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Abstract 26 

 The bond-valence model has recently been expanded to include a directional component, 27 

the vectorial bond-valence sum, which is useful for characterizing non-centrosymmetric 28 

distortions involving lone-pair and second-order Jahn-Teller effects.  Here we show that the 29 

bond-valence sum and vectorial bond-valence sum are equivalent to monopole and dipole terms 30 

in a multipole expansion of the bond valence incident to an atom.  We then extend the multipole 31 

expansion to include a quadrupole term, which describes the ellipsoidal deviation from spherical 32 

symmetry of the bonding environment, and is useful for characterizing centrosymmetric 33 

distortions, such as those caused by first-order Jahn-Teller effects.  These distortions follow 34 

characteristic patterns in valence space, which depend upon factors that include the d-orbital 35 

configuration and size of the transition metal involved.  This extended approach, called the 36 

Valence Multipole Model, should prove useful for modeling molecular and crystal structures, 37 

including those associated with spin transitions.   38 

 39 

Keyword:  Bond valence, vectorial bond-valence model, valence multipole model, bond angle, 40 

molecular mechanics, Jahn-Teller effect, crystal field effects 41 

  42 



Introduction 43 

Molecular modeling has become increasingly important for exploring the physical and 44 

chemical properties of materials, including both known minerals and minerals hypothesized to 45 

exist in the mantle (Cygan, 2001; Stixrude, 2001).  Quantum mechanics (QM) provides a 46 

powerful theoretical framework for understanding structure-property and structure-reactivity 47 

relationships, but direct application of the theory is often too computationally expensive for the 48 

large numbers of atoms and the longer simulation times frequently needed to simulate 49 

geochemically significant materials and processes.  Therefore, classically derived methods like 50 

molecular mechanics (MM) are often used to reduce computational expense.   51 

MM methods treat systems of atoms as “balls on springs,” where bond lengths and bond 52 

angles between particular atom types are given an ideal value, and simple energy cost functions 53 

are assigned for deviations from those ideal values.  This approach to partitioning the potential 54 

energy surface is fraught with difficulties.  One pervasive problem is that no single ideal value 55 

for bond lengths and bond angles exists (Rappé and Casewit, 1997; Hinchliffe, 2003), so MM 56 

methods tend to predict structures with unrealistically high symmetry (Comba et al., 2009).  57 

Furthermore, ideal bond lengths and angles depend strongly on coordination number (Rappé and 58 

Casewit, 1997; Hinchliffe, 2003; Comba et al., 2009).  MM force fields often address this by 59 

treating two atoms of the same element with different coordination numbers, as fundamentally 60 

different atom types; but this solution precludes simulating chemical reactions involving 61 

coordination number changes.  Furthermore, bond lengths and angles can also be strongly 62 

coupled (Rappé and Casewit, 1997; Hinchliffe, 2003; Comba et al., 2009).  MM force fields 63 

sometimes include higher-order terms to correct for such multi-body effects, but this complicates 64 

the potential energy model, multiplying the number of adjustable parameters and requiring the 65 



computation to keep track of more complicated spatial relationships than the traditional atom-66 

pair distances and bond angles (Hinchliffe, 2003; Cramer, 2004).   67 

It would be useful, therefore, to develop mathematically simpler methods for mimicking 68 

multi-body effects in force fields.  The bond-valence model (BVM) is an obvious choice to 69 

address at least part of this problem, and in fact, bond-valence terms have been included in a few 70 

MM force fields and related molecular-scale models (Lufaso and Woodward, 2001; Adams and 71 

Swenson, 2002; Grinberg et al., 2002; Cooper et al., 2003; Adams et al., 2004; Grinberg et al., 72 

2004; Shin et al., 2005; Adams and Rao, 2009; Liu et al., 2013a; Liu et al., 2013b; Takenaka et 73 

al., 2013; Adams and Rao, 2014).  The BVM (see Theory section below) posits that bond lengths 74 

can be converted into “bond valence” units using a simple, empirically calibrated equation, and 75 

that the valence of all bonds incident to an atom should ideally sum to exactly cancel out the 76 

atomic valence (i.e., oxidation number) of that atom.  (Essentially, the BVM is a method for 77 

relating bond length to bond order.)  This rule, called the “valence-sum rule,” is usually obeyed 78 

quite closely in real crystal structures, and anomalous structures are almost always unstable 79 

(Brown, 2002).  This instability suggests there is an energy penalty for deviation from this ideal.  80 

An energy cost function based on deviation from the valence-sum rule, however, would be 81 

different than typical pair-wise or multi-body terms in MM force fields, because it would be a 82 

multi-body term that takes into account the total bonding environment of an atom, but does so 83 

simply by summing pair-wise terms (bond valences.) 84 

The BVM is not a panacea, though, because its quantitative aspect (the valence-sum rule) 85 

deals only with bond lengths, and has nothing to do with the spatial arrangement of bonds.  Part 86 

of this problem has recently been addressed via the “vectorial bond-valence model” (VBVM), 87 

which may provide a way to predict favorable bond angle configurations. Again, this is based on 88 



the multi-body summations of pair-wise terms.  Harvey et al. (2006) showed that if we treat each 89 

bond as a vector in the direction from the cation to the anion centers and magnitude equal to the 90 

bond valence, even distorted coordination polyhedra about group 12 cations tend to result in 91 

vector sums close to zero.  Bickmore et al. (2013) used a database of 178 simple oxide structures 92 

to demonstrate that this is a general result for all atoms not subject to noncentrosymmetric 93 

distortions, caused by electronic structure effects such as lone-pair and second-order Jahn-Teller 94 

(SOJT) effects.  They also showed that non-zero, vectorial bond-valence sums caused by such 95 

noncentrosymmetric distortions vary systematically as a function of the strongest bond valence 96 

incident to the atom, and finally that outliers with respect to these trends tend to be metastable 97 

under ambient conditions.   98 

The VBVM, as presently formulated, is not complete, however.  It is not sensitive to 99 

centrosymmetric distortions, such as those caused by first-order Jahn-Teller (FOJT) effects, 100 

because these require no change to the vectorial bond-valence sums.  Including FOJT effects in a 101 

molecular mechanics framework is quite difficult (Comba et al., 2009), so a mathematically 102 

simple method to address this across a broad range of conditions would be quite helpful. 103 

In this contribution, therefore, we introduce a further expansion of the BVM to address 104 

both noncentrosymmetric and centrosymmetric distortions by introducing a new valence-based 105 

structural descriptor called the “valence quadrupole moment.”   This quantity describes how 106 

spherically symmetrical the distribution of bond valences is about an atom, and is highly 107 

predictable on the basis of the magnitudes of the incident bond valences.   108 

We call this expanded model the Valence Multipole Model (VMM).  With the VMM, a 109 

mathematically simple, multi-body approach to predicting the effects of bonded interactions on 110 

coordination geometries in a very large number of compounds may be within reach. 111 



 112 

Theory 113 

 The VMM encompasses the VBVM, which encompasses the BVM. Every stage in this 114 

gradual expansion has involved showing how bond valence can be used to describe and predict 115 

more aspects of molecular structures.  In this section, we briefly describe the theory behind these 116 

models, including our new valence quadrupole moment term. 117 

 118 

The Bond-Valence Model (BVM) 119 

 The BVM was developed to rationalize physically reasonable structures in systems where 120 

the bonds are between cation-anion pairs.  In a quantitative sense, however, the model has 121 

primarily been useful for predicting plausible combinations of cation-anion bond lengths in such 122 

systems (Brown 2002).  A plausible combination of bond lengths incident to ion i is one in which 123 

the valence-sum rule (Eqn. 1) is obeyed, i.e., the sum of bond valences  between ion i and its 124 

bonded atoms j 𝑆! = 𝑠!"!  exactly negates the atomic valence of ion i (Vi).   125 

𝑆! + 𝑉! = 0 v.u.          (1) 126 

The atomic valence of an ion is equivalent to its oxidation number, and represents the number of 127 

valence electron states available for polar bonding.  The valence of a bond is taken to be negative 128 

when incident to a cation and positive when incident to an anion, and bond valence is measured 129 

in valence units (v.u.)  There are ways to address fully covalent bonds in the BVM (O'Keeffe and 130 

Brese, 1992; Wander et al., 2015a), but we neglect these here.   131 

 When applied only to polar bonds (c.f. Wander et al., 2015a), bond valence is sometimes 132 

equated with the electric flux between atomic centers, in which case Eqn. 1 is simply a 133 

reformulation of Gauss’s Law, which must always be exactly fulfilled (Preiser et al., 1999; 134 



Brown, 2002; 2014).  In practice, however, one estimates bond valence by means of empirical 135 

correlations between bond length and valence, derived by assuming Eqn. 1 and applying a 136 

mathematical model such as Eqn. 2 to the bond lengths in a calibration set of experimentally 137 

derived, stable crystal structures (c.f. Wander et al., 2015b).  Here, R is the bond length between 138 

ion i and a counter-ion j, whereas Ro and B are empirically derived parameters specific to a given 139 

cation-anion pair.   140 

𝑠!" = 𝑒
!!!!

!           (2) 141 

 The assumption that bond valence is predictable solely on the basis of bond length may 142 

not be exactly true, on the one hand, and therefore bond-valence sums calculated via such 143 

estimates may not strictly follow the valence-sum rule.  On the other hand, Eqn. 2 does appear to 144 

be useful for expressing ideal values of bond valence for a given bond length, and apparent 145 

deviations from the valence-sum rule carry some energy cost (Lufaso and Woodward, 2001; 146 

Brown, 2002; Adams et al., 2004; Adams and Rao, 2009; Brown, 2009; Perez-Mato et al., 2009; 147 

Bickmore et al., 2013; Adams and Rao, 2014; Bickmore, 2014).    148 

 Although the BVM is mathematically and conceptually simple, it is powerful in that it is 149 

usually quantitatively accurate, and its predictions concern combinations of bond lengths, rather 150 

than single bonds.   151 

  152 

The Vectorial Bond-Valence Model (VBVM) 153 

 The valence-sum rule predicts acceptable combinations of bond lengths about a central 154 

ion, but does not address bond directionality.  The VBVM addresses directionality by treating 155 

bonds as vectors 𝑠!"  with direction from cation center to anion center and magnitude equal to 156 

the bond valence.  The valence vectors representing bonds incident to a given ion are summed 157 



𝑆! = 𝑠!"! , and the norm (i.e., magnitude) of the vectorial bond-valence sum 𝑆!  is taken 158 

as a single-parameter descriptor of the lopsidedness of the bonding distribution.   159 

𝑆!  turns out to be fairly predictable.  Harvey et al. (2006), for instance, showed that 160 

𝑆! ≈ 0 v.u. for the Group 12 cations they examined, even when the coordination polyhedra 161 

were significantly distorted.  But what of ions for which electronic structure effects (e.g., lone-162 

pair and second-order Jahn-Teller effects) dictate that the coordination sphere should ideally be 163 

noncentrosymmetrically distorted?  Bickmore et al. (2013) showed that while such distortions 164 

result in 𝑆! ≠ 0, they are still predictable as a function of the valence of the strongest bond (s1) 165 

incident to the central ion in the suite of 178 simple oxides studied.  Trends for ions of the same 166 

type, but different oxidation states, tend to differ, but collapse into a single trend when 𝑆!  is 167 

plotted vs. the “minimum coordination number” 𝑁!"# = 𝑉! 𝑠! .  They also showed that the 168 

trends discovered are completely consistent with the predictions of the valence shell electron pair 169 

repulsion (VSEPR) model (Gillespie and Hargittai, 1991; Müller, 2007).   170 

We once again have a simple, yet predictable, multi-body structural descriptor 𝑆!  171 

based on summation of pair-wise terms.   This multi-body term does not dictate any particular 172 

bond length or angle, but especially when combined with the valence-sum rule (Eqn. 1), does put 173 

stringent constraints on acceptable combinations of bond lengths and bond angles about each ion 174 

in a structure.   175 

Another important point brought out by this work is that bond valence is an effective 176 

means of transforming bond lengths between disparate ion pairs into a common currency that (at 177 

least when normalized to the atomic valence of a central ion) implies consistent effects on 178 

bonding geometry.  This should prove important for structural modeling, because it will make it 179 

easier to incorporate new atom types into force fields. 180 



 181 

Centrosymmetric Distortions and the Ligand Field Theory 182 

While 𝑆!  is useful for quantifying the lopsidedness of the distribution of bond valence 183 

about an ion due to noncentrosymmetric distortions of the coordination sphere, it is incapable of 184 

putting constraints on centrosymmetric distortions such as are commonly associated with 185 

unevenly filled d-subshells in transition metals.  Here we employ ligand field theory (LFT) to 186 

qualitatively describe the origin and nature of these distortions (e.g., Burns, 1993; Müller, 2007). 187 

Just as the VSEPR model explains the spatial distribution of bonds about main group 188 

elements in terms of repulsion between bonding and lone electron pairs, LFT explains the spatial 189 

distribution of bonds about transition metals in terms of mutual repulsion between bonding 190 

electron pairs and nonbonding valence electrons, which are generally in d-subshells of transition 191 

metals.  The five orbitals in a d-subshell have lobes of electron probability density oriented in 192 

various directions, and when populated evenly are spherically symmetrical.  Thus, bonding 193 

electron pairs will have no preferred direction, and will spread out as symmetrically as possible.  194 

When the d-orbitals are populated unevenly, however, the bonding orbitals tend to be repelled 195 

more from the more populated d-orbitals, raising the energy levels of the d-orbitals oriented 196 

closest to the bonding orbitals and lowering the energy levels of the others.  The result is that 197 

certain coordination numbers are favored more than they otherwise would be, given the cation-198 

anion radius ratio, and certain distortions of the coordination polyhedron may also be favored.   199 

Some of the favored distortion types are due to the first-order Jahn-Teller (FOJT) effect, 200 

which results in centrosymmetric distortions of the first coordination sphere.  In fact, all d-orbital 201 

configurations except d0, d5 (high-spin), and d10 are expected to produce such distortions, but 202 

with some configurations the effect is so small as to be negligible, while in others the effect is 203 



quite strong.  Ligand octahedra, for instance, tend to elongate parallel to 𝑑!!, while the bonds 204 

parallel to 𝑑!!!!! contract, or (rarely) vice versa.  This effect is especially strong for d4 (high-205 

spin), d7 (low-spin), and d9 configurations.  Ligand tetrahedra about d4 (high-spin), d8, and d9 206 

transition metals tend to flatten toward a square planar configuration to allow the bonded 207 

electron pairs to avoid preferentially filled t2g orbitals, or in the case of d8, to avoid all but 208 

𝑑!!!!!.   To a lesser degree, the ligands about d3 and d8 transition metals might distort in a 209 

scissoring motion toward an elongated tetrahedral configuration to avoid preferentially filled eg 210 

orbitals (Müller, 2007).   211 

In all these cases, the distortion is centrosymmetric and total bond valence is conserved, 212 

so neither 𝑆! nor 𝑆!  changes.  The spherical symmetry of the coordination spheres does 213 

change, however.   214 

 215 

The Valence Quadrupole Moment 216 

 Ellipsoidal deviation from spherical symmetry can be quantified in terms of a quadrupole 217 

moment, which is the third (second-order) term of a multipole expansion, a mathematical series 218 

used to approximate an arbitrary function that depends on angles.  It is used primarily to describe 219 

distributions in three-(or higher)-dimensional space. A multipole expansion includes a monopole 220 

moment (a scalar, or zeroth-order tensor), a dipole moment (a 3x1 vector, or first-order tensor), a 221 

quadrupole moment (a 3x3 matrix, or second-order tensor), and higher-order terms such as an 222 

octupole moment, etc.  Frequently, a multipole expansion is truncated after the first few terms, 223 

because it will still usefully approximate the complete function for a local environment.  224 

Truncated multipole expansions are commonly used as simplified descriptions of the spatial 225 



distribution of electric charge in electric fields and the distribution of mass in gravitational fields 226 

(e.g., Pijpers, 1998; Hinchliffe, 2003; Bambi, 2011). 227 

To generate a multipole expansion, one performs a Taylor series expansion around a 228 

function that is assumed to obey the Laplace Equation (Jackson, 1998), e.g., electrostatic and 229 

gravitational fields.  For instance, consider an arbitrary distribution of N point charges qi with 230 

position vectors 𝑟!.  The electric potential Φ  at position 𝑅 outside the distribution can be 231 

calculated using Eqns. 3-6, where 𝜀! is the permittivity of a vacuum, α and β are the Cartesian 232 

unit vectors: x, y, and z, and R or ri represents the distance from the origin to position 𝑅 or 𝑟!, 233 

respectively.  δαβ is the Kronecker delta, which is one in the case that direction α equals direction 234 

β, but otherwise zero. 235 

4πε!Φ =    !!"!
!

+ !
!!

𝑃!𝑅!!!!,!,! + !
!!!

𝑄!" 3𝑅!𝑅! − 𝛿!"𝑅!!!!,!,!!!!,!,! +⋯  (3) 236 

𝑞!"! = 𝑞!!
!            (4) 237 

𝑃! = 𝑞!𝑟!"!
!            (5) 238 

𝑄!" = 𝑞! 3𝑟!"𝑟!" − 𝛿!" 𝑟! !!
!         (6) 239 

In Eqn. 3, the first bracketed term is the electric monopole, the second is the dipole, and 240 

the third is the quadrupole.  The monopole represents the overall charge within a certain volume, 241 

the dipole represents the linear distribution of the charges about a central location, and the 242 

quadrupole represents their spherical distribution (Hinchcliffe, 2003).  If we want to describe the 243 

distribution of bond valence about a central atom, we might instead perform a multipole 244 

expansion on the bond-valence vectors 𝑠!" , with the central atom at the origin of this “valence 245 

space.”  In this case, the bond valence sum 𝑆!  is the monopole moment, the vectorial bond 246 

valence sum 𝑆!  is the dipole moment, and we define the valence quadrupole moment Θ!  as 247 

follows.  248 



We find it most useful to define the valence quadrupole moment about central atom i 249 

Θ!  in terms of bond-valence vectors 𝑠!"  normalized to the valence sum 𝑆! .  Eqn. 7 250 

describes these “fractional” bond-valence vectors 𝑝!" , and Eqns. 8-9 describe Θ!.  Here N is the 251 

number of bonds j incident to the central atom, and 𝑝!"! or 𝑝!"! represents the magnitude of 𝑝!" 252 

projected onto one of the Cartesian directions, where 𝛼,𝛽 = 𝑥,𝑦, 𝑧.  (E.g., 𝑝!"! = 𝑥 • 𝑝!", where  253 

𝑥 is the unit vector in the x direction.)  The Θ! values calculated using fractional bond-valence 254 

vectors 𝑝!" , instead of normal bond-valence vectors 𝑠!" , thus depend only upon the shape of 255 

the bond-valence distribution, and not on the atomic valence of the central atom, or its over- or 256 

under-bondedness.   257 

𝑝!" =
𝑝!"!
𝑝!"!
𝑝!"!

= 𝑠!"
𝑆!         (7) 258 

 259 

𝚯! =
!
!

3𝑝!"!𝑝!"! − 𝛿!" 𝑝!"
!

𝛽=𝑥,𝑦,𝑧𝛼=𝑥,𝑦,𝑧
!
!!!      (8) 260 

 261 

𝚯! =
!
!

3 𝑝!"!
! − 𝑝!"

!  !
!!! 3 𝑝!"!𝑝!"!

!
!!! 3 𝑝!"!𝑝!"!

!
!!!

3 𝑝!"!
!
!!! 𝑝!"! 3 𝑝!"!

!
− 𝑝!"

!!
!!! 3 𝑝!"!

!
!!! 𝑝!"!

3 𝑝!"!𝑝!"!
!
!!! 3 𝑝!"!𝑝!"!

!
!!! 3 𝑝!"!

! − 𝑝!"
!!

!!!

  262 

           (9) 263 

 264 

The valence quadrupole moment has zero trace, by definition, and can be thought of as 265 

describing an ellipsoid encompassing the bond-valence distribution.  If one is only interested in 266 

the shape, rather than the orientation, of such an ellipsoid, one may remove extraneous 267 



information by rotating the coordinate system to diagonalize the matrix, leaving only three non-268 

zero terms.   269 

One may further condense the information in the quadrupole moment matrix down to a 270 

single term by taking the Frobenius norm 𝚯!  with Eqn. 10, where θ!" represents the nine 271 

elements of 𝚯! in rows m and columns n.  The Frobenius norm does not depend on the rotation 272 

of the axes (Horn and Johnson, 2012; Golub, 2013). 273 

 274 

𝚯! = θ!" !!
!!!

!
!!!          (10) 275 

 276 

𝚯!  is a scalar representing the spherical distortion of the bonding about an atom, with a 277 

value of zero for spherically symmetrical distributions, and higher values representing 278 

distributions distorted away from spherically symmetrical.  For reference, Figure 1 shows several 279 

common configurations of a central ion and surrounding ligands, along with their corresponding 280 

values of 𝚯! .  In all of these examples, the magnitudes of the fractional bond valences between 281 

a central atom and its ligands sum to 1.  282 

 283 

Methods 284 

 Our purpose, in this study, is to test the hypothesis that 𝚯!  is predictable largely on the 285 

basis of the magnitudes of the incident bond valences, especially in cases where centrosymmetric 286 

distortions of coordination polyhedra play a role (e.g., in transition metals).  Therefore, we 287 

analyzed the coordination environments of 2995 unique atoms i in 471 oxide structures to obtain 288 

𝚯!  values.  The 𝚯!  values were, in turn, compared with the fractional bond valences 289 

𝑝!" = 𝑠!" 𝑆!  of bonds incident to atom i.  290 



 291 

Structures 292 

 Crystal structures were acquired from three online databases: the Crystallography Open 293 

Database (http://www.crystallography.net), the American Mineralogist Crystal Structure 294 

Database (Downs and Hall-Wallace 2003), and the Inorganic Crystal Structure Database 295 

(http://icsd.fiz-karlsruhe.de). Structures were chosen for analysis if they were published after 296 

1960, all cations had unambiguous oxidation states, SoftBV valence parameters (see below) 297 

could be obtained for the cation-oxygen pairs, and deviation from ideal valence sums was <15%. 298 

Structures were excluded from the study if strong, fully metallic or covalent bonds were present.  299 

 300 

Analysis 301 

 We analyzed the crystal structures using a MATLAB™ program designed to read 302 

crystallographic information files, and compute interatomic distances, bond valences, bond-303 

valence vectors and valence quadrupole moments. The program is available from B.R. Bickmore 304 

upon request. 305 

 We used the SoftBV parameters derived by Adams and coworkers (Adams 2001; Adams 306 

and Swenson 2002; Adams et al. 2004; Adams and Rao 2009) to account for the effects of 307 

polarizability. Because of the way they are derived, each set of SoftBV parameters is associated 308 

with a cutoff distance that is long enough to account for very weak, secondary interactions. 309 

 310 

Results  311 

In the oxide structures analyzed, 𝚯!  appears to be predictable based on the valences of 312 

the strongest bonds incident to the atoms. Figure 2 shows each atom in the database, color-coded 313 



to indicate O2-, “normal” cations not expected to exhibit distortions due to electronic structure 314 

effects, and cations subject to lone pair, FOJT, or SOJT effects.  𝚯!  is plotted vs. both p1 and 315 

the second-strongest fractional bond valence (p2).  The trends for all these ions are broadly 316 

similar, approximately falling on a curved, triangular surface.  The trends for different types of 317 

ions are different enough that they cannot be accurately predicted on the basis of the same 318 

equations, but Fig. 2 shows that normalizing the bond valences to the atomic valences moves 319 

these trends into rough coincidence, and whatever differences are left can be ascribed to other 320 

aspects of the electronic structure.  These include bond character and atomic size, but as noted 321 

above, we will address these effects in a forthcoming study.   322 

In the remainder of this section, we will specifically discuss the behavior of O2- and the 323 

transition metals subject to FOJT Effects.  The discussion of O2- behavior is meant to illustrate 324 

the rough trend expected for all atoms (Fig. 2), but in most cases we find that 𝚯! , does not add 325 

much information to the monopole and dipole, because non-centrosymmetric distortions 326 

dominate the coordination geometry of low coordination number anions subject to lone-pair 327 

effects.  The coordination geometry of cations subject to SOJT effects is also non-328 

centrosymmetric.  Therefore, the most important application of 𝚯! , will be the to characterize 329 

centrosymmetric FOJT distortions. 330 

 331 

Oxygen 332 

 Figure 3 recreates Figure 2, but limits its scope to O2-.  Here, 𝚯!  tends to be near zero 333 

when fractional bond strengths for the strongest two bonds are both ≤0.25 indicating 334 

coordination numbers ≥4.   335 



For higher coordination numbers, the distortion pathways can be understood by reference 336 

to Figure 4, in which certain theoretical pathways are outlined around the edges of the triangular 337 

surface.  To generate these theoretical pathways, we began with a molecular fragment in which 338 

p1 = p2 = p3 = p4 = 0.25, in a perfect tetrahedral configuration ( 𝚯! = 0).  During distortion of 339 

the fragment, we enforced the valence sum rule (Eqn. 1), and constrained 𝑆!  to follow the 340 

relationship shown in Eqn. 11, which Bickmore et al. (2013) demonstrated for O2- with p1 > 0.5.  341 

Furthermore, maximum symmetry was maintained, while still obeying the previous two criteria. 342 

𝑆! = !
!
𝑝! −

!
!
                      (11)  343 

On the trend marked by the blue line, we first kept s1 = s2 = s3 and gradually moved one 344 

of the bonded atoms away, adjusting the location of the other three to comply with the criteria 345 

listed above.  The continuation of the blue line was generated by gradually removing the second 346 

and then the third bonded atoms, until only one remained (p1 = 1, 𝑆! = 2 v.u.)  The red line 347 

was generated by simultaneously removing two bonded atoms.  The path marked by the magenta 348 

line corresponds to simultaneously removing three bonded neighbors, finally meeting the blue 349 

line at the corner corresponding to a 1-coordinated O2-.    The data points in between these trends 350 

represent those with less symmetrical bond distributions.  351 

 We found that 𝚯!  could be well described as a function of p1 and p2 in cases where p3 352 

< 0.25, as in Eqn. 12.  However, for p3 ≥ 0.25, the model shown in Eqn. 13 improved the fit.   353 



𝚯! = 0.06324− 0.1792 𝑝! − 0.6837 𝑝! + 1.371 𝑝! ! + 0.5719 𝑝! 𝑝!

+ 1.596 𝑝! !                                                                                                                       𝑝! < 0.25                                     (12) 

𝚯! = 0.06324− 0.1792 𝑝! − 0.6837 𝑝! + 1.371 𝑝! ! + 0.5719 𝑝! 𝑝! + 1.596 𝑝! !

+ 0.140 𝑝!                                                                    𝑝! ≥ 0.25                                     (13) 

 Figure 5 shows the predicted vs. observed values of 𝚯! .  While there are clear trends 354 

in the data, considerable scatter remains, especially among the data points around p1 = p2.  This 355 

appears to be related partially to steric effects, but also largely to the effects of bond character 356 

(covalent or ionic) and atomic size.  These effects will be quantified in a forthcoming study.  357 

 358 

Transition Metals 359 

 Transition metals with unevenly distributed d-electrons are subject to the First-Order 360 

Jahn-Teller (FOJT) effect, which induces centrosymmetric distortions for coordination numbers 361 

4-6.  The precise distortion pathways preferred by the different transition metal ions depend on 362 

factors such as d-orbital occupancy and ion size, but we can make the following generalizations.  363 

First, transition metals not subject to Jahn-Teller effects (including FOJT and SOJT) tend to 364 

adopt 𝚯! ≈ 0 in the range 0.16 < p1 < 0.25 (Nmin = 4-6).  Those that are subject to FOJT 365 

effects tend to have increasing 𝚯!  values as p1 goes from ~0.16 to ~0.25, with those subject to 366 

the strongest distortions approaching a square-planar configuration ( 𝚯! ≈ 0.15) at  p1 ≈ 0.25 367 

(see Figure 1g).  368 

Figures 6-11 illustrate these trends for ions of different transition metal elements:  Co, Cr, 369 

Cu, Fe, Mn, and Ni, respectively.  (Here, 𝚯!  is plotted vs. p1, rather than both p1 and p2, 370 

because we found that including p2 added no information for centrosymmetrical distortions.)  371 

These figures clearly show that different ions of the same element, having different d-orbital 372 



configurations, exhibit distinctly different distortion pathways.  For example, Fe3+ is not 373 

expected to exhibit FOJT distortion, because it has a high-spin d5 configuration at low pressures.  374 

Indeed, 𝚯!"!!  (Figure 9) clusters around zero for  0.16 < p1 < 0.25, whereas 𝚯!"!!  375 

increases from ~0 to ~0.06-0.15 over this interval, indicating that it prefers flattened tetrahedral 376 

or square-planar configurations when 4-coordinated.  Similar trends can be seen by comparing 377 

Mn2+ (d5) to Mn3+ (d4) and Mn4+ (d3) (Figure 10).  Mn2+ does not show any trend over 0.16 < p1 378 

< 0.25, Mn4+ shows a weak trend, and Mn3+ shows a strong trend, as would be expected given 379 

their d-orbital configurations.   380 

Obviously, there is quite a bit of scatter about the trends we have highlighted, but this is 381 

to be expected in disparate crystal structures, where various other factors influence the 382 

configurations.  However, the usefulness of 𝚯!  for modeling structures can be illustrated by 383 

pressure series in which a transition metal undergoes a spin transition.  Lavina et al. (2010), for 384 

instance, tracked changes in the crystal structure of siderite (FeCO3) from 0-56 GPa using X-Ray 385 

diffraction, and Farfan et al. (2012) characterized the Fe2+ spin transition that occurs at ~46 GPa 386 

using in situ Raman spectroscopy.  Abrupt structural and spectroscopic changes occurred at the 387 

spin transition, above which the trends exhibited some hysteresis.  Figure 12 shows 𝚯!"!!  388 

plotted vs. pressure for this series.  The changes in 𝚯!"!!  with pressure are small, but 389 

relatively smooth until the spin transition at ~46 GPa, where there is a distinct shift in slope.  390 

Above this pressure, the hysteresis is also observed.  While a number of common structural 391 

descriptors also exhibit abrupt shifts at the spin transition, it is important to note that the reason 392 

for the shift is related to the electronic structure of the Fe2+, and 𝚯!"!!  is a convenient single-393 

parameter summary of the octahedral distortion about that atom.  This seems likely to be useful 394 



for constraining the behavior of model structures in ways that mimic the real quantum 395 

mechanical causes. 396 

 397 

Implications 398 

When combined with our previous work (Bickmore et al., 2013), this work shows that 399 

multipole expansions of the bond valence incident to atoms, including monopole (bond-valence 400 

sum), dipole (vectorial bond-valence sum), and quadrupole terms, are capable of describing the 401 

total bonding environment of atoms, even if the coordination sphere is subject to distortions due 402 

to several common electronic structure effects, in a predictable manner.  If we combine 403 

predictions of ideal values for the valence multipole terms with energy cost functions for 404 

deviation from those ideals, it should be possible to incorporate the VMM into a molecular 405 

mechanics type of framework, as has already been partially done (Grinberg et al., 2002; Cooper 406 

et al., 2003; Grinberg et al., 2004; Shin et al., 2005; Shin et al., 2007; Shin et al., 2008; Grinberg 407 

et al., 2009; Liu et al., 2013a; Liu et al., 2013b; Takenaka et al., 2013).  If so, it would be 408 

possible to model electronic structure effects very simply that have so far proven very difficult 409 

for non-quantum mechanical models. 410 

Acknowledgements 411 

We gratefully acknowledge the National Science Foundation (EAR-1227215 and EAR-412 

1424682) and the Brigham Young University College of Physical and Mathematical Sciences 413 

undergraduate mentoring program for funding this project.  We also thank Prof. I. D. Brown and 414 

Prof. Frank Hawthorne for providing helpful reviews of the initial manuscript. 415 

 416 
References 417 

 418 



Adams, S. and Swenson, J. (2002) Bond valence analysis of transport pathways in RMC models 419 

of fast ion conducting glasses. Physical Chemistry Chemical Physics, 4, 3179-3184. 420 

Adams, S. and Rao, R.P. (2009) Transport pathways for mobile ions in disordered solids from 421 

the analysis of energy-scaled bond-valence mismatch landscapes. Physical Chemistry 422 

Chemical Physics, 11, 3210-3216. 423 

Adams, S. and Rao, R.P. (2014) Understanding ionic conduction and energy storage materials 424 

with bond-valence-based methods. Structure and Bonding, 158, 129-160. 425 

Adams, S., Moretzki, O., and Canadell, E. (2004) Global instability index optimizations for the 426 

localization of mobile protons. Solid State Ionics, 168, 281-290. 427 

Bambi, C. (2011) Constraint on the quadrupole moment of super-massive black hole candidates 428 

from the estimate of the mean radiative efficiency of AGN. Physical Review D, 83, 429 

103003. 430 

Bickmore, B.R. (2014) Structure and acidity in aqueous solutions and oxide-water interfaces. 431 

Structure and Bonding, 158, 191-203. 432 

Bickmore, B.R., Wander, M.C.F., Edwards, J., Maurer, J., Shepherd, K., Meyer, E., Johansen, 433 

W.J., Frank, R.A., Andros, C., and Davis, M. (2013) Electronic structure effects in the 434 

vectorial bond-valence model. American Mineralogist, 98, 340-349. 435 

Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry:  The bond valence model, 278 436 

p. Oxford University Press, New York. 437 

Brown, I.D. (2009) Recent developments in the methods and applications of the bond valence 438 

model. Chemical Reviews, 109, 6858-6919. 439 

Brown, I.D. (2014) Bond valence theory. Structure and Bonding, 158, 11-58. 440 



Burns, R.G. (1993) Mineralogical Applications of Crystal Field Theory, 551 p. Cambridge 441 

University Press, Cambridge. 442 

Comba, P., Hambley, T.W., and Martin, B. (2009) Molecular modeling of inorganic compounds, 443 

326 p. Wiley-VCH, Weinheim. 444 

Cooper, V.R., Grinberg, I., and Rappe, A.M. (2003) Extending first principles modeling with 445 

crystal chemistry:  A bond-valence based classical potential. In P.K. Davies and D.J. 446 

Singh, Eds., Fundamental Physics of Ferroelectrics. American Institute of Physics, 447 

Melville, New York. 448 

Cramer, C.J. (2004) Essentials of Computational Chemistry, 596 p. Wiley, Chichester, UK. 449 

Cygan, R.T. (2001) Molecular modeling in mineralogy and geochemistry. Reviews in 450 

Mineralogy and Geochemistry, 42, 1-35. 451 

Farfan, G., Wang, S., Ma, H., Caracas, R., and Mao, W.L. (2012) Bonding and structural 452 

changes in siderite at high pressure. American Mineralogist, 97, 1421-1426. 453 

Gillespie, R.J. and Hargittai, I. (1991) The VSEPR Model of Molecular Geometry, 248 p. Allyn 454 

and Bacon, Boston. 455 

Golub, G.H. (2013) Matrix Computations, 728 p. Johns Hopkins University Press, Baltimore. 456 

Grinberg, I., Cooper, V.R., and Rappe, A.M. (2002) Relationship between local structure and 457 

phase transitions of a disordered solid solution. Nature, 419, 909-911. 458 

Grinberg, I., Cooper, V.R., and Rappe, A.M. (2004) Oxide chemistry and local structure of 459 

PbZrxTi1-xO3 studied by density-functional theory supercell calculations. Physical Review 460 

B, 69, 144118. 461 

Grinberg, I., Shin, Y.-H., and Rappé, A.M. (2009) Molecular dynamics study of dielectric 462 

response in a relaxor ferroelectric. Physical Review Letters, 103, 197601. 463 



Harvey, M.A., Baggio, S., and Baggio, R. (2006) A new simplifying approach to molecular 464 

geometry description: the vectorial bond-valence model. Acta Crystallographica, B62, 465 

1038-1042. 466 

Hinchliffe, A. (2003) Molecular Modelling for Beginners, 410 p. Wiley, Chichester, UK. 467 

Horn, R.A. and Johnson, C.R. (2012) Matrix Analysis, 655 p. Cambridge University Press, 468 

Cambridge. 469 

Jackson, J.D. (1998) Classical Electrodynamics, 808 p. Wiley, New York. 470 

Lavina, B., Dera, P., Downs, R.T., Yang, W., Sinogeikin, S., Meng, Y., Shen, G., and Schiferl, 471 

D. (2010) Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing. 472 

Physical Review, B82, 064110. 473 

Liu, S., Grinberg, I., and Rappé, A.M. (2013a) Development of a bond-valence based interatomic 474 

potential for BiFeO3 for accurate molecular dynamics simulations. Journal of Physics:  475 

Condensed Matter, 25, 102202. 476 

Liu, S., Grinberg, I., Takenaka, H., and Rappé, A.M. (2013b) Reinterpretation of the bond-477 

valence model with bond-order formalism: An improved bond-valence-based interatomic 478 

potential for PbTiO3. Physical Review B, 88, 104102. 479 

Lufaso, M.W. and Woodward, P.M. (2001) Prediction of the crystal structures of perovskites 480 

using the software program SPuDS. Acta Crystallographica, B57, 725-738. 481 

Müller, U. (2007) Inorganic Structural Chemistry, 268 p. Wiley, Chichester, UK. 482 

O'Keeffe, M. and Brese, N.E. (1992) Bond-valence parameters for anion-anion bonds in solids. 483 

Acta Crystallographica, B48, 152-154. 484 



Perez-Mato, J.M., Withers, R.L., Larsson, A.-K., Orobengoa, D., and Liu, Y. (2009) Distortion 485 

modes and related ferroic properties of the stuffed tridymite-type compounds SrAl2O4 486 

and BaAl2O4. Physical Review, B79, 064111. 487 

Pijpers, F.P. (1998) Helioseismic determination of the solar gravitational quadrupole moment. 488 

Monthly Notices of the Royal Astronomical Society, 297, L76-L80. 489 

Preiser, C., Lösel, J., Brown, I.D., Kunz, M., and Skowron, A. (1999) Long-range Coulomb 490 

forces and localized bonds. Acta Crystallographica, B55, 698-711. 491 

Rappé, A.K. and Casewit, C.J. (1997) Molecular mechanics across chemistry, 444 p. University 492 

Science Books, Sausalito, CA. 493 

Shin, Y.-H., Cooper, V.R., Grinberg, I., and Rappe, A.M. (2005) Development of a bond-valence 494 

molecular-dynamics model for complex oxides. Physical Review B, 71, No. 054104. 495 

Shin, Y.-H., Grinberg, I., Chen, I.-W., and Rappé, A.M. (2007) Nucleation and growth 496 

mechanism of ferroelectric domain-wall motion. Nature, 449, 881-884. 497 

Shin, Y.-H., Son, J.-Y., Lee, B.-J., Grinberg, I., and Rappé, A.M. (2008) Order-disorder 498 

character of PbTiO3. Journal of Physics:  Condensed Matter, 20, 015224. 499 

Stixrude, L. (2001) First principles theory of mantle and core phases. Reviews in Mineralogy and 500 

Geochemistry, 42, 319-343. 501 

Takenaka, H., Grinberg, I., and Rappé, A.M. (2013) Anisotropic local correlations and dynamics 502 

in a relaxor ferroelectric. Physical Review Letters, 110, 147602. 503 

Wander, M.C.F., Bickmore, B.R., Davis, M., Johansen, W.J., Andros, C., and Lind, L. (2015a) 504 

The use of cation-cation and anion-anion bonds to augment the bond-valence model. 505 

American Mineralogist, 100, 148-159. 506 



Wander, M.C.F., Bickmore, B.R., Lind, L., Andros, C., Hunt, J., Checketts, H., and Goodell, T. 507 

(2015b) AIM analysis and the form of the bond-valence equation. American 508 

Mineralogist, 100, 160-161. 509 

 510 

 511 

512 



Figure Captions 513 

 514 

Figure 1.  The norm of the valence quadrupole moment ( 𝚯𝒊 ) describes the ellipsoidal deviation 515 

from spherical symmetry of the coordination shell about a specified atom. 𝚯𝒊  about a central 516 

atom are shown for a variety of coordination polyhedra, with fractional bond valence of the first 517 

two strongest bonds of the system p1 and p2.  These sample configurations are used as reference 518 

points for some of the subsequent figures. 519 

 520 

Figure 2. 𝚯𝒊   for all atoms in the database is plotted vs. the fractional bond valence of the two 521 

strongest bonds.  This shows that using fractional bond valence puts the quadrupole moments for 522 

all types of atoms roughly in coincidence, regardless of oxidation state.  Any differences, 523 

therefore, can be attributed to various electronic structure effects.   524 

 525 

Figure 3.  𝚯𝑶  for all oxygen atoms in the database is plotted vs. the fractional bond valence of 526 

their two strongest incident bonds.  The pattern is a curved, triangular surface at p1 ≥ p2 ≥ 0.25, 527 

and clusters around 0 for p2 ≤ p1 ≤ 0.25. 528 

 529 

Figure 4.  (a) 𝚯𝑶  plotted vs. p1 and p2.   (b) The sample configurations shown in Fig. 1.  Also 530 

shown are predicted deformation pathways from a tetrahedral coordination polyhedron. We 531 

assume that the valence sum rule is always obeyed, and the valence dipole moment for O 532 

behaves as described in Bickmore et al. (2013).  The magenta line begins with a tetrahedron 533 

( 𝚯𝑶 = 0 , p1 = p2 = 0.25), and evolves as three atoms are gradually stretched, leaving a 534 

structure with a single bond ( 𝚯𝑶  = 1.22, p1 = 1,  p2 = 0). The blue line begins with a 535 



tetrahedron ( 𝚯𝑶 = 0 , p1 = p2 = 0.25), and then evolves as individual bonds are stretched and 536 

removed, one at a time, until three bonds ( 𝚯𝑶  = 0.16, p1 = p2 = p3 = 0.333), then two bonds 537 

( 𝚯𝑶  = 0.52, p1 = p2 = 0.5), and finally one bond ( 𝚯𝑶  = 1.22 v.u., p1 = 1,  p2 = 0) remains.  538 

The red line begins with a tetrahedron ( 𝚯𝑶 = 0 , p1 = p2 = 0.25), and then evolves as two 539 

bonds are stretched simultaneously, leaving two bonds ( 𝚯𝑶  = 0.52, p1 = p2 = 0.5).  540 

 541 

Figure 5. The predicted 𝚯𝑶  (Eqns. 12-13) vs. actual 𝚯𝑶 . 542 

 543 

Figure 6.  𝚯𝒊  vs. p1 for chromium ions with atomic valences of +2, +3, +4, +5, and +6.  The 544 

sample configurations from Fig. 1 are plotted, as well. 545 

 546 

Figure 7.  𝚯𝒊  vs. p1 for manganese ions with atomic valences of +2, +3, and +4.  The sample 547 

configurations from Fig. 1 are plotted, as well. 548 

 549 

Figure 8.  𝚯𝒊  vs. p1 for iron ions with atomic valences of +2 and +3.  The sample 550 

configurations from Fig. 1 are plotted, as well. 551 

 552 

Figure 9.  𝚯𝒊  vs. p1 for cobalt ions with atomic valences of +2 and +3.  The sample 553 

configurations from Fig. 1 are plotted, as well. 554 

 555 

Figure 10.  𝚯𝒊  vs. p1 for nickel ions with atomic valences of +2, and +3.  The sample 556 

configurations from Fig. 1 are plotted, as well. 557 

 558 



Figure 11.  𝚯𝒊  vs. p1 for copper ions with +2 atomic valences.  The sample configurations 559 

from Fig. 1 are plotted, as well. 560 

 561 

Figure 12.  𝚯𝑭𝒆𝟐!  vs. pressure for the siderite (FeCO3) structure.  Note that the change in 562 

𝚯𝑭𝒆𝟐!  with pressure is relatively smooth until ~46 GPa, at which point a spin transition occurs 563 

and a distinct shift in the trend occurs. Above this pressure, hysteresis is also observed.  564 

 565 
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