Hafnium, oxygen, neodymium, strontium, and lead isotopic constraints on magmatic evolution of the supereruptive southern Black Mountains volcanic center, Arizona, USA: A combined LASS zircon - whole-rock study (Revison 2c) Susanne M. McDowell^{1,2}, Sarah Overton³, Christopher M. Fisher⁴, William O. Frazier¹, Calvin F. Miller¹, Jonathan S. Miller³, and Rita C. Economos⁵* ¹Vanderbilt University, Earth and Environmental Sciences PMB 351805, 2301 Vanderbilt Place, Nashville, TN 37235-1805 ²Hanover College, Department of Geology 484 Ball Drive, Hanover, IN 47243 ³San Jose State University, Geology Department One Washington Square, San Jose, CA 95192 ⁴Washington State University, School of the Environment PO Box 642812, Pullman WA 99164-2812 ⁵University of California – Los Angeles, Department of Earth and Space Sciences 595 Charles Young Drive East, P.O. Box 951567, Los Angeles, CA 90095* *Current address: Southern Methodist University, Roy M. Huffington Department of Earth Sciences, 3225 Daniel Avenue, Dallas, TX 75205

37 38 30	Abstract
40	The >700 km3 Peach Spring Tuff (PST), erupted at 18.8 Ma from the Silver Creek
41	caldera in the southern Black Mountains volcanic center (SBMVC) of western Arizona, is the
42	only supereeruption-scale ignimbrite in the northern Colorado River Extensional Corridor. The
43	SBMVC contains pre- and post-caldera volcanic rocks and caldera-related intrusions (~19-17
44	Ma) that provide a detailed petrologic record of ignimbrite antecedence and aftermath.
45	Whole-rock Sr-Nd-Pb-Hf isotopic data combined with complementary zircon O and Hf
46	isotopic data from a suite of pre- through post-PST samples provide robust constraints on (1)
47	how the SBMVC evolved with respect to magmatic sources and processes throughout its \sim 2 Ma
48	history and (2) the petrogenetic relationships between the PST and slightly younger intracaldera
49	plutons. Both pre- and post-PST units have isotopic ranges (ϵ_{Nd} = -8.3 to -11.6, ϵ_{Hf} = -8.2 to -
50	$14.0, {}^{87}\text{Sr}/{}^{86}\text{Sr}_i = 0.709 - 0.712; {}^{206}\text{Pb}/{}^{204}\text{Pb} = 18.19 - 18.49, {}^{207}\text{Pb}/{}^{204}\text{Pb} = 15.60 - 15.62, {}^{208}\text{Pb}/{}^{204}\text{Pb} = 18.19 - 18.49, {}^{207}\text{Pb}/{}^{204}\text{Pb} = 15.60 - 15.62, {}^{208}\text{Pb}/{}^{204}\text{Pb} = 18.19 - 18.49, {}^{207}\text{Pb}/{}^{204}\text{Pb} = 15.60 - 15.62, {}^{208}\text{Pb}/{}^{204}\text{Pb} = 18.19 - 18.49, {}^{207}\text{Pb}/{}^{204}\text{Pb} = 15.60 - 15.62, {}^{208}\text{Pb}/{}^{204}\text{Pb} = 18.19 - 18.49, {}^{207}\text{Pb}/{}^{204}\text{Pb} = 15.60 - 15.62, {}^{208}\text{Pb}/{}^{204}\text{Pb} = 18.19 - 18.49, {}^{207}\text{Pb}/{}^{204}\text{Pb} = 15.60 - 15.62, {}^{208}\text{Pb}/{}^{204}\text{Pb} = 18.19 - 18.49, {}^{207}\text{Pb}/{}^{204}\text{Pb} = 15.60 - 15.62, {}^{208}\text{Pb}/{}^{204}\text{Pb} = 18.19 - 18.49, {}^{207}\text{Pb}/{}^{204}\text{Pb} = 15.60 - 15.62, {}^{208}\text{Pb}/{}^{204}\text{Pb} = 18.19 - 18.49, {}^{207}\text{Pb}/{}^{204}\text{Pb} = 18.19 - 18.49, {}^{207}\text{Pb}/{}^{204}\text{Pb} = 15.60 - 15.62, {}^{208}\text{Pb}/{}^{204}\text{Pb} = 18.19 - 18.49, {}^{207}\text{Pb}/{}^{204}\text{Pb} = 18.19 - 18.49, {}^{207}\text{Pb}/{}^{20}\text{Pb}/{}^{20}\text{Pb}/{}^{20}\text{Pb}/{}^{2$
51	= 38.95-39.29) that fall within the spectrum of Miocene Colorado River Extensional Corridor
52	rocks and are consistent with mixing of substantial fractions of Proterozoic (Mojave) crust and
53	juvenile material derived from regional enriched mantle. Compared to the PST, which has
54	relatively uniform isotopic ratios (ϵ_{Nd} = -11.4 to -11.7, ϵ_{Hf} = -13.8 to -14.3, ${}^{87}Sr/{}^{86}Sr_i$ = 0.709-
55	$0.712; {}^{206}\text{Pb}/{}^{204}\text{Pb} = 18.20 - 18.29, {}^{207}\text{Pb}/{}^{204}\text{Pb} = 15.60 - 15.62, {}^{208}\text{Pb}/{}^{204}\text{Pb} = 39.02 - 39.33),$
56	individual pre- and post-PST units are isotopically more variable and generally more primitive.
57	Consistent with whole-rock isotopes, zircon ϵ_{Hf} (-8 to -14) and oxygen $\delta^{18}O$ (+4.5 to +7.2 ‰)
58	for most pre- and post-PST units also have wider ranges and more mantle-like values than those
59	of the PST (-12 to -15, +6.1 to +7.1‰). Moreover, zircon isotopic compositions decrease in post-
60	PST samples. Afew zircons from post-PST intrusions have δ^{18} O values lower than mantle
61	values,(<+5‰), suggesting incorporation of hydrothermally altered rock.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5127

10/21

62	Whole-rock and zircon elemental and isotopic analyses indicate that (1) most pre- and post-
63	PST units are less evolved and less homogenized than the PST itself; (2) intrusions in the Silver
64	Creek caldera are petrogenetically distinct from the PST and therefore represent discrete
65	magmatic pulses, not unerupted PST mush; (3) enriched mantle input increased in the SBMVC
66	following the paroxysmal PST eruption; (4) post-PST history of the SBMVC was characterized
67	by periodic influx of magmas with varying juvenile fractions into pre-existing mushy or
68	solidified intrusions, resulting in variable and incomplete hybridization; and (5) melting and
69	assimilation of hydrothermally-altered crust played a relatively minor role in the generation and
70	evolution of magmas in the SBMVC.
71	
72	Keywords: volcanic center, petrogenesis, zircon, oxygen isotopes, Sr isotopes, Hf isotopes,
73	Nd isotopes, Pb isotopes, supereruption
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5127

85	Introduction
86	The southern Black Mountains volcanic center (SBMVC), located in the northern Colorado
87	River Extensional Corridor (CREC) of northwestern Arizona, comprises the >700 km ³ Peach
88	Spring Tuff (PST); its source, the Silver Creek caldera; and well-exposed pre- to post-PST
89	volcanic units and intracaldera intrusions that were emplaced over a period of 2 m.y. (Ferguson
90	et al., 2013; Pamukcu et al., 2013; McDowell et al., 2014). The completeness of the SBMVC's
91	magmatic record and the recent finding that the age of part of the intracaldera intrusion complex
92	is indistinguishable from that of the PST (McDowell et al., 2014) make it an attractive locality
93	for exploring two questions that have attracted widespread interest: (1) How do volcanic centers
94	that produce large-volume explosive eruptions evolve with respect to magmatic source(s),
95	composition, and processes (e.g., Lipman, 2007; Tappa et al., 2011; Watts et al., 2011, 2012)?
96	(2) What are the petrogenetic relationships between volcanic rocks and spatially associated
97	subvolcanic intrusions (e.g., Bachmann & Bergantz, 2004; Bachmann et al., 2007; Glazner et al.,
98	2008)? More specifically, what are the relationships between very large ignimbrites and the
99	~contemporaneous plutons in their source calderas (e.g., Lipman, 1984; Bachmann & Bergantz,
100	2008; Zimmerer & McIntosh, 2012a, b; Mills & Coleman, 2013)? In the case of the SBMVC, are
101	the intracaldera intrusions unerupted remnants of supereruption magmas, or do they represent
102	discrete magmatic pulses?
103	To address these questions with respect to the SBMVC, we apply a combination of whole-
104	rock Sr-Nd-Hf-Pb and in situ zircon O and Hf isotopic analysis. Because isotopes of Sr, Nd, Pb,
105	and Hf are not appreciably fractionated as a consequence of closed-system processes, their ratios
106	remain effectively constant in the products of closed-system crystallization and melt segregation
107	on the time scales involved. Only open-system events, like magma mixing and crustal

4

10/21

108	assimilation, can create isotopic variability within a magma. Moreover, radiogenic isotopic ratios
109	constrain source composition and age. Previous studies have shown that Proterozoic, Mesozoic,
110	and Miocene-age rocks in the Mojave Desert region, which includes the SBMVC, have
111	distinctive Sr, Nd, and Pb isotopic signatures (e.g., Bennett & DePaolo, 1987; Farmer et al.,
112	1989; Wooden & Miller, 1990; Feuerbach et al., 1993; Miller & Wooden, 1994; Falkner et al.,
113	1995; Metcalf et al., 1995; Miller et al., 2000; Bachl et al., 2001; Ericksen et al., 2004). The
114	isotopic characteristics established by these studies serve as regional benchmarks against which
115	we can compare the isotopic compositions of the SBMVC and with which we can constrain
116	sources and open-system processes such as assimilation and magma mixing.
117	The introduction of high-precision, high-resolution analytical techniques has permitted
118	determination of isotopic ratios in situ in minerals. Hafnium and oxygen isotopic compositions
119	of zircons offer particularly valuable insights into magmatic origins and evolution. More
120	sensitively than whole-rock analyses, in situ Hf isotope data provide constraints on magmatic
121	sources, degree of magmatic heterogeneity, and open-system processes (e.g., Hawkesworth &
122	Kemp, 2006; Kemp et al., 2006, 2007; Kemp et al., 2010; Drew et al., 2013). Oxygen isotope
123	ratios determined in situ in zircon shed complementary light on magmatic characteristics and
124	processes; in particular, they document varying input from crustal materials that have interacted
125	with surface water (e.g., Bindeman & Valley, 2001; Valley et al., 2005; Hawkesworth & Kemp,
126	2006; Bindeman et al., 2007; Kemp et al., 2007; Watts et al., 2011, 2012).
127	We combine our comprehensive isotopic data with new and existing whole-rock and zircon
128	elemental data to characterize representative volcanic and intrusive units in the SBMVC. We
129	then apply the constraints offered by the data set to investigate magmatic sources and processes
130	and plutonic-volcanic connections.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5127

131	Geological Context
132	The 70 to 100 km-wide northern Colorado River Extensional Corridor (CREC) is a zone of
133	north-northwest-trending crustal blocks bounded by normal faults at the eastern edge of the
134	Basin and Range in western Arizona, southern Nevada, and southeastern California (Fig. 1;
135	Faulds et al., 1990, 2001). It formed between ~20 and 12 Ma when lithospheric extension,
136	preceded and accompanied by intermediate to silicic magmatism, dismembered Proterozoic- and
137	Mesozoic-age continental crust (Faulds et al., 1990, 2001; Varga et al., 2004). Evidence for the
138	region's tectonic and volcanic upheaval during the middle Miocene is well preserved within the
139	northern CREC as thick sequences (>3 km) of volcanic and sedimentary strata and dissected
140	coeval plutons (e.g., Faulds, 1990; Falkner et al., 1995; Bachl et al., 2001; Miller & Miller, 2002;
141	Metcalf, 2004; Walker et al., 2007; Lang et al., 2008).
142	The southern Black Mountains produced the most voluminous eruption in the northern
143	CREC: the "supereruption" of the Peach Spring Tuff (PST) at 18.8 Ma (Lidzbarski et al., 2012;
144	Ferguson et al., 2013; Pamukcu et al., 2013). The PST ignimbrite is widely recognized in
145	southeastern California, southern Nevada, and western Arizona (Young & Brennan, 1974;
146	Glazner et al., 1986; Buesch & Valentine, 1992) (Fig. 1a). Its source, the Silver Creek caldera,
147	was dismembered during post-PST extension, with a smaller fragmented now exposed across the
148	Colorado River in the Sacramento Mountains, California (Ferguson et al., 2013).
149	Although the PST represents by far the largest eruption in the southern Black Mountains, it
150	was bracketed by ~2 million years of volcanic activity (Pearthree et al., 2010; McDowell et al.,
151	2012; McDowell et al., 2014; Table 1). The Silver Creek caldera and its environs (Fig. 1) provide
152	a temporal record of pre- to post-PST magmatism in the vicinity of the caldera (Lang, 2001;
153	Lang et al., 2008; McDowell et al., 2014).

6

10/21

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5127

154	We define the SBMVC to encompass the exposures of igneous rocks that predate and
155	immediately post-date the PST, in the southern Black Mountains where a thick pre-PST volcanic
156	section is exposed (Fig. 1). The northern boundary of the SBMVC is near Union Pass, a zone
157	identified by Murphy and Faulds (2003) and Murphy et al. (2004) as a "temporal domain
158	boundary" between 19-17 Ma extension to the south and <16 Ma extension to the north (Fig. 1);
159	it is also at or near the northernmost extent of thick, intermediate-composition pre-PST volcanic
160	units (Faulds et al., 1995; Lang, 2001; Murphy et al., 2013). The western boundary is buried
161	beneath Quaternary alluvium that fills the broad basin through which the Colorado River flows;
162	Kingman, Arizona, where pre-PST trachyte is absent from the stratigraphic section, is at the
163	eastern margin. The southern boundary is at the southernmost extent of the Black Mountains,
164	approximately 20 km southeast of the Silver Creek caldera (Fig. 1).
165	
1((

166 Stages of SBMVC magmatism

167 We divide SBMVC magmatism into three stages based on this and previous studies (e.g.,

168 Lang et al., 2008; Pearthree et al., 2010; Pamukcu et al., 2013; McDowell et al., 2014): (1)

169 initial, predominantly intermediate-composition, effusive volcanism; (2) the dominantly silicic

170 PST eruption; and finally (3) compositionally-diverse, small-volume volcanism and epizonal

171 intrusions (Fig. 2).

172

(1) Pre-PST magmatism is dominated by thick, phenocryst-rich (~10-40%, biotite and
plagioclase) trachytic, trachydacitic, and trachyandesitic lavas that overlie Precambrian basement
and are exposed from Union Pass to the southernmost Black Mountains (Fig. 1; Ransome, 1927;

176 Thorson, 1971; DeWitt et al., 1986; Faulds et al., 1999; Lang, 2001; Murphy, 2004; Lang et al.,

177	2008; Pearthree et al., 2010). These intermediate-composition lavas exceed ~1 km thickness
178	throughout the southern 40 km of the Black Mountains, thinning to less than 200 m 15 km north
179	of Silver Creek caldera (Fig. 1) (Lang et al., 2008; Ferguson et al., 2013; Murphy, 2004; Murphy
180	et al., 2013). This suggests a total volume on the order of 10^3 km ³ . Faulds et al. (1999) obtained
181	biotite 40 Ar/ 39 Ar ages for pre-PST lava of 19.19 +/- 0.06 Ma and 19.59 +/- 0.03 Ma. CA-TIMS
182	U-Pb dating of zircons extracted from Alcyone trachyte yielded a weighted mean age of 19.01
183	+/- 0.2 Ma (McDowell et al., 2014). The Alcyone trachyte comprises a thick sequence of lavas at
184	the base of the pre-PST section (Ransome, 1927; Thorson, 1971; Dewitt et al., 1986). Units
185	higher in the section include the Gold Road trachyte (Ransome, 1927; Thorson, 1971; Dewitt et
186	al., 1986); thinner mafic to intermediate lavas including the Wrigley Mine basaltic trachyandesite
187	and Esperanza trachyte (Pearthree et al., 2010), exposed to the southeast of the Silver Creek
188	caldera and near Union Pass (Fig. 1, Pearthree et al., 2010; Ferguson et al., 2013; Murphy et al.,
189	2013); and the Cook Canyon Tuff, an ignimbrite ranging from ~10-100 m in thickness that was
190	produced by the largest explosive eruption in the SBMVC other than the PST (Buesch and
191	Valentine, 1986; Murphy, 2004; Murphy et al., 2013).
192	
193	(2) The PST consists of a >0.5 km-thick, phenocryst-rich intracaldera trachyte that fills
194	Silver Creek caldera, and outflow that includes trachyte at the tops of some proximal exposures
195	but is dominated by high-silica rhyolite (Pamukcu et al., 2013; Ferguson et al., 2013; Frazier,
196	2013). Outflow PST is exposed over an area of 32,000 km ² (Fig. 1; Buesch, 1991; Ferguson et

al., 2013). ⁴⁰Ar/³⁹Ar dating of PST sanidine yielded an age of 18.78 +/- 0.02 Ma (Ferguson et 197

al., 2013); a correction of systematic bias using the algorithms of Renne et al. (2010, 2011) gives 198

199 an older age of 18.84 ± 0.02 Ma (McDowell et al., 2014). Lidzbarski reports U-Pb zircon CA- 200 TIMS and CA-SIMS ages that are consistent with these results (Lidzbarski et al., 2012;

201 Lidzbarski, 2014).

202

203 (3) Post-PST magmatism is represented by epizonal intrusions and small-volume lavas and204 tuffs:

205 **Intrusions** include two intra- and pericaldera stocks with a total area of exposure $\sim 30 \text{ km}^2$, 206 the Moss porphyry (mostly quartz monzodiorite and quartz monzonite) and the Times porphyry 207 (granite), and compositionally diverse porphyry dikes and small plugs that are exposed both 208 within the caldera and within a radius of 10 km (Ransome, 1923; Thorson, 1971; DeWitt et al., 209 1986; McDowell et al., 2014). Most dikes and plugs are silicic, but some dikes have 210 intermediate compositions or are composite. The stocks intrude the PST and display clear 211 evidence for magma mingling and likely hybridization, including magmatic enclaves and 212 rounded, rimmed feldspars (McDowell et al., 2014). Magmatic enclaves and rounded 213 phenocrysts of feldspar and quartz are also locally present in the intermediate and silicic dikes 214 (McDowell et al., 2014). U-Pb CA-TIMS zircon ages for the Moss porphyry(18.76 ± 0.11 Ma 215 and 18.84 ± 0.15 Ma) are within error of PST U-Pb zircon and Ar/Ar sanidine ages; Times 216 porphyry and composite dikes that we interpret to be associated with the Moss and Times 217 intrusions range from 18.7 to 18.5 Ma, and a large intracaldera dike is 18.2 Ma (McDowell et al., 218 2014, zircon CA-TIMS U-Pb). 219 **Post-PST volcanic rocks** in the southern Black Mountains consist of ~18.7 to 16.9 Ma 220 intermediate to silicic ignimbrites, block-and-ash flow deposits, lava flows, and volcanogenic 221 sediments (Fig. 1; Faulds et al., 1999; Murphy, 2004; Lang et al., 2008; Pearthree et al., 2010;

222 Murphy et al., 2013; McIntosh & Ferguson, unpublished Ar ages). In this study we investigate

223 two of these units: a prominent, glassy ~18.5 Ma silicic lava (McDowell et al., 2014) and its 224 magmatic enclaves, and a 17.5 Ma intermediate-composition lava containing 2-3 cm euhedral 225 feldspar phenocrysts (McIntosh & Ferguson, unpublished Ar ages). 226 227 **Methods** 228 Whole-rock Analysis 229 **Elemental compositions:** Analyses of 19 representative pre- and post-PST samples from the 230 SBMVC were carried out by Activation Laboratories in Ancaster, Ontario, by INAA, ICP, and 231 ICP-MS (Table 2). Fifteen of these were previously reported in McDowell et al. (2014). For this 232 study, we sent four additional samples to Activation Laboratories and include these in Table 2.

233 We also include analyses of ten PST samples for which we obtained whole-rock isotopic

compositions (8 pumice and fiamme, 2 enclaves). A total of 33 elemental analyses of PST

pumice and fiamme are plotted in Figure 2 (from Pamukcu et al., 2013, and Frazier, 2013).

236 Isotopic compositions: We determined whole-rock isotope compositions (Sr, Hf, Nd and Pb) for

the same 19 samples as for elemental analysis, along with 8 PST pumice samples and two

enclaves from PST, at the WSU Radiogenic Isotope and Geochronology Laboratory (RIGL) at

239 Washington State University (Table 3). Approximately 0.25 g of each powdered sample were

240 placed in Teflon vessels, dissolved in ~7 mL 10:1 HF:HNO₃, and immediately dried at 120 °C to

eliminate silica. Samples were then redissolved in ~7 mL 10:1 HF:HNO3 and placed in steel-

jacketed Parr bombs at 150°C for 5-7 days. The solutions were dried down and redissolved

243 overnight in a mixture of 6M HCl/H₃BO₃ to convert to chlorides and minimize the production of

fluoride species. Samples were dried down again and redissolved in Parr bombs at 150°C for 24

hours in 6M HCl until sample solutions were clear. These solutions were dried yet again, then

246	redissolved in a mixture of 1M HCl and 0.1M HF. High-field-strength elements (including Hf),
247	REE (including Nd), and Sr were initially separated on single cation exchange columns loaded
248	with AG 50W-X12 resin (200-400 mesh). Following the method of Patchett & Tatsumoto
249	(1981), Hf was eluted at the beginning of the procedure in 1M HCl/0.1M HF, followed by
250	elution of Sr in 2.5M HCl and finally bulk REE separation in 6M HCl. Ti was removed from the
251	Hf fraction, a crucial step, as excess Ti has been shown to alter the measured Hf isotopic
252	composition; Blichert-Toft et al., 1997. Any remaining Yb and Lu in the Hf aliquot were
253	removed in a third stage of column chemistry using 0.18 mL of AG 50W-X12 resin. Sr aliquots
254	were subsequently purified using 0.18 mL Sr-spec resin and HNO ₃ (e.g., Gaschnig et al., 2011).
255	Nd was separated from other REEs using LN Spec resin (Gaschnig et al., 2011).
256	To minimize Pb blanks, we dissolved additional aliquots of each sample specifically for Pb
257	analysis and, following the approach of Prytulak et al. (2006), separated Pb from solution using
258	Biorad AG1-X8 anion resin. Pb aliquots were then spiked with Tl, in order to correct for mass
259	fractionation as described by Gaschnig et al. (2011).
260	Aliquots of each purified species (Sr, Nd, Hf, Pb) were redissolved in 2% HNO3 for
261	determination of isotopic compositions on the WSU Thermo-Finnigan Neptune MC-ICP-MS.
262	Whole-rock Hf analyses were corrected for mass fractionation using 179 Hf/ 177 Hf = 0.7325 and
263	normalized using Hf standard JMC475 (176 Hf/ 177 Hf = 0.282160). Sr analyses were corrected for
264	mass fractionation using 86 Sr/ 88 Sr = 0.1194 and normalized using standard NBS-987 (87 Sr/ 86 Sr =
265	0.710240). Nd analyses were corrected for mass fractionation using 146 Nd/ 144 Nd = 0.7219 and
266	normalized using Nd standard Ames (143 Nd/ 144 Nd = 0.512138). We corrected for mass bias in the
267	Pb analyses using ${}^{205}\text{Tl}/{}^{203}\text{Tl} = 2.388$ and normalized the mass bias corrected values for standard
268	NBS 981 using ${}^{206}Pb/{}^{204}Pb = 16.9405$, ${}^{207}Pb/{}^{204}Pb = 15.4963$, ${}^{208}Pb/{}^{204}Pb = 36.7219$ (Galer &

Abouchami, 1998). ε_{Hf} and ε_{Nd} were calculated using the CHUR parameters reported by Bouvier et al. (2008).

271 In situ zircon analyses (oxygen and Lu-Hf)

272 We performed *in situ* oxygen isotope and Lu-Hf isotope measurements on zircon from 273 representative pre- to post-PST units: five pre-PST volcanic samples, 13 intrusive post-PST 274 samples, and three volcanic post-PST samples (Supplement tables 1,2). Zircon grains were 275 separated from whole rock using standard methods, including crushing, density separation by 276 water table and heavy liquids, magnetic susceptibility separation by Frantz magnetic separator, 277 and hand-picking. Grains were then mounted in epoxy and polished to their approximate 278 centers and imaged using SEM cathodoluminescence on the JEOL JSM 5600 scanning electron 279 microscope (SEM) at the Microanalysis Center shared by the US Geological Survey and 280 Stanford University. 281 Oxygen isotopes: Following the methods of Trail et al. (2007), we carried out a total of 467 O 282 isotope analyses (93 pre-PST, 312 post-PST intrusive, 62 post-PST volcanic) at UCLA using the 283 CAMECA IMS 1270 in multi-collection mode (Cs+ primary beam spot size ~20-25 microns). 284 Analyses were calibrated using zircon standard R33, which yielded an in-run reproducibility of 285 0.48‰. δ^{18} O was calculated using VSMOW (Baertschi, 1976). Cited precisions are the

286 geometric mean of the within-spot standard error and the in-run reproducibility on R33. The full

data set is reported in Supplement appendix 2.

288 *Lu-Hf isotopes*: Following analyses for O isotopic composition, the mounts were lightly

repolished and the age and Lu-Hf isotope composition was determined on a subset of the same

- grains at RIGL. We conducted a total of 239 analyses of four pre-PST samples (29 analyses),
- three PST samples (30 analyses), 12 post-PST intrusive samples (139 analyses), and three post-

292 PST volcanic samples (41 analyses).

293	Analyses were carried out using the laser ablation split-stream method (LASS) whereby U-
294	Pb age and Lu-Hf isotope composition are determined simultaneously (Fisher et al., 2014a). The
295	LASS approach is critical in zircon samples having multiple age components present within
296	single grains, as it allows detection of inadvertent incorporation of ancient zircon domains when
297	targeting younger (i.e., Miocene age) domains (Fisher et al., 2014a, Fisher et al., 2014b). Given
298	the young age, and thus low very low radiogenic Pb concentrations, relatively large analytical
299	uncertainties exist for age determinations, and thus we prefer the higher precision SIMS age
300	(McDowell et al., 2014). Hf isotope measurements that yielded concurrently-measured mixed
301	U-Pb ages (i.e., discordant) are excluded from Figs. 4 and 5.
302	In order to constrain the age and Hf isotope composition of the source materials, a small
303	subset of analyses targeted inherited cores (Table 4). When possible, we selected ablation sites
304	that overlapped with previous O isotope analysis locations. Care was taken to avoid placing the
305	laser beam over multiple CL zones. Analyses were calibrated using zircon standards R33 and
306	FC1. The mean 176 Hf/ 177 Hf for R33 and FC1 (0.282181 ± 36 (2SD), n= 73; 0.282754 ± 42
307	(2SD), n= 112) are in close agreement with the solution MC-ICPMS values of 0.282184 \pm
308	(Woodhead and Hergt, 2005) and 0.282764 ± 14 (Fisher et al., 2014). Reference zircons 91500
309	and GJ-1 were analyzed as secondary standards for both U-Pb age and Lu-Hf isotopic
310	composition and are in good agreement with published reference values. Eleven LASS analyses
311	of 91500 yielded a weighted mean 206 Pb/ 238 U age of 1068 ± 12 Ma (2SE) and a mean 176 Hf/ 177 Hf
312	of 0.282293 ± 37 (2SD) (Schoene et al., 2006; Blichert-Toft, 2008), while 10 LASS analyses of
313	GJ-1 yielded a weighted mean 206 Pb/ 238 U age of 596 ± 9 Ma (2SE) and a mean 176 Hf/ 177 Hf of
314	0.282015 ± 35 (2SD) (Morel et al., 2008). Analyses of all reference materials are reported in

315	detail in Supplement Appendix 3. $\epsilon_{\rm Hf}$ was calculated using CHUR parameters reported by
316	Bouvier et al. (2008). External 2-sigma precision was $\leq 1.5 \epsilon_{Hf}$.
317	The full data set is reported in Supplement appendix 1.
318	
319	Results
320	Whole-rock geochemistry documents SBMVC magmatic evolution from predominantly
321	intermediate-composition effusive volcanism (pre-PST), to a high-volume high-silica explosive
322	event (PST), and finally to compositionally diverse volcanic and intrusive magmatism (post-
323	PST). Pre-PST volcanic rocks have 48 to 70 wt% SiO ₂ ; post-PST intrusions, 55 to 80 wt%; and
324	post-PST volcanic rocks, 48 to 75 wt% (Lang et al., 2008; Pearthree et al., 2010; Frazier, 2013;
325	McDowell et al., 2014; Fig. 2; Tables 1, 2). True mafic rocks (basalts and gabbros) are relatively
326	rare, and, except for PST, Times porphyry, and minor dikes and stocks, rhyolites and granites are
327	also uncommon. The dominant SBMVC intermediate rocks are rich in total alkalis and
328	especially in K ₂ O and almost all are basaltic trachyandesite, trachyandesite, and trachydacite or
329	trachyte in the classification scheme of Le Bas et al. (1986). Most samples fall in the trachyte
330	plus trachydacite field and are trachytes according to the criterion normative Qz/(Qz+Pl+Or)
331	<0.2, and therefore for simplicity we use the term "trachyte" as a general descriptor. Pre- and
332	post-PST units are elementally distinct from the PST, which has lower Sr and Ba and higher Zr
333	and Rb at a given SiO_2 than its magmatic predecessors and successors (Fig. 2).
334	Sr, Nd, and Hf isotopic ranges for pre-PST units (87 Sr/ 86 Sr _i = 0.7093 to 0.7110, ϵ_{Nd} = -8.3 to -
335	11.6, and ϵ_{Hf} = -8.2 to -14.0) are similar to those of post-PST volcanics and intrusions (${}^{87}Sr/{}^{86}Sr_i$
336	= 0.7091 to 0.7124, ε_{Nd} = -8.4 to -10.4, and ε_{Hf} = -8.8 to -13.1) (Table 3, Fig. 3). Times and Moss
337	magmatic enclaves (SCM-27b and MPe1, respectively) have the most primitive isotopic ratios

338 (e.g., highest ε_{Hf} and ε_{Nd}). Throughout the sample suite, ε_{Nd} shows a strong positive correlation with $\varepsilon_{\text{Hf.}}$ All pre- and post-PST units have Pb isotopic ratios within the ranges ${}^{206}\text{Pb}/{}^{204}\text{Pb} =$ 339 18.19-18.49, ${}^{207}\text{Pb}/{}^{204}\text{Pb} = 15.60-15.62$, and ${}^{208}\text{Pb}/{}^{204}\text{Pb} = 38.95-39.29$. PST samples are more 340 uniform isotopically and generally have lower ε_{Nd} and ε_{Hf} and higher 87 Sr/ 86 Sr; than the other 341 SBMVC rocks (87 Sr/ 86 Sr_i = 0.7108 to 0.7121 (with one higher outlier, see discussion), ε_{Nd} = -342 11.4 to -11.6, and ε_{Hf} = -13.8 to -14.2); Pb isotope ratios are similar to those of the rest of the 343 SBMVC (206 Pb/ 204 Pb = 18.20-18.29, 207 Pb/ 204 Pb = 15.60-15.62, and 208 Pb/ 204 Pb = 39.09-39.32). 344 Collectively, SBMVC units have isotopic signatures consistent with those determined for other 345 346 Miocene intrusive and volcanic units within the northern CREC (e.g., Wooden & Miller, 1994; Metcalf et al., 1995; Falkner at al., 1995; Miller et al., 2000; Bachl et al., 2001; Ericksen et al., 347 348 2004) (Fig. 3). Zircon δ^{18} O in the majority of pre-PST, PST, and post-PST units falls within the range +5 – 349 +7.3‰, with several higher outliers between $\delta^{18}O = +7.8$ to +8.8 (one extreme outlier has $\delta^{18}O =$ 350 +12.2) and lower outliers between +4.2 to +5.0 (Fig. 4). Broadly, zircon δ^{18} O decreases from 351 older to younger units: average $\delta^{18}O = +6.8$ in the oldest sample, ~19 Ma Alcyone trachyte, 352 whereas average $\delta^{18}O = +5.6$ in the youngest samples, ~18.2 Ma silicic porphyry dikes (Fig. 4). 353 354 PST values, excluding one lower outlier at 4.5‰, range from 5.6 and 7.2‰ and average 6.4‰. 355 The 239 LASS zircon spots interpreted to be of Miocene age yielded ε_{Hf} values that range from -6 to -16 (Fig. 4). Overall, ε_{Hf} is higher in post-PST units than in pre-PST units. The oldest 356 357 sample, Alcyone trachyte, and the PST have the lowest values (near -14). All samples younger 358 than PST have some zircons with $\varepsilon_{\rm Hf}$ >-10, whereas all analyzed zircons from PST or pre-PST 359 units have $\varepsilon_{\rm Hf} < -10$.

360

Six LASS analyses of zircons from five samples clearly reveal inheriteance: their ²⁰⁶Pb/²³⁸U

361	and $^{207}\text{Pb}/^{206}\text{Pb}$ ages are 1.51-1.62 Ga and 1.66-1.75 Ga, respectively, and ϵ_{Hf} values are -30 to -
362	34 (Table 4).
363	For most paired O and Hf analyses, obtained from the same areas of single zircon grains, $\epsilon_{\rm Hf}$
364	correlates negatively with δ^{18} O (Table 5; Fig. 5a). This correlation breaks down for zircons with
365	the lowest, near- and sub-mantle, $\delta^{18}O$ (<5.5‰). All of the low- $\delta^{18}O$ zircon analyses are from
366	post-PST intrusive units, with exception of the single outlier PST grain.
367	Ranges of measured $\epsilon_{\rm Hf}$ values in individual samples (excluding analyses that we interpret to
368	have partly or entirely encountered inherited cores) are 3 to 7 units, in many cases exceeding $\pm 2\sigma$
369	analytical uncertainty. Similarly, δ^{18} O displays one- to four-unit intrasample variation, also
370	commonly exceeding analytical uncertainty (see Fig. 5b).
371	
372	Discussion
373	Whole-rock Sr-Nd-Hf-Pb Isotopes
374	Whole-rock isotopic ratios serve to constrain contributions from potential sources for
375	Miocene magmas in the CREC (Figure 3). The Proterozoic crust of this region is characterized
376	by high to very high $^{87}Sr/^{86}Sr$ (>0.710, up to 0.80 and higher) and low to very low ϵ_{Nd} (~-15 to -
377	22); Paleoproterozoic rocks in general, especially the more silicic rocks, are concentrated in the
378	upper and lower portions of these ranges of values, respectively, whereas Mesoproterozoic rocks
379	fall in the lower and upper portions (Bennett and DePaolo, 1987; Miller and Wooden, 1994).
380	
	We are unaware of published whole-rock Hf isotope data for Proterozoic rocks in this area, but,
381	We are unaware of published whole-rock Hf isotope data for Proterozoic rocks in this area, but, based on the ε_{Nd} - ε_{Hf} correlations of the Crustal and Terrestrial Arrays (Vervoort et al., 1999,
381 382	We are unaware of published whole-rock Hf isotope data for Proterozoic rocks in this area, but, based on the ε_{Nd} - ε_{Hf} correlations of the Crustal and Terrestrial Arrays (Vervoort et al., 1999, 2011) and present day ε_{Nd} of Proterozoic rocks in and near the CREC, we estimate that their ε_{Hf}

384	magmas in the CREC and environs older than ~12 Ma, were derived from ancient enriched
385	lithospheric mantle ($\epsilon_{Nd} \ll 4$, ${}^{87}Sr/{}^{86}Sr \gg 0.705$; e.g., Daley and DePaolo, 1992; DePaolo and
386	Daley, 2000; Feuerbach et al., 1993; Metcalf et al., 1995 (also see Metcalf et al. op. cit. for a rare
387	exception)). More silicic igneous rocks of Mesozoic and Cenozoic age span the Nd-Sr, and
388	presumably Hf, isotopic range between what is thought to be the enriched regional lithospheric
389	mantle and Proterozoic crust (Fig. 3) and are generally interpreted to reflect hybridization
390	processes involving these two sources (e.g. Miller and Wooden, 1994; Allen et al., 1995; Bachl
391	et al., 2001).
392	Lead isotope ratios for almost all mid-Miocene and older rocks in this region fall above the
393	Northern Hemisphere Regression Line (elevated ²⁰⁷ Pb/ ²⁰⁴ Pb and ²⁰⁸ Pb/ ²⁰⁴ Pb relative to
394	²⁰⁶ Pb/ ²⁰⁴ Pb). Wooden and coworkers (Wooden et al., 1988; Wooden & Miller, 1990; see also
395	Feuerbach et al., 1998) have identified two Pb isotopic provinces: the Mojave province to the
396	west is characterized by higher 207 Pb/ 204 Pb and 208 Pb/ 204 Pb than the Arizona province (Fig. 3).
397	The boundary between the two provinces is thought to lie within the CREC, very near the
398	SBMVC.
399	Sr _i and Nd isotope ratios for SBMVC samples overlap with those of other Miocene units
400	within the CREC (Sr _i \approx 0.709 to 0.714, $\epsilon_{Nd} \approx$ -8 to -15) (Fig. 3d). Like other CREC igneous units,
401	isotopic signatures of SBMVC volcanics and intrusions suggest that they are mixtures of juvenile
402	and crustal components, derived respectively from the regional enriched lithospheric mantle and
403	the Proterozoic crust. The wide range of isotopic compositions implies a wide range of
404	proportions of the two types of contributing materials. The less evolved compositions (lower $\ensuremath{Sr_i}$
405	higher ε_{Nd}) permit a very high proportion of juvenile material, but the range of suggested
406	compositions of purely juvenile magmas leaves unclear whether the less isotopically-evolved

407	SBMVC rocks could be derived entirely from the mantle or have a substantial crustal
408	component. A great majority of analyzed samples lie in a swath between plausible mantle and
409	crustal sources, which we interpret to indicate hybridization involving large, varying crustal and
410	mantle fractions. Isotopic data for Mesozoic igneous units in and near the CREC overlap with
411	those of the SBMVC (e.g., Miller & Wooden, 1994; Gerber et al., 1995) and could therefore
412	represent plausible crustal sources that do not require hybridization with juvenile material.
413	However, because the southern Black Mountains lack exposures of Mesozoic rocks, and
414	extensive zircon dating has found no evidence of Mesozoic inheritance (McDowell et al., 2014;
415	Lidzbarski et al., 2012, Lidzbarski, 2014; this study), we infer that Mesozoic-age crust did not
416	serve as a significant contributor to SBMVC magmas.
417	Lead isotope ratios strongly suggest that SBMVC magmas were derived from the regional
418	lithosphere (crust and mantle). More specifically, uniformly high ²⁰⁷ Pb/ ²⁰⁴ Pb and ²⁰⁸ Pb/ ²⁰⁴ Pb
419	indicate origin within Mojave, not Arizona, province lithosphere (Fig. 3).
420	The PST, including both trachyte and rhyolite, and Alcyone trachyte have isotopic
421	compositions that suggest the largest Paleoroterozoic crustal components among all sampled
422	units. One outflow PST rhyolite pumice has much higher Sr_i of 0.723; this sample, like other
423	PST rhyolites, has very low Sr concentration (17 ppm), and we attribute the high Sr_i to slight
424	contamination through incorporation of a few percent of Proterozoic crust with much higher
425	⁸⁷ Sr/ ⁸⁶ Sr and Sr concentration (Miller and Wooden, 1994), perhaps as a lithic fragment. Other
426	pre- and post-PST extrusive and intrusive units display a wider range of whole-rock isotopic
427	values and have more primitive isotopic compositions on average (Fig. 3). Lower-SiO ₂ units –
428	particularly pre-PST lavas PSK-14 and PST-11, and post-PST magmatic enclaves in the Times
429	and Moss porphyries and silicic lava SIT-1 – appear to have the largest juvenile component, with

430 relatively high ε_{Nd} and ε_{Hf} and low ${}^{87}Sr/{}^{86}Sr_i$. Higher-SiO₂ units have lower ε_{Nd} and ε_{Hf} , and 431 higher ${}^{87}Sr/{}^{86}Sr_i$ (Fig. 3).

The isotopic differences between the PST and all other SBMVC units except the Alcyone
trachyte suggests that it, and perhaps the Alcyone as well, were petrogenetically distinct
magmas. Notably, the intracaldera stocks and cross-cutting dikes have a similar range of
compositions to the remainder of pre- and post-PST units but do not overlap with the PST.or the
Alcyone sample

437

438 Zircon O and Hf Isotopes

To our knowledge there are no published Hf isotope data for zircons or whole rocks

440 representing the Proterozoic crust or young mafic rocks interpreted to be juvenile in the CREC

441 region. Based on ε_{Nd} thought to represent the juvenile enriched lithospheric mantle (Fig. 3) and

442 the terrestrial ε_{Nd} and ε_{Hf} array (Vervoort et al., 1999, 2011), we estimate that juvenile ε_{Hf} in the

443 CREC is roughly -2 to -8. As discussed above, we estimate that Miocene ε_{Hf} in the Proterozoic

444 Mojave crust is roughly in the range -17 to -33. An alternative estimate for Miocene ε_{Hf} of

445 Paleoproterozoic rocks, based on the calculated ¹⁷⁶Hf/¹⁷⁷Hf of the six Paleoproterozoic zircons in

446 our data set and typical 176 Lu/ 177 Hf of crustal rocks (~0.0125), falls toward the lower end of that

447 range (-16.4 to -20.4). Based upon these estimates, our zircon ε_{Hf} data are consistent with whole-

448 rock data in suggesting that magmatic sources comprised both ancient crustal and juvenile

449 mantle-derived material (Fig. 4; Table 5), with the highest values of ~-6 possibly representing

450 growth from entirely juvenile magma and all others indicating highly variable amounts of

451 hybridization.

452

Oxygen isotopic compositions of zircon are mostly >~5.6, somewhat heavier than expected

453 for crystals grown from juvenile, mantle-derived magmas but mostly toward the lower end of the 454 typical crustal zircon range. Thus further supports the inference that SBMVC magmas were 455 hybrids that combined substantial proportions of juvenile mantle-derived and crustal components. The paucity of δ^{18} O values >+7 to +8‰ (Fig. 4; Supplement appendix 2) suggests 456 457 limited input from metasedimentary sources (e.g. the abundant paragneisses of the Mojave terrane). A few relatively low δ^{18} O analyses (δ^{18} O = +4-5‰) from a silicic porphyry dike and 458 459 Times porphyry zircons may reflect limited melting and assimilation of hydrothermally-altered 460 rock during the SBMVC's post-PST magmatic stage (e.g., Bindeman & Valley, 2001), but the 461 dearth of these values suggests that, unlike the large-volume continental magmatic centers along 462 the Yellowstone-Snake River Plain trend (Bindeman & Valley, 2001; Watts et al., 2011; Drew et 463 al., 2013), this process played a relatively minor role in the development and evolution of the 464 PST and other SBMVC magmas. Increasing average $\varepsilon_{Hf,Zircon}$ and decreasing $\delta^{18}O_{Zircon}$ in post-PST units is broadly consistent 465 466 with whole-rock isotopic data that indicate increasing input of mantle-derived material into the 467 SBMVC system after the PST eruption. This inference is supported by the relative abundance of 468 post-PST zircons with enriched Mojave mantle-like zircon isotopic compositions (Fig. 5a). 469 Zircons from PST samples and the Alcyone trachyte have similar narrow ranges of relatively high δ^{18} O and low ε_{Hf} values, consistent with crystallization within an isotopically homogeneous 470 471 magma body with a relatively large ancient crustal component. In contrast, zircons from most pre- and post-PST units and individual samples have wider isotopic ranges, lower average δ^{18} O. 472 and higher average ε_{Hf} (Fig. 4, 5). These characteristics indicate crystallization from 473 474 petrogenetically diverse magmas with greater contributions from juvenile sources than PST, or

475 Alcyone trachyte. The large ranges in δ^{18} O and ε_{Hf} in zircon from many samples, in many cases

476	beyond analytical uncertainty (see Supplement appendix 3), demonstrate isotopic disequilibrium.
477	This indicates open-system processes whereby zircons crystallized in isotopically distinct melts
478	prior to mingling and mixing (cf. McDowell et al., 2014).
479	Like the whole-rock data, zircon isotopic compositions reveal a petrogenetic distinction
480	between the PST and intrusions. Moss porphyry zircon ages are within error of PST age
481	(McDowell et al., 2014), but the two units are isotopically distinct: the Moss porphyry displays a
482	greater range in $\delta^{18}O$ and ϵ_{Hf} than the PST and has a distinctly higher ϵ_{Hf-WR} , ϵ_{Nd-WR} , and average
483	$\epsilon_{Hf-Zircon}$; the Times porphyry and the dikes exhibit broadly similar averages and trends to those of
484	the Moss porphyry. Thus, whereas effective isotopic homogenization of the PST magma body
485	occurred prior to zircon saturation and crystallization (Frazier, 2013), isotopic variability in
486	zircons from the intrusions document mingling and mixing that is also clearly revealed in
487	outcrop and thin section, for example by quenched mafic enclaves and resorbed and rimmed
488	crystals (McDowell et al, 2014).
489	
490	Integration of zircon and whole-rock Hf isotope data
491	Comparison and integration of zircon and whole-rock ε_{Hf} offers constraints on SBMVC

492 magmatic evolution beyond what can be gleaned from either data set alone (Fig. 5b), providing

493 insights into details of open-system processes.

494 In rocks that formed from magmas that evolved only by closed-system processes, zircon ε_{Hf} 495 should be uniform and statistically identical to initial ε_{Hf} in their host rocks. Variation in zircon

- $\epsilon_{\rm Hf}$ that exceeds variability that can be explained by analytical uncertainty for a uniform
- 497 population suggests evolution involving open-system processes. As noted above, a majority of
- 498 samples other than PST and Alcyone trachyte meet this criterion for identification of open-

499 system processes. Furthermore, in most rocks globally of intermediate to silicic composition, a 500 great majority of Hf resides in zircon; therefore, mean zircon ε_{Hf} should be very close to ε_{Hf} in 501 host rocks. Where this is not the case, it reveals not only the influence of open-system processes, 502 but also that a large fraction of whole-rock Hf is not represented by the analyzed zircon. Either 503 the analyzed zircon population was highly non-representative (an important part of the range of 504 compositions was missed), or much of the Hf in the rock is in other phases and has a distinctly 505 different isotopic composition.

506 The range of zircon ϵ_{Hf} in a majority of samples spans the whole-rock ϵ_{Hf} value and the mean

507 zircon value is close to whole-rock (Fig. 5b). However, in four samples there is a strong

apparent mismatch – two magmatic enclaves (one in the Moss porphyry [MPe1], one in the

509 Times porphyry [SCM-27b]), a relatively mafic (trachyandesitic) zone within a composite

510 feldspar porphyry dike (SCM-30), and a post-PST intermediate-composition lava (SIT-2) – in

511 which most or all zircon ε_{Hf} values are either lower or higher than ε_{Hf} of their host whole-rocks.

512 In three cases zircon values are equal to or less than whole-rock, and in the fourth they are equal

513 to or greater than whole-rock (Fig. 5b).

514 In the magmatic enclaves and feldspar porphyry dike, whole-rock ε_{Hf} exceeds calculated

515 mean zircon ϵ_{Hf} by ~2 units; ϵ_{Hf-WR} of -8 to -10 indicates a larger juvenile component than ϵ_{Hf-}

516 Z_{ircon} . For individual zircon analyses in these samples, ε_{Hf} is 0 to 5 units lower than whole-rock.

517 However, the range of ϵ_{Hf} in magmatic enclave zircons is nearly identical to zircon ϵ_{Hf} ranges in

their respective Times and Moss porphyry host rocks (Fig. 5b). We suggest that enclave zircons

- are likely xenocrysts entrained from the partially crystallized Times and Moss porphyry host
- magmas during the injection of more mafic, juvenile material. Similarly, the range of zircon $\epsilon_{\rm Hf}$

521 in trachyandesitic sample SCM-30 matches the $\varepsilon_{\rm Hf}$ range in a more silicic section of the same

522 composite dike (SCM-1b, trachytic), again indicating that the zircon bears the isotopic signature 523 of its original host instead of the more juvenile magma into which it was incorporated. Assuming 524 that our sample set is sufficiently statistically robust, any zircons that grew within the enclaves 525 and dike melts were likely too small to extract via typical mechanical and gravimetric mineral 526 separation methods. 527 In trachyte lava SIT-2, mean zircon $\varepsilon_{\rm Hf}$ exceeds whole-rock $\varepsilon_{\rm Hf}$ by ~3 units; the zircon has a 528 more juvenile signature than its more crustal host. SIT-2 is characterized by large, 2-3 cm 529 rounded feldspar glomerocrysts (some with reaction rims), phenocrysts (or xenocrysts) of biotite 530 and sphene with reaction textures, and sparse clinopyroxene and feldspar microlites within a 531 glassy matrix. We surmise that the differences in zircon and whole-rock $\varepsilon_{\rm Hf}$ reflect the injection 532 of a more evolved magma into, and the partial resorption of, a less evolved feldspar-rich 533 cumulate. We propose that the analyzed zircon was derived from the disaggregated cumulate, 534 and therefore that its isotopic composition approaches that of the more primitive magma from 535 which the cumulate crystallized; in contrast, the whole-rock composition of SIT-2 reflects that of 536 the injected, more isotopically evolved, magma. The less radiogenic component of whole-rock 537 Hf is probably in large part contained within the glassy matrix (melt). 538 539 **Proposed Evolution of the SBMVC** 540 We propose the following reconstruction of the SBMVC's magmatic evolution based on 541 whole-rock and zircon isotopic constraints in conjunction with field, elemental and petrographic 542 data (Fig. 6): (1) ~19 – 18.8 Ma: Eruption of ~ 10^3 km³ of intermediate-composition magmas 543 544 (trachytic and subordinate trachybasaltic and trachyandesitic lavas, Cook Canyon

ignimbrite), all produced from a combination of juvenile, enrichedmantle-derived magma and
Paleoproterozoic Mojave crustal material. Relative crustal contributions to pre-PST lavas were
variable; Alcyone trachyte at the base of the pre-PST lava section records the greatest crustal
contribution of analyzed pre-PST units (Figs. 3 and 4). One pre-PST lava and a PST magmatic
enclave provide isotopic evidence for input of magmas with dominantly sources prior to and
during the PST episode.

551 (2) **18.8 Ma: Accumulation, homogenization, and eruption of the >700 km³ PST magma**

552 body. The narrow, relatively crust-rich whole-rock and zircon isotopic signatures in rhyolitic and

trachytic PST (Figs. 3, 4, and 5) distinguish PST from all other analyzed units in the SBMVC

554 except for the early Alcyone trachyte lava. The uniformity of zircon isotopic compositions

suggests that zircon growth postdated mixing.

556 (3) 18.8 – 17 Ma: Episodic eruption and intrusion of relatively small volume,

557 elementally and isotopically diverse magmas. Like their magmatic predecessors, post-PST

magmas were generated from a combination of enriched mantle- and Paleoproterozoic crust-

derived sources. However, they were more isotopically diverse and in general richer in the

560 juvenile component. Intrasample variability in zircon isotopic composition, along with field and

561 petrographic relations, demonstrates open-system processes and suggests that magma recharge

562 periodically reinvigorated the volcanic center, locally disaggregating and assimilating resident

563 crystal mushes or previously crystallized material.

- 564
- 565

Implications

566 (1) Elemental and isotopic data for the PST and intracaldera plutons indicate that they are

567 petrogenetically distinct: the caldera intrusions are more isotopically heterogeneous and record

568 more juvenile input. Plausibly, the plutons may represent mush from the remains of the base of 569 the PST chamber, rejuvenated and contaminated by more juvenile magma, but the data yield no 570 isotopic evidence for a *direct* petrogenetic connection between the intracaldera plutons and the 571 phenocryst-rich trachyte that has been interpreted as erupted PST mush. 572 These findings are in this regard consistent with those from some other Cenozoic, large-573 eruption producing volcanic centers (such as Questa caldera in the Southern Rocky Mountain 574 volcanic field – see Tappa et al., 2011) where intracaldera plutons are isotopically and 575 temporally distinct from high-volume erupted material. Either the high-volume eruptions 576 evacuated essentially all magma from the chamber, or any remaining material was subject to 577 post-eruption modification, as suggested here. 578 (2) Previous studies (e.g., Tappa et al., 2011; Lipman, 2007) have proposed that ignimbrite-579 producing felsic volcanic centers exhibit characteristic waxing and waning stages correlating 580 with pre- and post-ignimbrite magmatism, respectively. Other studies (e.g., Annen et al., 2015) 581 also document pre-supercruption thermal priming of the crust and post-supercruption diminished 582 magmatic flux. The SBMVC appears to reflect a similar process. Mineral and whole rock 583 isotopic data from the SBMVC reveal that although all SBMVC rocks formed via hybridization 584 between regional enriched mantle magmas and Proterozoic Mojave crust, the supereruptive PST 585 magma body incorporated a larger crustal component and experienced far more thorough 586 hybridization than its magmatic predecessors or successors. This may suggest an increasing 587 thermal flux prior to the PST eruption (consistent with thermal data reported in McDowell et al., 2014 for this system), transferred advectively from the mantle by mafic magmas and leading to 588 589 more extensive crustal melting during the "waxing" phase of the SBMVC's history, and the 590 consequent formation a much larger, hotter, more vigorously convecting magma body.

591 Subsequent diminished mantle flux resulted in abrupt post-PST waning of magmatism. Post-592 PST volcanic rocks and intrusions have more primitive whole-rock and zircon isotopic 593 compositions than the PST; in the waning stages of magmatic flux within the SBMVC, these 594 isotopic compositions become more primitive through time, indicating a relative increase in the 595 proportion of mantle input to the regional magmatic system. 596 Increasing mantle fraction in the small-volume magmas was probably a consequence of one 597 or both of two factors: (a) Massive partial melting in the subjacent crust rendered it more 598 refractory after the PST eruption, and hence the crust contributed a greatly reduced mass to 599 ascending post-PST mantle-derived magmas; and/or (b) diminished mantle magma flux after the 600 PST eruption resulted in cooling and greatly reduced melting in the crust, such that the modest 601 amounts of magma that reached the upper crust had incorporated smaller crustal components. 602 603 Acknowledgments: We thank Marsha Lidzbarski for her expertise and assistance in collecting 604 the zircon data presented here, and Charles Ferguson (Arizona Geological Survey) for sharing 605 his extensive knowledge of the southern Black Mountains and of field volcanology in general, 606 and for his assistance in collecting representative samples. Jeff Vervoort, Charles Knaack, Diane 607 Wilford, and Scott Boroughs kindly lent their expertise and facilitated our work at the 608 Washington State Radiogenic Isotope and Geochronology Laboratory. Reviewers Lang Farmer 609 and Peter Lipman and Associate Editor Calvin Barnes provided thorough, careful, constructive 610 comments that were very helpful in revising and improving the manuscript. This research was 611 supported by collaborative NSF grants EAR-0409876 and 0911726 (Vanderbilt) and EAR-612 0409882 and 0911728 (San Jose State). 613

614 Figure Captions

- 615 Figure 1: (a) Extent of the 18.8 Ma rhyolitic Peach Spring Tuff and location of its source, the 616 Silver Creek Caldera (Ferguson, 2013; Pamukcu, 2013). BR = Basin and Range, CP = Colorado 617 Plateau, CREC = Colorado River Extensional Corridor, SM = Sacramento Mountains, BM = 618 Black Mountains, CM = Cerbat Mountains, HM = Hualapai Mountains, SCC = Silver Creek 619 Caldera. Box shows approximate extent of the Southern Black Mountains Volcanic Center 620 (SBMVC). (b) Map of SBMVC within area of box shown in (a). Sample locations are shown 621 with their unit numbers (*italicized*, following designations in Table 1). Box shows area of (c). 622 BM = Black Mountains, CM = Cerbat Mountains, HM = Hualapai Mountains, (c) Geology and 623 sample locations in the Oatman-Silver Creek area, southern Black Mountains. The Silver Creek 624 caldera and its immediate environs includes intracaldera PST, post-PST intrusions, and pre- and 625 post-PST volcanics (geology from Ferguson et al., 2013). 626 627 Figure 2: Whole rock compositions of units in the SBMVC (data from this study plus previously
- published datasets from the SBMVC: Lang, 2001, Lang et al., 2008; Pearthree et al., 2010;
- 629 Frazier, 2013; Pamukcu et al., 2013).
- 630
- 631 Figure 3: Whole rock isotopic compositions of pre- to post-PST SBMVC units (this study);
- 632 CREC intrusions (Falkner et al., 1995, Bachl et al., 2001, and unpublished Vanderbilt and San
- 533 Jose State University data). Strontium-neodymium isotopic fields: inferred enriched mantle
- 634 composition (Feuerbach et al., 1993); Proterozoic and Mesozoic rocks of the region (Bennett &
- DePaolo, 1987; Miller and Wooden, 1994; Allen et al., 1995; Kapp et al., 2002). Lead isotopic

fields for Mojave and Arizona terranes are from Wooden et al. (1988), Wooden & Miller (1990),and Feuerbach et al. (1998).

638

639 Figure 4: Plots of zircon and whole rock isotopic data for pre-PST units (left hand side of graphs)

to post-PST units (right hand side of graphs). Numbers along the top of the graphs correlate with

unit numbers in Table 1, which represent a general time sequence from pre- to post-PST. (a)

642 Oxygen isotopes in zircon. Top graph shows average values and standard deviations; bottom

643 graph shows full range of zircon δ^{18} O for each sample. Range of mantle zircon (δ^{18} O = +5.5 ±

644 0.3‰) shown for comparison. (b) Hafnium isotopes in zircon. Top graph shows average values

and standard deviations; bottom graph shows full range of zircon ϵ Hf for each sample. (c) Whole

646 rock ϵ Nd, ϵ Hf, and 87 Sr/ 86 Sr_i for all SBMVC units.

647

⁶⁴⁸ Figure 5: Zircon oxygen and hafnium isotope data from SBMVC units. (a) Subset of analyses

⁶⁴⁹ representing paired O and Hf analyses obtained from the same areas in single grains. (b) Whole

- 650 rock εHf vs. zircon εHf for pre- to post-PST units. Line shows trend of equal whole rock and 651 zircon $ε_{Hf}$.
- 652

⁶⁵³ Figure 6: Cartoon depicting the magmatic evolution of the SBMVC as indicated by elemental,

654 isotopic, and field data. PMC: Proterozoic Mojave crust component; EM: enriched Mojave

- 655 lithospheric mantle component.
- 656
- 657
- 658

659	References Cited
660 661 662	Allen, C.M., Wooden, J.L., Howard, K.A., Foster, D.A., and Tosdal, R.M. (1995) Sources of the Early Cretaceous plutons in the Turtle and West Riverside mountains, California; anomalous Cordilleran interior intrusions. Journal of Petrology, 36, 1675–1700.
663 664 665	Annen, C., Blundy, J.D., Leuthold, J., and Sparks, S.J. (2015) Construction and evolution of igneous bodies: Towards an integrated perspective of crustal magmatism. Lithos, 230, 206-221.
667 668 669 670	Bachl, C.A., Miller, C.F., Miller, J.S., and Faulds, J.E. (2001) Construction of a pluton: Evidence from an exposed cross-section of the Searchlight pluton, Eldorado Mountains, Nevada. GSA Bulletin, 113, 1213-1228.
671 672	Bachmann, O., and Bergantz, G.W. (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. Journal of Petrology, 45, 1565-1582.
674 675 676 677	Bachmann, O., Miller, C.F., and De Silva, S.L. (2007) The volcanic–plutonic connection as a stage for understanding crustal magmatism. Journal of Volcanology and Geothermal Research, 167, 1-23.
678 679	Bachmann, O., and Bergantz, G. (2008) The magma reservoirs that feed supereruptions. Elements, 4, 17-21.
680 681 682 683	Baertschi, P. (1976) Absolute ¹⁸ O content of standard mean ocean water. Earth and Planetary Science Letters, 31, 341-344.
684 685 686 687	Beard, B.L., and Glazner, A.F. (1995) Trace element and Sr and Nd isotopic composition of mantle xenoliths from the Big Pine Volcanic Field, California. Journal of Geophysical Research, 100, 4169–4179.
688 689 690	Bennett, V.C., and DePaolo, D.J. (1987) Proterozoic crustal history of the western United States as determined by neodymium isotopic mapping. Geological Society of America Bulletin, 99, 674-685.
691 692 693 694 695	Bindeman, I.N., and Valley, J.W. (2001) Low-δ ¹⁸ O rhyolites from Yellowstone: magmatic evolution based on analyses of zircons and individual phenocrysts. Journal of Petrology, 42, 1491-1517.
696 697 698 699	 Bindeman, I.N., Watts, K.E., Schmitt, A.K., Morgan, L.A., and Shanks, P. W. (2007) Voluminous low δ18O magmas in the late Miocene Heise volcanic field, Idaho: Implications for the fate of Yellowstone hotspot calderas. Geology, 35, 1019-1022.
700 701 702	Blichert-Toft, J., Chauvel, C., and Albarède, F. (1997) Separation of Hf and Lu for high- precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology, 127, 248-260.

703 704 705	Blichert-Toft, J., 2008. The Hf isotopic composition of zircon reference material 91500. Chem. Geol. 253, 252–257.
706 707 708 709 710	Bouvier, A., Vervoort, J.D., and Patchett, P.J. (2008) The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273, 48-57.
711 712 713 714	Buesch, D.C. (1991) Changes in depositional environments resulting from emplacement of a large-volume ignimbrite. Special Publication - Society of Economic Paleontologists and Mineralogists, 45, 139-153.
715 716 717 718 719	Buesch, D.C. and Valentine, G.A. (1986) Peach Springs Tuff and volcanic stratigraphy of the southern Cerbat Mountains, Kingman, Arizona, in Nielson, J.E., and Glazner, A.F., eds., Cenozoic stratigraphy, structure and mineralization in the Mojave Desert: Los Angeles, California State University, 7-14.
720 721 722	Daley, E.E., DePaolo, DJ. (1992) Isotopic evidence for lithospheric thinning during extension; southeastern Great Basin. Geology, 20, 104-108.
723 724 725 726	Daley, E.E., DePaolo, DJ. (2000) Neodymium isotopes in basalts of the Southwest Basin and Range and lithospheric thinning during continental extension. Chemical Geology, 169, 157-185.
727 728 729	DeWitt, E., Thorson, J.P., and Smith, R.C. (1986) Geology and gold deposits of the Oatman District, northwestern Arizona. U.S. Geological Survey Bulletin, 1857-1, I1-I28.
730 731 732 733 734	Drew, D.L., Bindeman, I.N., Watts, K.E., Schmitt, A.K., Fu, B., and McCurry, M. (2013) Crustal-scale recycling in caldera complexes and rift zones along the Yellowstone hotspot track: O and Hf isotopic evidence in diverse zircons from voluminous rhyolites of the Picabo volcanic field, Idaho. Earth and Planetary Science Letters, 381, 63-77.
735 736 737 738	Ericksen, S.M., Miller, J.S., Miller, C.F., Harper, B.E., and Aggarwal, J.K. (2004) Isotopic constraints on the evolution of felsic magma in the Aztec Wash pluton, Eldorado Mountains, Nevada. Geological Society of America Abstracts with Programs, 36, 8.
739 740 741 742 743	Falkner, C.M., Miller, C.F., Wooden, J.L., and Heizler, M.T. (1995) Petrogenesis and tectonic significance of the calc-alkaline, bimodal Aztec Wash pluton, Eldorado Mountains, Colorado River extensional corridor. Journal of Geophysical Research, 100(B7), 10453- 10476.
744 745 746	Farmer, G.L., Perry, F.V., Semken, S., Crowe, B., Curtis, D., and DePaolo, D.J. (1989) Isotopic evidence of the structure and origin of subcontinental lithospheric mantle in southern Nevada. Journal of Geophysical Research, 94, 7885-7898.
747 748	Faulds, J.E., Feuerbach, D.L., Miller, C.F., and Smith, E.I. (2001) Cenozoic evolution of the

749 750	northern Colorado River extensional corridor, southern Nevada and northwest Arizona, in Erskine M.C., et al., eds., The geologic transition, High Plateaus to Great Basin – A
751	symposium and field guide: The Makin volume: Utah Geological Association Publication
752	30. Pacific Section American Association of Petroleum Geologists Publication GB78, p.
753	239–271.
754	
755	Faulds J.E. Smith E.L. and Gans P. (1999) Spatial and temporal patterns of magmatism and
756	extension in the northern Colorado River extensional corridor Nevada and Arizona. A
757	preliminary report. In Cenozoic geology of the northern Colorado River extensional
758	corridor Nevada and Arizona. Economic implications of extensional segmentation
759	structures: Nevada Petroleum Society Field Trin Guide n 171-183
760	structures. Novidur euroreum society, i feiu ritp Guide, p. 171-165.
761	Faulds LE Feuerbach DL Reagan MK Metcalf RV Gans P and Walker LD (1995)
762	The Mount Perkins block northwestern Arizona: An exposed cross-section of an
763	evolving preextensional to synextensional magmatic system Journal of Geophysical
764	Research 100 15249-15266
765	Research, 100, 15247-15200.
766	Faulds J.E. Geissman J.W. and Mawer C.K. (1990) Structural development of a major
767	extensional accommodation zone in the Basin and Range Province, northwestern Arizona
768	and southern Nevada. Implications for kinematic models of continental extension
769	Geological Society of America Memoirs 176 37-76
770	
771	Ferguson, C.A., McIntosh, W.C., and Miller, C.F. (2013) Silver Creek caldera—The tectonically
772	dismembered source of the Peach Spring Tuff, Geology, 41, 3-6.
773	
774	Feuerbach, D.L., Reagan, M.K., Faulds, J.E., and Walker, J.D. (1998) Lead isotopic evidence for
775	synextensional lithospheric ductile flow in the Colorado River extensional corridor,
776	western United States. Journal of Geophysical Research: Solid Earth (1978–2012),
777	103(B2), 2515-2528.
778	
779	Feuerbach, D.L., Smith, E.I., Walker, J.D., and Tangeman, J.A. (1993) The role of the mantle
780	during crustal extension: Constraints from geochemistry of volcanic rocks in the Lake
781	Mead area, Nevada and Arizona. Geological Society of America Bulletin, 105, 1561-
782	1575.
783	
784	Fisher, C.M., Vervoort, J.D., and DuFrane, S.A. (2014a) Accurate Hf isotope determinations of
785	complex zircons using the "laser ablation split stream" method. Geochemistry,
786	Geophysics, Geosystems, 15, 121-139.
787	
788	Fisher, C.M., Vervoort, J.D., and Hanchar, J.M. (2014b) Guidelines for reporting zircon Hf
789	isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data.
790	Chemical Geology, 363, 125-133.
791	
792	Frazier, W.O. (2013) Petrochemical constraints on generation of the Peach Spring Tuff
793	supereruption magma, Arizona, Nevada, California (Masters thesis, Vanderbilt
794	University).

795	
796	Galer, S.J.G., and Abouchami, W. (1998) Practical application of lead triple spiking for
797	correction of instrumental mass discrimination. Mineralogical Magazine of America, 62.
798	491-492.
799	
800	Gaschnig R M Vervoort LD Lewis R S and Tikoff B (2011) Isotopic evolution of the
801	Idaho batholith and Challis intrusive province northern US Cordillera Journal of
802	Petrology 52 2397-2429
802	$1 \text{ cubicgy}, 52, 2391^{-2}$
804	Gerber M.F. Miller C.F. and Wooden I.I. (1905) Plutonism at the eastern edge of the
805	Cordilleran Jurassic magmatic belt Mojave Desert California In Miller D M and
005 006	Pushy C (Edg.) Jurgesia magnetism and teatonism in the Cardillara Coological
000	Society of America Special Deper, 200, 251, 274
007	Society of America Special Paper, 299, 551-574.
000	Clemen A.F. Nielsen J.F. Henred K.F. and Miller D.M. (1090) Correlation of the Basel
010	Glazner, A.F., Melson, J.E., Howard, K.E., and Miller, D.M. (1986) Correlation of the Peach
810	Springs Turi, a large-volume Miocene ignimorite sneet in California and Arizona.
811	Geology, 14, 840-843.
812	
813	Glazner, A.F., Coleman, D.S., and Bartley, J.M. (2008) The tenuous connection between high-
814	silica rhyolites and granodiorite plutons. Geology, 36, 183-186.
815	
816	Hawkesworth, C.J., and Kemp, A.I.S. (2006) Using hafnium and oxygen isotopes in zircons to
817	unravel the record of crustal evolution. Chemical Geology, 226, 144-162.
818	
819	Kapp, J.L, Miller, C.F., and Miller, J.S. (2002) Ireteba pluton, Eldorado Mountains, Nevada:
820	Late, deep-source, peraluminous magmatism in the Cordilleran Interior. Journal of
821	Geology, 110, 649-669.
822	
823	Kemp, A.I.S., Hawkesworth, C.J., Paterson, B.A., and Kinny, P.D. (2006) Episodic growth of
824	the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature, 439,
825	580-583.
826	
827	Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M.,
828	Gray, C.M., and Whitehouse, M.J. (2007) Magmatic and crustal differentiation history of
829	granitic rocks from Hf-O isotopes in zircon. Science, 315, 980-983.
830	
831	Kemp, A.I.S., Wilde, S.A., Hawkesworth, C.J., Coath, C.D., Nemchin, A., Pidgeon, R.T.,
832	Vervoort, J.D., and DuFrane, S.A. (2010) Hadean crustal evolution revisited: new
833	constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth and Planetary
834	Science Letters, 296, 45-56.
835	
836	Lang, N.P., Walker, B.J., Claiborne, L.L., Miller, C.F., Hazlett, R.W., and Heizler, M.T. (2008)
837	The Spirit Mountain batholith and Secret Pass Canyon volcanic center: A cross-
838	sectional view of the magmatic architecture of the uppermost crust of an extensional
839	terrain, Colorado River, Nevada–Arizona: Geological Society of America Field Guide,
840	11, 187-214, doi:10.1130/2008.fld011(09).

841	
842	Lang, N. (2001) Evolution of the Secret Pass Canyon volcanic center, Colorado River
843	Extensional Corridor, northwest Arizona. [M.S. Thesis]. Nashville, Tennessee:
844	Vanderbilt University, 114 p.
845	
846	Le Bas, M J, Le Maitre, R W, Streckeisen, A, and Zanettin, B A. (1986) Chemical classification
847	of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27, 745-
848	750.
849	
850	Lidzbarski, M.I. (2014) U-Pb Geochronology of the Miocene Peach Spring Tuff Supereruption
851	And Precursor Cook Canvon Tuff, Western Arizona, USA, Master's Theses, Paper 4502.
852	http://scholarworks.sisu.edu/etd_theses/4502
853	<u> </u>
854	Lidzbarski M Mundil R Miller JS and Vasquez JA (2012) Comparing pre- and post-
855	chemical abrasion ages for Miocene Peach Springs Tuff zircon from ID-TIMS and SIMS
856	analyses AGU Fall Meeting December 2012
857	
858	Lipman P.W. (1984) The roots of ash flow calderas in western North America. Windows into
859	the tops of granitic batholiths. Journal of Geophysical Research: Solid Earth 89(B10)
860	8801-8841
861	
862	Lipman, P.W. (2007) Incremental assembly and prolonged consolidation of Cordilleran magma
863	chambers: Evidence from the Southern Rocky Mountain volcanic field Geosphere 3
864	42-70
865	
866	McDowell S.M. Miller C.F. Mundil R. Ferguson C.A. and Wooden J.L. (2014) Zircon
867	evidence for $a \sim 200$ ky supercruption-related thermal flare-up in the Miocene southern
868	Black Mountains western Arizona USA Contributions to Mineralogy and Petrology
869	168 1-21
870	100, 1 21.
871	McDowell S M Miller C F Ferguson C A Fisher C Frazier W O Miller J S Mundil
872	R Overton S and Vervoort I (2012) Geochemical insights into the evolution of a
873	supereruntive volcanic center: magmatic precursors and successors of the Miocene Peach
874	Spring Tuff southern Black Mountains western AZ. Geological Society of America
875	Abstracts with Programs 44 320
876	Tostados with Programs, 11, 520.
877	Metcalf R V (2004) Volcanic-plutonic links, plutons as magma chambers and crust-mantle
878	interaction: a lithospheric scale view of magna systems. Transactions of the Royal
879	Society of Edinburgh: Earth Sciences 05, 357,374
880	Society of Edinburgh. Earth Sciences, 95, 557-574.
881	Metcalf R V Smith F I Walker ID Reed R C and Conzales D A (1995) Isotopia
887	disequilibrium among commingled hybrid magmas: evidence for a two stage magma
883	mixing_commingling process in the Mt Perking pluton Arizona Journal of Geology
884	103 509-527
885	105, 507-527.
886	Miller C.F. and Miller J.S. (2002) Contracting stratified plutons exposed in tilt blocks
000	whiter, e.r., and whiter, s.s. (2002) contrasting stratified protons exposed in the blocks,

887		Eldorado Mountains, Colorado River Rift, NV, USA. Lithos, 61, 209-224.
888 889 890 891 802	Miller,	C.F., and Wooden, J.L. (1994) Anatexis, hybridization and the modification of ancient crust: Mesozoic plutonism in the Old Woman Mountains area, California. Lithos, 32, 111-133.
893 894 895 896	Miller,	J.S., Glazner, A.F., Farmer, G.L., Suayah, I.B., and Keith, L.A. (2000) A Sr, Nd, and Pb isotopic study of mantle domains and crustal structure from Miocene volcanic rocks in the Mojave Desert, California. Geological Society of America Bulletin, 112, 1264-1279.
897 898 899 899	Mills, 1	R.D., and Coleman, D.S. (2013) Temporal and chemical connections between plutons and ignimbrites from the Mount Princeton magmatic center. Contributions to Mineralogy and Petrology, 165, 961-980.
901 902 903	Morel,	M.L.A., Nebel, O., Nebel-Jacobsen, Y.J., Miller, J.S., Vroon, P.Z., 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chem. Geol. 255, 231–235.
904 905 906	Murph	y, R.T. (2004) Tectono-magmatic interaction and extensional folding in the Union Pass area, northern Colorado River extensional corridor, northwest Arizona. [M.S. Thesis.] Reno, Nevada: University of Nevada, Reno, 150 p.
907 908 909 910	Murph	y, R.T. and Faulds, J.E., 2013, Preliminary Geologic Map of the North Half of the Union Pass Quadrangle, Mohave County, Arizona. Arizona Geological Survey Contributed Map, CM-13-A, 1 map sheet, map scale 1:24,000.
911 912 913 914 915	Murph	y, R.T., Faulds, J.E., and Hillmeyer, F.L. (2004) Evolution of Miocene extensional fault and fold systems and influence of magmatism in the northern Colorado River extensional corridor, Union Pass area, northwest Arizona. Geological Society of America Abstracts with Programs, 36, 21.
916 917 918 919 920	Murph	y, R.T., and Faulds, J.E. (2003) Interactions between Tertiary magmatism and extension in the Colorado River Extensional Corridor, Union Pass area, northwestern Arizona. Geological Society of America Abstracts with Programs, 35, 348.
920 921 922 923 924 925	Pamuk	cu, A.S., Carley, T.L., Gualda, G.A., Miller, C.F., and Ferguson, C.A. (2013) The evolution of the Peach Spring giant magma body: Evidence from accessory mineral textures and compositions, bulk pumice and glass geochemistry, and rhyolite-MELTS modeling. Journal of Petrology, 54, 1109-1148.
925 926 927 928	Patchet	tt, P.J., and Tatsumoto, M. (1981) A routine high-precision method for Lu-Hf isotope geochemistry and chronology. Contributions to Mineralogy and Petrology, 75, 263-267.
929 930 931 932	Pearthr	ree, P.A., Ferguson, C.A., Johnson, B.J., and Guynn, J. (2010) Geologic Map and Report for the Proposed State Route 95 Realignment Corridor, Mohave County, Arizona, v. 1: Arizona Geological Survey DGM-65, 5 sheets, 1:24,000 scale, 44 pp.

933 934 935 936	Prytulak, J., Vervoort, J.D., Plank, T., and Yu, C. (2006) Astoria Fan sediments, DSDP site 174, Cascadia Basin: Hf–Nd–Pb constraints on provenance and outburst flooding. Chemical Geology, 233, 276-292.
937 938 939	Ransome, F.L. (1923) Geology of the Oatman gold district, Arizona: U.S. Geological Survey Bulletin, 743, 58p.
940 941 942 943	Renne, P.R., Balco, G., Ludwig, K.R., Mundil, R., and Min, K. (2011) Response to the comment by WH Schwartz et al. on "Joint determination of ⁴⁰ K decay constants and ⁴⁰ Ar*/ ⁴⁰ K for the Fish Canyon sanidine standard, and improved accuracy for ⁴⁰ Ar/ ³⁹ Ar geochronology" by PR Renne et al. (2010). Geochimica et Cosmochimica Acta, 75, 5097-5100.
944 945 946 947 948	Renne, P.R., Mundil., R., Balco, G., Min, K., and Ludwig, K.R. (2010) Joint determination of ⁴⁰ K decay constants and ⁴⁰ Ar*/ ⁴⁰ K for the Fish Canyon sanidine standard, and improved accuracy for ⁴⁰ Ar/ ³⁹ Ar geochronology. Geochimica et Cosmochimica Acta, 74, 5349-5367.
949 950 951 952	Schoene, B., J. L. Crowley, D. J. Condon, M. D. Schmitz, and S. A. Bowring (2006), Reassessing the uranium decay con- stants for geochronology using ID-TIMS U-Pb data, Geochimica et Cosmochimica Acta, 70, 426–445.
953 954 955 956	Tappa, M.J., Coleman, D.S., Mills, R.D., and Samperton, K.M. (2011) The plutonic record of a silicic ignimbrite from the Latir volcanic field, New Mexico. Geochemistry, Geophysics, Geosystems, 12, Q10011.
950 957 958 950	Thorson, J.P. (1971) Igneous petrology of the Oatman district, Mohave County, Arizona (Ph.D. Thesis): University of California – Santa Barbara, 189 p.
960 961 962	Trail, D., Mojzsis, S.J., Harrison, T.M., Schmitt, A.K., Watson, E.B., and Young, E.D. (2007) Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. Geochemistry, Geophysics, Geosystems, 8(6).
963 964 965 966 967	Valley, J.W., Lackey, J.S., Cavosie, A.J., Clechenko, C.C., Spicuzza, M.J., Basei, M.A.S., Bindeman, I.N., Ferreira, V.P., Sial, A.N., King, E.M., Peck, W.H., Sinha, A.K., and Wei, C. S. (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contributions to Mineralogy and Petrology, 150, 561-580.
968 969 970 971 972 973	Varga, R.J., Faulds, J.E., Snee, L.W., Harlan, S.S., and Bettison-Varga, L. (2004) Miocene extension and extensional folding in an anticlinal segment of the Black Mountains accommodation zone, Colorado River extensional corridor, southwestern United States. Tectonics, 23, TC1019.
973 974 975 976 977	Vervoort, J.D., Patchett, P.J., Blichert-Toft, J., and Albarede, F. (1999) Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters, 168, 79-99.
978	Vervoort, J.D., Plank, T., and Prytulak, J. (2011) The Hf-Nd isotopic composition of marine

979	sediments. Geochimica et Cosmochimica Acta, 75, 5903-5926.
980 981 982 983 984	Walker Jr, B.A., Miller, C.F., Lowery Claiborne, L., Wooden, J.L., and Miller, J.S. (2007) Geology and geochronology of the Spirit Mountain batholith, southern Nevada: implications for timescales and physical processes of batholith construction. Journal of Volcanology and Geothermal Research, 167, 239-262.
985 986 987 988 989 989	Watts, K.E., Bindeman, I.N., and Schmitt, A.K. (2011) Large-volume rhyolite genesis in caldera complexes of the Snake River Plain: Insights from the Kilgore Tuff of the Heise Volcanic Field, Idaho, with comparison to Yellowstone and Bruneau–Jarbidge Rhyolites. Journal of Petrology, 52, 857-890.
990 991 992 993 994 995	Watts, K.E., Bindeman, I.N., and Schmitt, A.K. (2012) Crystal scale anatomy of a dying supervolcano: an isotope and geochronology study of individual phenocrysts from voluminous rhyolites of the Yellowstone caldera. Contributions to Mineralogy and Petrology, 164, 45-67.
996 997 998	Wooden, J.L., and Miller, D.M. (1990) Chronologic and isotopic framework for early Proterozoic crustal evolution in the eastern Mojave desert region, SE California. Journal of Geophysical Research, 95(B12), 20,133-20,146.
999 1000 1001 1002 1003 1004	Wooden, J.L., Stacey, J.S., Howard, K.A., Doe, B.R., and Miller, D.M. (1988) Pb isotopic evidence for the formation of Proterozoic crust in the southwestern United States. In Ernst, W. G., (Ed.), Metamorphism and crustal evolution in the western United States. Englewood Cliffs, N.J., Prentice Hall, p. 68-86.
1005 1006 1007	Woodhead, J.D., and Hergt, J.M. (2005) A preliminary appraisal of seven natural zircon reference materials for <i>in situ</i> Hf isotope determination. Geostandards and Geoanalytical Research, 29, 183-195.
1008 1009 1010 1011	Young, R.A., and Brennan, W.J. (1974) Peach Springs Tuff: Its bearing on structural evolution of the Colorado Plateau and development of Cenozoic drainage in Mohave County, Arizona. GSA Bulletin, 85, 83-90.
1012 1013 1014 1015 1016 1017	Zimmerer, M.J., and McIntosh, W.C. (2012a) An investigation of caldera-forming magma chambers using the timing of ignimbrite eruptions and pluton emplacement at the Mt. Aetna caldera complex. Journal of Volcanology and Geothermal Research, 245-246, 128- 148.
1018 1019 1020 1021 1022	Zimmerer, M.J., and McIntosh, W.C. (2012b) The geochronology of volcanic and plutonic rocks at the Questa caldera: Constraints on the origin of caldera-related silicic magmas. Geological Society of America Bulletin, 124, 1394-1408.

Stage of SBMVC Magmatism	Character of Magmatism and Magmatic Products	Unit No.	Unit Name	Sample Names* (Ages, where available)			
		16	Trachyte Lava (Cottonwood)	SIT-2 (17.58±0.05 Ma) ^d			
Post-PST Volcanics (18.5 – 16.9 Ma ^g)	Compositionally diverse effusive and explosive volcanism	13	Felsic Lava Enclave	SIT-1b			
(****		12	Felsic Lava	SIT-1 (18.50±0.16 Ma) ^c			
		15	Mafic Dike	SCM-26			
l		14	Felsic Porphyry Dikes	SCM-5a (18.21±0.07 Ma) ^c , BCD, SCM-42			
	intermediate to silicic intracaldera intrusive magmatism (Times Porphyry,	11	Feldspar Porphyry Dikes	SCM-1b (18.65±0.07 Ma) ^c , SCM-13, SCM-30			
Post-PST Intrusions (18.8 – 18.2 Ma)	Moss Porphyry); intrusion of compositionally diverse crosscutting	10	Times Enclave	SCM-27b			
(1010 1012 1112)	dikes within and in the immediate	9	Times Porphyry	TIP-1 (18.63±0.08 Ma) ^c , SCM-37, SCM-20, SCM-38			
		8	Moss Enclave	MPe1			
		7	Moss Porphyry	MP1 (18.76±0.11 Ma°), SCM-6 (18.84±0.15 Ma°)			
	PST supereruption, producing	6B	Enclaves in Outflow	WSWPST1, PST-NY01A			
PST	phenocryst-rich trachytic intracaldera and proximal outflow tuff and rhyolitic	6A	Outflow Rhyolite Tuff ^e	WSWPST-4D, GJPST-1A, WSWPST2a, PST01D			
(18.8 Ma) [™]	outflow tuff (>700 km ³ ; covers ~32,000 km ²)	5	Intacaldera & Outflow Phenocryst- rich Trachyte Tuff ^e	PST-SWA-01A, PSTG-1c, <i>MLPT-5D,</i> 28556-P1			
	Thick (up to ~1 km), phenocryst-rich	4	Trachyte and Trachyandesite Lavas	PSK-6a, PSK-7, PSK-14, <i>PST-11</i>			
Pre-PST	intermediate-composition trachytic effusive magmatism (~10 ³ km ³);	3	Cook Canyon Tuff	WSE-3a, MLPT-7a, MLPT-7b			
Volcanics (~19 – 18.8 Ma)	intermediate composition explosive	2	Gold Road Trachyte ^f	SCM-41			
	intermediate-composition effusive magmatism	1	Alcyone Trachyte ^f	SCM-34 (19.01±0.26 Ma ^c)			

Table 1: Stages of SBMVC Magmatism and Units Analyzed

a – Ferguson et al., 2013 (sanidine Ar/Ar).
b – Lidzbarski et al., 2012 (TIMS and SHRIMP zircon U-Pb).
c – McDowell et al., 2014 (TIMS zircon U-Pb).
d – McIntosh & Ferguson, unpublished data (sanidine Ar/Ar).
e – Frazier, 2013; Frazier et al., in prep.
f. Densent 4023; Thereon, 4024.

f – Ransome, 1923; Thorson, 1971.

g – Lang, 2001; Lang et al., 2008.

*Samples in **bold**: whole rock isotopic analysis; samples in *italics*: zircon isotopic analysis.

Sample	SCM-34	SCM-41	WSE-3a	MLPT-7b	PSK-6a ¹	PSK-7	PSK-14	PSTG-1C	PST-SWA01A	MLPT-5D	28556-P1	GJPST-1A	WSWPST-4D
Unit	1	2	3	3	4	4	4	5	5	5	5	6	6
			Pre-PST	Pre-PST				PST					
	Pre-PST	Pre-PST	(Cook	(Cook	Pre-PST			Intracaldera	PST Outflow	PST Outflov	v PST Outflow	PST Outflov	V PST Outflow
_	(Alcyone	(Gold Road	Canyon	Canyon	(Esperanza	Pre-PST	Pre-PST	Trachyte	Trachyte	Trachyte	Trachyte	Rhyolite	Rhyolite
Туре	Trachyte)	Trachyte)	l uff)	l uff)	I rachyte)	Lava	Lava	Fiamma	Pumice	Pumice	Pumice	Pumice	Pumice
Location ²	35° 1' 52.2" N	35° 1' 51.3" N	34° 54' 12.1'	' N 35° 10' 35.2" I	V 34° 58′ 36.3″ N	34° 59' 8.6" N	34° 58' 28.1" I	V 35° 2' 54.9" N	34 57' 59.5"	34 55' 2.0" N	34° 54' 14.9" N	l 35° 14' 14.2" l	N 34° 53' 30.7" N
	114° 27' 17.2" V	114°22′30.5″ N	//14° 19' 27.4	" N114° 4' 30.3" V	V 114° 23' 1.5" W	/114° 23' 44.2" \	1114°23'0.4" V	V114° 28' 31.8"	N 114 16' 05.7'	114 13' 16.7" \	N114° 19' 41.4" V	1114°22′13.7″	W114°22′18.4″ И
Major Oxid	es, wt%, norr	nalized to 10											
SiO ₂	64.35	63.77	66.09	67.45	66.05	58.13	59.08	68.82	64.60	67.85	69.30	72.03	71.94
TiO ₂	0.80	0.91	0.76	0.78	0.67	1.03	1.34	0.47	0.59	0.53	0.46	0.36	0.34
Al ₂ O ₃	16.10	16.44	16.04	16.87	17.15	18.29	17.06	16.16	17.28	16.62	15.39	14.74	14.80
Fe ₂ O ₃ (t) ³	4.53	4.70	3.81	3.74	3.20	5.78	6.84	2.24	4.16	3.04	2.65	1.83	1.69
MnO	0.07	0.09	0.07	0.06	0.05	0.08	0.08	0.07	0.08	0.07	0.08	0.04	0.05
MgO	1.51	1.20	1.00	1.42	0.64	3.03	2.92	0.42	0.78	0.53	1.11	0.17	0.35
CaO	3.08	4.19	2.34	1.80	2.28	5.50	4.87	1.29	2.37	1.28	1.65	0.55	0.92
Na2O	3.61	3.60	3.50	2.12	4.23	4.27	3.93	4.00	3.92	3.29	2.69	3.89	3.86
K20	5.63	4.76	6.18	5.61	5.43	3.38	3.36	6.41	6.07	6.72	6.56	6.32	6.03
P205	0.32	0.34	0.20	0.14	0.29	0.50	0.51	0.10	0.14	0.07	0.13	0.06	0.03
(LOI)*	1.94	2.62	3.22	6.29	nd°	nd®	nd°	0.74	4.20	4.67	5.56	0.89	1.46
(oxide sum	98.65	97.29	96.86	93.37	97.63	97.20	96.40	96.66	93.52	93.96	94.81	99.15	98.34
Trace Elem	ents, ppm												
Sc	8.5	8.4	5.5	6.5	4.4	12.3	15.1	6.1	8.6	8.6	6.8	3.2	3.3
V	60	81	48	44	19	134	123	16	28	20	18	19	9
Ва	2226	1391	1637	1369	1917	1422	1160	1016	2559	560	802	87	59
Rb	135	126	148	171	132	85	104	140	129	127	141	142	162
Sr	590	602	551	398	717	1273	974	199	475	129	185	22	27
Zr	570	360	507	497	376	271	335	576	736	479	608	478	475
Hf	11.1	8.4	12.1	10.5	9.1	6.7	8.3	13.3	13.3	10.2	14.4	11.4	11.8
Y	27	27	24	25	27	23	26	34	26	33	34	47	61
Nb	19.4	22.5	36.4	26.6	27.6	15.6	23.9	21.8	14.3	16.9	31.4	28.3	30.8
Та	1.1	1.4	1.5	2.0	1.6	0.7	1.4	1.4	1.1	1.3	1.4	2.2	2.3
Ga	21	21	21	21	22	22	22	21	19	20	19	20	20
Cu	12	25	36	8	2	28	20	10	15	10	6	3	2
Zn	91	72	58	69	123	86	82	70	75	65	49	46	49
Pb	29	24	23	22	25	19	21	39	29	31	15	25	25
Th	17.1	19.2	27.5	28.7	12.9	11.8	18.7	19.8	13.3	18.9	22.0	22.2	20.8
U	2.8	3.5	5.0	4.3	2.0	2.7	3.4	4.1	1.9	2.0	2.8	2.8	2.9

Sample	SCM-34	SCM-41	WSE-3a	MLPT-7b	PSK-6a ¹	PSK-7	PSK-14	PSTG-1C	PST-SWA01A	MLPT-5D	28556-P1	GJPST-1A	WSWPST-4D
Unit	1	2	3	3	4	4	4	5	5	5	5	6	6
			Pre-PST	Pre-PST				PST					
	Pre-PST	Pre-PST	(Cook	(Cook	Pre-PST			Intracaldera	PST Outflow				
	(Alcyone	(Gold Road	Canyon	Canyon	(Esperanza	Pre-PST	Pre-PST	Trachyte	Trachyte	Trachyte	Trachyte	Rhyolite	Rhyolite
Туре	Trachyte)	Trachyte)	Tuff)	Tuff)	Trachyte)	Lava	Lava	Fiamma	Pumice	Pumice	Pumice	Pumice	Pumice
La	115	87	103	98	94	91	94	173	133	174	147	108	88
Ce	223	172	198	170	189	179	188	338	236	320	298	202	185
Pr	24.1	18.5	22.0	20.1	20.6	19.9	21.3	35.6	26.9	35.8	32.3	26.7	24.7
Nd	87	66	76	71	74	72	77	106	98	129	112	99	96
Sm	12.7	10.3	11.5	11.0	11.5	11.2	12.4	18.1	13.7	18.8	16.8	20.3	20.8
Eu	2.95	2.14	2.18	1.88	2.75	2.60	2.75	3.14	3.52	2.84	2.66	1.54	1.53
Gd	9.3	7.9	7.6	7.7	7.7	7.3	8.3	10.9	9.0	12.0	11.4	14.1	15.7
Tb	1.10	1.00	0.96	0.93	1.04	0.95	1.09	1.45	1.07	1.39	1.52	2.18	2.50
Dy	5.75	5.36	5.02	4.91	5.49	4.96	5.70	7.60	5.51	7.11	7.58	11.10	13.20
Но	1.05	1.00	0.94	0.91	1.03	0.92	1.02	1.41	0.98	1.27	1.38	1.96	2.45
Er	2.95	2.84	2.54	2.59	2.66	2.32	2.55	3.93	2.82	3.43	3.81	4.88	6.16
Tm	0.44	0.40	0.37	0.37	0.37	0.32	0.35	0.57	0.40	0.48	0.54	0.73	0.85
Yb	2.81	2.57	2.44	2.39	2.28	1.94	2.08	3.49	2.55	2.98	3.46	3.83	4.79
Lu	0.46	0.41	0.38	0.39	0.35	0.30	0.31	0.50	0.43	0.49	0.54	0.51	0.60

samples PSK-6a, PSK-7, and PSK-14 analyzed by WSU lab; all others by XRAL

1: PSK-6a is from the same lava (Esperanza trachyte) as PSK-11; no elemental analysisis available for PSK-11; 2: NAD83; 3: total Fe as Fe2O3; 4: loss on ignition; 5: total oxides a

TABLE :

2 Whole-Rock Elemental Compositions

Sample Unit	PST01D 6	WSWPST2A 6	WSWPST1 6B	PST-NY01A 6B	MP1 7	MPe1 8 Magmatic	SCM-38 9	TIP-1 9	SCM-27b 10 Magmatic	SCM-30 11	SCM-1 11	SIT-1 12	SIT-1b 13 Magmatic
	PST Outflow	PST Outflow	Enclave	Enclave		Enclave	(Leuocgranit		Enclave	Feldspar	Feldspar		Enclave
	Rhyolite	Rhyolite	(PST	(PST	Moss	(Moss	e)Times	Times	(Times	Porphyry	Porphyry		(Felsic
Туре	Pumice	Pumice	Rhyolite)	Rhyolite)	Porphyry	Porphyry)	Porphyry	Porphyry	Porphyry)	Dike	Dike	Felsic Lava	Lava)
Location ²	35° 11' 19.3" N	I 34° 53' 24.4" N	34° 53' 43.0" I	N 35° 17' 18.5" N	I 35° 6' 36.9" N	35° 6′ 35.8″ N	35° 2' 8.0" N	35° 4' 35.7" N	35° 4' 7.3" N	35° 7' 7.8" N	35° 4′ 46.7″ N	35° 2' 34.1" N	35° 2' 34.3" N
	1114° 2' 12.6" N	v114° 22′ 19.3″ V	114°22'21.9"	VI 15° 13' 38.5" V	1114° 27' 6.6" N	/114°27'3.0" V	/114° 27' 23.7" V	N114° 27' 37.5" N	114° 26' 58.2" V	1114° 26' 2.6" V	V114°26'12.1" V	1114°20'36.2" V	1114° 20' 36.3" V
Major Oxid	le												
SiO ₂	75.45	75.12	57.61	69.95	66.83	59.07	77.14	74.13	68.08	61.01	67.74	71.00	56.57
TiO ₂	0.20	0.23	1.32	0.48	0.69	1.12	0.17	0.29	0.61	0.85	0.63	0.45	1.14
Al ₂ O ₃	13.14	12.84	16.96	15.53	14.92	16.29	12.21	13.14	15.37	14.85	14.94	14.41	17.14
Fe ₂ O ₃ (t) ³	1.06	1.40	7.48	2.62	4.27	7.02	1.48	2.13	3.94	5.88	3.87	2.63	7.12
MnO	0.07	0.08	0.07	0.08	0.06	0.08	0.04	0.04	0.07	0.09	0.07	0.05	0.09
MgO	0.20	0.20	2.50	0.32	1.49	3.24	0.14	0.26	1.01	5.18	1.21	0.82	3.91
CaO	0.75	0.61	5.41	0.20	2.64	4.93	0.35	0.80	1.63	5.40	2.78	2.28	6.98
Na2O	2.72	3.63	3.50	4.95	3.97	4.15	3.39	3.80	4.72	3.01	3.16	3.54	3.59
K2O	6.39	5.86	4.59	5.82	4.92	3.67	5.08	5.38	4.37	3.45	5.40	4.70	2.95
P2O5	0.03	0.02	0.55	0.05	0.21	0.43	0.00	0.02	0.19	0.28	0.19	0.12	0.49
(LOI) ^₄	3.16	0.68	1.82	1.52	2.57	3.26	0.72	0.91	2.00	5.46	3.73	2.89	2.84
(oxide sum	n , 97.83	96.01	95.98	98.47	95.94	96.58	97.83	98.66	97.65	92.74	95.52	97.23	97.83
Trace Elen	16												
Sc	3.5	3.6	12.2	7.3	7.6	12.5	8.4	8.5	5.5	15.2	14.0	16.4	17.6
v	< 5	<5	109	17	62	121	8	14	35	108	51	36	154
Ва	40	40	1943	30	1175	1287	42	309	1324	823	1059	674	1511
Rb	198	195	96	146	158	107	183	142	142	80	156	156	74
Sr	17	18	1514	11	391	712	39	92	286	504	372	291	1106
Zr	221	257	400	635	261	279	135	257	431	200	298	210	273
Hf	8.8	8.1	9.0	13.7	6.3	6.4	5.0	7.7	9.5	4.7	7.4	5.6	6.2
Y	33	33	31	52	19	21	21	29	21	17	26	22	25
Nb	39.4	21.5	21.5	35.1	17.2	21.4	31.8	27.5	21.1	14.6	23.9	22.1	15.2
Та	2.5	2.4	1.3	2.1	1.1	1.3	2.0	2.0	1.7	0.8	1.6	1.6	0.8
Ga	20	18	22	28	20	20	17	20	20	18	20	18	23
Cu	2	10	33	6	14	14	4	4	4	71	6	6	35
Zn	50	46	87	97	57	48	37	55	71	70	74	40	84
Pb	24	24	46	21	19	15	27	24	28	16	30	25	10
Th	32.9	24.5	20.3	19.2	16.7	13.0	33.7	26.1	15.2	11.9	19.3	28.5	18.8
U	6.2	4.1	4.2	3.2	2.6	2.4	4.8	3.5	2.2	1.9	3.4	4.6	2.1

Sample	PST01D	WSWPST2A	WSWPST1	PST-NY01A	MP1	MPe1	SCM-38	TIP-1	SCM-27b	SCM-30	SCM-1	SIT-1	SIT-1b
Unit	6	6	6B	6B	7	8	9	9	10	11	11	12	13
			Magmatic			Magmatic			Magmatic				Magmatic
	PST Outflow	PST Outflow	Enclave	Enclave		Enclave	(Leuocgranit		Enclave	Feldspar	Feldspar		Enclave
	Rhyolite	Rhyolite	(PST	(PST	Moss	(Moss	e)Times	Times	(Times	Porphyry	Porphyry		(Felsic
Туре	Pumice	Pumice	Rhyolite)	Rhyolite)	Porphyry	Porphyry)	Porphyry	Porphyry	Porphyry)	Dike	Dike	Felsic Lava	Lava)
La	70	78	151	159	76	74	48	85	74	55	79	66	117
Ce	124	141	235	236	146	146	88	157	132	110	153	126	184
Pr	13.9	15.6	30.8	37.6	15.6	15.9	7.6	15.8	13.2	11.5	16.1	12.5	24.1
Nd	39	48	104	136	53	57	22	49	44	42	53	42	87
Sm	6.7	8.5	15.8	23.9	8.4	9.3	3.5	8.1	6.6	6.9	8.6	6.7	13.5
Eu	0.567	0.629	3.38	1.41	1.57	2.17	0.22	0.89	1.37	1.55	1.45	1.18	2.66
Gd	5.5	6.5	11.0	14.8	5.8	6.7	3.3	5.9	4.8	5.5	6.4	5.5	9.7
Tb	0.89	1.03	1.20	2.15	0.77	0.94	0.51	0.90	0.69	0.68	0.96	0.74	1.17
Dy	5.20	5.85	5.64	11.50	4.03	4.79	2.97	5.10	3.79	3.45	5.18	3.84	5.43
Но	1.03	1.19	1.01	2.06	0.78	0.89	0.70	1.05	0.75	0.65	1.04	0.78	0.94
Er	3.17	3.47	2.74	5.78	2.14	2.43	2.27	3.07	2.19	1.86	2.89	2.27	2.71
Tm	0.51	0.55	0.37	0.87	0.31	0.35	0.38	0.47	0.33	0.27	0.43	0.35	0.36
Yb	3.18	3.46	2.35	5.49	2.01	2.20	2.67	3.13	2.26	1.70	2.88	2.40	2.18
Lu	0.47	0.47	0.33	0.86	0.31	0.34	0.44	0.50	0.37	0.27	0.45	0.40	0.34

2 Whole-Rock Elemental Compositions

samples PSI

1: PSK-6a isas analyzed (prior to normalization);6: nd = LOI not

Sample Unit	SCM-42 14	SCM-5a 14	SCM-26 15	SIT-2 16
Time			Mofie Dike	Post-PST (Cottonwood
Type	Feisic Dike	Feisic Dike		
Location	35° 1' 59.3" N	35° 2' 55.8" N	35° 7' 4.5" N	35° 2′ 55.9" N
	114°22'40.3" N	114° 26' 25.6" N	114° 26' 18.1" V	<u>1114° 20' 51.9" И</u>
Major Oxide	74.00	70.00	55.00	05.00
510 ₂	74.02	79.93	55.28	65.80
	0.33	0.09	1.13	0.59
AI_2O_3	14.08	10.03	14.97	16.34
Fe₂U₃(t)ĭ MnO		0.02	0.70	4.50
Mao	0.02	0.02	0.12	0.09
MyU CaO	0.73	0.21	0.11	0.00
Na2O	1.05	0.21	0.5Z 3.61	3.10
Na20	6.58	8.07	3.01	4.03
P205	0.00	0.07	0.47	0.20
// ON ⁴	2.66	0.00	3 74	0.29
(LUI) (oxido sum)	98.02	90.05 90.00	06 10	97.02
(UNIDE SUIII)	00.02	00.00	00.10	07.02
Trace Elem	E			
Sc	20.0	18.8	8.5	8.4
V	15	8	150	56
Ba	469	423	1167	1789
Rb	202	337	80	94
Sr	71	65	827	1498
Zr	251	67	248	375
Hf	7.0	3.0	5.9	8.4
Y	25	13	24	18
	28.9	21.1	14.4	15.8
ia Co	2.0	2.0	0.8	0.8
Ga	1/	10	20	22
Cu Zm	1	6	46	13
	39	11	/b 12	/5
г0 Ть	∠0 20.1	13 20 7	13 11 E	১১ ১৮ স
10 11	29.1 1 1	52.1 57	11.5	20.1
0	4.1	5.7	∠.0	5.5

Sample Unit	SCM-42 14	SCM-5a 14	SCM-26 15	SIT-2 16
				Post-PST
Туре	Felsic Dike	Felsic Dike	Mafic Dike	Lava)
La	74	29	74	128
Ce	144	51	149	247
Pr	14.7	4.2	17.0	25.6
Nd	49	12	63	91
Sm	7.8	1.7	10.6	13.4
Eu	0.97	0.16	2.38	2.99
Gd	5.6	1.6	7.7	9.1
Tb	0.80	0.26	1.04	0.91
Dy	4.68	1.63	5.30	4.03
Но	0.95	0.38	1.00	0.68
Er	2.78	1.36	2.69	1.93
Tm	0.46	0.27	0.38	0.27
Yb	3.00	2.00	2.32	1.74
Lu	0.50	0.36	0.36	0.27

samples PSI

1: PSK-6a is

TABLE 3 Whole-rock Isotopic Compositions (Pb, Nd, Hf, Sr)

Sample Name	Unit #	Unit			Pb					Nd				H					Sr	
•			²⁰⁶ Pb/ ²⁰⁴ Pb	±	²⁰⁷ Pb/ ²⁰⁴ Pb	±	²⁰⁸ Pb/ ²⁰⁴ Pb	±	¹⁴³ Nd/ ¹⁴⁴ Nd	±	εNd ^a	2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±	εHf ^b	2SE	⁸⁷ Sr/ ⁸⁶ Sr ^c	±	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr _{Initial}
SIT-2	16	Post-PST (Cottonwood Lava)	18.4259	0.0038	15.6134	0.0032	39.1487	0.0075	0.512104	14	-10.3	0.3	0.282414	6	-13.1	0.2	0.709818	8	0.177	0.709771
SCM-26	15	Mafic Dike	18.4916	0.0023	15.6248	0.0022	39.2864	0.0053	0.512104	13	-10.3	0.3	0.282450	6	-11.8	0.2	0.710188	10	0.273	0.710115
SCM-5a	14	Felsic Dike	18.3573	0.0039	15.6065	0.0033	39.2777	0.0077	0.512171	14	-9.0	0.3	0.282510	6	-9.7	0.2	0.715932	8	14.636	0.712024
SCM-42	14	Felsic Dike	18.3134	0.0023	15.6104	0.0022	39.1214	0.0054	0.512155	13	-9.3	0.3	0.282479	6	-10.8	0.2	0.713239	8	8.032	0.711095
SIT-1b	13	Magmatic Enclave (Felsic Lava)	18.3176	0.0023	15.6029	0.0022	38.9525	0.0054	0.512157	13	-9.2	0.3	0.282501	6	-10.0	0.2	0.709176	8	0.189	0.709126
SIT-1	12	Felsic Lava	18.2477	0.0027	15.6033	0.0026	39.1237	0.0061	0.512155	14	-9.3	0.3	0.282498	6	-10.2	0.2	0.710537	16	1.513	0.710133
SCM-1	11	Feldspar Porphyry Dike	18.2755	0.0027	15.6019	0.0026	39.0810	0.0061	0.512143	14	-9.5	0.3	0.282487	6	-10.5	0.2	0.710462	8	1.184	0.710146
SCM-30	11	Feldspar Porphyry Dike	18.2449	0.0023	15.5986	0.0022	39.0085	0.0054	0.512194	12	-8.5	0.2	0.282536	6	-8.8	0.2	0.709579	10	0.448	0.709460
SCM-27b	10	Magmatic Enclave (Times Porphyry)	18.3021	0.0038	15.6048	0.0032	39.0608	0.0077	0.512208	14	-8.2	0.3	0.282535	6	-8.8	0.2	0.710034	8	1.402	0.709660
TIP-1	9	Times Porphyry	18.2894	0.0038	15.6087	0.0032	39.1201	0.0075	0.512134	14	-9.7	0.3	0.282456	6	-11.6	0.2	0.711322	8	4.357	0.710158
SCM-38	9	(Leuocgranite)Times Porphyry	18.2842	0.0039	15.6049	0.0032	39.0954	0.0077	0.512126	14	-9.8	0.3	0.282450	6	-11.8	0.2	0.715925	8	13.246	0.712388
MPe1	8	Magmatic Enclave (Moss Porphyry)	18.2864	0.0039	15.6064	0.0033	39.1196	0.0078	0.512197	14	-8.4	0.3	0.282511	6	-9.7	0.2	0.710422	6	0.424	0.710309
MP1	7	Moss Porphyry	18.2692	0.0038	15.6062	0.0032	39.1173	0.0076	0.512104	15	-10.3	0.3	0.282446	6	-12.0	0.2	0.711181	6	1.141	0.710876
PST-NY01A	6B	Enclave (PST Rhyolite)	18.3723	0.0038	15.6035	0.0032	39.2262	0.0076	0.512256	14	-7.3	0.3	0.282576	6	-7.4	0.2	0.726228	18	37.469	0.716224
WSWPST1	6B	Magmatic Enclave (PST Rhyolite)	18.2610	0.0027	15.5886	0.0026	39.0224	0.0062	0.512215	15	-8.1	0.3	0.282539	6	-8.7	0.2	0.709107	8	0.179	0.709059
WSWPST2a	6	PST Outflow Rhyolite Pumice	18.2859	0.0038	15.6150	0.0031	39.2030	0.0074	0.512045	14	-11.4	0.3	0.282392	6	-13.9	0.2	0.720019	6	30.583	0.711854
PST01D	6	PST Outflow Rhyolite Pumice	18.2600	0.0039	15.6092	0.0033	39.2053	0.0077	0.512039	13	-11.5	0.3	0.282396	6	-13.8	0.2	0.731594	6	32.880	0.722815
WSWPST-4D	6	PST Outflow Rhyolite Pumice	18.2590	0.0022	15.6725	0.0021	39.3266	0.0051	0.512042	13	-11.5	0.3	0.282390	6	-14.0	0.2	0.715762	22	16.938	0.711240
GJPST-1A	6	PST Outflow Rhyolite Pumice	18.2181	0.0022	15.6013	0.0021	39.0842	0.0051	0.512050	13	-11.3	0.3	0.282388	6	-14.0	0.2	0.715661	12	18.221	0.710796
28556-P1	5	PST Outflow Trachyte Pumice	18.2181	0.0022	15.6038	0.0021	39.1400	0.0052	0.512050	12	-11.3	0.2	0.282388	6	-14.0	0.2	0.711795	10	2.152	0.711221
MLPT-5D	5	PST Outflow Trachyte Pumice	18.2317	0.0023	15.6040	0.0021	39.1165	0.0053	0.512047	12	-11.4	0.2	0.282395	6	-13.8	0.2	0.712358	10	2.779	0.711616
PST-SWA-01A	5	PST Outflow Trachyte Pumice	18.2044	0.0038	15.6022	0.0032	39.0985	0.0076	0.512037	15	-11.6	0.3	0.282380	6	-14.3	0.2	0.711454	6	0.767	0.711249
PSTG-1C	5	PST Intracaldera Trachyte Fiamma	18.2584	0.0038	15.6083	0.0032	39.1031	0.0076	0.512047	15	-11.4	0.3	0.282385	6	-14.2	0.2	0.712586	6	1.986	0.712056
PSK-14	4	Pre-PST Lava	18.4513	0.0028	15.6173	0.0026	39.1675	0.0062	0.512212	14	-8.2	0.3	0.282552	6	-8.2	0.2	0.709334	10	0.300	0.709254
PSK-7	4	Pre-PST Lava	18.4072	0.0028	15.6157	0.0026	39.1719	0.0062	0.512083	14	-10.7	0.3	0.282415	6	-13.1	0.2	0.710075	10	0.188	0.710025
PST-11 ^d	4	Pre-PST (Esperanza Trachyte)	18.3476	0.0022	15.6089	0.0022	39.0053	0.0051	0.512193	14	-8.5	0.3	0.282502	6	-10.0	0.2	0.709442	14	0.521	0.709303
WSE3a	3	Pre-PST (Cook Canyon Tuff)	18.2833	0.0038	15.6050	0.0033	39.0605	0.0081	0.512122	12	-9.9	0.2	0.282465	6	-11.3	0.2	0.710378	10	0.758	0.710175
SCM-41	2	Pre-PST (Gold Road Trachyte)	18.3754	0.0038	15.6149	0.0032	39.1828	0.0075	0.512127	14	-9.8	0.3	0.282461	6	-11.5	0.2	0.710524	8	0.591	0.710367
SCM-34	1	Pre-PST (Alcyone Trachyte)	18.1867	0.0028	15.5984	0.0027	39.0465	0.0066	0.512041	14	-11.5	0.3	0.282390	6	-14.0	0.2	0.711154	8	0.646	0.710982
a				(n)																

^aεNd calculated using present day CHUR-¹⁴³Nd/¹⁴⁴Nd=0.512638 (Bouvier et al., 2008) ^bεHf calculated using present day CHUR-¹⁷⁶Hf/¹⁷⁷Hf=0.282785 (Bouvier et al., 2008)

^c Ratios calculated from ICP-MS trace element data.

^d Sample from same unit as PSK-6a in Table 2 (no elemental analysis available for PST-11); location: 34° 58' 50.0" N, 114° 23' 23.0" W

Analysts: S.M. McDowell, W.O. Frazier, and C.M. Fisher

		1				P		
Rock unit and analysis	U age		U age		²⁰⁷ Pb/ ²⁰⁶ P		present da	y
number	(Ma)	1 S	(Ma)	1 S	b age (Ma)	1 S	eHf	d ¹⁸ 0
Gold Road Trachyte								
SCM41_4	1636	18	1618	28	1676	16	-30	7.9
SCM41_5	1607	18	1509	26	1752	15	-30	5.7
Peach Spring Tuff								
MLPT5D_11	1569	15	1520	22	1664	12	-33	nd
Moss Porphyry								
SCM6_7	1638	19	1611	30	1687	15	-33	nd
MPe1Ne_9	1689	20	1714	31	1673	22		nd
Feldspar Porphyry Dike								
SCM30_22	1636	17	1593	26	1699	14	-33	nd

TABLE 4 Proterozoic Zircon (U-Pb ages, Hf and O isotopic compositions)

Pre-PST Trachyte - Alcyone	eHf	d ¹⁸ 0	Peach Spring Tuff Trachyte	eHf	d ¹⁸ 0
SCM34_1_20	-12.3	6.6	MLPT5D_9_11	-14.1	6.9
SCM34_2_19	-13.9	6.8	MLPT5D_10_10	-13.8	6.7
SCM34_4_18	-14.4	6.3	MLPT5D_14_9	-13.8	6.1
SCM34_5_11	-14.5	7.2	MLPT5D_15_8	-13.5	6.7
SCM34_11_7	-13.2	6.8	Moss Porphyry	eHf	d ¹⁸ 0
SCM34_10_4	-14.0	6.6	SCM6_1_1	-13.3	6.2
SCM34_1_8	-12.3	6.6	SCM6_7_12	-33.4	6.9
Pre-PST Trachyte - Gold Ro	eHf	d ¹⁸ 0	MP1_1-1	-15.2	7.1
SCM41_1_1	-10.6	5.9	MP1_9_13	-10.5	6.1
SCM41_4_3	-29.7	7.9	MP1_1_16	-10.5	6.2
SCM41_5_2	-29.7	5.7	MPe1Ne_1_2	-10.0	6.6
SCM41_8_7	-13.3	6.4	MPe1Ne_18_12	-11.0	6.5
SCM41_9_6	-10.5	5.7	MPe1ne_17_16	-12.8	6.2
SCM41_12_12	-12.1	6.6	MPe1Ne_5_17	-13.2	6.4
SCM41_13_11	-11.2	6.4	MPe1Ne_7_21	-12.5	6.1
SCM41_10_10	-13.6	5.7	MPene1_1_2	-10.0	6.6
Cook Canyon Tuff	eHf	d ¹⁸ 0	Moss Porphyry enclave	eHf	d ¹⁸ 0
MLPT7A_1_10	-11.6	6.5	MPe1_10_12	-13.9	6.2
MLPT7A_2_7	-11.6	6.2	MPe1_14_16	-33.3	6.6
MLPT7B_9_1	-10.0	6.4	Times Granite	eHf	d ¹⁸ 0
MLPT7B_7_9	-11.8	6.4	SCM20_1_1	-10.4	6.3
MLPT7B_4_15	-12.1	6.1	SCM20_2_3	-9.8	6.0
MLPT7B_1_10	-11.4	6.3	SCM20_4_7	-8.5	6.4
MLPT7B_2_18	-13.3	6.5	SCM20_6_14	-11.7	6.0
Peach Spring Tuff Rhyolite	eHf	d ¹⁸ 0	SCM20_8_16	-10.2	6.0
MLPT2H_11_3	-13.2	6.4	SCM20_9_19	-9.9	6.5
MLPT2H_9_11	-13.4	6.1	SCM20_10_20	-11.4	6.5

Table 5 Paired O and Hf isotopic analyses of Zircon

MLPT2H_7_15	-15.7	6.5	SCM20_12_28	-10.5	6.1
MLPT2H_8_10	-13.4	6.2	TIP1_3_1	-10.0	5.8
MLPT2H_6_19	-14.5	6.3	TIP1_5_3	-12.3	5.5
MLPT3B_12_2	-12.1	6.5	TIP1_6_5	-14.4	6.2
MLPT3B_10_5	-14.5	6.3	TIP1_8_13	-12.1	6.1
MLPT3B_8_6	-14.8	6.6	TIP1_10_27	-12.1	6.2
MLPT3B_5_14	-13.9	6.3	TIP1_12_28	-10.6	5.9
MLPT3B_3_16	-14.3	6.1	SCM37_3_19	-11.2	4.9
MLPT3B_4_15	-14.1	6.3	SCM37_4_20	-12.6	5.2
MLPT3B_1_18	-13.6	6.3	SCM37_5_18	-8.8	4.7
MLPT3B_7_13	-13.1	4.5	SCM37_8_14	-8.6	4.9
Peach Spring Tuff Trachyte	eHf	d ¹⁸ 0	SCM37_15_11	-9.9	5.6
MLPT5D_3_19	-15.7	6.8	SCM37_13_1	-11.6	5.8
MLPT5D_5_16	-14.0	6.8	SCM37_4_20	-12.6	5.2
Table 4 continued.					
Times Granite enclave	eHf	d ¹⁸ 0	Felsic Porphyry Dike	eHf	d ¹⁸ 0
Times Granite enclave SCM27B_2_2	e Hf -10.6	<i>d</i> ¹⁸ 0 6.0	Felsic Porphyry Dike SCM30_9_10	e Hf -11.2	<i>d</i> ¹⁸ 0 6.0
Times Granite enclaveSCM27B_2_2SCM27B_5_12	e Hf -10.6 -11.1	<i>d</i> ¹⁸ 0 6.0 6.7	Felsic Porphyry Dike SCM30_9_10 SCM30_16_6	e Hf -11.2 -10.0	d ¹⁸ 0 6.0 5.8
Times Granite enclave SCM27B_2_2 SCM27B_5_12 SCM27B_6_11	e Hf -10.6 -11.1 -13.8	<i>d</i> ¹⁸ 0 6.0 6.7 6.3	Felsic Porphyry Dike SCM30_9_10 SCM30_16_6 SCM30_11_1	e Hf -11.2 -10.0 -10.5	<i>d</i> ¹⁸ 0 6.0 5.8 5.9
Times Granite enclaveSCM27B_2_2SCM27B_5_12SCM27B_6_11SCM27B_9_17	e Hf -10.6 -11.1 -13.8 -10.2	<i>d</i> ¹⁸ 0 6.0 6.7 6.3 6.1	Felsic Porphyry Dike SCM30_9_10 SCM30_16_6 SCM30_11_1 SCM30_12_2	e Hf -11.2 -10.0 -10.5 -10.8	<i>d</i> ¹⁸ 0 6.0 5.8 5.9 5.6
Times Granite enclave SCM27B_2_2 SCM27B_5_12 SCM27B_6_11 SCM27B_9_17 SCM27B_10_18	e Hf -10.6 -11.1 -13.8 -10.2 -8.9	d ¹⁸ 0 6.0 6.7 6.3 6.1 6.3	Felsic Porphyry Dike SCM30_9_10 SCM30_16_6 SCM30_11_1 SCM30_12_2 SCM30_10_7	eHf -11.2 -10.0 -10.5 -10.8 -11.0	d ¹⁸ 0 6.0 5.8 5.9 5.6 5.8
Times Granite enclave SCM27B_2_2 SCM27B_5_12 SCM27B_6_11 SCM27B_9_17 SCM27B_10_18 SCM27B_1_1	eHf -10.6 -11.1 -13.8 -10.2 -8.9 -10.9	<i>d</i> ¹⁸ 0 6.0 6.7 6.3 6.1 6.3 5.8	Felsic Porphyry Dike SCM30_9_10 SCM30_16_6 SCM30_11_1 SCM30_12_2 SCM30_10_7 SCM30_20_20	eHf -11.2 -10.0 -10.5 -10.8 -11.0 -9.9	d ¹⁸ 0 6.0 5.8 5.9 5.6 5.8 5.8 5.6
Times Granite enclave SCM27B_2_2 SCM27B_5_12 SCM27B_6_11 SCM27B_9_17 SCM27B_10_18 SCM27B_1_1 SCM27B_4_6	eHf -10.6 -11.1 -13.8 -10.2 -8.9 -10.9 -10.6	d ¹⁸ 0 6.0 6.7 6.3 6.1 6.3 5.8 5.8	Felsic Porphyry Dike SCM30_9_10 SCM30_16_6 SCM30_11_1 SCM30_12_2 SCM30_10_7 SCM30_20_20 Post-PST Felsic Lava	eHf -11.2 -10.0 -10.5 -10.8 -11.0 -9.9 eHf	d ¹⁸ 0 6.0 5.8 5.9 5.6 5.8 5.6 d ¹⁸ 0
Times Granite enclave SCM27B_2_2 SCM27B_5_12 SCM27B_6_11 SCM27B_9_17 SCM27B_10_18 SCM27B_1_1 SCM27B_4_6 Feldspar Porphyry Dike	eHf -10.6 -11.1 -13.8 -10.2 -8.9 -10.9 -10.6 eHf	<i>d</i> ¹⁸ 0 6.0 6.7 6.3 6.1 6.3 5.8 5.8 5.8 <i>d</i> ¹⁸ 0	Felsic Porphyry Dike SCM30_9_10 SCM30_16_6 SCM30_11_1 SCM30_12_2 SCM30_10_7 SCM30_20_20 Post-PST Felsic Lava SIT1_2_1	eHf -11.2 -10.0 -10.5 -10.8 -11.0 -9.9 eHf -11.8	<i>d</i> ¹⁸ 0 6.0 5.8 5.9 5.6 5.8 5.6 <i>d</i> ¹⁸ 0 6.1
Times Granite enclave SCM27B_2_2 SCM27B_5_12 SCM27B_6_11 SCM27B_9_17 SCM27B_10_18 SCM27B_1_1 SCM27B_4_6 Feldspar Porphyry Dike SCM5A_4_9	eHf -10.6 -11.1 -13.8 -10.2 -8.9 -10.9 -10.6 eHf -9.1	<i>d</i> ¹⁸ 0 6.0 6.7 6.3 6.1 6.3 5.8 5.8 5.8 <i>d</i> ¹⁸ 0 5.9	Felsic Porphyry Dike SCM30_9_10 SCM30_16_6 SCM30_11_1 SCM30_12_2 SCM30_10_7 SCM30_20_20 Post-PST Felsic Lava SIT1_2_1 SIT1_3_2	eHf -11.2 -10.0 -10.5 -10.8 -11.0 -9.9 eHf -11.8 -10.8	<i>d</i> ¹⁸ 0 6.0 5.8 5.9 5.6 5.8 5.6 <i>d</i> ¹⁸ 0 6.1 6.2
Times Granite enclave SCM27B_2_2 SCM27B_5_12 SCM27B_6_11 SCM27B_9_17 SCM27B_10_18 SCM27B_1_1 SCM27B_4_6 Feldspar Porphyry Dike SCM5A_4_9 SCM5A_5_11	eHf -10.6 -11.1 -13.8 -10.2 -8.9 -10.9 -10.6 eHf -9.1 -12.9	<i>d</i> ¹⁸ 0 6.0 6.7 6.3 6.1 6.3 5.8 5.8 <i>d</i> ¹⁸ 0 5.9 6.1	Felsic Porphyry Dike SCM30_9_10 SCM30_16_6 SCM30_11_1 SCM30_12_2 SCM30_10_7 SCM30_20_20 Post-PST Felsic Lava SIT1_2_1 SIT1_3_2 SIT1_4_8	eHf -11.2 -10.0 -10.5 -10.8 -11.0 -9.9 eHf -11.8 -10.8 -10.6	<i>d</i> ¹⁸ 0 6.0 5.8 5.9 5.6 5.8 5.6 <i>d</i> ¹⁸ 0 6.1 6.2 5.7
Times Granite enclave SCM27B_2_2 SCM27B_5_12 SCM27B_6_11 SCM27B_9_17 SCM27B_10_18 SCM27B_1_1 SCM27B_4_6 Feldspar Porphyry Dike SCM5A_4_9 SCM5A_5_11 SCM5A_6_12	eHf -10.6 -11.1 -13.8 -10.2 -8.9 -10.9 -10.6 eHf -9.1 -12.9 -8.2	<i>d</i> ¹⁸ 0 6.0 6.7 6.3 6.1 6.3 5.8 5.8 5.8 <i>d</i> ¹⁸ 0 5.9 6.1 5.7	Felsic Porphyry Dike SCM30_9_10 SCM30_16_6 SCM30_11_1 SCM30_12_2 SCM30_10_7 SCM30_20_20 Post-PST Felsic Lava SIT1_2_1 SIT1_3_2 SIT1_4_8 SIT1_6_9	eHf -11.2 -10.0 -10.5 -10.8 -11.0 -9.9 eHf -11.8 -10.8 -10.6 -9.9	<i>d</i> ¹⁸ 0 6.0 5.8 5.9 5.6 5.8 5.6 <i>d</i> ¹⁸ 0 6.1 6.2 5.7 6.1
Times Granite enclave SCM27B_2_2 SCM27B_5_12 SCM27B_6_11 SCM27B_9_17 SCM27B_10_18 SCM27B_1_1 SCM27B_4_6 Feldspar Porphyry Dike SCM5A_4_9 SCM5A_6_12 SCM5A_7_14	eHf -10.6 -11.1 -13.8 -10.2 -8.9 -10.9 -10.6 eHf -9.1 -12.9 -8.2 -9.1	<i>d</i> ¹⁸ 0 6.0 6.7 6.3 6.1 6.3 5.8 5.8 <i>d</i> ¹⁸ 0 5.9 6.1 5.7 5.2	Felsic Porphyry Dike SCM30_9_10 SCM30_16_6 SCM30_11_1 SCM30_12_2 SCM30_10_7 SCM30_20_20 Post-PST Felsic Lava SIT1_2_1 SIT1_3_2 SIT1_4_8 SIT1_8_10	eHf -11.2 -10.0 -10.5 -10.8 -11.0 -9.9 eHf -11.8 -10.8 -10.6 -9.9 -10.8	<i>d</i> ¹⁸ 0 6.0 5.8 5.9 5.6 5.8 5.6 <i>d</i> ¹⁸ 0 6.1 6.2 5.7 6.1 6.1 6.1
Times Granite enclave SCM27B_2_2 SCM27B_5_12 SCM27B_6_11 SCM27B_9_17 SCM27B_10_18 SCM27B_1_1 SCM27B_4_6 Feldspar Porphyry Dike SCM5A_4_9 SCM5A_6_12 SCM5A_7_14 SCM5A_8_17	eHf -10.6 -11.1 -13.8 -10.2 -8.9 -10.9 -10.6 eHf -9.1 -12.9 -8.2 -9.1 -9.9	<i>d</i> ¹⁸ 0 6.0 6.7 6.3 6.1 6.3 5.8 5.8 <i>d</i> ¹⁸ 0 5.9 6.1 5.7 5.2 5.9	Felsic Porphyry Dike SCM30_9_10 SCM30_16_6 SCM30_11_1 SCM30_12_2 SCM30_10_7 SCM30_20_20 Post-PST Felsic Lava SIT1_2_1 SIT1_3_2 SIT1_6_9 SIT1_8_10 SIT1_11_12	eHf -11.2 -10.0 -10.5 -10.8 -11.0 -9.9 eHf -11.8 -10.8 -10.6 -9.9 -10.8 -9.9	<i>d</i> ¹⁸ 0 6.0 5.8 5.9 5.6 5.8 5.6 <i>d</i> ¹⁸ 0 6.1 6.2 5.7 6.1 6.1 6.1 6.4

BCD_1_20	-9.2	5.2	SIT1B_1_2	-12.2	5.7
BCD_3_14	-9.1	5.0	SIT1B_3_3	-9.5	6.2
BCD_4_13	-10.1	4.6	SIT1B_4_5	-9.1	6.1
BCD_5_11	-11.3	5.4	SIT1b_16_10	-9.9	6.3
BCD_7_9	-9.2	5.6	SIT1b_17_12	-10.2	5.9
BCD_12_1	-9.0	6.1	SIT1B_9_14	-10.9	6.5
BCD_10_4	-7.9	5.4	SIT1B_12_18	-11.9	6.1
BCD_3_14	-9.1	5.0	SIT1B_11_17	-12.3	6.4
Felsic Porphyry Dike	eHf	d ¹⁸ 0	SIT1B_14_20	-10.2	6.0
SCM1B_1_1	-8.8	5.8	SIT1B_8_13	-9.7	5.8
SCM1B_3_2	-11.7	6.3	Post-PST Intermediate Lava	eHf	<i>d</i> ¹⁸ 0
SCM1B_4_3	-10.9	5.8	SIT2_14_16	-10.9	6.0
SCM1B_8_18	-14.3	6.5	SIT2_13_15	-10.3	5.7
SCM1B_10_21	-9.8	6.1	SIT2_11_13	-8.6	6.1
SCM13_2_18	-10.0	5.6	SIT2_12_14	-10.3	5.8
SCM13_6_14	-10.6	5.4	SIT2_10_12	-11.2	6.3
SCM13_7_13	-9.4	5.8	SIT2_8_10	-8.4	6.4
SCM13_8_12	-11.5	5.6	SIT2_6_8	-8.3	6.5
SCM13_11_9	-9.5	5.9	SIT2_5_7B	-9.5	6.1
SCM13_13_8	-8.2	5.7	SIT2_4_5	-13.1	5.8
SCM13_12_7	-5.6	5.7	SIT2_3_2	-10.9	5.9
SCM13_14_5	-9.1	6.0	SIT2_2_3	-10.9	5.6
SCM13_15_4	-12.7	5.9	SIT2_1_4	-9.9	5.7
SCM13_16_1	-9.2	5.2			
SCM13_4_17	-10.8	5.5			
SCM30_21_18	-11.8	5.9			
SCM30_19_16	-9.8	5.8			

Note: Sample designations follow this protocol: SCM34_"X"_"Y"; where "X" = Hf spot number and "Y" = O spot number in Supplmentary data files; External precision on eHf is 1.5 eHf units (2sd) based onrepeated analyses of well characterized standard, R33 and FC1 (Fisher et al. 2014). External precision for O varied over the course of the analytical sessions from 0.1 to 0.38 (1 sd) based on repeated analyses of standard R33. Complete results including all errors are presented in the Supplementary data files.

1. Pre-PST Magmatism (19 – 18.8 Ma):

2. PST Supereruption (18.8 Ma):

- >700 km³ D.R.E. erupted
- Areal extent >32,000 km²
- Only supereruption within the CREC
- Dominated by high-silica rhyolite, lesser low-silica rhyolite and phenocryst-rich trachyte

3. Post-PST Magmatism (18.8 – 17 Ma):

- Periodic eruption, intrusion, crystallization of geochemically diverse, small-volume magmas
- Intracaldera intrusions: petrochemically and genetically distinct from PST
- Sources: EM + PMC, with increasing EM contribution through time