A new compound, ideally CuZnCl(OH)₃, was found on a metallic mining artifact of copper composition at the Rowley mine, Maricopa County, Arizona, USA, and studied with electron microprobe analysis, single-crystal X-ray diffraction, and Raman spectroscopy. It is isostructural with botallackite [Cu₂Cl(OH)₃] with space group P2₁/m and unit-cell parameters \(a = 5.6883(5)\), \(b = 6.3908(6)\), \(c = 5.5248(5)\) Å, \(\beta = 90.832(2)\)°, \(V = 200.82(3)\) Å³. The crystal structure of CuZnCl(OH)₃, refined to \(R₁ = 0.018\), is characterized by brucite-type octahedral sheets made of two distinct and considerably distorted octahedra, M1 and M2, which are coordinated by (5OH + 1Cl) and (4OH + 2Cl), respectively. The octahedral sheets are parallel to (100) and connected by O—H … Cl hydrogen bonding. The major structural difference between CuZnCl(OH)₃ and botallackite is the complete replacement of Cu⁺⁺ in the highly angle-distorted M1 site by non-Jahn-Teller distorting Zn⁺⁺. The CuZnCl(OH)₃ compound represents the highest Zn content ever documented for the atacamite group of minerals, in conflict with all previous reports that botallackite (like atacamite) is the most resistant, of all copper hydroxylchloride Cu₂Cl(OH)₃ polymorphs, to the substitution of Zn⁺⁺ for Cu⁺⁺, even in the presence of large excess of Zn⁺⁺. Its discovery, along with the recently-described new mineral iyoite, CuMnCl(OH)₃, implies that more botallackite-type compounds or minerals with the chemical formula Cu₉MCl(OH)₃ (\(M = \text{Ni}^{2+}, \text{Co}^{2+}, \text{Fe}^{2+}, \text{Mn}^{2+}, \text{Cd}^{2+}, \text{and Mg}^{2+}\)) may be synthesized or found in nature.
Key words: CuZnCl(OH)$_3$, Copper-zinc hydroxychloride, botallackite, atacamite group, crystal structure, Raman spectroscopy

INTRODUCTION

Pure copper hydroxychloride, Cu$_2$Cl(OH)$_3$, has three reported natural polymorphs: orthorhombic $Pnma$ atacamite (Parise and Hyde 1986), monoclinic $P2_1/n$ clinoatacamite (Jambor et al. 1996), and monoclinic $P2_1/m$ botallackite (Hawthorne 1985). In addition, rhombohedral R-3 paratacamite, Cu$_3$(Cu,Zn)Cl$_2$(OH)$_6$ (Fleet 1975), is known to be stabilized by the partial substitution of Zn$^{2+}$ or Ni$^{2+}$ for Cu$^{2+}$ in one of the four distorted octahedral sites in the structure (Jambor et al. 1996; Grice et al. 1996). The Zn endmember of such a solid solution, Cu$_3$ZnCl$_2$(OH)$_6$, crystallizes in either the rhombohedral R-3m herbertsmithite structure (Braithwaite et al. 2004) or the trigonal P-3m1 kapellasite structure (Krause et al. 2006).

The Cu$_2$Cl(OH)$_3$ polymorphs occur commonly as corrosion products of copper and copper-bearing alloys, as well as pigments in wall paintings, manuscript illumination, and other paintings (Scott 2000; Alejandre and Marquez 2006 and references therein). In particular, their formation from the corrosion of bronze and other copper-bearing alloys are the primary cause for the so-called “bronze disease” (see Scott 2000 for a thorough review). Recently, the first copper-containing mineral atacamite was reported in the jaws of the carnivorous marine worm Glycera (Lichtenegger et al. 2002), suggesting a possible involvement of biological activities in the formation of Cu$_2$Cl(OH)$_3$ minerals. Furthermore, the discoveries of various magnetic properties in Cu$_2$Cl(OH)$_3$ polymorphs have renewed great interest in understanding the correlations between their crystal structures and physical properties (e.g., Takeda et al. 1999; Zheng et al. 2004, 2005, 2009). Specifically, botallackite, clinoatacamite, and herbertsmithite exhibit triangular, tetrahedral, and kagome Heisenberg (antiferro)magnetic lattices, respectively, for the $S=\frac{1}{2}$$(Cu^{2+})$ quantum spin that leads to interesting frustrated magnetism or spin liquid behavior.

Of all the Cu$_2$Cl(OH)$_3$ polymorphs, atacamite is the most common in nature and...
botallackite the rarest. From synthesis experiments, Pollard et al. (1989) concluded that
clinoatacamite is the most stable phase at room temperature and botallackite the least.
Moreover, a number of investigations (e.g., Jambor et al. 1996; Braithwaite et al. 2004;
Yoder et al. 2011) have demonstrated that, while atacamite and botallackite are very
resistant to Zn substitution, clinoatacamite can incorporate up to 6% Zn apfu into its
structure if large Zn concentrations are available during formation. The Zn-stabilized
paratacamite and herbertsmithite can accommodate up to Zn/Cu = 14% and 33%,
respectively. This paper presents a single-crystal X-ray diffraction and Raman
spectroscopic study on a botallackite-type compound with Zn/Cu = 100%,
CuZnCl(OH)₃, the highest Zn content ever reported for the atacamite group of minerals.

EXPERIMENTAL METHODS

The CuZnCl(OH)₃ sample used in this study was found on a coiled copper wire of
unknown age from the Rowley mine, Maricopa County, Arizona, USA and has been
deposited in the RRUFF Project with the deposition number R140401
(http://rruff.info/R140401). The CuZnCl(OH)₃ crystals are blue and platy, up to 0.12 ×
0.10 × 0.03 mm (Fig. 1). Associated minerals include simonkolleite Zn₅(OH)₈Cl₂·H₂O,
wulfenite PbMoO₄, hemimorphite Zn₄Si₂O₇(OH)₂·H₂O, barite BaSO₄, quartz, fluorite,
and fibrous crystals tentatively identified by SEM-EDS as Zn₉(SO₄)₂(OH)₁₂Cl₂·6H₂O.
Barite, quartz, and fluorite occur as single crystals typically > 0.1 mm in size, unevenly
distributed over the wire. They, along with copper from the wire, are overgrown by fine
iron oxides with substantial Zn concentrations and by crystals of the Cu-Zn salts. Since
barite, quartz, and fluorite are all reported from the gangue mineral assemblage in the
Rowley mine (Wilson and Miller 1974), the mineralogical and textural evidence suggests
that they were dropped onto the wire and cemented in place by authigenic iron oxides and
Cu-Zn salts, rather than having precipitated from solution.

The chemical composition of the CuZnCl(OH)₃ sample was determined with a
Cameca SX-100 electron microprobe operated at 20 keV and 18 nA with a beam size of 1
μm. The standards include cuprite for Cu, ZnO for Zn, and scapolite for Cl. The average
of 6 analysis points gives (wt.%) CuO = 34.43(29), ZnO = 39.75(19), Cl = 16.09(16),
with the total = 90.27(33). The chemical formula was calculated on the basis of 4 (O +
Cl) atoms per formula unit, as determined from the structure refinement (Table 2), by
adding 12.51 wt.% H2O to bring the total close to the ideal value, yielding Cu0.94Zn1.06
Cl0.99(OH)3.01, which can be simplified as CuZnCl(OH)3.

Single-crystal X-ray diffraction data of the CuZnCl(OH)3 sample were

collected from a crystal with size 0.05 × 0.04 × 0.03 mm on a Bruker X8 APEX2
CCD X-ray diffractometer equipped with graphite-monochromatized MoKα radiation.

Reflections with I > 2σ(I) were indexed based on a monoclinic unit cell (Table 1). No
satellite or super-lattice reflections were observed. The intensity data were corrected
for X-ray absorption using the Bruker program SADABS. The systematic absences of
reflections suggest possible space group P21 or P21/m. The crystal structure was
solved and refined using SHELX97 (Sheldrick 2008) based on the space group P21/m,
because it yielded better refinement statistics in terms of bond lengths and angles,
atomic displacement parameters, and R factors. The positions of all atoms were
refined with anisotropic displacement parameters, except for H atoms, which were
refined with the isotropic displacement parameter only. During the structure
refinements, ideal chemistry was assumed. Because of similar X-ray scattering
powers between Cu and Zn, a direct refinement of their ratios at each individual site
was unsuccessful. Therefore, we tested three different models with fixed site
occupancies for Cu and Zn at the two distinct octahedral sites, M1 and M2. Model 1
assumed Zn to occupy the M1 site only and Cu M2, which resulted in R1 = 0.0183,
and bond-valence sums of 1.95 and 2.05 v.u. for Zn and Cu, respectively. In model 2,
Zn was assigned to M2 and Cu to M1, yielding R1 = 0.0191, and bond-valence sums
of 2.18 and 1.83 v.u. for Zn and Cu, respectively. Model 3 assumed a random
occupation of Zn and Cu [i.e., (0.5Zn + 0.5Cu)] at each site, which produced results
between those from models 1 and 2. Consequently, model 1 was adopted in this study.

Final refined atomic coordinates and displacement parameters are listed in Table 2 and
selected bond lengths and angles in Table 3.
The Raman spectrum of the CuZnCl(OH)$_3$ crystal was collected from a randomly oriented crystal on a Thermo Almega microRaman system, using a 532-nm solid-state laser with a thermoelectric cooled CCD detector. The laser is partially polarized with 4 cm$^{-1}$ resolution and a spot size of 1 µm.

RESULTS AND DISCUSSION

Crystal Structure

The CuZnCl(OH)$_3$ compound is isostructural with botallackite (Hawthorne 1985). Its structure is characterized by brucite-type octahedral sheets made of two distinct octahedra, M1 and M2 (Fig. 2). The M1 octahedron is occupied by Zn$^{2+}$ and coordinated by (5OH + 1Cl), whereas M2 is filled with Cu and coordinated by (4OH + 2Cl). Both octahedra are considerably distorted, with four short equatorial bonds in a square-planar arrangement and elongated axial bonds involving Cl and one OH. The octahedral sheets are parallel to (100) and connected by hydrogen bonding between O atoms of one sheet and the Cl atoms of the adjacent sheet (O—H···Cl) (Fig. 3). Each Cl atom is involved in three hydrogen bonds (or so-called trimeric H-bonds).

The principal structural difference between CuZnCl(OH)$_3$ and botallackite consists in the complete substitution of non-Jahn-Teller distorting Zn$^{2+}$ for Cu$^{2+}$ in the M1 site. As a consequence, the M1 octahedron in CuZnCl(OH)$_3$ is noticeably less distorted than that in botallackite, as measured by the octahedral angle variance (OAV) and quadratic elongation (OQE) (Robinson et al. 1971) (Table 3). The OAV and OQE indices for M1 in CuZnCl(OH)$_3$ are 121.8 and 1.048, respectively, but 135.5 and 1.076 in botallackite. Despite this difference, the M1 octahedron in CuZnCl(OH)$_3$ is still markedly distorted in terms of OAV, indicating that this site is actually angle-distorted, rather than Jahn-Teller-distorted, in contrast to the suggestion by Braithwaite et al. (2004). Similar angle-distorted sites also exist in atacamite, clinoatacamite, paratacamite, and herbertsmithite. According to Braithwaite et al. (2004), Cu$^{2+}$ in such angle-distorted sites is rather susceptible to substitution by non-Jahn-Teller distorting divalent cations of similar radii, such as Zn$^{2+}$, Ni$^{2+}$, Co$^{2+}$, Fe$^{2+}$, Cd$^{2+}$, and Mg$^{2+}$, which is evidently
It is interesting to note the significant discrepancies in all unit-cell parameters between CuZnCl(OH)₃ and botallackite (Table 1). Specifically, the unit-cell parameters \(a\), \(c\), and \(\beta\) for CuZnCl(OH)₃ are smaller, whereas the \(b\) dimension is greater than the corresponding ones for botallackite. These results differ from those for the synthetic Br-analogue of Zn-bearing botallackite, \((\text{Cu, Zn})_2\text{Br(OH)}_3\), which allows the Zn substitution for Cu up to the Zn/Cu ratio = 33% (Yoder et al. 2011). With increasing Zn content in the \((\text{Cu, Zn})_2\text{Br(OH)}_3\) solid solution, the unit-cell parameters \(a\) and \(b\) decrease linearly, but \(c\) increases linearly and the \(\beta\) angle is essentially unchanged.

Raman spectroscopy

There have been several Raman spectroscopic studies on botallackite, as well as other \(\text{Cu}_2\text{Cl(OH)}_3\) polymorphs, and detailed assignments of major Raman bands have been proposed (e.g., Frost et al. 2002; Martens et al. 2003; Liu et al. 2011a, 2011b, 2012). Figure 4 shows the Raman spectrum of CuZnCl(OH)₃, along with that of botallackite from the RRUFF Project (R070066) for comparison. The strong bands between 3450 and 3600 cm\(^{-1}\) are due to the O-H stretching vibrations and those between 650-1000 cm\(^{-1}\) to the Cu-O-H bending vibrations (Liu et al. 2011a, 2011b). The bands ranging from 400 to 520 cm\(^{-1}\) can be ascribed to the Cu-O stretching modes and those from 300 to 400 cm\(^{-1}\) to the O-Cu-O bending modes. The bands below 250 cm\(^{-1}\) are associated with the Cu-Cl interactions and the lattice vibrational modes.

Compared to botallackite, the two strong peaks related to the O-H stretching vibrations for CuZnCl(OH)₃ are shifted to higher wavenumbers with a much smaller separation between their peak positions. This observation indicates that the hydrogen bonds in CuZnCl(OH)₃ are longer (and thus weaker) and more similar to each other than the corresponding ones in botallackite, in accordance with the structural data from the X-ray diffraction analyses (Table 3).

Geochemical factors in Cu-Zn-Cl salt formation
The overgrowth of the corroded wire and the “detrital” quartz, fluorite, and barite
by Cu-Zn-Cl(-S) salts and iron oxides suggests that the wire lay submerged in saline
water with locally high concentrations of Cu, Fe, Zn, and S. There are abundant pyrite,
chalcopryte, and accessory sphalerite in the Rowley mine, all of which can readily
dissolve in oxidizing water (Welty et al., 1985), thus becoming the supply of Cu, Fe, Zn,
and S for the mineral assemblage observed on the wire. It is also possible that some of Fe
and Zn came from corroded galvanized steel tools or machine parts left by miners. The
sulfides and/or the galvanized steel dissolved or corroded in salty water in the mine and
re-precipitated onto the wire as CuZnCl(OH)₃ and simonkolleite. This mineralogy
suggests that the water was too chloride-rich to stabilize malachite Cu₂CO₃(OH)₂,
smithsonite ZnCO₃, and other Cu- or Zn-bearing minerals that are nominally stable under
near-surface, oxidized conditions (Garrels, 1954; Mann and Deutscher, 1980), causing
the metals to precipitate as atacamite-group minerals. However, this does not explain the
extreme Zn enrichment in CuZnCl(OH)₃.

Experiments by Jambor et al. (1996) determined that Zn enrichment in
botallackite-structured minerals is favored when the Zn is present as aqueous Zn nitrate
rather than a Zn chloride. But when the concentration of Zn nitrate was increased to the
maximum possible without precipitating Zn-rich gerhardtite [(Cu,Zn)NO₃OH], the
botallackite produced had only 9% Zn, which is far short of the Zn content in
CuZnCl(OH)₃ found at the Rowley mine. However, their results suggest that the nature of
Zn²⁺ complexation in solution may be a significant factor in stabilizing different
compositions with the botallackite structure. Further experimental work on the aqueous
geochemistry of Zn with various anion complexes may be necessary to determine and
quantify this effect.

It is likely that a natural occurrence of CuZnCl(OH)₃ will eventually be discovered.
Atacamite-group minerals have been found lining the cell walls of algal spores around
hydrothermal vents on the ocean floor, with the implication that algal sorption of Cu²⁺,
combined with a low sulfide activity and high chloride activity, had induced primary
precipitation of atacamite (Mossman and Heffernan, 1978). Divalent Zn also sorbs onto
algal matter, so it is possible that Cu- and Zn-rich waters around algae could produce primary CuZnCl(OH)₃. However, it may be difficult to detect, since atacamite-group minerals are highly soluble in fresh water and tend to dissolve after formation except in very arid environments (Cameron et al., 2007).

One of the likeliest places to find CuZnCl(OH)₃ may be the Antarctic, where Cu, Fe, and Pb salts are known to form at the surface when marine aerosols corrode exposed sulfides and the absence of liquid water preserves the salts from later dissolution. Atacamite, paratacamite, malachite, antlerite, and other highly soluble Cu salts have all been reported from the Ellsworth Mountains (Vennum and Nishi, 1992). The discovery of botallackite-structured CuZnCl(OH)₃ in the Rowley mine clearly shows that botallackite-structured minerals can be stable at near-surface conditions, suggesting that CuZnCl(OH)₃ could be present at or near the land surface in an environment where there is no rainfall to dissolve it.

IMPLICATIONS

All previous studies have shown that botallackite is the least stable of all basic copper hydroxylchloride polymorphs and, like atacamite, it is the least prone to the substitution of Zn²⁺ for Cu²⁺, even under forcing conditions — the presence of large to swamping excesses of Zn²⁺ during its formation (e.g., Jambor et al. 1996; Scott 2000; Braithwaite et al. 2004; Yoder et al. 2011). Therefore, the discovery of the new CuZnCl(OH)₃ compound, on the one hand, calls for further research on the formation mechanisms of botallackite-type materials. Such investigations will undoubtedly shed light on the nature of corrosion of Cu-bearing materials, bronze, and other copper-bearing alloys. For example, if further research can identify the factors that lead to Zn-enrichment in botallackite-type minerals, it may be possible to constrain the composition and the source of the fluids that caused the corrosion. On the other hand, it suggests that more botallackite-type compounds or minerals with the chemical formula CuMCl(OH)₃ (\(M = \text{Ni}^{2+}, \text{Co}^{2+}, \text{Fe}^{2+}, \text{Mn}^{2+}, \text{Cd}^{2+}, \text{and Mg}^{2+}\)) may be synthesized or found in nature, as those for the herbertsmithite-type compounds with the chemical formula Cu₃MCl₂(OH)₆.
[herbertsmithite ($M = Zn$), gillardite ($M = Ni$), leverettite ($M = Co$), and tondiite ($M = Mg$)]. In fact, the new botallackite-type mineral, iyoite CuMnCl(OH)$_3$, has been recently reported (Nishio-Hamane et al. 2014). The discovery of the new CuZnCl(OH)$_3$ compound also begs the question whether materials with the chemistry CuMCl(OH)$_3$ and the more stable atacamite-type structure could exist naturally or be synthesized, as atacamite also possesses a highly angle-distorted octahedral site that is coordinated by (5OH + 1Cl) with the OAV and OQE values of 136.2 and 1.067, respectively (Parise and Hyde 1986), just as the one in botallackite.

The discovery of the new CuZnCl(OH)$_3$ compound also has implications for the composition of supergene waters in hyper-arid environments, particularly the Atacama Desert. The occurrence of atacamite- and paratacamite-group minerals in the supergene zones of Andean porphyries has been used as evidence for the involvement of saline formation waters in supergene alteration, in contrast to the normal meteoric-dominated supergene waters (Arcuri and Brimhall, 2003; Cameron et al., 2007). If the CuZnCl(OH)$_3$ compound or other Zn-enriched minerals are discovered around ore deposits’ supergene zones, they may suggest nitrate- and Zn-rich solutions were also involved. Because nitrate-rich and Zn-rich solutions are not very common in groundwater, this will considerably restrict the possible range of compositions, and therefore the possible origins, of the fluids involved in supergene alteration in hyper-arid climates. Similar considerations apply to botallackite-structured compounds of Cu with Ni$^{2+}$, Mg$^{2+}$, Co$^{2+}$, and other divalent cations capable of substituting for divalent Zn in botallackite.

ACKNOWLEDGEMENTS

We thank Robert Jenkins, Keith Wentz, and Joe Ruiz for providing the CuZnCl(OH)$_3$ specimens. The funding supports from the Science Foundation Arizona and Sao Paulo Research Foundation (Grant: 2013/03487-8) are gratefully acknowledged.

REFERENCES CITED

List of Tables

Table 1. Comparison of crystallographic data for botallackite and the CuZnCl(OH)$_3$ Compound.

Table 2. Coordinates and displacement parameters of atoms in the CuZnCl(OH)$_3$ Compound.

Table 3. Comparison of selected interatomic distances and angles in the CuZnCl(OH)$_3$ Compound and botallackite.

List of Figure Captions

Figure 1. Back-scattered electron image of the CuZnCl(OH)$_3$ crystals.

Figure 2. A brucite-type sheet made of two distinct and highly distorted octahedra in the CuZnCl(OH)$_3$ compound.

Figure 3. Crystal structure of the CuZnCl(OH)$_3$ compound, showing the brucite-type octahedral sheets stacked along [100] and linked together by O—H…Cl hydrogen bonds.

Figure 4. Raman spectrum of the CuZnCl(OH)$_3$ compound, along with that of botallackite for comparison.
Figure 2

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld
Table 1. Comparison of crystallographic data for the new compound CuZnCl(OH)$_3$ and botallackite

<table>
<thead>
<tr>
<th></th>
<th>CuZnCl(OH)$_3$</th>
<th>Botallackite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal chemical formula</td>
<td>CuZnCl(OH)$_3$</td>
<td>Cu$_2$Cl(OH)$_3$</td>
</tr>
<tr>
<td>Space group</td>
<td>$P2_1/m$</td>
<td>$P2_1/m$</td>
</tr>
<tr>
<td>a (Å)</td>
<td>5.6883(5)</td>
<td>5.717(1)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>6.3908(6)</td>
<td>6.126(1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>5.5248(5)</td>
<td>5.636(1)</td>
</tr>
<tr>
<td>β (°)</td>
<td>90.832(2)</td>
<td>93.07(1)</td>
</tr>
<tr>
<td>V(Å3)</td>
<td>200.82(3)</td>
<td>197.06(5)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>ρ_{cal}(g/cm3)</td>
<td>3.56</td>
<td>3.60</td>
</tr>
<tr>
<td>λ (Å)</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>μ (mm$^{-1}$)</td>
<td>11.769</td>
<td></td>
</tr>
<tr>
<td>2θ range for data collection</td>
<td>≤66.36</td>
<td>≤60</td>
</tr>
<tr>
<td>No. of reflections collected</td>
<td>3073</td>
<td>762</td>
</tr>
<tr>
<td>No. of independent reflections</td>
<td>813</td>
<td>379</td>
</tr>
<tr>
<td>No. of reflections with $I > 2\sigma(I)$</td>
<td>685</td>
<td>358</td>
</tr>
<tr>
<td>No. of parameters refined</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>R(int)</td>
<td>0.021</td>
<td></td>
</tr>
<tr>
<td>Final R_I, wR_2 factors [$I > 2\sigma(I)$]</td>
<td>0.018, 0.033</td>
<td>0.038, 0.042</td>
</tr>
<tr>
<td>Final R_I, wR_2 factors (all data)</td>
<td>0.026, 0.035</td>
<td></td>
</tr>
<tr>
<td>Goodness-of-fit</td>
<td>1.042</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>This work</td>
<td>Hawthorne (1985)</td>
</tr>
</tbody>
</table>
Table 2. Coordinates and displacement parameters of atoms in the new compound CuZnCl(OH)₃.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Ueq</th>
<th>U₁₁</th>
<th>U₁₂</th>
<th>U₁₃</th>
<th>U₂₂</th>
<th>U₂₃</th>
<th>U₂₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn</td>
<td>0.48330(4)</td>
<td>0.25</td>
<td>0.01469(4)</td>
<td>0.0144(1)</td>
<td>0.0245(2)</td>
<td>0.0085(1)</td>
<td>0.0102(1)</td>
<td>0</td>
<td>0.0010(1)</td>
<td>0</td>
</tr>
<tr>
<td>Cu</td>
<td>0.5</td>
<td>0</td>
<td>0.5</td>
<td>0.0129(1)</td>
<td>0.0215(2)</td>
<td>0.0093(1)</td>
<td>0.0079(1)</td>
<td>0.0014(1)</td>
<td>-0.0014(1)</td>
<td>-0.0020(1)</td>
</tr>
<tr>
<td>Cl</td>
<td>0.1521(1)</td>
<td>0.25</td>
<td>-0.3050(1)</td>
<td>0.0207(2)</td>
<td>0.0170(3)</td>
<td>0.0214(3)</td>
<td>0.0237(3)</td>
<td>0</td>
<td>-0.0020(2)</td>
<td>0</td>
</tr>
<tr>
<td>O₁</td>
<td>0.6546(3)</td>
<td>0.25</td>
<td>0.3634(3)</td>
<td>0.0148(4)</td>
<td>0.0179(9)</td>
<td>0.0121(7)</td>
<td>0.0143(7)</td>
<td>0</td>
<td>0.0004(6)</td>
<td>0</td>
</tr>
<tr>
<td>O₂</td>
<td>0.6545(2)</td>
<td>0.0157(2)</td>
<td>0.8210(2)</td>
<td>0.0146(3)</td>
<td>0.0159(6)</td>
<td>0.0147(6)</td>
<td>0.0133(5)</td>
<td>0.0009(4)</td>
<td>0.0003(4)</td>
<td>-0.0004(4)</td>
</tr>
<tr>
<td>H₁</td>
<td>0.801(6)</td>
<td>0.25</td>
<td>0.381(6)</td>
<td>0.05(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₂</td>
<td>0.802(4)</td>
<td>0.031(3)</td>
<td>0.812(4)</td>
<td>0.021(6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Selected interatomic distances (Å), angles (°) and other geometrical data in the new compound CuZnCl(OH)\textsubscript{3} and botallackite

<table>
<thead>
<tr>
<th></th>
<th>CuZnCl(OH)\textsubscript{3} (This study)</th>
<th>Botallackite (Hawthorne 1985)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn—O2</td>
<td>2.084(1) \times 2</td>
<td>Cu1—O2 1.995(6) \times 2</td>
</tr>
<tr>
<td>—O2</td>
<td>2.090(1) \times 2</td>
<td>—O2 1.998(6) \times 2</td>
</tr>
<tr>
<td>—O1</td>
<td>2.1463(2)</td>
<td>—O1 2.367(9)</td>
</tr>
<tr>
<td>—Cl</td>
<td>2.5636(6)</td>
<td>—Cl 2.732(3)</td>
</tr>
<tr>
<td>Ave.</td>
<td>2.176</td>
<td>2.180</td>
</tr>
<tr>
<td>OAV</td>
<td>121.8</td>
<td>135.5</td>
</tr>
<tr>
<td>OQE</td>
<td>1.048</td>
<td>1.076</td>
</tr>
<tr>
<td>Cu—O1</td>
<td>1.979(1) \times 2</td>
<td>Cu2—O1 1.920(5) \times 2</td>
</tr>
<tr>
<td>—O2</td>
<td>1.970(1) \times 2</td>
<td>—O2 2.001(6) \times 2</td>
</tr>
<tr>
<td>—Cl</td>
<td>2.7733(5) \times 2</td>
<td>—Cl 2.789(2) \times 2</td>
</tr>
<tr>
<td>Ave.</td>
<td>2.241</td>
<td>2.237</td>
</tr>
<tr>
<td>OAV</td>
<td>19.32</td>
<td>17.06</td>
</tr>
<tr>
<td>OQE</td>
<td>1.062</td>
<td>1.066</td>
</tr>
<tr>
<td>O1—H1</td>
<td>0.83(3)</td>
<td>0.8(1)</td>
</tr>
<tr>
<td>H1...Cl</td>
<td>2.63(3)</td>
<td>2.5(1)</td>
</tr>
<tr>
<td>O1—Cl</td>
<td>3.349(2)</td>
<td>3.318(9)</td>
</tr>
<tr>
<td>\angle O1—H1...Cl</td>
<td>145(3)°</td>
<td>116(3)°</td>
</tr>
<tr>
<td>O2—H2</td>
<td>0.85(2)</td>
<td>0.6(1)</td>
</tr>
<tr>
<td>H2...Cl</td>
<td>2.52(2)</td>
<td>2.6(1)</td>
</tr>
<tr>
<td>O2—Cl</td>
<td>3.286(2)</td>
<td>3.214(6)</td>
</tr>
<tr>
<td>\angle O1—H1...Cl</td>
<td>150(2)°</td>
<td>132(15)°</td>
</tr>
</tbody>
</table>

Note: OV—Octahedral volume; OAV—Octahedral angle variance; OQE—Octahedral quadratic elongation (Robinson et al. 1971).