with $M 1=\mathrm{Na}^{+}, \mathrm{Cd}^{2+}$, and Hg^{2+}, and $X=\mathrm{Mo}^{6+}$ were found only for synthetic members. All members are orthorhombic $(Z=4)$, with a common topology. The atomic arrangement is
characterized by $\mathrm{M2O}_{6}$ octahedrons (elongated tetragonal bipyramids in case of Cu^{2+} or Mn^{3+} cations due to Jahn-Teller distortion) edge-linked into chains. These chains are interconnected by X_{4} tetrahedrons into a three-dimensional framework. Cavities host $M 1$ atoms; their coordination varies from [7] to [8] depending on the space-group symmetry. The atomic arrangement exhibits two distinct structural varieties. They are distinguished by their spacegroup symmetries and the coordination numbers [7] and [8] for the $M 1$ cations, respectively. These varieties are responsible for classifying the compounds into two subdevisions. The parental structure is centrosymmetric and shows space-group symmetry Pnam [descloizitetype compounds with $M 1=\mathrm{Cd}^{2+}, \mathrm{Hg}^{2+}, \mathrm{Pb}^{2+}, M 2=\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}$, and $X=\mathrm{V}^{5+}$, Mo^{6+}. This symmetry was proved for four minerals, all of which are vanadates with $M 1=$ Pb^{2+}, and four synthetic compounds (Table 1). The adelite-type compounds show a slight deviation from centrosymmetry, and crystallize in space group $P 2_{1} 2_{1} 2_{1}$. Representatives are known for $M 1=\mathrm{Ca}^{2+}$ or $\mathrm{Pb}^{2+}, M 2=\mathrm{Mg}^{2+}, \mathrm{Al}^{3+}, \mathrm{Mn}^{3+}, \mathrm{Fe}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Co}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}$, and $X=$ $\mathrm{Si}^{4+}, \mathrm{P}^{5+}, \mathrm{As}^{5+}, \mathrm{V}^{5+}$. Thus, the variability of chemical composition in this group is quite large: arsenates, vanadates, protonated silicates, molybdates, and phosphates (Schlüter et al. 2011). Compounds adopting this space group are also of general interest because they are acentric. For the mineral gabrielsonite, $\mathrm{PbFe}^{2+}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)$, the structural data are uncertain. The space group of gabrielsonite, originally reported as $P 2{ }_{1} m a$ (Moore 1967), is unconfirmed; a singlecrystal study by the second author of this paper suggested other possible space groups, but was unable to solve the structure in either orthorhombic or lower-symmetry space groups (features observed during trials solutions strongly indicated the presence of microtwinning). An intermediate $(\mathrm{Pb}, \mathrm{Ca})$ solid-solution member, " β-duftite", $(\mathrm{Pb}, \mathrm{Ca}) \mathrm{Cu}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$ (Guillemin 1956), which appears to be a simple chemical intermediate between duftite and conichalcite, was shown to have an incommensurately modulated superstructure (Kharisun et al. 1998). Although crystallizing in space group $P 2_{1} 2_{1} 2_{1}$ and having similar unit-cell parameters as the members of the adelite group, $\mathrm{NaZnSiO} \mathrm{O}_{3} \mathrm{OH}$ (Table 1), has tetrahedrally
coordinated $\mathrm{Zn}(M 2)$ atoms. Its structure consists of an array of ZnO_{4} and $\mathrm{SiO}_{3} \mathrm{OH}$ tetrahedrons, which form eight-membered rings along the crystallographic c direction. The Na^{+}ions are situated in these channels with five close contacts and one longer contact to the framework oxygens. The authors describing $\mathrm{NaZnSiO}_{3} \mathrm{OH}$ (Healey et al. 1999) have not discussed any connection to the adelite-group compounds.

The knowledge on synthetic members of these compounds was poor prior to the present study (Table 1). Only one of five reported synthetic compounds is acentric $\left(\mathrm{NaZnSiO}_{3} \mathrm{OH}\right)$ and for the other four, centrosymmetry was proven. Among the minerals, only conichalcite and duftite (Guillemin 1956), vuagnatite (Leistner and Chatterjee, 1978) and impure mottramite, $\left(\mathrm{Pb}_{0.7} \mathrm{Fe}_{0.3}\right) \mathrm{Cu}\left(\mathrm{VO}_{4}\right)(\mathrm{OH})_{0.5} \mathrm{O}_{0.4}$ (Permer et al. 1993), were synthesized; for a critical comments on the reported formula of the latter, see the footnote in Table 1.

An ongoing study on the hydrothermal synthesis, crystallography, and properties of arsenate (V) and vanadate (V) compounds in the $\mathrm{M1O}-M 2 \mathrm{O}-X_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}$ system $\left(M 1=\mathrm{Sr}^{2+}\right.$, $\left.\mathrm{Cd}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Bi}^{3+}, \mathrm{Hg}^{2+} ; \mathrm{M} 2=\mathrm{Mg}^{2+}, \mathrm{Mn}^{2+, 3+}, \mathrm{Fe}^{2+, 3+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+} ; \mathrm{X}=\mathrm{V}^{5+}, \mathrm{As}^{5+}\right)$ yielded a large number of new $M 1^{2+}-(\mathrm{H}-)-, M 2^{2+}-(\mathrm{H}-)-$ and $M 1-M 2-(\mathrm{H}-)$ arsenates and vanadates (Mihajlović and Effenberger 2004, 2006, Mihajlović et al. 2004a,b, Đorđević 2008a,b, 2010, Đorđević et al. 2008, Weil et al. 2009, Đorđević and Karanović 2008, 2010, Đorđević 2011, Stojanović et al. 2012, Đorđević and Karanović 2013, Đorđević and Kolitsch 2013, Đorđević et al. 2015, Kovač et al. 2015) that were characterized structurally, and, in part, also by spectroscopic techniques. Among them, seven new synthetic members with adelite- and descloizite-type crystal structures, $\mathrm{CdCo}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)(\mathbf{1}), \mathrm{CdCu}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)(\mathbf{2})$, $\operatorname{SrCo}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$ (3), $\mathrm{SrZn}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$ (4), $\mathrm{SrCu}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)(5), \mathrm{CdCo}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)$ (6), and $\mathrm{CdCu}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)$ (7) were synthesised, which are the subject of the present study. A preliminary report on $\mathbf{1 - 3}$ and 5-6 was given by Đorđević (2007). Note that compound $\mathbf{2}$ was also briefly reported, with atom coordinates, in an one-page conference abstract (Effenberger
2002); these coordinates are not included in the latest edition of the ICSD database. Furthermore, a sample of well-crystallized conichalcite (8) from the Maria Catalina mine, Pampa Larga district, Copiapó Province, Chile, was also re-investigated.

In addition to presenting new results on the hydrothermal synthesis, crystal structures and spectroscopic data of the novel seven adelite- and descloizite-type arsenates and vanadates, we provide herein some discussion of the structural distortion and the measure of similarity among these compounds, as well as a brief discussion on the structural relations to chemically and topologically similar mineral groups. The names of the groups and the terminology used for the classification (group hierarchy) are not the one recognized by IMA CNMNC (Mill et al. 2009).

EXPERIMENTAL

Materials

For the low-temperature hydrothermal synthesis of compounds $\mathbf{1 - 7}$, the following reagents were used in stoichiometric quantities: $\mathrm{Cd}(\mathrm{OH})_{2}$ (Alfa Products 89297), $3 \mathrm{As}_{2} \mathrm{O}_{5} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (Merck, 99%) and Cu and Co powders (manufacturer unknown), for $\mathbf{1}$ and 2, respectively, $\mathrm{Sr}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (Merck 7876, $>97 \%$), $\mathrm{Co}(\mathrm{OH})_{2}$ (Alfa Products 89178), $\mathrm{As}_{2} \mathrm{O}_{5}$ (Alfa Products $87687,>99.9 \%$) for $\mathbf{3}, \mathrm{Sr}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (Sigma-Aldrich, 415-219-500G), ZnO (Sigma-Aldrich, 255750-100g), $\mathrm{As}_{2} \mathrm{O}_{5}$ (Alfa Products $87687,>99.9 \%$) and ionic liquid, 1-ethyl-3-methyl-imidazolium bromide (Fluka 03938-25G) for $4, \mathrm{Sr}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (Merck 7876, $>97 \%$), Cu powder (manufacturer unknown) and $\mathrm{As}_{2} \mathrm{O}_{5}$ (Alfa Products 87687, $>99.9 \%$) for 5, and $\mathrm{Cd}(\mathrm{OH}) 2, \mathrm{As}_{2} \mathrm{O}_{5}$ (Alfa Products $87687,>99.9 \%$, Co and Cu powders for 6 and 7, respectively.

The mixtures were transferred into Teflon vessels and filled to approximately 80% of their inner volume with distilled water. Subsequently, they were enclosed into stainless steel
autoclaves and heated under autogeneous pressure under the following heating and cooling conditions: for compounds $\mathbf{1}$ and $\mathbf{2}$, starting mixtures were heated from room temperature to $220{ }^{\circ} \mathrm{C}$, held at that temperature for 96 h , and then furnace-cooled to room temperature. The mixture for 3 was heated from 20 to $220{ }^{\circ} \mathrm{C}(4 \mathrm{~h})$, held at that temperature (48 h), cooled to $150{ }^{\circ} \mathrm{C}(10 \mathrm{~h})$, kept at this temperature $(10 \mathrm{~h})$, cooled to $100{ }^{\circ} \mathrm{C}(10 \mathrm{~h})$, kept at this temperature (10 h), and finally cooled to room temperature (10 h). The mixtures for 4-7 were heated from 20 to $220{ }^{\circ} \mathrm{C}(4 \mathrm{~h})$, held at that temperature (72 h), and cooled to room temperature (72 h). Compound $\mathbf{1}$ crystallized as pink, prismatic crystals up to 0.16 mm in length (yield 40\%), together with colourless, transparent, prismatic crystals of $\mathrm{Cd}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}_{0.58}(\mathrm{OH})_{0.42} \quad$ (Đordević et al. 2008) (yield 35\%) and Co_{1-} ${ }_{x}(\mathrm{OH})_{3}\left(\mathrm{AsO}_{4} \mathrm{H}_{2 \times / 3}\right)\left(\mathrm{HAsO}_{4}\right)$ (Huges et al. 2003) (yield $\left.25 \%\right)$. Compound 2 crystallized as green, prismatic crystals up to 0.2 mm in length (yield 60%) together with blue crystals of $\mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{2}$-III (Effenberger 1988) (yield 40%). Compound 3 was obtained as light pink, prismatic crystals up to 0.15 mm in length (yield 50%), together with a volumetrically similar amount of colourless, prismatic crystals of $\mathrm{Sr}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{~F}$ (Đordević et al. 2008). Compound 4 formed colorless prismatic crystals up to 0.20 mm in length (yield 55%) together with prismatic crystals of $\mathrm{Zn}_{2}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$ (Hill 1976) (yield 45\%). Compound 5 crystallized as green, transparent, acicular crystals up to 0.1 mm in length (yield 25%), accompanied by large, green prisms of a new cadmium-vanadate $\mathrm{Cd}_{5}\left(\mathrm{VO}_{4}\right)_{2}(\mathrm{OH})_{4}$ (to be published elsewhere) and undissolved parts of the starting mixture. Very subordinate (yield 5 \%) dark pinkishbrown prismatic crystals were obtained for compound 6. Dark olive green, prismatic crystals of 7 crystallized together with dark-green, prismatic crystals of $\mathrm{Cd}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ (Sokolova et al. 1986) (yield 40%), and undissolved parts of the starting mixture. We point out that attempts to synthesize any Ba analogues were all unsuccessful, indicating that the Ba^{2+} cation is too large for both descloizite and adelite structure types.

A mineral sample of conichalcite (8) showing bright green, chisel-shaped prisms from the Maria Catalina mine, Pampa Larga district, Copiapó Province, Chile, associated with pale bluish, indistinct crystals of rruffite $\left(\mathrm{Ca}_{2} \mathrm{Cu}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right.$, Yang et al. 2011), mansfieldite, and baryte, was also re-investigated. A preliminary report on the results was given in a conference abstract (Đorđević and Kolitsch, 2008).

X-ray diffraction experiments and crystal-structure determinations

Room-temperature intensity data of all crystals were collected on a Nonius KappaCCD single-crystal four-circle diffractometer (MoK α-radiation, graphite monochromator), equipped with a 300 mm diameter capillary-optics collimator. Unit-cell parameters were determined with HKL SCALEPACK (Nonius, 2005-2007). A complete sphere of reciprocal space (φ and ω scans) was measured up to $30-35^{\circ} 2 \theta$ for $\mathbf{1}$ and 3-7. Samples 2 and $\mathbf{8}$ were measured assuming orthorhombic symmetry. The intensity data were processed with the Nonius program suite DENZO-SMN (Nonius, 2005-2007) and corrected for absorption by the multi-scan method (Otwinowski et al. 2003). All structures were solved by direct methods using SIR97 (Altomare et al. 1999) and refined on F^{2} by full-matrix least-squares using SHELXL97 (Sheldrick 2008) implemented in WinGX (Farrugia 2012). Anisotropic displacement parameters were allowed to vary for all atoms; only for the H atoms, located from difference-Fourier maps, isotropic displacement parameters were refined. For 1-5 the positions of hydrogen atoms were refined with a restrained $\mathrm{O}-\mathrm{H}$ distance of $0.89(2) \AA$. The $U_{\text {iso }}$ values of the H atoms were refined freely. Note that, considering the unusually high, most positive peaks (next to the $M 1$ site) in the difference-Fourier maps for both $\mathbf{1}$ (Cd-Co-Asmember, with $2.04 \mathrm{e}^{-}$at a distance of $0.79 \AA$ from Cd , the next-highest peak being $0.96 \mathrm{e}^{-}$at a distance of $1.44 \AA$ from O1) and 4 (Sr- $\mathrm{Zn}-\mathrm{As}$ member, with $2.5 \mathrm{e}^{-}$at a distance of $0.76 \AA$ from Sr , the next-highest peak being $1.02 \mathrm{e}^{-}$at a distance of $0.74 \AA$ from O5) and, additionally, the distinctly anisotropic displacement ellipsoid for Cd in $\mathbf{1}$, an anisotropic split-

M1 model was also tried for both 1 and 4. For 1 this model led to the disappearance of this high peak (now the highest peak was $0.93 \mathrm{e}^{-}$, at a distance of $1.45 \AA$ from O 1) and reduced $R 1$ from 2.81% to 1.99%. The refined occupancy ratio for the two split positions [CdA: $0.0149(5), \quad 0.0062(4), \quad 0.0280(17), \quad \mathrm{CdB}: 0.0152(15), 0.0045(12), 0.112(10)]$ was $0.72(8): 0.28(8)$; the $\mathrm{CdA}-\mathrm{CdB}$ distance was $0.11(8) \AA$, the CdB position was still fairly anisotropic while the CdA position was only very slightly anisotropic. With respect to the latter observation, it is worthy noting that the model did not work if the two split positions were constrained to have identical $U_{\text {anis }}$ values. Since the split- $M 1$ model indicates only negligible positional splitting of the $M 1$ site in 1, but distinct volumetric splitting (with, however, the caveat of still distinctly anisotropic behavior of CdB), a splitting seems possible, but not fully provable, also considering possible artefacts of the absorption correction. Thus, we have preferred to retain the unsplit model. For 4 the split- $M 1$ model led also to the disappearance of this high peak (now the highest peak was $1.14 \mathrm{e}^{-}$, at a distance of $1.1 \AA$ from As) and reduced $R 1$ from 2.83% to 2.46%. The refined occupancy ratio for the two split positions [SrA: $0.63581(4), 0.33111(4), 0.47585(7), \mathrm{SrB}: 0.6471(15), 0.3140(12), 0.592(3)$, with a constraint to have identical $U_{\text {anis }}$ values] was $0.9706(12): 0.0294(12)$; the $\operatorname{SrA}-\mathrm{SrB}$ distance was $0.721(16) \AA$. Since the split- $M 1$ model indicates only negligible volumetric splitting in 4, the unsplit model was preferred, also to facilitate comparisons with the other members. Selected crystal and experimental data are given in Table 2. The final atomic coordinates and anisotropic displacement parameters are given in Tables 3 and 4, respectively. Selected bond distances and bond angles are listed in Table 5 and the results of bond-valence calculations are given in Table 6. All drawings of crystal structures were produced with ATOMS (Dowty 2000).

The single-crystal studies of $\mathrm{CdCo}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)(6)$ and $\mathrm{CdCu}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)$ (7) suggested space group Pnam (based on extinction conditions and intensity statistics), but the refinements revealed unexplained anomalies in the obtained models, despite reasonably low $R(F)$ values
of 0.058 for 6 and 0.045 for 7 . Distinctly anisotropic displacement ellipsoids were observed for the O 1 and, more pronouncedly, O 2 sites in 6 . The $\mathrm{O} 1(\mathrm{OH})$ site is bonded to Cd, Co, and V, while the O 2 site is bonded to Cd and V only. In contrast, for 7 similarly anomalous displacement ellipsoids were shown by the O 3 site and, less so, by the O 4 and O 2 sites. A splitting of the O3 site, suggested by the refinement software, resulted in physically impossible displacement parameters for one of the two subsites. A trial refinement of $\mathbf{6}$ in $P 2_{1} 2_{1} 2_{1}$, assuming racemic twinning, gave $R(F)=0.058$ and a Flack parameter of $0.7(2)$, suggesting that the centrosymmetric model was more plausible; again three O sites ($\mathrm{O} 2-4$) showed more or less anomalous displacement ellipsoids. In order to verify the possible presence of any supercells in 6 or 7, both measured crystals were also studied with a Stoe StadiVari single-crystal diffractometer equipped with a Incoatec μ-source and a highsensitivity Dectris Pilatus 300K hybrid-pixel detector. The recorded images showed a complex combination of twinning features and modulation. No structure refinement was attempted. The reason for the anomalous features and the modulation in 6 and 7 might be the fact that the Cd^{2+} cation in the two compounds is smaller than all the other divalent cations that form descloizite-type structures $\left(\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Pb}^{2+}\right)$. In combination with a large X cation $\left(\mathrm{V}^{5+}\right)$, this might result in an incipient instability of the Pnam atomic arrangement, possibly compensated for by the observed modulation. We point out that no anomalies were observed for the two Cd members containing the smaller As^{5+} cation, $\mathrm{CdCo}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)(\mathbf{1})$ and $\mathrm{CdCu}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$ (2). The average structure models in Pnam for 6 and 7 are given in Supplemental materials, Tables S1 and S2.

Chemical composition

The chemical composition of the conichalcite sample from the Maria Catalina mine was established by means of quantitative electron probe microanalyser (EPMA) measurements,
which were performed on a Cameca SX100 instrument at an accelerating voltage of 15 kV and a beam current of 20 nA ; the counting time was 20 s for each element. The EPMA data revealed a near-end member composition, however with significant zoning of very minor impurity elements ($\mathrm{Na}, \mathrm{Sr}, \mathrm{Zn}, \mathrm{Mg}, \mathrm{Al}, \mathrm{P}, \mathrm{S}$, and Si). Most zones are less than $1 \mu \mathrm{~m}$ thick (Fig. 1), and the precise chemical composition of each zone was not measurable. Electron microprobe analysis yielded (wt.\%): $\mathrm{CaO} 20.02, \mathrm{SrO} 0.14, \mathrm{Na}_{2} \mathrm{O} 0.11, \mathrm{CuO} 28.32, \mathrm{ZnO} 0.52$, $\mathrm{Al}_{2} \mathrm{O}_{3} 0.22, \mathrm{MgO} 0.04, \mathrm{As}_{2} \mathrm{O}_{5} 42.65, \mathrm{P}_{2} \mathrm{O}_{5} 0.35, \mathrm{SO}_{3} 0.14, \mathrm{SiO}_{2} 0.02$, sum 92.54. The idealized empirical formula derived from the EPMA results is $\mathrm{Ca}\left(\mathrm{Cu}_{0.97} \mathrm{Zn}_{0.02} \mathrm{Mg}_{0.01}\right)(\mathrm{OH})\left[\left(\mathrm{As}_{0.97} \mathrm{P}_{0.03}\right) \mathrm{O}_{4}\right]$. The crystal-structure refinement of a visually identical crystal from the same specimen yielded the somewhat Mg -richer formula $\mathrm{Ca}\left(\mathrm{Cu}_{0.92} \mathrm{Mg}_{0.08}\right)(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$. Both formulae are slightly different from the previously reported formula $\mathrm{Ca}\left(\mathrm{Cu}_{0.99} \mathrm{Zn}_{0.01}\right)(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$ of a conichalcite sample from the same Chilean locality (Henderson et al. 2008), and from the formulae of structurally studied samples from the Gozaisho mine, Japan $\left[\mathrm{Ca}\left(\mathrm{Cu}_{0.87} \mathrm{Mg}_{0.13}\right)\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})\right]$ and the Higgins mine, Arizona, USA $\left[\mathrm{Ca}\left(\mathrm{Cu}_{0.96} \mathrm{Mg}_{0.04}\right)\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})\right]$ (Sakai et al., 2009). We point out that the presence of racemic twinning in the sample of Henderson et al. (2008) is unclear. These authors described their sample as "naturally twinned", and in their supplementary material it is stated "it turned out that the measured crystal was racemically twinned with an approximate twin fraction of 4:1 $($ BASF $=0.21)$ ". In apparent contrast to the latter, the Flack parameter was quoted as " 0.00 (2)" (Table and cif-file presented by Henderson et al., 2008). Sakai et al. (2009) did not state whether their samples were racemically twinned or not. The Flack parameter in our refinement was determined at $0.037(15)$.

Raman spectroscopy

To obtain further information on the anion groups and especially on hydrogen bonds, Raman spectra were acquired. Unpolarised Raman spectra of $\mathbf{3}$ and $\mathbf{8}$ were obtained with a Renishaw RM1000 spectrometer equipped with Leica DMLM optical microscope, an optical grating with 1200 grooves $/ \mathrm{mm}$, and Si-based charge-coupled device (CCD) detector. Spectra were excited with the $\mathrm{He}-\mathrm{Ne} 632.8 \mathrm{~nm}$ line (8 mW). The beam was focused to the sample surface using a Leice $50 \times$ objective (N.A. $=0.75$). Raman spectra of 1, 2, 4, and $\mathbf{5}$ were measured with a Horiba LabRam-HR system equipped with Olympus BX41 optical microscope, a 1800 grooves $/ \mathrm{mm}$ grating in the beam path, and Si-CCD. Spectra were obtained with the 632.8 nm emission of a $\mathrm{He}-\mathrm{Ne}$ laser (10 mW) or the 473 nm emission of a diode laser (3 mW). An Olympus $100 \times$ objective $($ N.A. $=0.90)$ was used. In all cases the density of the laser power was well below the threshold for possible sample changes due to intense laser-light absorption and resulting temperature increase. The spectral resolution was between $\sim 3 \mathrm{~cm}-1$ (RM1000 system) and $\sim 0.8 \mathrm{~cm}-1$ (Evolution system, red spectral range), and the lateral resolution was about $3 \mu \mathrm{~m}$ (RM1000) and $1.5 \mu \mathrm{~m}$ (Evolution), respectively.

RESULTS AND DISCUSSION

Description of the crystal structures

In the synthesized adelite-type representatives (3-5), all atoms lie on a general position and have site symmetry 1 . It is worthy of note that among these compounds only 4 was racemically twinned [refined twin ratio 0.446(19):0.554(19)]. In the descloizite-type compounds (1, 2), $M 2$ atoms have site symmetry -1 , while $M 1, X, \mathrm{O} 2, \mathrm{O} 3, \mathrm{O} 4$, and H atoms have site symmetry m; only O 1 is located on a general position. Both structure-types are characterized by slightly irregular $\mathrm{M2}^{2+} \mathrm{O}_{4}(\mathrm{OH})_{2}$ octahedrons that share $\mathrm{O}-\mathrm{OH}$ edges to form infinite, weakly kinked chains parallel to [001] (Fig. 2). These chains are cross-linked by the
vertices of XO_{4} to form a three-dimensional framework (Fig. 3). Voids in the framework are occupied by [7]- or [8]-coordinated $M 1^{\text {II }}$ cations, for descloizite- and adelite-type members, respectively (Fig. 4).

The $M 2^{2+}$ cations are [6]-coordinated to form $\mathrm{M2}^{2+} \mathrm{O}_{4}(\mathrm{OH})_{2}$ polyhedrons, the exact geometry of which depends on the character of the $M 2$ atom. In the crystal structures of $\mathbf{1}$ and 4, the $M 2$ sites are occupied by Co^{2+}, and in $\mathbf{5}$ by Zn^{2+}. In these compounds the $M 2^{2+} \mathrm{O}_{4}(\mathrm{OH})_{2}$ polyhedrons are fairly regular octahedrons. In $\mathbf{2 , 3}$, and $\mathbf{7}$, the $M 2$ position is occupied by Cu^{2+}. In minerals and synthetic inorganic solids, almost all $\mathrm{Cu} \phi_{6}\left(\phi: \mathrm{O}^{2-}, \mathrm{OH}^{-}, \mathrm{H}_{2} \mathrm{O}\right)$ octahedrons are strongly distorted away from holosymmetric symmetry owing to Jahn-Teller distortion. Usually, this distortion results in an axially elongated octahedron, designated as a $[4+2]$ distortion. However, such a pattern of distortion is not always the case. There are a numerous examples where the Cu_{6} octahedron has two short bonds, two intermediate-length bonds, and two long bonds, i.e. a $[2+2+2]$-coordination (Burns and Hawthorne 1995). Such is the case in the structure of mottramite, $\mathrm{PbCu}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)($ Cooper and Hawthorne 1995); the intermediate-length bonds $(2.102 \AA)$ are very close to the mean of the long and short bonds $(2.117 \AA)$. The same applies for the compounds $\mathbf{2}, 5$, and $\mathbf{8}$, where Cu^{2+} cations also show [2+ $2+2]$-coordination (Table 5).

The average $\langle M 2-\mathrm{O}\rangle$ bond lengths are $2.085,2.089,2.104,2.121,2.132$, and $2.139 \AA$ for 1-5 and 8, respectively. These values are in good agreement with the values 2.11, 2.08, and $2.10 \AA$ for $\langle\mathrm{Co}-\mathrm{O}\rangle,\langle\mathrm{Cu}-\mathrm{O}\rangle$, and $\langle\mathrm{Zn}-\mathrm{O}\rangle$, respectively, calculated as the sums of effective ionic radii of the Co^{2+} and O^{2-} ions for $\mathbf{1}$ and $\mathbf{4}, \mathrm{Cu}^{2+}$ and O^{2-} ions for $\mathbf{2}, 5$, and $\mathbf{8}$, and Zn^{2+} and O^{2-} ions for 4 (Shannon 1976). According to the formula $\Delta_{o c t}=1 / 6 \Sigma\left[\left(d_{i}-d_{m}\right) / d_{m}\right]^{2}$ (Robinson et al. 1971, Fleet 1976), the bond-length distortions for the three $M 2$ atoms are $4.23 \cdot 10^{-4}, 5.57 \cdot 10^{-3}, 8.15 \cdot 10^{-3}, 2.79 \cdot 10^{-3}, 4.56 \cdot 10^{-3}$, and $11.35 \cdot 10^{-3}$, for $\mathbf{1 - 6}$, respectively. These values indicate only moderate distortions of the octahedral geometry. However, the 12
polyhedrons containing Co^{2+} and Zn^{2+} are less distorted than those of Cu^{2+} and show a less pronounced dependence on mean bond lengths, due to the Jahn-Teller distortion of copper(II).

The shared edges O3-O4 (descloizite-type) and O1-O5 (adelite-type) in the infinite chains have lengths of $2.765(5), 2.611(3), 2.857(4), 2.842(6)$ and $2.922(5) \AA$, for $\mathbf{1 - 5}$, respectively and $2.897(3) \AA$ for $\mathbf{8}$. Due to this connection, the angular distortion for the $M 2 \mathrm{O}_{4}(\mathrm{OH})_{2}$ polyhedron is moderate: $\sigma_{o c t}{ }^{2}=1 / 11 \Sigma\left(\angle_{\mathrm{i}}-90\right)^{2}$ (Robinson et al. 1971, Fleet 1976) is $15.87,29.76,9.619,16.193$, and 18.431 for $\mathbf{1 - 5}$, respectively and 23.927 for $\mathbf{8}$. As expected, the smallest $\mathrm{O}-\mathrm{M}-\mathrm{O}$ angles occur in the case of shared edges between the $\mathrm{M2O}_{4}(\mathrm{OH})_{2}$ octahedrons (Table 5), while for the other O atoms in cis-arrangement the O -M2- O angles are larger (Table 5).

The coordination figure around the X^{5+} cations ($X=\mathrm{V}, \mathrm{As}$) is a tetrahedron. The average $X-\mathrm{O}$ bond lengths are: $1.688,1.684,1.695,1.691$, and $1.713 \AA$ for $\mathbf{1 - 5}$, respectively and $1.692 \AA$ for 8 (Table 5). According to the formulae $\mathrm{DI}(\mathrm{TO})_{\mathrm{tet}}=\left(\Sigma\left|\mathrm{TO}_{i}-\mathrm{TO}_{m}\right|\right) / 4 \mathrm{TO}_{m}$ and $\mathrm{DI}(\mathrm{OTO})_{\text {tet }}=\left(\Sigma\left|\mathrm{OTO}_{i}-\mathrm{OTO}_{m}\right|\right) / 6 \mathrm{OTO}_{m}$ (Baur, 1974), distortion parameters for the $X-\mathrm{O}$ distances, DI (TO) $\left(5.62 \cdot 10^{-3}, 6.79 \cdot 10^{-3}, 3.39 \cdot 10^{-3}, 3.54 \cdot 10^{-3}\right.$, and $18.53 \cdot 10^{-3}$ for $\mathbf{1 - 5}$, respectively and $7.53 \cdot 10^{-3}$ for $\mathbf{8}$) and distortion parameters of the tetrahedral $\mathrm{O}-X-\mathrm{O}$ angles, $\mathrm{DI}(\mathrm{OTO})(0.027,0.068,0.031,0.038$, and 0.030 for $\mathbf{1 - 5}$, respectively and 0.039 for $\mathbf{8})$ are in expected ranges: the longest $X-\mathrm{O}$ bonds are to the oxygen atom from the shared octahedral edge (O 3 and O 1 in the descloizite- and adelite-type structures, respectively). The second oxygen atom from this shared edge is the OH group (O 4 and O 5 , respectively). The greatest DI (TO) distortion is shown by the VO_{4} tetrahedron in 5 . The distortion of the $\mathrm{O}-X-\mathrm{O}$ angles is only moderate and similar to that observed for other well-refined arsenates and vanadates.

In the descloizite-type members (1-2), the $M 1$ cations are [7]-coordinated to six oxygens and one OH group. Further oxygen atoms are at distances larger than 3.322(2) and 3.293(1) \AA for $\mathbf{1}$ and $\mathbf{2}$, respectively, indication only very weak bonding interactions. The $\left[\mathrm{M1}(\mathrm{OH}) \mathrm{O}_{6}\right.$] polyhedrons may be described as mono-capped trigonal prisms (Fig. 4a). The average $<M 1-\mathrm{O}>$ bond lengths are 2.455 and $2.431 \AA$ for $\mathbf{1}$ and $\mathbf{2}$, respectively (for further $M 1-\mathrm{O}$ bond lengths see Table 5). In the adelite-type members (3-5 and 8), the $M 1$ cations are [8]coordinated to seven oxygens and one OH group. The $\left[\mathrm{M1}(\mathrm{OH}) \mathrm{O}_{7}\right]$ polyhedrons may be described as bi-capped trigonal prisms, rather than square antiprisms (Fig. 4b). They are linked to each other via O3-O4 edges forming chains parallel to the a-axis and are further interconnected to a 3D framework by common O 2 vertices. The average $<M 1-\mathrm{O}>$ bond lengths are $2.618,2.535$, and $2.614 \AA$ for $\mathbf{3 - 5}$, respectively and $2.512 \AA$ for $\mathbf{8}$ (for further interatomic bond lengths see Table 5).

The bond-valence sums of the anions (Table 6) are in the expected ranges and confirm the results of the structure refinement that $\mathrm{O} 4 / \mathrm{O} 5$ forms the OH^{-}group and is a donor of a hydrogen-bond and O 2 is the acceptor of a hydrogen-bond for the descloizite- (1-2) and adelite-type representatives ($\mathbf{3}-\mathbf{5}$ and $\mathbf{8}$), respectively. The hydrogen-bonds are of medium strong intensity (Table 5) with expected valence contributions between $0.17-0.27$ valence units (v.u.). These are values sometimes far from the "necessary" ideal valence of 0.37 v.u. according to Table 6 . Similar discrepancies among calculated bond-valence contributions v were detected by Keller et al. (2003) for arsendescloizite, $\mathrm{PbZn}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)(\mathrm{O} 5 \cdots \mathrm{O} 2=2.806$ $\AA, v_{\text {calc }}=0.18-0.20$ v.u., $v_{\mathrm{H} \text {-bond }}=0.28-0.34$) and by Clark et al. (1997) for austinite, $\mathrm{CaZn}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)\left(\mathrm{O} 5 \cdots \mathrm{O} 2=2.723 \AA, v_{\text {calc }}=0.27-0.36, v_{\mathrm{H} \text {-bond }}=0.21-0.24\right)$.

Raman spectroscopy

Raman spectra are shown in Figs. 5 and 6. They reflect the complexity of crystal structures. Bands in the high-energy range $\left(2800-3800 \mathrm{~cm}^{-1}\right)$ are assigned to stretching of $\mathrm{O}-$ H bonds of hydroxyl groups. Bands in the $100-1200 \mathrm{~cm}^{-1}$ range are caused by either internal vibrations of $\mathrm{XO}_{4}(\mathrm{X}=\mathrm{As}, \mathrm{V})$ tetrahedrons, or due to external vibrational modes.

Based on the $d-v$ correlation for hydrogen bonds (Libowitzky 1999), our Raman-shift values observed in the $\mathrm{O}-\mathrm{H}$ stretching region (Fig. 5) are in very good agreement with the refined $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bond lengths of $2.622(4) \AA$ for 2 (Raman band obtained at $3051 \mathrm{~cm}^{-1}$), $2.688(2) \AA$ for $\mathbf{8}\left(3162 \mathrm{~cm}^{-1}\right), 2.670(6) \AA$ for $\mathbf{1}\left(3217 \mathrm{~cm}^{-1}\right), 2.757(4) \AA$ for $\mathbf{5}\left(3217 \mathrm{~cm}^{-1}\right)$, $2.680(5) \AA$ for $\mathbf{4}\left(3300 \mathrm{~cm}^{-1}\right)$, and $2.766(3) \AA$ for $\mathbf{3}\left(3345 \mathrm{~cm}^{-1}\right)$. Note that the main $\mathrm{O}-\mathrm{H}$ band we detected for $\mathbf{8}$ (conichalcite; observed at $3162 \mathrm{~cm}^{-1}$) is in very good agreement with the value of $3158 \mathrm{~cm}^{-1}$ described for natural conichalcite from the Lorena mine, Queensland, Australia (Martens et al. 2003). The fact that our OH band is narrower than that of Martens at al. (2003) is explained by the more irregular environment due to the minor presence of nonformula elements in the natural conichalcite specimen. All Raman spectra except that of $\mathbf{2}$ show additional minor bands in the $\mathrm{O}-\mathrm{H}$ stretching region.

The range of $\mathrm{O}-\mathrm{H}$ stretching values observed in the present study (Fig. 5) suggests that the type of $M 2$ cation affects appreciably the spectral position of the hydroxyl stretching band(s), with smaller M2 cations tending to shift the O-H stretching bands to higher energy. Comparison of O-H stretching bands observed for $\mathbf{5}\left[\mathrm{SrCu}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)\right.$; main signal at 3217 cm^{-1}] with $\mathrm{O}-\mathrm{H}$ bands of mottramite, $\mathrm{PbCu}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)$ (3548 and $3515 \mathrm{~cm}^{-1}$; Frost et al. 2001) implies that the same seems to apply to the $M 1$ cation, although the difference between the ionic radius of ${ }^{[7]} \mathrm{Sr}^{2+}$ and ${ }^{[7]} \mathrm{Pb}^{2+}$ (1.21 and $1.23 \AA$, respectively; Shannon 1976) is not very large.

Bands in the $700-1000 \mathrm{~cm}^{-1}$ range are assigned to symmetric and antisymmetric stretching modes of the $\left(\mathrm{XO}_{4}\right)^{3-}$ groups, whereas internal bending vibrations of these tetrahedrons are observed at below $550 \mathrm{~cm}^{-1}$, here partially overlaid by various external modes (Fig. 6). For all substances studied, the XO_{4} stretching bands have quite similar Raman shifts (Fig. 6). The most intense Raman bands were observed at around 820 and $800 \mathrm{~cm}^{-1}$ for $\mathbf{3}, 818,804$, and $790 \mathrm{~cm}^{-1}$ for $\mathbf{4}, 823$ and $797 \mathrm{~cm}^{-1}$ for $\mathbf{1}, 833$ and $824 \mathrm{~cm}^{-1}$ for $\mathbf{8}$, and for $\mathbf{2}$ at 834 and $809 \mathrm{~cm}^{-1}$. These Raman-shift values are in excellent agreement with published data for the adelite-group minerals (Martens et al. 2003). For 5, the $\left(\mathrm{VO}_{4}\right)^{3-}$ stretching modes lie at around 840,821 , and $805 \mathrm{~cm}^{-1}$; these values correlate very well with Raman-band values reported for the vanadate minerals descloizite and mottramite (Frost et al. 2001; compare also Grzechnik 1991).

Structural relations to other compounds

The structural relation between descloizite- and adelite-type compounds and comparable compounds (natrochalcite and brackebuschite supergroups, see below), where $M 2 \mathrm{O}_{6}$ octahedrons (or tetragonal bipyramids) are edge-linked into chains connected by $X \mathrm{O}_{4}$ tetrahedrons (or anion groups) into layers or into a three-dimensional network are obvious. In these structures the cavities house $M 1$ atoms. The atomic ratio $M 1: M 2$ in these compounds is 1:1 (descloizite/adelite), 1:2 (natrochalcite supergroup group), and 2:1 (brackebuschite supergroup). It is remarkable that within these different topological types, coupled substitution schemes involving $M 1, M 2$, and X atoms with different valences are known, some of them requiring also a substitution $[(\mathrm{OH})]^{-} \leftrightarrow[\mathrm{O}]^{2-}$ or $\left[\mathrm{H}_{2} \mathrm{O}\right]^{0} \leftrightarrow[(\mathrm{OH})]^{-}$for charge balance.

Structural similarities are proven for the natrochalcite supergroup of minerals and synthetic compounds. The general chemical formula of this group is
$M 1 M 2_{2}\left(X \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}\right)_{2}$, where $M 1^{1+, 2+, 3+}=\mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Ag}, \mathrm{NH}_{4}, \mathrm{Ca}, \mathrm{Pb}, \mathrm{Bi}, \mathrm{Tl} ; M 2^{2+, 3+}=$ $\mathrm{Al}, \mathrm{Mn}^{3+}, \mathrm{Fe}^{3+}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn} ; X^{5+, 6+}=\mathrm{P}, \mathrm{As}, \mathrm{V}, \mathrm{S}, \mathrm{Se}, \mathrm{Mo}$ (Effenberger et al. 2000, Krause et al. 2002a, Brugger et al. 2002, Mihajlović and Effenberger 2004, and references therein). The $M 2 \mathrm{O}_{6}$ polyhedrons are edge-connected into chains which are linked by $X \mathrm{O}_{4}$ tetrahedrons into layers. They are connected by $M 1^{[6+2]}, M 1^{[7]}$, or $M 1^{[8]}$ atoms and by hydrogen bonds. For each of the cation sites $M 1, M 2$, and X at least two different valences are possible; the coupled substitution at these sites ensures electro-neutrality. Furthermore, charge balance is also realised by adjusting the ratio $\mathrm{OH}: \mathrm{H}_{2} \mathrm{O}$ or, in the case of $\mathrm{SrCo}_{2}\left(\mathrm{AsO}_{4}\right)\left(\mathrm{AsO}_{3} \mathrm{OH}\right)(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)$ (Mihajlović and Effenberger 2004), by introduction of (partially) protonated arsenate groups.

The relation between the crystal structures of the descloizite-adelite and brackebuschite groups was originally mentioned by Donaldson and Barnes (1955b). Detailed structural investigations of individual members were performed by Abraham et al. (1978), Chopin et al. (1993), Foley et al. (1997), and Cámara et al. (2014). The general formula of the brackebuschite supergroup (monoclinic, $P 2_{1} / m$) is $M 1_{2} M 2\left(X \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}\right)$, where $M 1=\mathrm{Ca}^{2+}$, $\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+} ; M 2=\mathrm{Al}^{3+}, \mathrm{Mn}^{2+}, \mathrm{Mn}^{3+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Zn}^{2+}$, and $X=\mathrm{P}^{5+}, \mathrm{S}^{6+}, \mathrm{V}^{5+}, \mathrm{As}^{5+}$. The topology of this group is characterized by octahedral chains decorated by $X \mathrm{O}_{4}$ tetrahedrons. The octahedrons share edges and house smaller $M 2$ cations. The chains are linked by large M1 cations into a three-dimensional framework. Four ligands bridge $M 2$ cations to the adjacent arsenate tetrahedrons giving the chains the resemblance of four-membered pinwheels when viewed along the screw twofold axis. The chains are linked by two distinct $M 1$-centered polyhedrons.

The minerals adopting the general formula $\mathrm{Bi}_{2} \mathrm{Fe}^{3+} M(\mathrm{O}, \mathrm{OH})_{2}(\mathrm{OH})_{2}\left(\mathrm{AsO}_{4}\right)_{2}$, where $M=$ Fe^{3+} (neustädtelite) or Cu^{2+} (medenbachite) (Krause et al. 1996, 2002b), adopt an atomic arrangement similar to that descloizite-adelite compounds. Trivalent M cations cause a ratio $\mathrm{O}: \mathrm{OH}$ of $2: 2$, whereas divalent M cations result in a $\mathrm{O}: \mathrm{OH}$ ratio of $1: 3$. The charge-balancing
exchange mechanism is $\left[M^{2+} \mathrm{O}(\mathrm{OH})\right]^{-} \leftrightarrow\left[M^{3+} \mathrm{O}\right]$. The change of the $\mathrm{O}: \mathrm{OH}$ ratio is responsible for extensive order-disorder phenomena observed for the Bi atoms (Krause et al. 2002b).

Crystal chemistry and the space-group symmetry

Among minerals, the descloizite-type representatives (Pnam) are mostly lead vanadates, whereas the calcium arsenates and silicates favor the acentric structure variant (adelite group, $P 2_{1} 2_{1} 2_{1}$). All minerals and synthetic compounds with $M 1=C a$ crystallize in space group $P 2_{1} 2_{1} 2_{1}$ and show [8]-coordination for the Ca atoms (Table 1). The majority of the minerals and synthetic compounds with $M 1=\mathrm{Pb}^{2+}$ adopt space group Pnam and [7]-coordination for the Pb atoms. Pb^{2+} atoms have a $6 \mathrm{~s}^{2}$ lone-electron pair, which might be stereo-chemically active or inactive. However, one-sided coordinations are preferred. In descloizite-type structures the [7]-coordination for Pb^{2+} cations (mono-capped trigonal prism) is favored, because of the one-sided arrangement (seventh ligand decorating one face of the trigonal prism) of the oxygens around the central atom. The steric activity of the lone-pair electrons in the case of $M 1=\mathrm{Pb}^{2+}$ can, however, not be the single reason for the change of the coordination figure and space-group symmetry, because in two minerals with $M 1=\mathrm{Pb}^{2+}$, duftite and arsendescloizite, Pb atoms are in [8]-coordination and adopt space-group symmetry $P 2_{1} 2_{1} 2_{1}$. In the synthetic compounds with $M 1=\mathrm{Na}^{+}$and Cd^{2+}, where cations have completely filled electron shells, and where a regular coordination figure is expected, they are [7]-coordinated (Table 1).

With the exception of the $\mathrm{CdCo}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right), \quad \mathrm{CdCu}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$, and $\mathrm{HgZn}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$, all other arsenates adopt the acentric adelite structure-type. In contrast, most vanadates of the descloizite supergroup adopt the descloizite structure-type. The exceptions are tangeite $\left[\mathrm{CaCu}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)\right]$, gottlobite $\quad\left[\mathrm{CaMg}(\mathrm{OH})\left((\mathrm{V}, \mathrm{As}) \mathrm{O}_{4}\right)\right]$, and
$\mathrm{SrCu}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)$. In the structurally studied, $\mathrm{Sr}-$, Pb -, and Mn -bearing tangeite sample (Basso et al. 1989), the X site is occupied by both V and As in a $2: 1$ ratio, and in all these three compounds $\mathrm{M} 1 \neq \mathrm{Pb}^{2+}$. Correlations between the space-group symmetry and cations at the $M 2$ position are not obvious. The size of the ionic radii for $M 2$ does not correlate with the spacegroup symmetry of the members of adelite and descloizite-type compounds.

With the intention to study in more detail the precise mechanism that directs spacegroup symmetry, we performed additional crystal-chemical calculations. These were done using the programs TRANSTRU and COMPSTRU (Tasci et al. 2012) hosted by the Bilbao Crystallographic Server (http://www.cryst.ehu.es).

Presently, and including the results of this present paper, 17 minerals and at least 5 additional, synthetic compounds belong to the adelite and descloizite groups (Table 1). Unfortunately, a great number of these compounds have been reported with different cell settings and atom names. In order to standardize the coordinate settings, and to allow easy comparison between different structures, we have transformed all reported structure models for the adelite- and descloizite-group compounds to a reference model that corresponds to the set of coordinates determined by Effenberger et al. (2002) for the structure of the adelite, $\mathrm{CaMg}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$. Prior to this transformation, all descloizite-group members were transformed to the lower-symmetry space group $P 2_{1} 2_{1} 2_{1}$ using the program TRANSTRU (Tasci et al. 2012). The corresponding unit-cell transformation matrices, translation matrices, and renumbering schemes for the O atoms are given in Table 7 (note that after application of the corresponding matrices, atom coordinates still have to be transformed to a reference site by a symmetry operator of the $P 2_{1} 2_{1} 2_{1}$ space group).

In order to analyze the structure distortions involved, the comparison of the parental, centrosymmetric structure of descloizite (Hawthorne and Faggiani 1982) with the other members of adelite and descloizite group were made using the program COMPSTRU (Tasci
et al. 2012). The program compares two structures that crystallize in the same space group and have atoms occupying the same Wyckoff positions. The difference between them is quantified by the degree of lattice distortion S and the measure of similarity Δ (Bergerhoff et al. 1999), which is zero in the case of complete coincidence. In addition, the maximum distance, $d_{\max }$ and the average distance, d_{av}, are calculated (Table 8). The maximum distance, $d_{\text {max }}$, gives the maximal displacement between the atomic positions of the paired atoms. The average distance, d_{av}, is defined as the average of the distances between the atomic positions of the paired atoms over the primitive unit cell. The relative atomic coordinates of the adeliteand descloizite-type compounds, and corresponding coordinates derived from the parental structure-type (input file for the COMPSTRU) are given as Supplementary Material, Table 1 S.

The results of the above calculations show that the structural changes depend mostly on the average ionic radii $\left(r_{M 1}+r_{X}\right) / 2$ and $\left(r_{M 2}+r_{X}\right) / 2$, rather than on the ratio of ionic radii $\left(r_{M 1} / r_{X}\right)$ and $\left(r_{M 2} / r_{X}\right)$ (Figs. 7-10). A linear dependence with a moderately high correlation coefficient R was found for the degree of lattice distortion, S versus the average ionic radii of both $\left(r_{M 1}+r_{X}\right) / 2$ and $\left(r_{M 2}+r_{X}\right) / 2$ (Figs. 7-8) and the maximal distances between the paired atoms of the two structure types, $d_{\max }$, versus the average ionic radii $\left(r_{M 1}+r_{X}\right) / 2$ (Fig. 7). For S vs. $\left(r_{M 1}+r_{X}\right) / 2$ the obtained linear function is $f=0.012(2)-0.014(3) x, R=0.758(7)$, for S vs. $\left(r_{M 2}+r_{X}\right) / 2$ the obtained linear function is $f=0.101(14)-0.157(27) x, R=796(7)$, and for $d_{\max }$ vs. $\left(r_{M 1}+r_{X}\right) / 2$, the calculated linear equation is $f=1.938(283)-2.005(371) x$ with $R=$ $0.770(105)$. The degree of lattice distortion, S, varies from 0.0024 to 0.05 and is the smallest for čechite, $\mathrm{PbFe}\left(\mathrm{VO}_{4}\right)(\mathrm{OH})$ (Pertlik 1989), and other lead vanadates of the descloizite group and the largest for the adelite-type silicates mozartite, $\mathrm{CaMn}\left(\mathrm{SiO}_{3} \mathrm{OH}\right)$ (Nyfeler et al. 1997), and vuagnatite, $\mathrm{CaAl}\left(\mathrm{SiO}_{4}\right)(\mathrm{OH})(\mathrm{McNear}$ et al. 1976) (Table 7). These two minerals have small Si^{4+} cations on the X position, which may be the reason for the large distortion values.

The maximal displacement between the atomic positions of the paired atoms, $d_{\max }$, varies from 0.064 to 0.672 . The smallest value is observed for the lead vanadates of the descloizite group, and the largest one for hermannroseite, $\mathrm{CaCu}(\mathrm{OH})\left(\mathrm{PO}_{4}\right)$ (Schlüter et al. 2011), the only phosphate among adelite- and descloizite-group compounds.

The measures of similarity, Δ, vary from 0.012 to 0.111 . As expected, the most similar to the parent structure of descloizite, $\mathrm{PbCu}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)$, are the other lead vanadates of descloizite group, čechite and pyrobelonite, while the structure of duftite, $\mathrm{PbCu}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$ (Kharisun et al. 1998), that instead of the large $\mathrm{V}^{5+}\left[r\left(\mathrm{~V}^{5 \dagger}\right)=0.355 \AA\right.$, Shannon 1976], contains the smaller $\mathrm{As}^{5+}\left[r\left(\mathrm{As}^{5+}\right)=0.335 \AA\right]$ on the X position, is the least similar one.

In contrast, the correlations of $S, \Delta, d_{\max }$, and d_{av} with the ratio of the ionic radii, $r_{M 1} / r_{X}$ and $r_{M 2} / r_{X}$ are not linear (Figs. 9-10). The greatest lattice distortion, S, is as expected, observed for the silicates of the adelite group, and the smallest is again shown by the lead vanadates of the descloizite group. The least similar structure is again that of duftite (Fig. 8). The values for $d_{\max }$ and d_{av} are greatest for hermannroseite, and smallest for čechite, pyrobelonite, and mottramite (Figs. 9-10).

Implications

The crystal-chemistry of seven mineral-like samples synthesized within this study allows us to exclusively determine mechanisms controlling space-group symmetries among descloiziteand adelite-group compounds. We show that the presence of either relatively small Cd^{2+} or relatively big Sr^{2+} cations on the $M 1$ position (in minerals mostly occupied by Pb^{2+} and Ca^{2+}) does not change the space-group symmetry. However, attempts to synthesise new group members with the fairly big Ba^{2+} cation on the $M 1$ position were unsuccessful, indicating that the Ba^{2+} cation is too large for these structure types.

As results of the performed crystal-chemical calculations and evaluations, the following implications emerged: the mechanisms controlling space-group symmetries among descloizite- and adelite-group compounds are based on the ratio of space requirements of the atoms on the $M 1$ and X sites. The calculations also showed that the discrete structural changes compared to the parental structure of the mineral descloizite depend mostly on the average ionic radii $\left(r_{M 1}+r_{X}\right) / 2$ and $\left(r_{M 2}+r_{X}\right) / 2$, rather than on the ratio of ionic radii $\left(r_{M 1} / r_{X}\right)$ or ($r_{M 2} / r_{X}$). The influence of the stereochemically active lone-electron pairs on the change of the space-group symmetry from Pnam to $P 2_{1} 2_{1} 2_{1}$ is rather small, an observation which is strengthened by the structural characterization of four synthetic descloizite-type members with seven-coordinated Cd^{2+} (having a completely filled electron shell) on the $M 1$ position.

Acknowledgements

Financial support by the Austrian Science Foundation (FWF) (Grant V203-N19) is gratefully acknowledged. The lead author is thankful to Prof. Herta Effenberger for awakening the interest in descloizite- and adelite-group compounds. The EPMA measurements were done with the help of Franz Kiraly. Thomas Pippinger assisted with the Stoe StadiVari measurements and Maurizio Dini is thanked for providing the conichalcite specimen for investigation. The reviewer M. E. Ciriotti and two anonymous reviewers are thanked for their careful corrections and comments which helped to improve the manuscript.

References

Abraham, K., Kautz, K., Tillmanns, E., and Walenta, K. (1978) Arsenbrackebuschite, $\mathrm{Pb}_{2}(\mathrm{Fe}, \mathrm{Zn})\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)\left[\mathrm{AsO}_{4}\right]_{2}$, a new arsenate mineral. Neues Jahrbuch für Mineralogie, Monatshefte, 1978, 193-196.

Altomare, A., Burla, M.C., Camalli, M., Cascarano, G.L., Giacovazzo, C., Guagliardi, A., Moliterni, A.G.G., Polidori, G., and Spagna, R. (1999) SIR97: a new tool for crystal structure determination and refinement. Journal of Applied Crystallography, 32, 115119.

Bachmann, H.G. (1953a) Die Kristallstruktur des Descloizit. Acta Crystallographica, 6, 102 (in German).

Bachmann, H.G. (1953a) Beitrag zur Kristallchemie natürlicher und künstlicher Schwermetallvanadate. II. Die Kristallstruktur des Descloizit. Neues Jahrbuch für Mineralogie, Monatshefte, 1953, 193-208 (in German).

Barnes, W.H. and Ahmed, F.R. (1969) A note on the unit cell constants, and X-ray diffraction powder pattern, of pyrobelonite. Canadian Mineralogist, 10, 117-123.

Basso, R., Palenzona, A., and Zefiro, L. (1989) Crystal structure refinement of a Sr-bearing term related to copper vanadates and arsenates of adelite and descloizite groups. Neues Jahrbuch für Mineralogie, Monatshefte, 1989, 300-308.

Basso, R., Lucchetti, G., Zefiro, L., and Palenzona, A. (1993) Mozartite, $\mathrm{CaMn}(\mathrm{OH}) \mathrm{SiO}_{4}$, a new mineral species from the Cerchiara mine, northern Apennines, Italy. Canadian Mineralogist, 31, 331-336.

Basso, R., and Zefiro, L. (1994) Mineral nomenclature: status of calciovolborthite and tangeite. Neues Jahrbuch für Mineralogie, Monatshefte, 1994, 205-208.

Baur, W.H. (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica, B30, 11951215.

Bergerhoff, G., Berndt, M., Brandenburg, K., and Degen, T. (1999) Concerning inorganic crystal structure types. Acta Crystallographica, B55, 147-156.

Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192-197.

Brugger, J., Krivovichev, S., Kolitsch, U., Meisser, N., Andrut, M., Ansermet, S., and Burns, P.C. (2002) Description and crystal structure of manganlotharmeyerite, $\mathrm{Ca}\left(\mathrm{Mn}^{3+}, \square, \mathrm{Mg}\right)_{2}\left\{\mathrm{AsO}_{4},\left[\mathrm{AsO}_{2}(\mathrm{OH})_{2}\right]_{2}\left(\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)_{2}\right.$, from the Starlera Mn deposit, Swiss Alps, and a redefinition of lotharmeyerite. Canadian Mineralogist, 40, 15971608.

Burns, P.C. and Hawthorne, F.C. (1995) Coordination geometry structural pathways in Cu^{2+} oxysalt minerals. Canadian Mineralogist, 33, 889-905.

Cámara, F., Ciriotti, M.E., Bittarello, E., Nestola, F., Massimi, F., Radica, F., Costa, E., Benna, P., and Piccoli, G.C. (2014) As-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy: I. Grandaite, $\mathrm{Sr}_{2} \mathrm{Al}\left(\mathrm{AsO}_{4}\right)_{2}(\mathrm{OH})$, description and crystal structure. Mineralogical Magazine, 78, 757-774.

Cesbron, F., Ginderow, D., Giraud, R., Pelisson, P., and Pillard, F. (1987) La nickelaustinite, $\mathrm{Ca}(\mathrm{Ni}, \mathrm{Zn})\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$: Nouvelle espece minerale du district Cobalto-Nickelifere de Bou-Azzer, Maroc. Canadian Mineralogist, 25, 401-407 (in French).

Chopin, C., Brunet, F., Gebert, W., Medenbach, O., and Tillmanns, E. (1993) Bearthite, $\mathrm{Ca}_{2} \mathrm{Al}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{OH})$, a new mineral from high-pressure terrane of the western Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 73, 1-9.

Clark, L.A., Pluth, J.J., Steele, I., Smith, J.V., and Sutton, S.R. (1997) Crystal structure of austinite, $\mathrm{CaZn}\left(\mathrm{AsO}_{4}\right) \mathrm{OH}$. Mineralogical Magazine, 61, 677-693.

Clearfield, A., Gopal, R., and Saldarriaga-Molina, C.H. (1977) Studies in heavy-metal molybdates. 2. Crystal structure of di- μ-hydroxo-dizinc(II) molybdate. Inorganic Chemistry, 16, 628-631.

Cooper, M.A. and Hawthorne, F.C. (1995) The crystal structure of mottramite, and the nature of Cu Zn solid solution in the mottramite-descloizite series. Canadian Mineralogist, 33, 1119-1124.

Donaldson, D.M. and Barnes, W.H. (1955a) The structures of the minerals of the descloizite and adelite groups: II - pyrobelonite. American Mineralogist, 40, 580-596.

Donaldson, D.M. and Barnes, W.H. (1955b) The structures of the minerals of the descloizite and adelite groups: III - brackebuschite. American Mineralogist, 40, 597-613.

Đordević, T. (2007): Five new members of adelite- and descloizite-structure type. MinPet 2007, Meran, Italy, September 16-21, 2007, Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 153, 40 (abs.).

Đorđević, T. (2008a) Barium zinc diarsenate. Acta Crystallographica, E64, i57.
Đorđević, T. (2008b) $\mathrm{BaCo}_{2}\left(\mathrm{AsO}_{4}\right)_{2}$. Acta Crystallographica, E64, i58-i59.
Đorđević, T. (2010) $\mathrm{Zn}_{1.86} \mathrm{Cd}_{0.14}(\mathrm{OH}) \mathrm{VO}_{4}$. Acta Crystallographica, E66, i 79.
Đorđević, T. (2011) $\mathrm{Ba}\left(\mathrm{ZnAsO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, a non-centrosymmetric framework structure related to feldspar. European Journal of Mineralogy, 23, 437-447.

Đorđević, T. and Karanović, Lj. (2008) Synthesis, crystal structure, infrared and Raman spectra of $\mathrm{Sr}_{4} \mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Ba}_{2} \mathrm{Cu}_{4}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{3}$. Journal of Solid State Chemistry, 181, 2889-2898.

Đorđević, T. and Karanović, Lj. (2010) A new polymorph of $\mathrm{Ba}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)$: synthesis, crystal structure and vibrational spectra. Journal of Solid State Chemistry, 183, 2835-2844.

Đorđević, T. and Karanović, Lj . (2013) $\mathrm{Ba}\left[\mathrm{Co}_{3}\left(\mathrm{VO}_{4}\right)_{2}(\mathrm{OH})_{2}\right]$ with a regular Kagomé lattice. Acta Crystallographica, C69, 114-118.

Đorđević, T. and Kolitsch, U. (2008) Conichalcite revisited: Structural and chemical characterisation of a sample from the Maria Catalina mine, Copiapó Province, Chile. Annual Meeting of the DMG, Berlin, Germany, September 14-17, 2008; CD with abstracts, Abs. no. 331.

Đorđević, T. and Kolitsch, U. (2013) Five-coordinate Cd in the crystal structure of triploiditetype $\mathrm{Cd}_{2}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$. Mineralalogy and Petrology, 107, 243-251.

Đorđević, T., Karanović, Lj., and Tillmanns, E. (2008a) $\mathrm{Mg}_{13.4}(\mathrm{OH})_{6}\left(\mathrm{HVO}_{4}\right)_{2}\left(\mathrm{H}_{0.2} \mathrm{VO}_{4}\right)_{6}$: structural and spectroscopic study. Crystal Research and Technology, 43, 1202-1209.

Đordević, T., Stojanović, J., Šutović, S., and Karanović, Lj. (2008b) Sr-, Ba- and Cd-arsenates with the apatite-type structure. Acta Crystallographica, C64, i82-i86.

Đorđević, T., Wittwer, A., and Krivovichev, S.V. (2015) Three new alluaudite-like protonated arsenates: $\quad \mathrm{NaMg}_{3}\left(\mathrm{AsO}_{4}\right)\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{2}, \quad \mathrm{NaZn}_{3}\left(\mathrm{AsO}_{4}\right)\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{2} \quad$ and $\mathrm{Na}\left(\mathrm{Na}_{0.6} \mathrm{Zn}_{0.4}\right) \mathrm{Zn}_{2}\left(\mathrm{H}_{0.6} \mathrm{AsO}_{4}\right)\left(\mathrm{AsO}_{3} \mathrm{OH}\right)_{2}$. European Journal of Mineralogy, 27, 559-573.

Dowty, E. (2000) ATOMS for Windows V. 6.3. Shape Software, Kingsport, Tennessee, USA.
Dunn, P.J. (1983) Pyrobelonite from Franklin, New Jersey. Mineralogical Record, 14, 203204.

Effenberger, H. (1988) On the crystal chemistry of three copper(II)-arsenates: $\mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{2}-\mathrm{III}$, $\mathrm{Na}_{4} \mathrm{Cu}\left(\mathrm{AsO}_{4}\right)_{2}$, and $\mathrm{KCu}_{4}\left(\mathrm{AsO}_{4}\right)_{3}$. Monatshefte für Chemie, 119, 1103-1112.

Effenberger, H . (2002) $\mathrm{CdCu}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$, the first Cd member of the adelite-descloizite structure type. Zeitschrift für Kristallographie, Supplement Issue, 19, 85.

Effenberger, H. and Pertlik, F. (1988) Comparison of the homeomorphic crystal structures of $\mathrm{Pb}(\mathrm{Fe}, \mathrm{Mn})\left(\mathrm{VO}_{4}\right)(\mathrm{OH})=$ čechite and $\mathrm{PbCu}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})=$ duftite. Zeitschrift für Kristallographie, 185, 610.

Effenberger, H., Krause, W., Bernhardt, H.-J., and Martin, M. (2000) On the symmetry of tsumcorite group minerals based on the new species rappoldite and zincgartrellite. Mineralogical Magazine, 64, 1109-1126.

Effenberger, H., Krause, W., and Bernhardt, H.J. (2002) Structural investigations of adelite and cobaltaustinite, two members of the adelite-descloizite group. EMPG IX Meeting, Zürich, Switzerland, Journal of Conference Abstracts, 7, 30.

England, B.M. and Robinson, N. (1988) Mimetite and duftite from the Mount Bonnie Mine, Northern Territory. Mineralogical Record, 19, 441-450.

Farrugia, L.J. (2012) WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45, 849-854.

Ferraris, G. and Ivaldi, G. (1988) Bond valence vs bond length in $\mathrm{O} \cdots \mathrm{O}$ hydrogen bonds. Acta Crystallographica, B44, 341-344.

Flack, H.D. (1983) On enantiomorph-polarity estimation. Acta Crystallographica, A39, 876.

Fleet, M.E. (1976) Distortion parameters for coordination polyhedra. Mineralogical Magazine, 40, 531-533.

Foley, J.A., Hughes, J.M., and Lange, D. (1997) The atomic arrangement of brackebuschite, redefined as $\mathrm{Pb}_{2}\left(\mathrm{Mn}^{3+}, \mathrm{Fe}^{3+}\right)\left(\mathrm{VO}_{4}\right)_{2}(\mathrm{OH})$, and comments on Mn^{3+} octahedra. Canadian Mineralogist, 35, 1027-1033.

Frost, R.L., Williams, P.A., Kloprogge, J.T., and Leverett, P. (2001) Raman spectroscopy of descloizite and mottramite at 298 and 77 K. Journal of Raman Spectroscopy, 32, 906911.

Giuseppetti, G. and Tadini, C. (1988) The crystal structure of austinite, $\mathrm{CaZn}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$ from Kamareza, Laurion (Greece). Neues Jahrbuch für Mineralogie. Monatshefte, 1988, 159-166.

Gołębiowska, B., Pieczka, A., and Franus, W. (1988) Conicalcite, clinotyrolite and tyrolite ($\mathrm{Ca}-\mathrm{Cu}$ arsenates) from Rędziny (Lower Silesi, Poland). Mineralogica Polonica, 29, 13-22.

Grzechnik, A. (1991) Evaluation of the V-O stretching and V-O bond-bond interaction force constants of the $\mathrm{VO}_{4}{ }^{3-}$ ions in the structure of descloizite, $\mathrm{PbZn}\left(\mathrm{VO}_{4}(\mathrm{OH})\right.$. Neues Jahrbuch für Mineralogie Monatshefte, 1991, 465-472.

Guillemin, G. (1956) Contribution à la minéralogie des arséniates, phosphates et vanadates de cuivre. I. Arséniates. Bulletin de la Société française de Minéralogie et de Cristallographie, 79, 7-95 (in French).

Hawthorne, F.C. and Faggiani, R. (1979) Refinement of the structure of descloizite. Acta Crystallographica, B35, 717-720.

Healey, A.M., Weller M.T., and Genge, A.R. (1999) Synthesis and structure of $\mathrm{NaZnSiO}_{3} \mathrm{OH}$, a new chiral zincosilicate framework material. Inorganic Chemistry, 38, 455-458.

Henderson, R.R., Yang, H., Downs, R.T., and Jenkins, R.A. (2008) Redetermination of conichalcite, $\mathrm{CaCu}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$. Acta Crystallographica, E64, i53-i54.

Hill, J.R. (1976) The crystal structure and infrared properties of adamite. American Mineralogist, 61, 979-986.

Keller, P. and Dunn, P.J. (1982) Arsendescloizite, a new mineral from Tsumeb. Mineralogical Record, 13, 155-157.

Keller, P., Lissner, F., and Schleid, T. (2003) The crystal structure of arsenodescloizite. $\mathrm{PbZn}(\mathrm{OH})\left[\mathrm{AsO}_{4}\right]$, from Tsumeb (Namibia). Neues Jahrbuch für Mineralogie, Monatshefte, 2003, 374-384.

Kharisun, Taylor, M.R., and Bevan, D.J.M. (1998) The crystal chemistry of duftite, $\mathrm{PbCu}\left(\mathrm{AsO}_{4}\right) \mathrm{OH}$ and the β-duftite problem. Mineralogical Magazine, 62, 121-130.

Kolitsch, U. (2001) Refinement of pyrobelonite, $\mathrm{PbMn}^{\mathrm{II}} \mathrm{VO}_{4}(\mathrm{OH})$, a member of the descloizite group. Acta Crystallographica, E57, i119-i121.

Kovač, S., Karanović, Lj., and Đorđević, T. (2015) An investigation of polyhedral deformation in two mixed-metal diarsenates: $\mathrm{SrZnAs}_{2} \mathrm{O}_{7}$ and $\mathrm{BaCuAs}_{2} \mathrm{O}_{7}$. Acta Crystallographica, C71, 330-337.

Krause, W., Bernhardt, H.-J., Gebert, W., Graetsch, H., Belendorff, K., and Petitjean, K. (1996) Medenbachite, $\mathrm{Bi}_{2} \mathrm{Fe}(\mathrm{Cu}, \mathrm{Fe})(\mathrm{O}, \mathrm{OH})_{2}(\mathrm{OH})_{2}\left(\mathrm{AsO}_{4}\right)_{2}$, a new mineral species: its description and crystal structure. American Mineralogist, 81, 505-512.

Krause, W., Bernhardt, H.-J., Effenberger, H., and Witzke, T. (2002a) Schneebergite and nickelschneebergite from Schneeberg, Saxony, Germany: The first Bi-bearing members of the tsumcorite group. European Journal of Mineralogy, 14, 115-126.

Krause, W., Bernhardt, H.-J., McCammon, C., and Effenberger, H. (2002b) Neustädtelite and cobaltneustädtelite, the Fe^{3+} and Co^{2+}-analogues of medenbachite. American Mineralogist, 87, 726-738.

Leistner, H. and Chatterjee, N.D. (1978) Water-containing minerals in the $\mathrm{CaSiO}_{3}-\mathrm{Al}_{2} \mathrm{O}_{3}--$ $\mathrm{H}_{2} \mathrm{O}$ system: rosenhahnite $\mathrm{Ca}_{3}\left[\mathrm{Si}_{3} \mathrm{O}_{8}(\mathrm{OH})_{2}\right]$, vuagnatite $\mathrm{CaAl}\left[\mathrm{SiO}_{4}\right](\mathrm{OH})$ and chantalite $\mathrm{CaAl}_{2} \mathrm{SiO}_{4}(\mathrm{OH})_{4}$. Fortschritte der Mineralogie, Beiheft, 56, 79-80 (in German).

Libowitzky, E. (1999) Correlation of $\mathrm{O}-\mathrm{H}$ stretching frequencies and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 1047-1059.

Marsh, R.E. and Schomaker, V. (1979) Some incorrect space groups in Inorganic Chemistry. Inorganic Chemistry, 18, 2331-2336.

Martens, W., Frost, R.L., and Williams, P.A. (2003) Molecular structure of the adelite group of minerals - a Raman spectroscopic study. Journal of Raman Spectroscopy, 34, 104111.

McNear, E., Vincent, M.G., and Parthé, E. (1976) The crystal structure of vuagnatite, $\mathrm{CaAl}(\mathrm{OH})\left(\mathrm{SiO}_{4}\right)$. American Mineralogist, 61, 831-838.

Mihajlović, T. and Effenberger, H. (2004) The first proof of protonated anion tetrahedra in the tsumcorite-type compounds. Mineralogical Magazine, 68, 757-767.

Mihajlović, T. and Effenberger, H. (2006) Synthesis and crystal structure of $\mathrm{Sr}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)$ and $\mathrm{Ba}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)$: crystal chemistry of related $M H X \mathrm{O}_{4}(X=\mathrm{As}, \mathrm{P}, \mathrm{S})$ compounds. Zeitschrift für Kristallographie, 221, 770-781.

Mihajlović, T., Libowitzky, E., and Effenberger, H. (2004a) Synthesis, crystal structure, Raman and infrared spectra of $\mathrm{Sr}_{5}\left(\mathrm{As}_{2} \mathrm{O}_{7}\right)_{2}\left(\mathrm{AsO}_{3} \mathrm{OH}\right)$. Journal of Solid State Chemistry, 177, 3963-3970.

Mihajlović, T., Kolitsch, U., and Effenberger, H. (2004b) $\mathrm{BaMgAs}_{2} \mathrm{O}_{7}$ and $\mathrm{BaCoAs}_{2} \mathrm{O}_{7}-$ synthesis, crystal structures and twinning of two new barium diarsenates. Journal of Alloys and Compounds, 379, 103-109.

Mills, S.J., Hatert, F., Nickel, E.H., Ferraris, G. (2009): The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 1073-1080.

Moini, A., Peascoe, R., Rudolf, P.R., and Clearfield, A. (1986) Hydrothermal synthesis of copper molybdates. Inorganic Chemistry, 25, 3782-3785.

Moore, P.B. (1967) Gabrielsonite, $\mathrm{PbFe}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$, a new member of the descloizitepyrobelonite group, from Långban. Arkiv för Mineralogi Och Geologi, 4, 401-405.

Mrázek, Z. and Táborský, Z. (1981) Čechite, $\mathrm{Pb}\left(\mathrm{Fe}^{2+}, \mathrm{Mn}^{2+}\right)\left(\mathrm{VO}_{4}\right)(\mathrm{OH})$, a new mineral of the descloizite-pyrobelonite group. Neues Jahrbuch für Mineralogie, Monatshefte, 1981, 520-528.

Nickel, E.H. and Birch, W.D. (1988) Cobaltaustinite - a new arsenate mineral from Dome Rock, South Australia. American Mineralogist, 3, 53-57.

Nonius (2005-2007) COLLECT data collection software. Nonius BV, Delft, The Netherlands.

Nyfeler, D., Hoffmann, C., Armbruster, T., Kunz, M., and Libowitzky, E. (1997) Orthorhombic Jahn-Teller distortion and $\mathrm{Si}-\mathrm{OH}$ in mozartite, $\mathrm{CaMn}^{3+} \mathrm{O}\left[\mathrm{SiO}_{3} \mathrm{OH}\right]$: A
single-crystal X-ray, FTIR, and structure modeling study. American Mineralogist, 82, 841-848.

Otwinowski, Z., Borek, D., Majewski, W., and Minor, W. (2003) Multiparametric scaling of diffraction intensities. Acta Crystallographica, A59, 228-234.

Permer, L., Laligant, Y., and Ferey, G. (1993) Crystal structure of $\left(\mathrm{Pb}_{2.8} \mathrm{Fe}_{1.2}\right) \mathrm{Cu}_{4} \mathrm{O}_{1.6}\left(\mathrm{VO}_{4}\right)_{4}(\mathrm{OH})_{2}$: structural relationships with mineral gamagarite. European Journal of Solid State and Inorganic Chemistry, 30, 383-392.

Pertlik, F. (1989) The crystal structure of čechite, $\mathrm{Pb}\left(\mathrm{Fe}^{2+}, \mathrm{Mn}^{2+}\right)\left(\mathrm{VO}_{4}\right)(\mathrm{OH})$ with $\mathrm{Fe}>\mathrm{Mn}$. A mineral of the descloizite group. Neues Jahrbuch für Mineralogie, Monatshefte, 1989, 34-40.

Pring, A., Francis, G.L., and Birch, W.D. (1989) Pyrobelonite, arsenoklasite, switzerite and other recent finds at Iron Monarch, South Australia. Australian Mineralogist, 4, 49-55.

Qurashi, M.M. and Barnes, W.H. (1963) The structures of the minerals of the descloizite and adelite groups. IV: Descloizite and conichalcite (part 2). The structure of conichalcite. Canadian Mineralogist, 7, 561-577.

Qurashi, M.M. and Barnes, W.H. (1964) The structures of the minerals of the descloizite and adelite group. IV: Descloizite and conichalcite (part 3). Canadian Mineralogist, 8, 2329.

Radcliffe, D. and Simmons, W.B., Jr. (1971) Austinite: chemical and physical properties in relation to conichalcite. American Mineralogist, 56, 1359-1365.

Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567-570.

Rodnova, V.I. (1993) A rare finding of pyrobelonite in the iron-manganese ores of Atasu deposit (central Kazakhstan). Proceedings of the Russian Mineralogical Society, 122, 62-65 (in Russian with English abstract).

Sakai, S., Yoshiasa, A., Sugiyama, K., and Miyawaki, R. (2009) Crystal structure and chemistry of conichalcite, $\mathrm{CaCu}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$. Journal of Mineralogical and Petrological Sciences, 104, 125-131.

Sarp, H., Bertrand, J, and McNear, E. (1976) Vuagnatite, $\mathrm{CaAl}(\mathrm{OH}) \mathrm{SiO}_{4}$, a new natural calcium aluminum silicate. American Mineralogist, 61, 825-830.

Schlüter, J., Pohl, D., and Gebhard, G. (2011) The new mineral hermannroseite, $\mathrm{CaCu}\left(\mathrm{PO}_{4}, \mathrm{AsO}_{4}\right)(\mathrm{OH})$, the phosphate analogue of conichalcite, from Tsumeb, Namibia. Journal of Mineralogy and Geochemistry, 188, 135-140.

Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751-767.

Sheldrick, G. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-122.

Sokolova, E.V., Egorov-Tismenko, Yu.K., and Yakhontova, L.K. (1982) Study of crystalline structures of rare arsenates: duftite and mimetite. Vestnik Moskovskogo Universiteta, Geologiya, 37, 49-54.

Sokolova, E.V., Egorov-Tismenko, Yu.K., Simonov, M.A., and Krasnenko, T.I. (1986) Refined crystal structure of the synthetic vanadate $\mathrm{Cd}_{2}\left(\mathrm{~V}_{2} \mathrm{O}_{7}\right)$. Soviet Physics Crystallography, 31, 722-723.

Stojanović, J., Đorđević, T., and Karanović, Lj. (2012) Structural features of two novel alluaudite-like arsenates $\quad \mathrm{Cd}_{1.16} \mathrm{Zn}_{2.34}\left(\mathrm{AsO}_{4}\right)_{1.5}\left(\mathrm{HAsO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)_{0.5} \quad$ and $\mathrm{Cd}_{0.74} \mathrm{Mg}_{2.76}\left(\mathrm{AsO}_{4}\right)_{1.5}\left(\mathrm{HAsO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)_{0.5}$. Journal of Alloys and Compounds, 520, 180-189.

Taggart, J.E. and Foord, E.E. (1980) Conichalcite, cuprian austinite, and plumbian conichalcite from La Plata Country, Colorado. Mineralogical Record, 11, 37-38.

Tasci, E.S., de la Flor, G., Orobengoa, D., Capillas, C., Perez-Mato, J.M., and Aroyo, M.I. (2012) An introduction to the tools hosted in the Bilbao Crystallographic Server. EPJ Web of Conferences, 22, 00009.
van der Westhuizen, W.A., de Bruiyn, H., Tordiffe, E.A.W., and Botha, B.J.V. (1986) The descloizite-mottramite series of vanadates from Otavi Mountain Land, South West Africa: an X-ray study. Mineralogical Magazine, 50, 137-140.

Weil, M. (2004) $\mathrm{ZnHg}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$ with a descloizite-type structure. Acta Crystallographica, E60, i25-i27.

Weil, M., Đorđević, T., Lengauer, C.L., and Kolitsch, U. (2009) Investigations in the systems $\mathrm{Sr}-\mathrm{As}-\mathrm{O}-X(X=\mathrm{H}, \mathrm{Cl})$: Preparation and crystal structure refinements of the anhydrous arsenates $(\mathrm{V}) \mathrm{Sr}_{3}\left(\mathrm{AsO}_{4}\right)_{2}, \mathrm{Sr}_{2} \mathrm{As}_{2} \mathrm{O}_{7}, \alpha$ - and $\beta-\mathrm{SrAs}_{2} \mathrm{O}_{6}$, and of the apatite-type phases $\mathrm{Sr}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{OH}$ and $\mathrm{Sr}_{5}\left(\mathrm{AsO}_{4}\right)_{3} \mathrm{Cl}$. Solid State Science, 11, 2111-2117.

Witzke, Th., Steins, M., Doering, Th., and Kolitsch, U. (2000) Gottlobite, $\mathrm{CaMg}\left(\mathrm{VO}_{4}, \mathrm{AsO}_{4}\right)(\mathrm{OH})$, a new mineral from Friedrichroda, Thuringia, Germany. Neues Jahrbuch für Mineralogie, Monatshefte, 2000, 444-454.

Yang, H., Costin, G., Keogh, J., Lu, R., and Downs, R.T. (2007) Cobaltaustinite, $\mathrm{CaCo}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$. Acta Crystallographica, E63, i53-i55.

Yang, H., Jenkins, R.A., Downs, R.T., Evans, S.H., and Tait, K.T. (2011) Rruffite, $\mathrm{Ca}_{2} \mathrm{Cu}\left(\mathrm{AsO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, a new member of the roselite group, from Tierra Amarilla, Chile. Canadian Mineralogist, 49, 877-884.

Zhao, B. (1985) Arsendescloizite discovered for the first time in China. Acta Mineralogica Sinica, 5, 282-284 (in Chinese with English abstract).

Figure Captions

Figure 1. Back-scattered electrons image of the conichalcite sample from the Maria Catalina mine, showing intense, narrow growth zoning.

Figure 2. Crystal structures of (a) descloizite- and (b) adelite-type compounds in a view along the [001] direction. Representatives depicted are $\mathrm{CdCo}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$ (a) and $\mathrm{SrCo}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)(\mathrm{b})$.

Figure 3. Crystal structures of (a) descloizite-and (b) adelite-type compounds in a view along the [010] direction. Representatives depicted are $\mathrm{CdCo}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$ (a) and $\mathrm{SrCo}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)(\mathrm{b})$.

Figure 4. Sketches of the coordination figures around $M 1$ cations in (a) descloizite- and (b) adelite-type compounds.

Figure 5. Plot of Raman spectra of $\mathbf{1 - 5}$ and $\mathbf{8}$, showing the $\mathrm{O}-\mathrm{H}$ stretching region. Spectra are presented with vertical offset for more clarity.

Figure 6. Plot of Raman spectra (stacked) of $\mathbf{1 - 5}$ and 8, showing the lower-energy spectral range $100-1200 \mathrm{~cm}^{-1}$.

Figure 7. Plots of the degree of lattice distortion, S, structure similarity, Δ, maximal displacement between the atomic positions of the paired atoms, $d_{\max }$, and the average displacement between the atomic positions of the paired atoms, d_{av}, versus the average ionic radii $\left(r_{M 1}+r_{X}\right) / 2$. Squares $=$ descloizite-group members; circles $=$ adelite-group members. For abbreviations and references see Table 8 .

Figure 8. Plots of the degree of lattice distortion, S, structure similarity, Δ, maximal displacement between the atomic positions of the paired atoms, $d_{\text {max }}$, and the average displacement between the atomic positions of the paired atoms, d_{av}, versus the average ionic radii $\left(r_{M 2}+r_{X}\right) / 2$. Squares $=$ descloizite-group members; circles $=$ adelite-group members. For abbreviations and references see Table 8 .

Figure 9. Plots of the degree of lattice distortion, S, structure similarity, Δ, maximal displacement between the atomic positions of the paired atoms, $d_{\max }$, and the average displacement between the atomic positions of the paired atoms, d_{av}, versus the ratio of ionic radii $r_{X} / r_{M 1}$. Squares $=$ descloizite-group members; circles $=$ adelite-group members. For abbreviations and references see Table 8 .

Figure 10. Plots of the degree of lattice distortion, S, structure similarity, Δ, maximal displacement between the atomic positions of the paired atoms, $d_{\text {max }}$, and the average displacement between the atomic positions of the paired atoms, d_{av}, versus the ratio of ionic radii $r_{X} / r_{M 2}$. Squares $=$ descloizite-group members; circles $=$ adelite-group members. For abbreviations and references see Table 8 .

Revision 1:

Table 1. Minerals and synthetic compounds belonging to the adelite and descloizite structure-types. The crystal data given in table were taken from the references marked with an asterisk (*).

Name	Composition	Space group	$a(\AA)$	b (\AA)	$c(\AA)$	$V\left(\AA^{3}\right)$	Reference
Adelite structure type							
Vuagnatite	$\mathrm{Ca}^{[8]} \mathrm{Al}(\mathrm{OH})\left(\mathrm{SiO}_{4}\right)$	$P 2_{1} 2_{1} 2_{1}$	7.055(6)	8.542(7)	5.683(5)	342.5(5)	Sarp et al. (1976), McNear et al. (1976)*, Leistner and Chatterjee (1978)
Mozartite	$\mathrm{Ca}^{[8]} \mathrm{Mn}^{3+} \mathrm{O}\left(\mathrm{SiO}_{3} \mathrm{OH}\right)$	$P 2_{1} 2_{1} 2_{1}$	5.838(1)	7.224(1)	8.690(1)	366.5	Basso et al. (1993)*, Nyfeler et al. (1997)
Hermannroseite	$\mathrm{Ca}^{[8]} \mathrm{Cu}\left(\mathrm{PO}_{4}, \mathrm{AsO}_{4}\right)(\mathrm{OH})$	$P 2_{1} 2_{1} 2_{1}$	7.328(7)	9.123(7)	5.769(6)	385.7(6)	Schlüter et al. (2011)
Nickelaustinite	$\mathrm{Ca}^{[8]}(\mathrm{Ni}, \mathrm{Zn})(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$	$P 22_{1} 2_{1}{ }_{1}$	7.455(3)	8.955(3)	5.916(2)	395	Cesbron et al. (1987)
Cobaltaustinite	$\mathrm{Ca}^{[8]}\left(\mathrm{Co}, \mathrm{Cu}^{2+}\right)(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$	$P 22_{1} 2_{1}$	7.4919(9)	8.9946(9)	5.9158(7)	398.65(8)	Nickel and Birch (1988), Effenberger et al. (2002), Yang et al. (2007)*
Adelite	$\mathrm{Ca}^{[8]} \mathrm{Mg}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$	$P 2_{1} 2_{1} 2_{1}$	7.468(1)	8.953(2)	5.941(1)	397	Effenberger et al. (2002)
Conichalcite	$\mathrm{Ca}^{[8]} \mathrm{Cu}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$	$P 22_{12} 2_{1}$	7.4040(15)	9.2410 (18)	5.8310(12)	398.96(14)	Qurashi and Barnes (1963), Taggart and Foord (1980), Gołębiowska et al. (1998), Đorđević and Kolitsch (2008), Henderson et al. (2008), Sakai et al. (2009), this work*
Gottlobite	$\mathrm{Ca}^{[8]} \mathrm{Mg}(\mathrm{OH})\left[(\mathrm{V}, \mathrm{As}) \mathrm{O}_{4}\right]$	$P 2_{1} 2_{1} 2_{1}$	7.501(4)	9.010(7)	398.96(14)	401.5(3)	Witzke et al. (2000)*
Austinite	$\mathrm{Ca}^{[8]} \mathrm{Zn}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$	$P 2{ }_{1} 2_{1} 2_{1}$	7.5092(8)	9.0438(9)	5.9343(8)	403	Radcliffe and Simmons (1971), Giuseppetti and Tadini (1988), Clark et al. (1997)*
Tangeite	$\mathrm{Ca}^{[8]} \mathrm{Cu}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)$	$P 22_{1} 2_{1}$	5.836(1)	7.430(2)	9.347(1)	405	Basso et al. (1989*, 1994)
Gabrielsonite	$\mathrm{PbFe}^{2+}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)$	$P 2_{1}$ am (?)	7.86(1)	5.98(1)	8.62(1)	405	Moore (1967)
Duftite	$\mathrm{Pb}^{[8]} \mathrm{Cu}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$	$P 22_{1} 2_{1}$	7.768(1)	9.211(1)	$5.999(1)$	429	Sokolova et al. (1982), England and Robinson (1988), Kharisun et al. (1998)*

Arsendescloizite	$\mathrm{Pb}^{[8]} \mathrm{Zn}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$	$P 22_{1} 2_{1}$	7.646(2)	9.363(2)	6.077(1)	435	Zhao (1985), Keller and Dunn (1982), Keller et al. (2003)*
synthetic	$\mathrm{NaZn}{ }^{[4]}\left(\mathrm{SiO}_{3} \mathrm{OH}\right)^{* *}$	$P 2{ }_{1} 2_{1}{ }_{1}$	7.6872(2)	9.3899(2)	5.155(1)	369.7(1)	Healey et al. (1999)
synthetic	$\mathrm{Sr}^{[8]} \mathrm{Co}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$	$P 2{ }_{1} 2_{1} 2_{1}$	7.608(2)	9.239(2)	6.027(1)	423.64(16)	this work
synthetic	$\mathrm{Sr}^{[8]} \mathrm{Zn}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$	$P 2_{12} 2_{2}{ }_{1}$	7.645(1)	9.263(2)	6.030(1)	427.04(14)	this work
synthetic	$\mathrm{Sr}^{[8]} \mathrm{Cu}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)$	$P 2_{1} 2_{1} 2_{1}$	7.573(2)	9.639(2)	5.886(1)	429.66(16)	this work
Descloizite structure type							
Mottramite	$\mathrm{Pb}^{[7]} \mathrm{Cu}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)$	Pnma	7.667(4)	6.053(2)	9.316(4)	432.3(3)	van der Westhuizen et al. (1986), Cooper and Hawthorne (1995)*
Descloizite	$\mathrm{Pb}^{[7]} \mathrm{Zn}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)$	Pnma	7.610(2)	6.047(2)	9.453(2)	435	Bachmann (1953a,b), Qurashi and Barnes (1964), Hawthorne and Faggiani (1979)*, Grzechnik (1991)
Čechite	$\mathrm{Pb}^{[7]}\left(\mathrm{Fe}^{2+}, \mathrm{Mn}^{2+}\right)(\mathrm{OH})\left(\mathrm{VO}_{4}\right)$	Pnam	7.605(3)	9.435(4)	6.099(2)	438	Mrázek and Táborský (1981), Effenberger and Pertlik (1988), Pertlik (1989)*
Pyrobelonite	$\mathrm{Pb}^{[7]} \mathrm{Mn}^{2+}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)$	Pnma	7.646(2)	6.179(1)	9.507(2)	449.15(17)	Donaldson and Barnes (1955), Barnes and Ahmed (1969), Dunn (1983), Pring et al. (1989), Rodnova (1993), Kolitsch (2001)*
synthetic	$\mathrm{Cd}^{[7]} \mathrm{Cu}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$	Pnam	7.418(2)	9.024(2)	5.8930(15)	394.48(15)	Effenberger (2002), this work*
synthetic	$\mathrm{Cd}^{[7]} \mathrm{Co}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$	Pnam	7.548(2)	8.729(2)	6.0560(10)	399.01(15)	this work
synthetic	$\mathrm{Cd}^{[7]} \mathrm{Cu}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)$	Pnam (?)	7.370(1)	5.826(1)	9.368(2)	402.24(12)	this work
synthetic	$\mathrm{Cd}^{[7]} \mathrm{Co}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)$	Pnam (?)	7.561(2)	8.873(2)	5.9990(10)	402.47(16)	this work
synthetic	$\mathrm{Hg}^{[7]} \mathrm{Zn}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$	Pnma	7.6826(7)	6.2459(6)	8.6691(8)	415.98(7)	Weil (2004)
synthetic	$\begin{aligned} & \left(\mathrm{Pb}_{0.7} \mathrm{Fe}^{3+}\right. \\ & \left.\left(\mathrm{VO}_{4}\right)^{* * *}\right) \mathrm{Cu}(\mathrm{OH})_{0.5} \mathrm{O}_{0.4-} \end{aligned}$	Pnma	7.525(7)	5.900(3)	9.640(5)	427.99	Permer et al. (1993)
synthetic	$\mathrm{Na}^{[7]} \mathrm{Cu}(\mathrm{OH})\left(\mathrm{MoO}_{4}\right)$	Pnma	7.726 (2)	5.968(2)	9.495(3)	437.8(1)	Moini et al. (1986)
synthetic	$\mathrm{Na}^{[7]} \mathrm{Zn}(\mathrm{OH})\left(\mathrm{MoO}_{4}\right)$	Pnam	7.850(1)	9.2922(8)	6.148(1)	444.4	Clearfield et al. (1977), Marsh and Schomaker (1979)*

[^0]*** The substitution of Fe^{3+} for Pb in $\left(\mathrm{Pb}_{0.7} \mathrm{Fe}^{3+}{ }_{0.3}\right) \mathrm{Cu}\left(\mathrm{VO}_{4}\right)(\mathrm{OH})_{0.5} \mathrm{O}_{0.4}$ (Permer et al. 1993) is highly doubtful. For the synthesis of this compound, NaF was used as a mineralizer, therefore Na may have replaced Pb ; neither this nor the relation to descloizite or mottramite was discussed by these authors.

Table 2: Crystal data, data collection and refinement details for 1-5 and $\mathbf{8}$.

Compound (no. in text)	1	2	3	4	5	$\mathbf{8}$ (conichalcite)
Crystal data						
Chemical formula	$\mathrm{CdCo}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$	$\mathrm{CdCu}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$	$\mathrm{SrCo}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$	$\mathrm{SrZn}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$	$\mathrm{SrCu}(\mathrm{OH})\left(\mathrm{VO}_{4}\right)$	$\begin{aligned} & \mathrm{Ca}\left(\mathrm{Cu}_{0.92} \mathrm{Mg}_{0.08}\right) \\ & (\mathrm{OH})\left(\mathrm{AsO}_{4}\right) \end{aligned}$
Space group, Z	Pnam, 4	Pnam, 4	$P 21_{1} 1_{1} 2_{1}, 4$	$P 2{ }_{1} 2_{1} 2_{1}, 4$	$P 2{ }_{1} 2_{12} 2_{1}, 4$	$P 2_{1} 2_{1} 2_{1}, 4$
$9 a(\AA)$	7.548(2)	7.418(2)	7.608(2)	7.6454(12)	7.573(2)	7.4040(15)
$b(\AA)$	8.729(2)	9.024(2)	9.239(2)	9.2632(19)	9.639(2)	9.2410 (18)
$c(\AA)$	6.0560(10)	5.8930(10)	6.0270(10)	6.0298(12)	5.8860(10)	5.8310(12)
$V\left(\AA^{3}\right)$	399.01(15)	394.48(15)	423.64(16)	427.04(14)	429.66(16)	398.96(14)
Calculated density, D_{x} ($\mathrm{g} / \mathrm{cm}^{3}$)	5.448	5.588	4.742	4.805	4.377	4.247
Absorption coefficient, $\mu\left(\mathrm{mm}^{-1}\right)$	17.617	19.006	24.165	25.706	19.311	14.255
Transmission factors, $T_{\min } / T_{\max }$	$0.208 / 0.620$	0.209 / 0.702	0.122 / 0.644	$0.148 / 0.627$	$0.445 / 0.699$	0.482 / 0.764
$F(000)$	596	604	560	568	556	489
Crystal size (mm^{3})	$0.03 \times 0.04 \times 0.13$	$0.02 \times 0.03 \times 0.12$	$0.02 \times 0.02 \times 0.15$	$0.02 \times 0.02 \times 0.12$	$0.02 \times 0.02 \times 0.05$	$0.02 \times 0.03 \times 0.06$
Data collection Crystal-detector distance (mm)	30	30	30	30	30	30
Rotation width (${ }^{\circ}$)	1	2	2	2	2	2
Total no. of frames	845	465	386	524	479	505
Collection time per frame (s)	170	160	320	145	80	160
Absorption correction		multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
Range of Miller indices	$-10 \leq h \leq 10$	$-10 \leq h \leq 10$	$-10 \leq h \leq 10$	$-11 \leq h \leq 11$	$-10 \leq h \leq 10$	$-11 \leq h \leq 11$
	$-12 \leq k \leq 12$	$-12 \leq k \leq 12$	$-12 \leq k \leq 13$	$-14 \leq k \leq 14$	$-12 \leq k \leq 13$	$-14 \leq k \leq 14$
	$-8 \leq l \leq 8$	$-8 \leq l \leq 8$	$-8 \leq l \leq 8$	$-9 \leq l \leq 9$	$-8 \leq l \leq 8$	$-9 \leq l \leq 9$
Reflections collected / unique	$4177 / 639$	$1095{ }^{\text {a }}$ / 634	4674 / 1242	6036 / 1558	4844/1263	$1739^{\text {a }} / 1660$
$\begin{aligned} & \text { Observed reflections [} I \\ & >2 \sigma(I)] \end{aligned}$	606	606	1194	1467	1136	1739
$R_{\text {int }}$	0.0246	0.0061	0.0337	0.0453	0.0321	0.0203

$\theta_{\text {max }}\left({ }^{\circ}\right.$)	30.043	30.016	30.025	32.545	30.068	34.864
Refinement						
Extinction coefficient, k b	0.0077(7)	0.0062(4)	0.0043(7)	0.0013(6)	0.0049(9)	0.0073(8)
Refined parameters	50	50	78	79	79	81
Flack parameter (Flack, 1983), x or twin ratio	n / a	n / a	0.022(6)	0.446(19):0.554(19)	0.348(15):0.652(15)	0.037(15)
R-indices [$\left.F^{2}>2 \sigma\left(F^{2}\right)\right]$	$R_{1}=0.0281$	$R_{1}=0.0153$	$R_{1}=0.0190$	$R_{1}=0.0283$	$R_{1}=0.0267$	$R_{1}=0.0183$
	$w R_{2}=0.0660$	$w R_{2}=0.0382$	$w R_{2}=0.0471$	$w R_{2}=0.0645$	$w R_{2}=0.0533$	$w R_{2}=0.0455$
R-indices (all data) ${ }^{\text {c }}$	$R_{1}=0.0299$	$R_{1}=0.0165$	$R_{1}=0.0207$	$R_{1}=0.0322$	$R_{1}=0.0337$	$R_{1}=0.0202$
R-indices (all data)	$w R_{2}=0.0672$	$w R_{2}=0.0386$	$w R_{2}=0.048$	$w R_{2}=0.0660$	$w R_{2}=0.0573$	$w R_{2}=0.0462$
Goodness-of-fit, S	1.149	1.204	1.066	1.069	1.092	1.087
$(\Delta / \sigma)_{\text {max }}$	0.000	0.000	0.001	0.001	0.000	0.001
$\Delta \rho_{\text {min }}, \Delta \rho_{\text {max }}\left(\mathrm{e} / \AA^{3}\right)$	-1.833/2.041	-0.826/0.975	-0.700/0.804	-1.078/2.534	-0.774/1.006	-0.604/0.870

${ }^{\text {a }}$ Data collection for $\mathbf{2}$ was performed assuming orthorhombic symmetry; data collection for $\mathbf{8}$ was performed assuming triclinic symmetry but the diffractometer's processing software at that time averaged all reflections before creating the hkl-file, resulting in the comparatively "low" value for the number of collected reflections.
${ }^{\mathrm{b}}{F_{c}{ }^{*}=k F_{c}\left[1+0.001 \times F_{c}{ }^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4} .}^{c}$
${ }^{\mathrm{c}} w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0244 P)^{2}+3.8563 P\right]$ for $\mathbf{1}, w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0173 P)^{2}+0.6367 P\right]$ for $\mathbf{2}$, and $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0245 P)^{2}+0.4124 P\right]$ for $\mathbf{3}, w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)\right.$ $\left.+(0.0257 P)^{2}+1.8644 P\right]$ for $\mathbf{4}, w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0245 P)^{2}+0.4124 P\right]$ for $\mathbf{5}$, and $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0186 P)^{2}+0.4070 P\right]$ for $\mathbf{8}$, where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$.

Table 3: Fractional atomic coordinates and equivalent isotropic displacement parameters for 1-5 and 8.

Atom	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
$\mathbf{1}$				
Cd	$0.12851(6)$	$0.17438(5)$	0.25	$0.02177(19)$
Co	0.0	0.5	0.5	$0.00624(19)$
As	$0.12919(7)$	$-0.17240(6)$	0.25	$0.00593(17)$
O1	$-0.1206(4)$	$0.2786(3)$	$0.5170(5)$	$0.0131(6)$
O2	$-0.0325(6)$	$-0.0418(6)$	0.25	$0.0244(10)$
O3	$0.3121(5)$	$-0.0576(5)$	0.25	$0.0107(7)$
O4	$0.1426(5)$	$0.4209(4)$	0.25	$0.0077(7)$
H	$0.253(4)$	$0.455(8)$	0.25	$0.013(18)$
$\mathbf{2}$				
Cd	$0.12247(3)$	$0.18210(3)$	0.25	$0.01365(10)$
Cu	0.0	0.5	0.5	$0.00785(11)$
As	$0.13007(4)$	$-0.16215(3)$	0.25	$0.00647(10)$
O1	$-0.12416(19)$	$0.26519(17)$	$0.5112(3)$	$0.0123(3)$
O2	$-0.0354(3)$	$-0.0357(3)$	0.25	$0.0208(5)$
O3	$0.3164(3)$	$-0.0496(3)$	0.25	$0.0124(4)$
O4	$0.1361(3)$	$0.4285(2)$	0.25	$0.0076(4)$
H	$0.244(3)$	$0.466(4)$	0.25	$0.009(9)$
3				
Sr	$0.63634(4)$	$0.33216(3)$	$0.47652(5)$	$0.01038(9)$
Co	$0.24221(6)$	$0.49497(6)$	$0.24392(7)$	$0.00951(11)$
As	$0.61651(4)$	$0.68611(3)$	$0.51198(5)$	$0.00823(9)$
O1	$0.4407(3)$	$0.5719(2)$	$0.4927(4)$	$0.0116(4)$
O2	$0.7877(3)$	$0.5750(3)$	$0.5630(4)$	$0.0141(5)$
O3	$0.3605(3)$	$0.2778(3)$	$0.2295(4)$	$0.0116(4)$
O4	$0.3941(3)$	$0.2954(3)$	$0.7627(4)$	$0.0120(5)$
O5	$0.1048(3)$	$0.4339(2)$	$0.5032(4)$	$0.0099(4)$
H	$0.003(5)$	$0.479(5)$	$0.509(9)$	$0.021(16)$

$\mathbf{4}$				
Sr	$0.63593(7)$	$0.33104(6)$	$0.47597(10)$	$0.01138(14)$
Zn	$0.23589(9)$	$0.49267(10)$	$0.23874(12)$	$0.01274(17)$
As	$0.61913(7)$	$0.68316(6)$	$0.51240(10)$	$0.00774(14)$
O 1	$0.4438(5)$	$0.5707(4)$	$0.4921(8)$	$0.0111(8)$
O 2	$0.7898(6)$	$0.5739(5)$	$0.5632(9)$	$0.0157(9)$
O 3	$0.3585(6)$	$0.2740(5)$	$0.2288(7)$	$0.0112(8)$
O 4	$0.3935(6)$	$0.2915(5)$	$0.7625(7)$	$0.0114(8)$
O 5	$0.1106(5)$	$0.4348(4)$	$0.5045(7)$	$0.0095(7)$
H	$0.004(6)$	$0.471(10)$	$0.498(19)$	$0.06(4)$
$\mathbf{5}$				
Sr	$0.63486(5)$	$0.32637(3)$	$0.47982(6)$	$0.01220(11)$
Cu	$0.24713(7)$	$0.49963(7)$	$0.24929(8)$	$0.01095(12)$
V	$0.61032(8)$	$0.66918(6)$	$0.50929(11)$	$0.00904(13)$
O 1	$0.4286(3)$	$0.5527(3)$	$0.4957(5)$	$0.0116(5)$
O 2	$0.7865(4)$	$0.5659(3)$	$0.5514(5)$	$0.0167(7)$
O 3	$0.3684(5)$	$0.2612(3)$	$0.2348(5)$	$0.0154(6)$
O 4	$0.3939(4)$	$0.2755(3)$	$0.7609(5)$	$0.0159(7)$
O 5	$0.1104(3)$	$0.4388(3)$	$0.5020(5)$	$0.0117(5)$
H 1	$0.014(7)$	$0.478(4)$	$0.501(8)$	$0.013(11)$
$\mathbf{8}$				
Ca	$0.63268(5)$	$0.32352(4)$	$0.47987(8)$	$0.01121(10)$
Cu	$0.24585(4)$	$0.49958(4)$	$0.24995(5)$	$0.00854(8)$
Mg	$0.24585(4)$	$0.49958(4)$	$0.24995(5)$	$0.00854(8)$
As	$0.61737(2)$	$0.66889(19)$	$0.51430(4)$	$0.00748(6)$
P	$0.61737(2)$	$0.668890(19)$	$0.51430(4)$	$0.00748(6)$
O 1	$0.43839(18)$	$0.55133(15)$	$0.4957(3)$	$0.0116(3)$
O2	$0.7894(2)$	$0.55751(18)$	$0.5816(3)$	$0.0156(3)$
O3	$0.3612(2)$	$0.25785(15)$	$0.2356(3)$	$0.0118(3)$
O4	$0.3993(2)$	$0.27997(17)$	$0.7572(3)$	$0.0128(3)$
O5	$0.11122(18)$	$0.4325(14)$	$0.5035(3)$	$0.0095(2)$
H	$0.028(6)$	$0.477(4)$	$0.493(7)$	$0.042(12)$

Table 4: Anisotropic displacement parameters $\left(\AA^{2}\right)$ for 1-5 and $\mathbf{8}$.

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\mathbf{1}$						
Cd	$0.0161(3)$	$0.0075(2)$	$0.0418(3)$	0.0	0.0	$0.00137(14)$
Co	$0.0074(3)$	$0.0062(3)$	$0.0052(3)$	$-0.0004(2)$	$0.0003(2)$	$0.0002(2)$
As	$0.0065(3)$	$0.0044(3)$	$0.0069(3)$	0.0	0.0	$-0.00152(16)$
O1	$0.0213(14)$	$0.0091(12)$	$0.0089(12)$	$0.0018(10)$	$-0.0002(11)$	$-0.0065(10)$
O2	$0.013(2)$	$0.016(2)$	$0.044(3)$	0.0	0.0	$0.0069(17)$
O3	$0.0096(17)$	$0.0143(18)$	$0.0082(16)$	0.0	0.0	$-0.0067(15)$
O4	$0.0058(15)$	$0.0098(17)$	$0.0076(15)$	0.0	0.0	$-0.0006(12)$
O5	$0.0161(3)$	$0.0075(2)$	$0.0418(3)$	0.0	0.0	$0.00137(14)$
$\mathbf{2}$						
Cd	$0.01208(14)$	$0.00867(13)$	$0.02021(15)$	0.0	0.0	$0.00081(8)$
Cu	$0.0076(19)$	$0.01040(18)$	$0.00548(18)$	$-0.00086(11)$	$0.00029(14)$	$0.00177(11)$
As	$0.00666(16)$	$0.00659(15)$	$0.00615(15)$	0.0	0.0	$-0.00061(10)$
O1	$0.0175(8)$	$0.0109(7)$	$0.0086(7)$	$0.0026(6)$	$0.0007(6)$	$-0.0037(6)$
O2	$0.0113(11)$	$0.0176(11)$	$0.0335(15)$	0.0	0.0	$0.0067(10)$
O3	$0.0123(10)$	$0.0162(11)$	$0.0088(10)$	0.0	0.0	$-0.0094(9)$
O4	$0.0071(9)$	$0.0078(10)$	$0.0079(9)$	0.0	0.0	$0.0006(7)$
O5	$0.01208(14)$	$0.00867(13)$	$0.02021(15)$	0.0	0.0	$0.00081(8)$
$\mathbf{3}$						
Sr	$0.01025(14)$	$0.00877(15)$	$0.01212(15)$	$-0.00008(11)$	$0.00041(11)$	$0.00057(11)$
Co	$0.0105(2)$	$0.0107(2)$	$0.0074(2)$	$0.00093(14)$	$0.00103(17)$	$0.00029(14)$
As	$0.00822(15)$	$0.00849(16)$	$0.00798(15)$	$0.00001(11)$	$0.00020(12)$	$-0.00070(11)$
O1	$0.01111(10)$	$0.0138(11)$	$0.0100(10)$	$-0.0004(9)$	$0.0005(10)$	$-0.0058(9)$
O2	$0.0120(11)$	$0.0122(11)$	$0.0182(12)$	$0.0003(9)$	$-0.0001(9)$	$0.0057(10)$
O3	$0.0154(12)$	$0.0110(10)$	$0.0084(10)$	$-0.0030(9)$	$0.0004(9)$	$0.0041(10)$
O4	$0.0167(12)$	$0.0105(10)$	$0.0089(10)$	$0.0028(8)$	$0.0011(9)$	$0.0028(10)$
O5	$0.0115(10)$	$0.0097(11)$	$0.0086(10)$	$0.0002(8)$	$0.0000(10)$	$-0.0003(8)$
$\mathbf{4}$						
Sr	$0.0108(2)$	$0.0093(2)$	$0.0141(3)$	$0.0001(2)$	$0.0007(2)$	$0.00057(18)$
Zn	$0.0138(3)$	$0.0172(3)$	$0.0072(3)$	$0.0031(3)$	$0.0019(3)$	$-0.0009(2)$
As	$0.0075(2)$	$0.0093(3)$	$0.0064(3)$	$0.0002(2)$	$0.0006(2)$	$-0.00019(18)$
O1	$0.0130(18)$	$0.0117(19)$	$0.008(2)$	$0.0014(17)$	$0.0021(17)$	$-0.0037(14)$
O2	$0.0124(19)$	$0.016(2)$	$0.019(2)$	$-0.0005(17)$	$-0.0012(18)$	$0.0041(17)$

O3	$0.014(2)$	$0.0145(19)$	$0.0054(17)$	$-0.0002(15)$	$-0.0009(16)$	$0.0038(17)$
O4	$0.0157(19)$	$0.0125(19)$	$0.0060(18)$	$0.0032(15)$	$-0.0021(16)$	$0.0015(15)$
O5	$0.0078(17)$	$0.0121(19)$	$0.0086(18)$	$-0.0005(15)$	$-0.0011(17)$	$-0.0001(13)$
$\mathbf{5}$						
Sr	$0.0113(2)$	$0.0121(2)$	$0.0133(2)$	$0.0004(2)$	$0.0004(2)$	$0.00032(17)$
Cu	$0.0107(3)$	$0.0151(3)$	$0.0070(3)$	$0.0009(2)$	$-0.0001(2)$	$-0.00255(18)$
V	$0.0094(4)$	$0.0097(4)$	$0.0080(4)$	$-0.0004(4)$	$0.0002(4)$	$-0.0003(3)$
O1	$0.0106(15)$	$0.0152(16)$	$0.0089(18)$	$-0.0003(14)$	$-0.0008(17)$	$-0.0033(12)$
O2	$0.0110(17)$	$0.017(2)$	$0.022(2)$	$-0.0007(15)$	$-0.0012(16)$	$0.0020(14)$
O3	$0.014(2)$	$0.019(2)$	$0.0132(19)$	$-0.0009(14)$	$-0.0007(19)$	$0.0031(19)$
O4	$0.018(3)$	$0.019(2)$	$0.0108(19)$	$0.0015(15)$	$0.0020(17)$	$0.0019(16)$
O5	$0.0094(17)$	$0.0160(18)$	$0.0098(17)$	$0.0021(15)$	$-0.0002(19)$	$0.0010(13)$
$\mathbf{8}$						
Ca	$0.01115(17)$	$0.01036(16)$	$0.01211(17)$	$0.00019(14)$	$0.00018(14)$	$0.00051(12)$
Cu	$0.00811(12)$	$0.01172(12)$	$0.00578(12)$	$0.00124(7)$	$0.00012(8)$	$-0.00207(6)$
Mg	$0.00811(12)$	$0.01172(12)$	$0.00578(12)$	$0.00124(7)$	$0.00012(8)$	$-0.00207(6)$
As	$0.00733(9)$	$0.00836(8)$	$0.00675(8)$	$0.00001(7)$	$0.00012(7)$	$-0.00057(6)$
P	$0.00733(9)$	$0.00836(8)$	$0.00675(8)$	$0.00001(7)$	$0.00012(7)$	$-0.00057(6)$
O1	$0.0114(6)$	$0.0136(6)$	$0.0099(6)$	$-0.0009(6)$	$-0.0009(6)$	$-0.0043(4)$
O2	$0.0113(7)$	$0.0161(7)$	$0.0194(8)$	$0.0010(6)$	$-0.0024(6)$	$0.0056(6)$
O3	$0.0140(7)$	$0.0142(7)$	$0.0072(6)$	$-0.0017(5)$	$0.0012(5)$	$0.0013(6)$
O4	$0.0161(7)$	$0.0137(6)$	$0.0086(6)$	$0.0032(5)$	$0.0018(6)$	$0.0038(6)$
O5	$0.0074(5)$	$0.0127(5)$	$0.0084(5)$	$0.0001(5)$	$-0.0003(7)$	$0.0003(4)$

Table 5. Selected bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$ for 1-5 and 8.

	1	2		3	4	5	8
M1-O4	2.155(4)	2.226(2)	M1-O5	2.472(3)	2.473(4)	2.511(4)	2.3708(18)
-O2	2.244(5)	2.288(3)	-04	2.547(3)	2.560(4)	2.558(5)	2.400 (2)
-O3	2.454(4)	2.538(3)	-O3	2.575(3)	2.592(5)	2.565(3)	2.486(2)
$-\mathrm{O} 1 \times 2$	2.524(3)	$2.4755(16)$	-O2	2.622(3)	2.646(4)	2.581(5)	2.525(2)
$-\mathrm{O} 1 \times 2$	2.642(3)	$2.5056(16)$	-O3	2.660(3)	2.647(4)	2.611(4)	2.537(2)
			-O1	2.670(3)	2.664(4)	2.613(3)	2.551(2)
			-O4	2.698(3)	2.689(5)	2.685(3)	2.593(2)
			$-\mathrm{O} 2$	$2.704(3)$	$2.701(5)$	$2.791(4)$	$2.633(2)$
$<M 1^{[7]}-\mathrm{O}>$	2.455	2.431	$<M 1{ }^{[8]}-\mathrm{O}>$	2.618	2.535	2.614	2.512
M2-O4 $\times 2$	1.982(2)	1.8989(13)	M2-O5	1.963(3)	1.942(4)	1.905(4)	1.889(2)
$-\mathrm{O} 3 \times 2$	2.135(3)	2.0556(15)	-05	1.972(3)	1.955(4)	1.907(4)	1.892(2)
$-\mathrm{O} 1 \times 2$	2.139(3)	$2.3114(16)$	$-\mathrm{O} 1$	2.147(3)	2.108(4)	2.063(4)	$2.069(2)$
			$-\mathrm{O} 1$	$2.199(3)$	$2.233(5)$	$2.063(4)$	$2.077(2)$
			-04	2.201(3)	$2.236(5)$	2.418(4)	2.304(2)
			-O3	2.244(3)	2.320(4)	2.476(4)	2.393(2)
$<M 2-\mathrm{O}>$	2.085	2.089	$<M 2-\mathrm{O}>$	2.121	2.132	2.139	2.104
$X-\mathrm{O} 2$	1.670(5)	$1.676(2)$	$X-\mathrm{O} 2$	1.686(3)	$1.680(5)$	1.683(4)	1.680(2)
$-\mathrm{O} 1 \times 2$	1.689(3)	$1.6873(15)$	-O3	$1.693(3)$	$1.689(4)$	$1.696(4)$	$1.684(2)$
-O3	1.706(4)	$1.715(2)$	-O4	$1.695(3)$	1.691(4)	1.697(4)	$1.686(2)$
			-O1	1.707(3)	1.702(4)	1.777(3)	$1.7170(18)$
$<X-\mathrm{O}>$	1.688	1.684	$<X-\mathrm{O}>$	1.695	1.691	1.713	1.692
$\mathrm{O} 2-\mathrm{X}-\mathrm{O} 1 \times 2$	110.28(13)	110.87(7)	$\mathrm{O} 3-\mathrm{X}-\mathrm{O} 2$	112.41(17)	112.2(2)	111.0(2)	115.45(11)
$\mathrm{O} 1-X-\mathrm{O} 1$	113.28(19)	113.04(11)	$\mathrm{O} 3-\mathrm{X}-\mathrm{O} 4$	113.31(15)	113.7(2)	111.17(16)	113.21(9)
$\mathrm{O} 2-X-\mathrm{O} 3$	$101.0(2)$	100.76(13)	$\mathrm{O} 2-X-\mathrm{O} 4$	104.67(16)	104.8(2)	104.74(19)	104.09(11)
$\mathrm{O} 1-\mathrm{X}-\mathrm{O} 3 \times 2$	110.68(12)	110.32(6)	$\mathrm{O} 3-\mathrm{X}-\mathrm{O} 1$	109.38(16)	108.8(2)	111.4(2)	109.11(10)
			$\mathrm{O} 2-X-\mathrm{O} 1$	103.95(16)	104.8(2)	104.29(17)	102.23(10)
			$\mathrm{O} 4-\mathrm{X}-\mathrm{O} 1$	112.70(15)	112.1(2)	113.73(18)	112.24(10)

$<\mathrm{O}-\mathrm{X}-\mathrm{O}>$	109.37	109.36	$<\mathrm{O}-X-\mathrm{O}>$	109.40	109.40	109.39	109.39
$\mathrm{O} 4-\mathrm{M} 2-\mathrm{O} 4$	180.0(2)	180.00(10)	O5-M2-O5	174.53(13)	170.64(17)	178.38(16)	177.74(8)
$\mathrm{O} 4-\mathrm{M} 2-\mathrm{O} 3 \times 2$	95.68(11)	97.46(7)	$\mathrm{O} 5-\mathrm{M} 2-\mathrm{O} 1$	97.66(13)	100.62(18)	97.96(15)	97.94(8)
$\mathrm{O} 4-\mathrm{M} 2-\mathrm{O} 3 \times 2$	84.32(11)	82.54(7)	$\mathrm{O} 5-\mathrm{M} 2-\mathrm{O} 1$	87.71(12)	87.57(17)	83.68(15)	84.28(8)
$\mathrm{O} 3-\mathrm{M} 2-\mathrm{O} 3$	180.0	180.0	$\mathrm{O} 5-\mathrm{M} 2-\mathrm{O} 1$	85.27(12)	83.13(16)	83.64(15)	84.15(8)
$\mathrm{O} 4-\mathrm{M} 2-\mathrm{O} 1 \times 2$	87.32(13)	85.55(7)	$\mathrm{O} 5-\mathrm{M} 2-\mathrm{O} 1$	89.34(12)	88.67(17)	94.72(15)	93.63(8)
$\mathrm{O} 4-\mathrm{M} 2-\mathrm{O} 4 \times 2$	92.68(13)	94.45(7)	$\mathrm{O} 1-M 2-\mathrm{O} 1$	176.96(12)	176.18(18)	178.31(15)	177.81(9)
$\mathrm{O} 3-\mathrm{M} 2-\mathrm{O} 1 \times 2$	92.05(14)	92.53(8)	$\mathrm{O} 5-\mathrm{M} 2-\mathrm{O} 4$	91.29(12)	90.25(17)	90.78(14)	91.76(8)
$\mathrm{O} 3-\mathrm{M} 2-\mathrm{O} 1 \times 2$	87.95(14)	87.47(8)	O5-M2-O4	87.78(12)	88.63(17)	89.58(14)	88.88(8)
$\mathrm{O} 1-\mathrm{M} 2-\mathrm{O} 1$	180.0	180.0	$\mathrm{O} 1-\mathrm{M} 2-\mathrm{O} 4$	89.08(12)	89.00(16)	87.40(14)	84.64(8)
			$\mathrm{O} 1-\mathrm{M} 2-\mathrm{O} 4$	90.24(12)	90.33(17)	92.99(14)	95.97(8)
			O5-M2-O3	89.24(12)	88.77(17)	86.75(14)	84.74(7)
			$\mathrm{O} 5-\mathrm{M} 2-\mathrm{O} 3$	91.93(12)	92.32(17)	93.00(14)	94.85(7)
			$\mathrm{O} 1-\mathrm{M} 2-\mathrm{O} 3$	92.29(12)	90.72(15)	90.40(14)	89.89(7)
			$\mathrm{O} 1-\mathrm{M} 2-\mathrm{O} 3$	88.56(12)	90.12(16)	89.29(14)	89.66(7)
			$\mathrm{O} 4-\mathrm{M} 2-\mathrm{O} 3$	175.93(14)	177.40(17)	175.56(17)	173.05(8)
Hydrogen bonds							
Compound	Donor	H	Acceptor	D-H	H $\cdots \mathrm{A}$	$\angle \mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	D $\cdots \mathrm{A}$
1	O4	H	O2	0.88(2)	1.79(2)	175(8)	2.670(6)
2	O4	H	O2	0.88(2)	$1.75(2)$	178(4)	2.622(3)
3	O5	H	O2	0.88(3)	1.89(3)	172(5)	2.766 (4)
4	O5	H	O2	0.88(3)	1.93(4)	164(11)	$2.793(6)$
5	O5	H	O2	0.88(3)	1.88(3)	172(6)	2.756 (5)
8	O5	H	O 2	0.75(4)	1.98(4)	157(4)	2.688(2)

Table 6. Bond valences $v_{i j}$ (valence units) for 1-5 and $\mathbf{8}$. The calculation is based on the parameters given by Brese and O'Keeffe (1991), for the hydrogen bonds according to Ferraris and Ivaldi (1988).

	M1	M2	X	$\Sigma \mathrm{v}_{\mathrm{ij}}$ *	H	$\Sigma v_{\mathrm{ij}}{ }^{* *}$
1						
O1	$0.19 \times 2+0.14 \times 2$	0.29×2	1.23×2	1.85	-	1.85
O2	0.40	-	1.30	1.73	0.25	1.98
O3	0.23	0.30×2	1.18	2.01	-	2.01
O4	0.51	0.46×2	-	1.43	0.75	2.18
$\Sigma \mathrm{v}_{\mathrm{ij}}$	1.80	2.10	4.94		1.00	
2						
O1	$0.21 \times 2+0.20 \times 2$	0.18×2	1.24×2	1.83	-	1.83
O2	0.35	-	1.28	1.63	0.27	2.00
O3	0.18	0.36×2	1.15	2.05	-	2.05
O4	0.42	0.55×2	-	1.52	0.73	2.25
$\Sigma \mathrm{v}_{\mathrm{ij}}$	1.77	2.18	4.91		1.00	
3						
O1	0.22	$0.29+0.25$	1.18	1.94	-	1.94
O2	$0.26+0.20$	-	1.24	1.70	0.18	1.88
O3	$0.29+0.23$	0.22	1.22	1.96	-	1.96
O4	$0.31+0.21$	0.25	1.21	1.98	-	1.98
O5	0.38	$0.48+0.47$	-	1.33	0.82	2.15
$\Sigma \mathrm{v}_{\mathrm{ij}}$	2.10	1.96	4.85		1.00	
4						
O1	0.23	$0.24+0.33$	1.14	1.94	-	1.94
O2	$0.24+0.21$	-	1.27	1.72	0.17	1.89
O3	$0.28+0.24$	0.19	1.23	1.94	-	1.94
O4	$0.30+0.21$	0.24	1.23	1.98	-	1.98
O5	0.38	$0.53+0.51$	-	1.42	0.83	2.25
$\Sigma \mathrm{v}_{\mathrm{ij}}$	2.09	2.04	4.92		1.00	
5						
O1	0.27	$0.25+0.35$	1.07	1.94	-	1.94
O2	$0.29+0.16$	-	1.38	1.83	0.18	2.01

O3	$0.30+0.27$	0.12	1.34	2.03	-	2.03
O4	$0.30+0.22$	0.14	1.33	1.99	-	1.99
O5	0.36	$0.54+0.54$	-	1.44	0.82	2.26
Σv_{ij}	2.17	2.04	5.12		1.00	
$\mathbf{8}$						
O1	0.21	$0.36+0.34$	1.14	2.05	-	2.05
O2	$0.22+0.17$	-	1.27	1.66	0.23	1.89
O3	$0.26+0.21$	0.14	1.25	1.86	-	1.86
O4	$0.31+0.18$	0.18	1.24	1.91	-	1.91
O5	0.36	$0.57+0.56$	-	1.49	0.77	2.26
Σv_{ij}	1.92	2.14			1.00	

* Neglecting the contribution from the hydrogen bonds.
** Including the contribution from the hydrogen bonds.

Table 7. Transformation and translation matrices of the unit cells and atomic coordinates for the members of the adelite and descloizite groups reported in the original work to the reference model that corresponds to the set of coordinates given by Effenberger et al. (2000) for adelite, $\mathrm{CaMg}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$. Descloizite-group members were, prior to the transformation from the table, transformed to the lower-symmetry space group $P 2_{1} 2_{1} 2_{1}$ using the program TRANSTRU (Tasci et al. 2012) hosted in the Bilbao Crystallographic Server (http://www.cryst.ehu.es).

Compound	Transformation matrix	Translation matrix	Renumbering scheme for the O sites (old \rightarrow new)	Reference
Čechite	100/010/00-1	$00^{1 / 4}$	$4 \rightarrow 1,3 \rightarrow 2,2 \rightarrow 3,1 \rightarrow 4$,	Pertlik (1989)*
Descloizite	100/00-1/010	$1 / 41 / 41 / 2$	$4 \rightarrow 1,3 \rightarrow 2,2 \rightarrow 3,1 \rightarrow 4$,	Keller \& Hess (1988)
Pyrobelonite	-100/001/010	$1 / 43 / 40$	$1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4$,	Kolitsch (2001)
Tangeite	100/0-10/00-1	$00 \frac{1}{2}$	$1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4$,	Basso et al. (1989)
$\mathrm{SrCu}\left(\mathrm{VO}_{4}\right)(\mathrm{OH})$	100/010/001	000	$1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4$,	this work
Mottramite	100/00-1/010	1/41/41/2	$\begin{aligned} & 4 \rightarrow 1,5 \rightarrow 2,3 \rightarrow 3,2 \rightarrow 4, \\ & 1 \rightarrow 5 \end{aligned}$	Cooper \& Hawthorne (1995)
Arsendescloizite	-100/0-10/001	$0-1 / 21 / 2$	$1 \rightarrow 1,2 \rightarrow 2,4 \rightarrow 3,3 \rightarrow 4$,	Keller et al. (2003)
Conichalcite	100/010/001	000	$1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4$,	this work
Vuagnatite	100/010/001	000	$1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4$,	McNear et al. (1976)
Mozartite	001/100/010	$01 / 20$	$1 \rightarrow 1,2 \rightarrow 2,4 \rightarrow 3,3 \rightarrow 4$,	Nyfeler et al. (1997)
$\mathrm{CdCu}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$	100/0-10/001	$1 / 403 / 4$	$3 \rightarrow 1,2 \rightarrow 2,5 \rightarrow 3,1 \rightarrow 4$,	this work
$\mathrm{SrCo}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$	001/100/010	000	$1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4$,	this work
$\mathrm{SrZn}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$	001/100/010	000	$1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4$,	this work
$\mathrm{NaCu}\left(\mathrm{MoO}_{4}\right)(\mathrm{OH})$	100/001/0-10	$1 / 43 / 41 / 2$	$3 \rightarrow 1,4 \rightarrow 2,1 \rightarrow 3,2 \rightarrow 4$,	Moini et al. (1976)
Hermannroseite	100/010/001	000	$1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4$,	Schlüter et al. (2011)
Adelite	100/010/001	000	$1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4$,	Effenberger et al. (2002)
Nickelaustinite	-100/0-10/001	$00-1 / 2$	$1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4$,	Cesbron et al. (1987)
Gottlobite	-100/0-10/001	$00 \frac{1}{2}$	$2 \rightarrow 1,5 \rightarrow 2,4 \rightarrow 3,3 \rightarrow 4$,	Witzke et al. (2000)
Austinite	100/010/001	000	$1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4$,	Clark et al. (1997)
Cobaltaustinite	100/010/001	000	$1 \rightarrow 1,2 \rightarrow 2,3 \rightarrow 3,4 \rightarrow 4$,	Yang et al. (2007)
$\mathrm{CdCo}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$	100/0-10/001	$1 / 403 / 4$	$3 \rightarrow 1,2 \rightarrow 2,5 \rightarrow 3,1 \rightarrow 4$,	this work
$\mathrm{NaZn}\left(\mathrm{MoO}_{4}\right)(\mathrm{OH})$	100/010/001	$00 \frac{1}{4}$	$5 \rightarrow 1,3 \rightarrow 2,1 \rightarrow 3,2 \rightarrow 4$,	Marsh \& Schomaker
Duftite	100/0-10/001	$00 \frac{1}{2}$	$4 \rightarrow 1,5 \rightarrow 2,3 \rightarrow 3,2 \rightarrow 4$,	Kharisun et al. (1998)

Table 8. The degree of lattice distortion (S) and the structure similarity (Δ) of the adelite- and descloizite-group members in comparison with the crystal structure of descloizite (Hawthorne and Faggiani 1979) transformed to space group $P 2_{1} 2_{2} 2_{1}$, with matching coordinates to those of adelite (Effenberger et al. 2002). For more details see Supplementary Material.

Mineral name, formula	Legend	S	$d_{\text {max. }}(\AA)$	$d_{\text {av. }}(\AA)$	Δ	References
Čechite, $\mathrm{PbFe}\left(\mathrm{VO}_{4}\right)(\mathrm{OH})$	CECH	0.0024	0.0638	0.0351	0.012	Pertlik (1989)
Pyrobelonite, $\mathrm{PbMn}\left(\mathrm{VO}_{4}\right)(\mathrm{OH})$	PYBEL	0.0076	0.1292	0.0323	0.021	Kolitsch (2001)
Tangeite, $\mathrm{CaCu}\left(\mathrm{VO}_{4}\right)(\mathrm{OH})$	TANG	0.0150	0.4857	0.2007	0.038	Basso et al. (1989)
synthetic, $\mathrm{SrCu}\left(\mathrm{VO}_{4}\right)(\mathrm{OH})$	SrCuV	0.0127	0.3692	0.1807	0.043	this work
Mottramite, $\mathrm{PbCu}\left(\mathrm{VO}_{4}\right)(\mathrm{OH})$	MOTR	0.0048	0.1570	0.0816	0.046	Cooper \& Hawthorne (1995)
Arsendescloizite, $\mathrm{PbZn}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$	AsDES	0.0032	0.3195	0.1450	0.047	Keller et al. (2003)
Conichalcite, $\mathrm{CaCu}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$	CONC	0.0170	0.5936	0.2161	0.047	this work
Vuagnatite, $\mathrm{CaAl}\left(\mathrm{SiO}_{4}\right)(\mathrm{OH})$	VUAG	0.0500	0.4556	0.1694	0.049	McNear et al. (1976)
Mozartite, $\mathrm{CaMn}\left(\mathrm{SiO}_{3} \mathrm{OH}\right)$	MOZ	0.0341	0.4662	0.1582	0.051	Nyfeler et al. (1997)
synthetic, $\mathrm{CdCu}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$	CdCuAs	0.0193	0.4868	0.1822	0.053	this work
synthetic, $\mathrm{SrCo}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$	SrCoAs	0.0067	0.3977	0.1439	0.059	this work
synthetic, $\mathrm{SrZn}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$	SrZnAs	0.0062	0.4007	0.1612	0.069	this work
synthetic, $\mathrm{NaCu}\left(\mathrm{MoO}_{4}\right)(\mathrm{OH})$	NaCuMo	0.0081	0.3639	0.1861	0.072	Moini et al. (1986)
Hermannroseite, $\mathrm{CaCu}\left(\mathrm{PO}_{4}, \mathrm{AsO}_{4}\right)(\mathrm{OH})$	HERO	0.0237	0.6721	0.3242	0.073	Schlüter et al. (2011)
Adelite, $\mathrm{CaMg}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$	ADEL	0.0197	0.5694	0.1960	0.078	Effenberger et al. (2002)
Nickelaustinite, $\mathrm{CaNi}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$	NiAUS	0.0203	0.5458	0.1904	0.078	Cesbron et al. (1987)
Gottlobite, $\mathrm{CaMg}\left(\mathrm{VO}_{4}\right)(\mathrm{OH})$	GOTL	0.0172	0.5234	0.1863	0.081	Witzke et al. (2000)
Austinite, $\mathrm{CaZn}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$	AUS	0.0161	0.5759	0.2126	0.083	Cesbron et al. (1987)

Cobaltaustinite, $\mathrm{CaCo}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$	CoAUS	0.0185	0.5745	0.1958	0.084	Yang et al. (2007)
synthetic, $\mathrm{CdCo}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$	CdCoAs	0.0273	0.4336	0.1403	0.090	this work
synthetic, $\mathrm{NaZn}\left(\mathrm{MoO}_{4}\right)(\mathrm{OH})$	NaZnMo	0.0126	0.3226	0.1416	0.091	Marsh and Schomaker (1979)
Duftite, $\mathrm{PbCu}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})$	DUFT	0.0110	0.2426	0.1494	0.111	Kharisun et al. (1998)

[^0]: ** See text for discussion of atomic arrangement of $\mathrm{NaZn}^{[4]}\left(\mathrm{SiO}_{3} \mathrm{OH}\right)$.

