9/30

1 **Revision 1** 2 3 Maruyamaite, K(MgAl₂)(Al₅Mg)Si₆O₁₈(BO₃)₃(OH)₃O, a potassium-dominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan: 4 **Description and crystal structure** 5 6 Aaron Lussier^{1,2}, Neil A. Ball¹, Frank C. Hawthorne^{1,*}, Darrell J. Henry³, 7 Rentaro Shimizu⁴, Yoshihide Ogasawara⁴ and Tsutomu Ota⁵ 8 9 ¹ Department of Geological Sciences, University of Manitoba Winnipeg, MB, R3T 2N2, Canada 10 ²Current address: Department of Civil and Environmental Engineering and Earth Sciences, 11 University of Notre Dame, Notre Dame, IN 46556, USA 12 ³ Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, 13 14 USA ⁴ Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 15 169-8050, Japan 16 ⁵ Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for the Study 17 of the Earth's Interior, Okayama University, Misasa, Tottori, 682-0193, Japan 18 19 20 * E-mail: frank hawthorne@umanitoba.ca 21 22

23

24

ABSTRACT

25	Maruyamaite, ideally K(MgAl ₂)(Al ₅ Mg)Si ₆ O ₁₈ (BO ₃) ₃ (OH) ₃ O, was recently approved as
26	the first K-dominant mineral-species of the tourmaline supergroup. It occurs in ultra-high
27	pressure quartzofeldspathic gneisses of the Kumdy-Kol area of the Kokchetav Massif, northern
28	Kazakhstan. Maruyamaite contains inclusions of microdiamonds, and probably crystallized near
29	the peak pressure conditions of UHP metamorphism in the stability field of diamond. Crystals
30	occur as anhedral to euhedral grains up to 2 mm across, embedded in a matrix of anhedral quartz
31	and K-feldspar. Maruyamaite is pale brown to brown with a white to very pale-brown streak and
32	has a vitreous luster. It is brittle and has a Mohs hardness of \sim 7; it is non-fluorescent, has no
33	observable cleavage or parting, and has a calculated density of 3.081 gcm ⁻³ . In plane-polarized
34	transmitted light, it is pleochroic, O = darkish brown, E = pale brown. Maruyamaite is uniaxial
35	negative, $\omega = 1.634$, $\varepsilon = 1.652$, both ±0.002. It is rhombohedral, space group R3m, $a = 15.955(1)$,
36	c = 7.227(1) Å, $V = 1593(3)$ Å ³ , $Z = 3$. The strongest ten X-ray diffraction lines in the powder
37	pattern are [d in Å(I)(hkl)]: {note to typesetting: minus signs are overbars on top of the following
38	digit} 2.581(100)(051), 2.974(85)(-132), 3.995 (69)(-240), 4.237(59)(-231), 2.046(54)(-162),
39	3.498(42)(012), 1.923(36)(-372), 6.415(23)(-111), 1.595(22)(-5.10.0), 5.002(21)(021) and
40	4.610(20)(030). The crystal structure of maruyamaite was refined to an R_1 index of 1.58% using
41	1149 unique reflections measured with MoKa X-radiation. Analysis by a combination of electron
42	microprobe and crystal-structure refinement gave SiO ₂ 36.37, Al ₂ O ₃ 31.50, TiO ₂ 1.09, Cr ₂ O ₃
43	0.04, Fe ₂ O ₃ 0.33, FeO 4.01, MgO 9.00, CaO 1.47, Na ₂ O 0.60, K ₂ O 2.54, F 0.30, B ₂ O ₃ (calc)
44	10.58, $H_2O(calc)$ 2.96, sum 100.67 wt%. The formula unit, calculated on the basis of 31 anions
45	pfu with $B = 3$, $OH = 3.24$ apfu (derived from the crystal structure) and the site populations

2

9/30

9/30

46	assigned to reflect the mean interatomic distances, is $(K_{0.53}Na_{0.19}Ca_{0.26}\Box_{0.02})_{\Sigma X=1.00}$
47	$(Mg_{1.19}Fe^{2+}_{0.55}Fe^{3+}_{0.05}Ti_{0.14}Al_{1.07})_{\Sigma Y=3.00}(Al_{5.00}Mg_{1.00})(Si_{5.97}Al_{0.03}O_{18})(BO_3)_3(OH)_3(O^{2-}_{0.60}Al_{5.00}Mg_{1.00})(Si_{5.97}Al_{0.03}O_{18})(BO_3)_3(OH)_3(O^{2-}_{0.60}Al_{5.00}Mg_{1.00})(Si_{5.97}Al_{0.03}O_{18})(BO_3)_3(OH)_3(O^{2-}_{0.60}Al_{5.00}Mg_{1.00})(Si_{5.97}Al_{0.03}O_{18})(BO_3)_3(OH)_3(O^{2-}_{0.60}Al_{5.00}Mg_{1.00})(Si_{5.97}Al_{0.03}O_{18})(BO_3)_3(OH)_3(O^{2-}_{0.60}Al_{5.00}Mg_{1.00})(Si_{5.97}Al_{0.03}O_{18})(BO_3)_3(OH)_3(O^{2-}_{0.60}Al_{5.00}Mg_{1.00})(Si_{5.97}Al_{0.03}O_{18})(BO_3)_3(OH)_3(O^{2-}_{0.60}Al_{5.00}Mg_{1.00})(Si_{5.97}Al_{0.03}O_{18})(BO_3)_3(OH)_3(O^{2-}_{0.60}Al_{5.00}Mg_{1.00})(Si_{5.97}Al_{0.03}O_{18})(BO_3)_3(OH)_3(O^{2-}_{0.60}Al_{5.00}Mg_{1.00})(Si_{5.97}Al_{0.03}O_{18})(BO_3)_3(OH)_3(O^{2-}_{0.60}Al_{5.00}Mg_{1.00})(Si_{5.97}Al_{0.03}O_{18})(BO_3)_3(OH)_3(O^{2-}_{0.60}Al_{5.00}Mg_{1.00})(Si_{5.97}Al_{0.03}O_{18})(BO_3)_3(OH)_3(O^{2-}_{0.60}Al_{5.00}Mg_{1.00})(Si_{5.97}Al_{0.03}O_{18})(BO_3)_3(OH)_3(O^{2-}_{0.60}Al_{5.00}Mg_{1.00})(Si_{5.97}Al_{0.03}O_{18})(Si_{5.97}Al_{0.03}$
48	F _{0.16} OH _{0.24}). Maruyamaite, ideally K(MgAl ₂)(Al ₅ Mg)(BO ₃) ₃ (Si ₆ O ₁₈)(OH) ₃ O, is related to oxy-
49	dravite: ideally Na(MgAl ₂)(Al ₅ Mg)(BO ₃) ₃ (Si ₆ O ₁₈)(OH) ₃ O, by the substitution ${}^{X}K \rightarrow {}^{X}Na$.
50	
51	Keywords: Maruyamaite, tourmaline, new mineral, electron-microprobe analysis, optical
52	properties, crystal-structure refinement, Kokchetav Massif, northern Kazakhstan, ultrahigh-
53	pressure, microdiamond inclusions.

54

9/30

55	INTRODUCTION
56	The general formula of the minerals of the tourmaline supergroup can be written as
57	$X Y_3 Z_6 [T_6 O_{18}] [BO_3]_3 V_3 W$
58	where $X = Na, K, Ca, Pb^{2+}, Bi, \Box$ (vacancy); $Y = Li, Mg, Fe^{2+}, Mn^{2+}, Al, Cr^{3+}, V^{3+}, Fe^{3+}, Ti^{4+}; Z$
59	= Mg, Fe^{2+} , Al, Fe^{3+} , V^{3+} , Cr^{3+} ; $T = Si$, Al, B; $B = B$; $V = OH$, O; $W = OH$, F, O. The tournaline
60	supergroup minerals are important indicator minerals, providing both chemical (e.g., Selway et
61	al. 1998a,b, 1999, 2000a, b, 2002; Novák et al. 2004, 2011; Agrosì et al. 2006; Lussier and
62	Hawthorne 2011; Lussier et al. 2008, 2011a,b; Hawthorne and Dirlam 2011; Henry and Dutrow
63	1990, 1996; Dutrow and Henry 2011; Bačík et al. 2011; van Hinsberg and Schumacher 2009;
64	van Hinsberg et al. 2011a) and isotopic (e.g., Marschall et al. 2006; van Hinsberg and Marschall
65	2007; Ludwig et al. 2011; Marschall and Jiang 2011; van Hinsberg et al. 2011b; Shabaga et al.
66	2010; Hezel et al. 2011) information on the evolution of their host rocks. However, the chemical
67	composition of tourmalines is also controlled by short-range and long-range constraints (e.g.,
68	Hawthorne 1996, 2002; Hawthorne and Henry 1999; Bosi and Lucchesi 2007; Bosi 2010, 2011,
69	2013; Bosi et al. 2010; Henry and Dutrow 2011; Skogby et al. 2012). The dominant constituents
70	at the X site are Na, Ca and \Box , and until now, the remaining constituents, K, Pb ²⁺ and Bi, have
71	been found only in subordinate amounts. However, Ota et al. (2008a,b) and Shimizu and
72	Ogasawara (2013) reported K-rich and K-dominant tourmaline from diamondiferous Kokchetav
73	UHP metamorphic rocks in northern Kazakhstan (Kaneko et al. 2000). Here we describe a new
74	XK-dominant tourmaline from these rocks. The new species and name have been approved by the
75	International Mineralogical Association Commission on New Minerals, Nomenclature and
76	Classification (2013-123). Maruyamaite is named in honour of Professor Shigenori Maruyama
77	(Earth-Life Science Institute, Tokyo Institute of Technology, Japan), born 24th December, 1949,

in Tokushima, Japan. Professor Maruyama is a prominent figure in the field of regional tectonics and led the project which unraveled the mechanism of continental subduction and exhumation (from a depth greater than 120 km) of the Kokchetav massif of northern Kazakhstan, and discovered the diamond-bearing UHP rocks that contain the new K-dominant tourmaline. Holotype material is deposited in the collections of the National Museum of Nature and Science,

83 Tsukuba, Japan, registered number NSM- MF15696.

84

78

79

80

81

82

85

OCCURRENCE

86 Maruyamaite occurs as core domains of chemically zoned tourmaline in a 87 quartzofeldspathic rock collected from the Kumdy-Kol area of the Kokchetav Massif (Ota et al. 88 2008a,b; Shimizu and Ogasawara 2013). The rock occurs as thin layers of variable thickness 89 (less than several cm) in diamond-bearing pelitic gneiss, and consists mainly of quartz, K-90 feldspar and tourmaline (up to 20 vol%) with minor amounts of goethite, titanite, zircon, 91 phengite, phlogopite, apatite, chlorite, zoisite, pumpellyite, graphite and diamond. Tourmaline 92 occurs as anhedral to euhedral crystals up to 2 mm across with strong chemical zoning; K 93 decreases from core to rim (Fig. 1). Although the mantle and rim also contain high amounts of K 94 for magnesian tourmaline, their K-contents in atoms per formula unit (apfu) do not exceed those 95 of Na or Ca (i.e., the mantle and the rim compositions correspond to K-bearing dravite or oxy-96 dravite). Microdiamond inclusions occur only in the K-dominant core of tourmaline 97 (maruyamaite) and in zircon. On the other hand, flake graphite and quartz occur in the mantle and rim. More detailed descriptions of the chemical zoning and inclusion content of tourmaline 98 in these rocks are given by Shimizu and Ogasawara (2013). 99 100

101

PHYSICAL PROPERTIES

102	Maruyamaite is pale brown to brown with a white to very pale-brown streak, has a
103	vitreous luster and does not fluoresce in ultraviolet light. It has a Mohs hardness of \sim 7, and is
104	brittle with a splintery fracture; the calculated density is 3.081 g cm ⁻³ . A spindle stage was used
105	to orient a crystal for measurement of optical properties. The optical orientation was determined
106	by transferring the crystal from the spindle stage to a single-crystal diffractometer and measuring
107	the relative axial relations by X-ray diffraction. In transmitted polarized light, maruyamaite is
108	pleochroic with $O = darkish$ brown, $E = pale$ brown. It is uniaxial negative, with indices of
109	refraction $\omega = 1.634$, $\varepsilon = 1.652$, both ± 0.002 , measured with gel-filtered Na light ($\lambda = 589.9$ nm).
110	
111	RAMAN SPECTROSCOPY
112	Raman spectra of maruyamaite were obtained using an Ar^+ laser with a wavelength of
113	514.5nm. The Raman spectra (Fig. 2) show a strong single band at 3572 cm ⁻¹ . The peak may be
114	assigned to an O-H stretching band involving (OH) at the O3 site. Below 1500 cm ⁻¹ , there is a
115	very weak band at 1230 cm ⁻¹ (internal modes of the BO ₃ group), a group of bands (977 m, 1051
116	m, 1106 sh) centered on ~1000 cm ⁻¹ (internal modes of the SiO ₄ group), another group of bands
117	(669 m, 703 s, 789 vs) centered on ~720 cm ⁻¹ (delocalised Si_6O_{18} ring motions and AlO_6
118	deformations), and lower-frequency bands at 538 vw, 500 w, 367 vs, 242 m, 212 s and 155 w
119	cm^{-1} (vs = very strong, s = strong, m = medium, w = weak, vw = very weak, sh = shoulder)
120	(various motions involving the more weakly bonded cations K, Na, Mg). Assignments follow
121	those of McKeown (2008).

122

124

MÖSSBAUER SPECTROSCOPY

125	The Mössbauer spectrum was collected in transmission geometry at room temperature
126	(RT) using a 57 Co point source. The spectrometer was calibrated using the RT spectrum of α -Fe.
127	For preparing the Mössbauer absorber, several K-tourmaline grains were attached to adhesive
128	tape and mounted on a Pb disk with a 500 μ m aperture, and the collection time was one month.
129	The spectrum was analyzed using a Voigt-based quadrupole-splitting distribution (QSD) method
130	(Rancourt and Ping 1991). To account for thickness and/or instrumental broadening, the
131	Lorentzian linewidth of the symmetrical elemental doublets of the QSD was allowed to vary
132	during spectrum fitting. There are two symmetrical doublets with Mössbauer parameters typical
133	of octahedrally coordinated Fe^{2+} and one doublet with parameters typical of octahedrally
134	coordinated Fe^{3+} (Fig. 3, Table 1). The area ratio of the Fe^{3+} doublet to the Fe^{2+} doublets is 0.076
135	: 0.924, and this value was also taken as the Fe^{3+} : Fe^{2+} ratio (i.e., assuming equal recoil-free
136	fractions for Fe^{2+} and Fe^{3+}).
127	

- 137
- 138

CHEMICAL COMPOSITION

139 The crystal used for the collection of the X-ray intensity data was embedded in epoxy, 140 polished, carbon coated and analyzed with a Cameca SX-100 electron microprobe operating in wavelength-dispersion mode with an excitation voltage of 15 kV, a specimen current of 10 nA, a 141 142 beam diameter of 10 µm, peak count-times of 20 s and background count-times of 10 s. The following standards and crystals were used: Si, Mg, Ca: diopside, TAP, LTAP, LPET; Ti: 143 144 magnesio-hornblende, LLiF; Fe: fayalite, LLiF; Mn: rhodonite, LLiF; Na: albite, TAP; Al: andalusite, TAP; K: orthoclase, LPET; F: fluoro-riebeckite, LTAP; Zn: willemite, LLiF; Cr: 145 146 chromite, LLiF. Data reduction was done using the $\varphi(\rho Z)$ procedure of Pouchou and Pichoir

9/30

147	(1985). The average of eleven analyses on a single grain is given in Table 2.
148	
149	X-RAY POWDER DIFFRACTION
150	X-ray powder-diffraction data were collected with a Bruker D8 Discover SuperSpeed
151	micro-powder diffractometer with a multi-wire 2D detector using a modified Gandolfi
152	attachment (CuK α , λ = 1.54178 Å); 50kV/60 mA; two 30 min. frames, merged; no internal
153	standard used. Data were indexed on the following refined cell-dimensions: $a = 15.915(3)$, $c =$
154	7.120(2) Å, V = 1561.8(7) Å ³ , and the pattern is given in Table 3.
155	
156	CRYSTAL-STRUCTURE REFINEMENT
157	A fragment was extracted from the center of a strongly zoned crystal of maruyamaite in
158	thin section, attached to a tapered glass fiber and mounted on a Bruker APEX II ULTRA three-
159	circle diffractometer equipped with a rotating-anode generator (MoKa), multilayer optics and an
160	APEX II 4K CCD detector. A total of 6230 intensities was collected to 60°2θ using 2 s per 0.2°
161	frame and a crystal-to-detector distance of 5 cm. Empirical absorption corrections (SADABS;
162	Sheldrick 2008) were applied and equivalent reflections were corrected for Lorentz, polarization
163	and background effects, averaged and reduced to structure factors. The unit-cell dimensions were
164	obtained by least-squares refinement of the positions of 4678 reflections with $I > 10\sigma I$ and are
165	given in Table 4, together with other information pertaining to data collection and structure
166	refinement.
167	All calculations were done with the SHELXTL PC (Plus) system of programs. The
168	structure was refined by full-matrix least-squares methods with anisotropic-displacement
169	parameters for all atoms, and converged to a final R1 index of 1.58%. Refined atom coordinates

170	and anisotropic-displacement parameters are listed in Table 5, selected interatomic distances are
171	given in Table 6, and refined site-scattering values (Hawthorne et al. 1995) and assigned site-
172	populations are given in Table 7. The CIF is on deposit and available as listed below. ¹
173	
174	CHEMICAL FORMULA
175	In the absence of a determination of H_2O content, the chemical composition (Table 2) of
176	tourmaline was initially reduced to a chemical formula on the basis of 31 anions per formula unit
177	with $B = 3$ apfu and $(OH) + F = 4$ apfu, and the resulting formula provided a starting point for a
178	more accurate normalization. For maruyamaite, the Y- and Z-site contents, together with the
179	observed <y-o> and <z-o> distances (Table 6), indicate that there is significant disorder of Mg</z-o></y-o>
180	and Al over the Y and Z sites. Taylor et al. (1995) refined the structure of an OH-deficient uvite
181	with significant disorder of this type, and Hawthorne (1996) has discussed how the bond-valence
182	requirements for O at the O1 site can drive the order-disorder reaction ${}^{Y}Al + {}^{Z}Mg = {}^{Y}Mg + {}^{Z}Al$.
183	This issue has been examined in more detail by Bosi (2013) who produced the expression
184	$^{O1}(OH) = 2 - 1.01\Sigma s^{O(1)} - 0.21 - F$ apfu to estimate the amount of (OH) at the O1 site where
185	$\Sigma s^{O(1)}$ is the bond valence incident at the O1 anion (exclusive of H). We used this expression to
186	estimate the amount of (OH) at O1 and then renormalized the chemical formula on this basis. We
187	again recalculated the ^{O1} (OH) content on the basis of the new formula, and iterated this process
188	to convergence. There is the possibility of ^X K bonding to O1, but the observed distance of 3.218
189	Å results in an additional 0.03 v.u. incident at O1 and a negligible change (0.02 apfu) in the (OH)
190	content. The final calculated (OH) content of the crystal is 3.24 apfu, and calculation of the
	¹ Densities AM VV VVV CIE is stand as the MCA and side and suitable is the America Minarda ist

¹ Deposit item AM-XX-XXX, CIF, is stored on the MSA web site and available via the American Mineralogist Table of Contents. Find the article in the table of contents at GSW (ammin.geoscienceworld.org) or MSA (www.minsocam.org), and then click on the deposit link.

191	empirical chemical formula with this OH content gave the following result:
192	$(K_{0.53}Na_{0.19}Ca_{0.26}\Box_{0.02})_{\Sigma X=1.00}(Mg_{2.20}Fe^{2+}_{0.55}Fe^{3+}_{0.05}Ti_{0.14}Al_{0.07})_{\Sigma Y=3.01}(Al_6)(Si_{5.97}Al_{0.03}O_{18})$
193	$(BO_3)_3(OH)_3(O^{2-}_{0.60}F_{0.16}OH_{0.24}).$
194	
195	SITE POPULATIONS
196	The T site is almost completely occupied by Si according to the formula derived from the
197	electron-microprobe analysis, and the <t-o> distance (Table 6) is 1.621 Å, close to the value of</t-o>
198	1.620 Å proposed as the <si-o> distance in the tourmaline structure by MacDonald and</si-o>
199	Hawthorne (1995). Although the Z site in the tourmaline structure is dominated by Al,
200	Hawthorne et al. (1993) showed that there is significant disorder of Al and Mg over the Y and Z
201	sites in tourmaline, and the <z-o> distance is sensitive to occupancy by other cations</z-o>
202	(Hawthorne et al. 1993; Burns et al. 1994; Bosi 2008, 2011; Bosi and Lucchesi 2004; Bosi and
203	Skoby 2013; Bosi et al. 2004; Clark et al. 2011; Ertl et al. 2010a,b; Novák et al. 2013). Where Z
204	is completely occupied by Al, the <z-o> distances are in the range 1.904-1.910 Å (e.g.,</z-o>
205	Hawthorne et al. 1993; Bosi 2008; Lussier et al. 2011a; MacDonald et al. 1993; Selway et al.
206	1998a,b). Bosi and Lucchesi (2007) showed that <z-o> distances are also inductively affected</z-o>
207	by different occupancies at the Y site. The <z-o> distance varies linearly with the mean radius</z-o>
208	of the constituent Z cations, and the <z-o> distance in the holotype maruyamaite structure</z-o>
209	(1.932 Å, Table 6) is significantly longer than the values for tourmaline structures where $Z = Al_6$
210	(1.904-1.911 Å, see above), indicating that maruyamaite has significant disorder of Mg and Al
211	over the Y- and Z-sites, as discussed above. In Figure 4, the <z-o> distance in maruyamaite</z-o>
212	(1.932 Å) intersects the line through the rest of the data at 5.00 Al pfu (marked by the pink
213	diamond in Fig. 4), and hence the site population of Z was set at $Al_{5.00}Mg_{1.00}$ apfu and the site

9/30

214	population of Y was modified accordingly.
215	The resultant site-populations for maruyamaite are given in Table 7. Maruyamaite,
216	ideally K(MgAl ₂)(Al ₅ Mg)(BO ₃) ₃ (Si ₆ O ₁₈)(OH) ₃ O, is the K analogue of oxy-dravite, ideally
217	Na(MgAl ₂)(Al ₅ Mg)(BO ₃) ₃ (Si ₆ O ₁₈)(OH) ₃ O (Bosi and Skogby 2013), and the new rootname is in
218	accord with Henry et al. (2011), the current IMA-approved nomenclature for the tourmaline
219	supergroup minerals.

1.0. 1

....

- 220
- 221

DISCUSSION

222 The direct association of maruyamaite with diamond inclusions at the Kokchetav locality 223 suggests that high K contents in magnesian tourmaline may be an indicator of UHP conditions. 224 However, tourmaline developed in other UHP terrains typically do not exhibit comparable K 225 contents, and generally contain <0.05 apfu K (cf. Ertl et al. 2010b). This apparent inconsistency 226 was examined in the experimental study of Berryman et al. (2014) who found that K contents in 227 synthetic dravitic tourmalines in K-bearing aqueous fluids increase to K-dominant contents at 228 UHP conditions. However, with significant amounts of Na and K in the aqueous fluids, the 229 amount of K in the synthetic tourmaline was greatly reduced under UHP conditions. 230 Significant amounts of K occur in povondraite (Grice et al. 1993; Zácek et al. 2000), a tourmaline in which Fe³⁺ dominates over Al and which forms at relatively low pressure, 231 suggesting that tourmalines with high contents of Fe³⁺ can accommodate far more K than Al-rich 232 233 tourmaline at low pressure. The implication is that K-dominant magnesian tourmalines such as maruyamaite are not only a function of UHP conditions, but also the presence of highly potassic 234 fluids. 235

237 **IMPLICATIONS** The crystallization of maruyamaite requires both UHP conditions and K-dominated 238 239 compositions, and these conditions could occur by partial melting of subducted continental crust 240 (including sedimentary rocks) at high pressure in the stability field of diamond (Ota et al. 2008a,b). This conclusion is consistent with previous studies (e.g., Hwang et al. 2005) which 241 242 have shown that K-rich fluid was present at the Kokchetav UHP stages and played an important 243 role in the formation of metamorphic diamond and other UHP minerals such as K-rich 244 clinopyroxene. 245 As neither maruyamaite nor other tournalines have been found in diamond-bearing 246 zircon (Shimizu and Ogasawara 2013), and both K-tourmaline and dravite are likely to be 247 unstable at peak metamorphic conditions of the Kokchetav Massif (> 6Gpa, e.g., Ogasawara et 248 al. 2002) according to Ota et al. (2008a,b) and Berryman et al. (2014), it is probable that 249 maruyamaite formed during exhumation after peak metamorphism (but still at UHP conditions). 250 The discovery of maruyamaite and related K-rich tourmaline in the Kokchetav UHP rocks 251 highlights the potential of tourmaline as a recorder of metamorphic history. 252 Wunder et al. (2015) showed that tourmaline can incorporate small amount of nitrogen as 253 NH_4^+ (which has an ionic radius similar to that of K) at high pressure. High-pressure 254 tourmalines, including maruyamaite, can be a container of volatile elements such as H, B and N 255 in the deep mantle, and play an important role in the recycling of crustal material. 256 257 **ACKNOWLEDGEMENTS** 258 We thank Andreas Ertl and an anonymous reviewer for their useful comments on this 259 paper. This work was supported by a University of Manitoba Graduate Fellowship to AL, a

12

9/30

9/30

- 260 Canada Research Chair in Crystallography and Mineralogy to FCH, and by Natural Sciences and
- 261 Engineering Research Council of Canada Discovery, Research Tools and Equipment, and Major
- 262 Facilities Access grants, and by Canada Foundation for Innovation grants, to FCH. Some
- 263 investigations of the petrologic applications of tourmaline benefited from NSF funding to DJH
- from grant EAR-9405747. The petrographic work and Raman spectroscopy were funded by the
- Japan Society for the Promotion of Science Grant-in-Aid no. 15204050 to YO.

266

267	References
268	Agrosì, G., Bosi, F., Lucchesi, S., Melchiorre, G., and Scandale, E. (2006) Mn-tourmaline
269	crystals from island of Elba (Italy): Growth history and growth marks. American
270	Mineralogist, 91, 944–952.
271	Bačík, P., Méres Š., and Uher, P. (2011) Vanadium-bearing tourmaline in metacherts from
272	Chvojnica, Slovak Republic: crystal chemistry and multistage evolution. Canadian
273	Mineralogist, 49, 195–206.
274	Berryman, E., Wunder, B., and Rhede, D. (2014) Synthesis of K-dominant tourmaline. American
275	Mineralogist, 99, 539–542.
276	Bosi, F. (2008) Disordering of Fe^{2+} over octahedrally coordinated sites of tourmaline. American
277	Mineralogist, 93, 1647–1653.
278	(2010) Octahedrally coordinated vacancies in tourmaline: a theoretical approach.
279	Mineralogical Magazine, 74, 1037–1044.
280	(2011) Stereochemical constraints in tourmaline: from a short-range to a long-range
281	structure. Canadian Mineralogist, 49, 17–27.
282	(2013) Bond-valence constraints around the O1 site of tourmaline. Mineralogical
283	Magazine, 77, 343–351.
284	Bosi, F., and Lucchesi, S. (2004) Crystal chemistry of the schorl-dravite series. European Journal
285	of Mineralogy, 16, 335–344.
286	——— (2007) Crystal chemical relationships in the tourmaline group: Structural constraints on
287	chemical variability. American Mineralogist, 92, 1054–1063.
288	Bosi, F., and Skogby, H. (2013) Oxy-dravite, Na(Al ₂ Mg)(Al ₅ Mg)(Si ₆ O ₁₈)(BO ₃) ₃ (OH) ₃ O, a new

289 mineral species of the tourmaline supergroup. American Mineralogist, 98, 1442–1448.

- 290 Bosi, F., Lucchesi, S., and Reznitskii, L. (2004) Crystal chemistry of the dravite-chromdravite
- series. European Journal of Mineralogy, 16, 345–352.
- Bosi, F., Balić-Žunić, T., and Surour, A.A. (2010) Crystal structure analysis of four tourmalines
- from the Cleopatra's Mines (Egypt) and Jabal Zalm (Saudi Arabia), and the role of Al in
- the tourmaline group. American Mineralogist, 95, 510–518.
- Burns, P.C., MacDonald, D.J., and Hawthorne, F.C. (1994) The crystal chemistry of manganese-
- bearing elbaite. Canadian Mineralogist, 32, 31–41.
- 297 Clark, C.M., Hawthorne, F.C, and Ottolini, L. (2011) Fluor-dravite,
- 298 NaMg₃Al₆Si₆O₁₈(BO₃)₃(OH)₃F, a new mineral of the tourmaline group from the Crabtree
- emerald mine, Mitchell county, North Carolina: Description and crystal structure.
- Canadian Mineralogist, 49, 57–62.
- 301 Dutrow, B.L., and Henry, D.J. (2011) Tourmaline: A geologic DVD. Elements, 7, 301–306.
- 302 Ertl, A., Rossman, G.R., Hughes, J.M., London, D., Wang, Y., O'Leary, J.A., Dyar. M.D.,
- Prowatke, S., Ludwig, T., and Tillmanns, E. (2010a) Tourmaline of the elbaite-schorl
- 304 series from the Himalaya Mine, Mesa Grande, California: A detailed investigation.
- American Mineralogist, 95, 24–40.
- Ertl, A., Marschall, H.R., Giester, G., Henry, D.J., Schertl, H.P., Ntaflos, T., Luvizotto, G.L.,
- 307 Nasdala, L., and Tillmanns, E. (2010b) Metamorphic ultrahigh-pressure tourmaline:
- 308 Structure, chemistry, and correlations to P-T conditions. American Mineralogist, 95, 1–
 309 10.
- Grice, J.D., Ercit, T.S., and Hawthorne, F.C. (1993) Povondraite, a redefinition of the tourmaline
 ferridravite. American Mineralogist, 78, 433–436.
- Hawthorne, F.C. (1996) Structural mechanisms for light-element variations in tourmaline.

- Canadian Mineralogist, 34, 123–132.
- 314 (2002) Bond-valence constraints on the chemical composition of tourmaline. Canadian
- 315 Mineralogist, 40, 789–797.
- Hawthorne, F.C., and Dirlam, D.M. (2011) Tourmaline, the indicator mineral: From atomic
- arrangement to Viking navigation. Elements, 7, 307–312.
- Hawthorne, F.C., and Henry, D.J. (1999) Classification of the minerals of the tourmaline group.
- European Journal of Mineralogy, 11, 201–215.
- 320 Hawthorne, F.C., MacDonald, D.J., and Burns, P.C. (1993) Reassignment of cation site-
- 321 occupancies in tourmaline: Al/Mg disorder in the crystal structure of dravite. American
 322 Mineralogist, 78, 265–270.
- 323 Hawthorne, F.C, Ungaretti, L., and Oberti, R. (1995) Site populations in minerals: terminology
- and presentation of results of crystal-structure refinement. Canadian Mineralogist, 33,
 907–911.
- Henry, D.J., and Dutrow, B.L. (1990) Ca substitution in Li-poor aluminous tourmaline. Canadian
 Mineralogist, 28, 111–124.
- Henry, D.J., and Dutrow, B.L. (1996) Metamorphic tourmaline and its petrologic applications.
 Reviews in Mineralogy, 33, 503–557.
- Henry, D.J., and Dutrow, B.L. (2011) The incorporation of fluorine in tourmaline: Internal
 crystallographic controls or external environmental influences? Canadian Mineralogist,
 49, 41–56.
- Henry, D.J., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B.L., Uher, P., and Pezzotta, F.
- 334 (2011) Nomenclature of the tourmaline super-group minerals. American Mineralogist,
 335 96, 895–913.

336	Hezel, D.C., Kalt, A., Marschall, H.R., Ludwig, T., and Meyer, HP. (2011) Major-element and
337	Li, Be compositional evolution of tourmaline in an S-type granite-pegmatite system and
338	its country rocks: an example from Ikaria, Aegean Sea, Greece. Canadian Mineralogist,
339	49, 321–340.
340	Hwang, S.L., Shen, P., Chu, H.T., Yui, T.F., Liou, J.G., Sobolev, N.V., and Shatsky, V.S. (2005)
341	Crust-derived potassic fluid in metamorphic microdiamond. Earth and Planetary Science
342	Letters, 231, 295–306.
343	Kaneko, Y., Maruyama, S., Terabayashi, M., Yamamoto, H., Ishikawa, M., Anma, R.,
344	Parkinson, C.D., Ota, T., Nakajima, Y., Katayama, I., Yamamoto, J., and Yamauchi, K.
345	(2000) Geology of the Kokchetav UHP-HP metamorphic belt, Northern Kazakhstan. The
346	Island Arc, 9, 264–283.
347	Ludwig, T., Marschall, H.R., Pogge von Strandmann, P.A.E., Shabaga, B.M., Fayek, M., and
348	Hawthorne, F.C. (2011) A secondary ion mass spectrometry (SIMS) re-evaluation of B
349	and Li isotopic compositions of Cu-bearing elbaite from three global localities.
350	Mineralogical Magazine, 75, 2485–2494.
351	Lussier, A.J., and Hawthorne, F.C. (2011) Oscillatory zoned liddicoatite from central
352	Madagascar. II. Compositional variations and substitution mechanisms. Canadian
353	Mineralogist, 49, 89–104.
354	Lussier, A.J., Aguiar, P.M., Michaelis, V.K., Kroeker, S., Herwig, S., Abdu, Y., and Hawthorne,
355	F.C. (2008) Mushroom elbaite from the Kat Chay mine, Momeik, near Mogok,
356	Myanmar: I. Crystal chemistry by SREF, EMPA, MAS NMR and Mössbauer
357	spectroscopy. Mineralogical Magazine, 72, 747–761.
358	Lussier, A.J., Hawthorne, F.C., Aguiar, P.M., Michaelis, V.K., and Kroeker, S. (2011a) Elbaite-

359	liddicoatite from Black Rapids glacier, Alaska. Periodico di Mineralogia, 80, 57-73.
360	Lussier, A.J., Abdu, Y. Hawthorne, F.C., Michaelis, V.K., Aguiar, P.M., and Kroeker, S. (2011b)
361	Oscillatory zoned liddicoatite from Anjanabonoina, central Madagascar. I. Crystal
362	chemistry and structure by SREF and 11B and 27Al MAS NMR spectroscopy. Canadian
363	Mineralogist, 49, 63–88.
364	MacDonald, D.J., and Hawthorne, F.C. (1995) The crystal chemistry of Si \leftrightarrow Al substitution in
365	tourmaline. Canadian Mineralogist, 33, 849-858.
366	MacDonald, D.J., Hawthorne, F.C., and Grice, J.D. (1993) Foitite, \Box [Fe ²⁺ ₂ (Al,Fe ³⁺)]Al ₆ Si ₆ O ₁₈
367	(BO ₃) ₃ (OH) ₄ , a new alkali-deficient tourmaline: description and crystal structure.
368	American Mineralogist, 78, 1299–1303.
369	Marschall, H.R., and Jiang, SY. (2011) Tourmaline Isotopes: No element left behind. Elements,
370	7, 313–319.
371	Marschall, H.R., Ludwig, T., Altherr, R., Kalt, A., and Tonarini, S. (2006) Syros metasomatic
372	tourmaline: Evidence for very high- δ 11B fluids in subduction zones. Journal of
373	Petrology, 47, 1915–1942.
374	McKeown, D.A. (2008) Raman spectroscopy, vibrational analysis and heating of buergerite
375	tourmaline. Physics and Chemistry of Minerals, 35, 259-270.
376	Novák, M., Povondra, P., and Selway, J.B. (2004) Schorl-oxy-schorl to dravite-oxy-dravite
377	tourmaline from granitic pegmatites; examples from the Moldanubicum, Czech Republic.
378	European Journal of Mineralogy, 16, 323–333.
379	Novák, M., Škoda, P., Filip, J., Macek, I., and Vaculovič, T. (2011) Compositional trends in
380	tourmaline from intragranitic NYF pegmatites of the Třebíč Pluton, Czech Republic;
381	electron microprobe, Mössbauer and LA-ICP-MS study. Canadian Mineralogist, 49, 359-

382

380.

383	Novák, M., Ertl, A., Povondra, P., Galiová, M.V., Rossman, G.R., Pristacz, H., Prem, M.,
384	Giester, G., Gadas, P., and Škoda, R. (2013) Darrellhenryite, Na(LiAl ₂)Al ₆ (BO ₃) ₃ Si ₆ O ₁₈
385	(OH) ₃ O, a new mineral from the tourmaline supergroup. American Mineralogist, 98,
386	1886–1892.
387	Ogasawara, Y., Fukasawa, K., and Maruyama, S. (2002) Coesite exsolution from supersilicic
388	titanite in UHP marble from the Kokchetav Massif, northern Kazakhstan. American
389	Mineralogist, 87, 454–461.
390	Ota, T., Kobayashi, K., Katsura, T., and Nakamura, E. (2008a) Tourmaline breakdown in a
391	pelitic system: implications for boron cycling through subduction zones. Contributions to
392	Mineralogy and Petrology, 155, 19–32.
393	——— (2008b) Boron cycling by subducted lithosphere; insights from diamondiferous
394	tourmaline from the Kokchetav ultrahigh-pressure metamorphic belt. Geochimica et
395	Cosmochimica Acta, 72, 3531–3541.
396	Pertlik, F., Ertl, A., Körner, W., Brandstätter, F., and Schuster, R. (2003) Na-rich dravite in the
397	marbles from Friesach, Carinthia, Austria: Chemistry and crystal structure. Neues
398	Jahrbuch für Mineralogie Monatshefte, 2003, 277-288.
399	Pouchou, J.L., and Pichoir, F. (1985) 'PAP' $\phi(\rho Z)$ procedure for improved quantitative
400	microanalysis. In J.T. Armstrong, Ed., Microbeam Analysis, p. 104–106. San Francisco
401	Press, San Francisco, California.
402	Rancourt D.G., and Ping J.Y. (1991) Voigt-based methods for arbitrary-shape static hyperfine
403	parameter distributions in Mössbauer spectroscopy. Nuclear Instruments and Methods in
404	Physics Research, B58, 85–97.

405	Selway, J.B., Černý, P., and Hawthorne, F.C. (1998a) Feruvite from lepidolite pegmatites at Red
406	Cross lake, Manitoba. Canadian Mineralogist, 36, 433–439.
407	Selway, J.B., Novák, M., Hawthorne, F.C., Černý, P., Ottolini, L., and Kyser, T.K. (1998b)
408	Rossmanite, D[LiAl ₂]Al ₆ Si ₆ O ₁₈ (BO ₃) ₃ (OH), a new alkali-deficient tourmaline:
409	Description and crystal structure. American Mineralogist, 83, 896-900.
410	Selway, J.B., Novák, M. Černý, P., and Hawthorne, F.C. (1999) Compositional evolution of
411	tourmaline in lepidolite-subtype pegmatites. European Journal of Mineralogy, 11, 569-
412	584.
413	Selway, J.B., Černý, P., Hawthorne, F.C., and Novák, M. (2000a) The Tanco pegmatite at Bernic
414	Lake, Manitoba. XIV. Internal tourmaline. Canadian Mineralogist, 38, 877-891.
415	Selway, J.B., Novák, M., Černý, P., and Hawthorne, F.C. (2000b) The Tanco pegmatite at Bernic
416	Lake, Manitoba. XIII. Exocontact tourmaline. Canadian Mineralogist, 38, 869–976.
417	Selway, J.B., Smeds, S-A., Černý, P., and Hawthorne, F.C. (2002) Compositional evolution of
418	tourmaline in the petalite-subtype Nyköpingsgruvan pegmatites, Utö, Stockholm
419	Archipelago, Sweden. GFF, 124, 93-102.
420	Shabaga, B.M., Fayek, M., and Hawthorne, F.C. (2010) Boron and lithium isotopic compositions
421	as provenance indicators of Cu-bearing tourmalines. Mineralogical Magazine, 74, 241-
422	255.
423	Sheldrick, G.M. (2008) A short History of SHELX. Acta Crystallographica, A64, 112–122.
424	Shimizu, R., and Ogasawara, Y. (2013) Diversity of potassium-bearing tourmalines in
425	diamondiferous Kokchetav UHP metamorphic rocks: a geochemical recorder from peak
426	to retrograde metamorphic stages. Journal of Asian Earth Science, 63, 39-55.
427	Skogby, H., Bosi, F., and Lazor, P. (2012) Short-range order in tourmaline: a vibrational

9/30

428	spectroscopic approach to elbaite. Physics and Chemistry of Minerals, 39, 811-816.
429	Taylor, M.C., Cooper, M.A., and Hawthorne, F.C. (1995) Local charge-compensation in
430	hydroxyl-deficient uvite. Canadian Mineralogist, 33, 1215-1221.
431	van Hinsberg, V.J., and Marschall, H.R. (2007) Boron isotope and light element sector zoning in
432	tourmaline: Implications for the formation of B-isotopic signatures. Chemical Geology,
433	238, 141–148.
434	van Hinsberg, V.J., and Schumacher, J.C. (2009) The geothermobarometric potential of
435	tourmaline, based on experimental and natural data. American Mineralogist, 94, 761-
436	770.
437	van Hinsberg, V.J., Henry, D.J., and Dutrow, B.L. (2011a) Tourmaline as a petrologic forensic
438	mineral: A unique recorder of its geologic past. Elements, 7, 327-332.
439	van Hinsberg, V.J., Henry, D.J., and Marschall, H.R. (2011b) Tourmaline: an ideal indicator of
440	its host environment. Canadian Mineralogist, 49, 1–16.
441	Wunder, B., Berryman, E., Plessen, B., Rhede, D., Koch-Muller, M., and Heinrich, W. (2015)
442	Synthetic and natural ammonium-bearing tourmaline. American Mineralogist, 100, 250-
443	256.
444	Zácek, V., Jirá, F., Petrov, A., and Hyrsl, J. (2000) Tourmalines of the povondraite-(oxy) dravite
445	series from the cap rock of meta-evaporite in Alto Chapare, Cochabamba, Bolivia.
446	Journal of the Czech Geological Society, 45, 3-12.

9/30

447	FIGURE CAPTIONS
448	
449	Figure 1. (A) Photomicrograph and (B) characteristic X-ray K- $K\alpha$ map of
450	diamondiferous K-bearing tourmaline. Tourmaline shows discontinuous chemical zoning with
451	representative K-contents in apfu of 0.58 (core), 0.15 (mantle), and 0.04 (rim). Diamond
452	inclusions occur only in the K-dominant tourmaline core, i.e., maruyamaite (shown bounded by
453	red broken lines). Abbreviations in (A) are: Dia: diamond, Gr: graphite, Kfs: K-feldspar, Qz:
454	quartz, and Tur: tourmaline.
455	
456	Figure 2. Raman spectra of maruyamaite with the laser (a) perpendicular, and (b) parallel
457	to the <i>c</i> -axis.
458	
459	Figure 3. Mössbauer spectrum of maruyamaite; Full lines: Fe ²⁺ doublets, dashed line:
460	Fe ³⁺ doublet.
461	
462	Figure 4. Variation in $\langle Z-O \rangle$ as a function of the ^Z Al* (= Al + Fe ³⁺) content at the Z site
463	for selected tourmalines; uvites from McDonald and Hawthorne (1995) (green circles) and Clark
464	et al. (unpublished) (yellow circle); dravites from Bosi and Lucchesi (2004) (samples 235a,
465	235b, 65e, red circles) and Pertlik et al. (2003) (blue circle). The dashed line shows extrapolation
466	of holotype maruyamaite (pink diamond) to the regression line defined by the rest of the data and
467	the corresponding value of ^Z Al indicated by the dashed arrow: 5.00 apfu.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5359

TABLE 1.	Mossbauer parameters (mm/s) for maruyamaite							
Cation	Centre shift (mm/s)	Quadrupole splitting	Area ratio					
Fe ²⁺	1.086(8)	2.46(15)	44(5)					
Fe ²⁺	1.099(20)	1.89(5)	49(5)					
Fe ³⁺	0.35(10)	0.66(28)	2(1.8)					

 TABLE 1.
 Mössbauer parameters (mm/s) for maruyamaite

maruyamaite					
Constituent	Wt% Range		Standard deviation		
SiO ₂	36.37	35.83–36.74	0.30		
TiO ₂	1.09	0.90–1.21	0.03		
AI_2O_3	31.50	31.25–32.06	0.11		
B_2O_3	10.58	-	-		
Cr_2O_3	0.04	0.01–0.06	0.01		
FeO*	4.28	4.07–4.55	0.02		
Fe_2O_3	0.33	-	-		
FeO	4.01	-	-		
MgO	9.00	8.78–9.19	0.10		
CaO	1.47	1.39–1.55	0.01		
Na ₂ O	0.60	0.52–0.65	0.03		
K ₂ O	2.54	2.43–2.64	0.05		
F	0.30	0.20-0.37	0.05		
H ₂ O	2.96	-	-		
0 = F	-0.13	-	-		
Total	100.67	-	_		

TABLE 2.	Chemical composition (wt%) for
	maruyamaite

* FeO determined by electron-microprobe analysis.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA)
Cite as Authors (Year) Title. American Mineralogist, in press.
(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5359

TABLE	TABLE 3. Powder-diffraction pattern for maruyamaite										
I _{rel}	<i>d</i> _(meas.) Å	<i>d</i> _(calc.) Å	h	k	Ι	I _{rel}	<i>d</i> _(meas.) Å	<i>d</i> _(calc.) Å	h	k	Ι
23	6.415	6.404	-1	1	1	15 B	2.132*	2.135	-3	3	3
21	5.002	4.994	0	2	1			2.135	0	3	3
20	4.610	4.605	0	3	0	54	2.046	2.046	-1	6	2
59	4.237	4.233	-2	3	1	7	1.994	1.994	-4	8	0
69	3.995	3.988	-2	4	0	36	1.923	1.923	-3	7	2
42	3.498	3.496	0	1	2	6	1.883	1.882	-1	5	3
12	3.389	3.386	-1	4	1	10	1.852	1.852	-6	8	1
2	3.204	3.202	-2	2	2	2 B	1.825*	1.820	-6	7	2
3	3.113	3.116	-4	4	1	6 B	1.787*	1.792	-1	1	4
85	2.974	2.972	-1	3	2			1.785	-3	6	3
12	2.904	2.903	-3	5	1	3 B	1.746	1.748	0	2	4
10	2.634	2.629	-3	4	2	5	1.692	1.693	-2	8	2
100	2.581	2.581	0	5	1	21	1.664	1.665	-6	6	3
2	2.495	2.497	0	4	2			1.665	0	6	3
3	2.456	2.456	-2	6	1	18	1.644	1.644	-2	9	1
14 B	2.386*	2.409	0	0	3	22	1.595	1.595	-5	10	0
		2.383	-2	5	2	5	1.547	1.548	4	-10	1
19	2.347	2.347	-5	6	1	11	1.530*	1.535	0	9	0
4 B	2.305*	2.306	-1	2	3			1.529	-7	9	2
		2.303	0	6	0	19	1.511	1.512	0	5	4
11	2.196	2.195	-5	5	2	4	1.485	1.486	-2	6	4
18	2.168	2.167	-4	7	1	15	1.458*	1.461	-5	6	4

{note to typesetting: minus signs are overbars in above table}

<i>a</i> (Å)	15.955(10)	crystal size (µm)	30 x 60 x 80		
С	7.227(4)	radiation	Μο <i>Κ</i> α		
V (Å ³)	1593(2)	No. unique reflections	1149		
		No. <i>F</i> ₀ > 5σ <i>F</i>	1149		
Space group	R3m	R _{int} %	1.02		
Z	3	R _{obs} %	1.58		
D _{calc.} (gcm ⁻³) 3.081		wR ₂ %	3.98		
		GOF	1.131		

 TABLE 4.
 Miscellaneous information for maruyamaite

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5359

Atom	X	У	Ζ	<i>U</i> ₁₁	U ₂₂	<i>U</i> ₃₃	<i>U</i> ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂	$U_{ m eq}$
X	0	0	0.2206(2)	0.0154(6)	0.0154(6)	0.0227(8)	0	0	0.0077(3)	0.0178(5)
Y	0.12420(5)	0.06210(3)	0.63605(12)	0.0105(4)	0.0079(3)	0.0176(4)	-0.00237(12)	-0.0048(2)	0.00526(19)	0.0117(2)
Ζ	0.29818(4)	0.26169(4)	0.61244(11)	0.0068(2)	0.0066(3)	0.0071(2)	0.00016(18)	-0.00038(18)	0.00330(19)	0.00684(13)
Т	0.19192(3)	0.19010(3)	1.00	0.0055(2)	0.0055(2)	0.0077(2)	-0.00091(16)	-0.00071(17)	0.00256(16)	0.00633(12)
В	0.10985(11)	0.2197(2)	0.4561(4)	0.0078(8)	0.0079(12)	0.0082(11)	0.0006(9)	0.0003(4)	0.0040(6)	0.0079(5)
01	0	0	0.7753(5)	0.0151(10)	0.0151(10)	0.0106(15)	0	0	0.0075(5)	0.0136(7)
O2	0.06089(8)	0.12178(15)	0.4875(3)	0.0138(7)	0.0075(9)	0.0175(10)	0.0014(7)	0.0007(3)	0.0037(5)	0.0136(4)
O3	0.26395(18)	0.13197(9)	0.5127(3)	0.0282(12)	0.0148(7)	0.0069(8)	-0.0000(4)	-0.0000(8)	0.0141(6)	0.0151(4)
O4	0.09278(8)	0.18556(15)	0.0708(3)	0.0083(6)	0.0145(10)	0.0114(8)	-0.0016(7)	-0.0008(4)	0.0073(5)	0.0107(4)
O5	0.18438(16)	0.09219(8)	0.0920(3)	0.0153(10)	0.0077(6)	0.0119(8)	0.0002(3)	0.0003(7)	0.0077(5)	0.0108(4)
O6	0.19555(10)	0.18571(10)	0.7784(2)	0.0114(6)	0.0112(6)	0.0073(6)	-0.0013(5)	-0.0008(5)	0.0062(5)	0.0098(3)
07	0.28470(10)	0.28492(9)	0.07961(19)	0.0073(6)	0.0069(6)	0.0104(6)	-0.0014(5)	-0.0015(5)	0.0014(5)	0.0091(3)
08	0.20934(10)	0.26999(11)	0.4420(2)	0.0056(6)	0.0101(6)	0.0161(6)	0.0022(5)	0.0005(5)	0.0039(5)	0.0106(3)

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA	4)
Cite as Authors (Year) Title. American Mineralogist, in press.	
(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5359	

TABLE 6.	Selected interatomic distances (Å) in maruyamaite					
X-02	2.560(2)	<i>Z</i> -03	1.993(1)			
X-04	2.783(2)	<i>Z</i> -06	1.898(1)			
X-05	2.712(2)	<i>Z</i> -07	1.907(1)			
< <i>X</i> -O>	2.685	<i>Z</i> -07	1.963(1)			
		<i>Z</i> -08	1.900(1)			
<i>T</i> -O4	1.629(1)	<i>Z</i> -08	1.932(1)			
<i>T</i> -O5	1.646(1)	<z-0></z-0>	1.932			
<i>T</i> -O6	1.606(1)					
<i>T</i> -07	1.604(1)	Y-01	1.990(2)			
< <i>T</i> -O>	1.621	Y-02	x2 2.011(1)			
		Y-O3	2.127(2)			
<i>B</i> -02	1.372(3)	Y-06 x	x2 1.999(1)			
<i>B</i> -08 x2	1.379(2)	<y-0></y-0>	2.023			
< <i>B</i> -0>	1.377					

TABLE 7.	Site-scattering values (<i>epfu</i>) and assigned site occupancies	in
	maruyamaite	

Site	Site population (apfu) from EMPA	Site scattering (epfu)		
_		refined	calculated	
x	0.53 K + 0.19 Na + 0.26 Ca	16.6(1)	17.3	
Y	1.19 Mg + 0.55 Fe ²⁺ + 0.05 Fe ³⁺ + 1.07 Al + 0.14 Ti	46.9(6)	46.4	
Ζ	5.00 AI + 1.00 Mg	78*	77	
Т	5.97 Si + 0.03 Al	84*	84	
* fixe	ed.			

FIGURE 1

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

(A) A6-a1 Tur-b (Laser perpendicular to c-axis)

(B) A6-b1 Tur-c (Laser parallel to c-axis)

FIGURE 2

FIGURE 3

FIGURE 4