1	Revision 1
2	"Growth dynamics of vaterite in relation to the physico-chemical properties of its
3	precursor, amorphous calcium carbonate, in the Ca-CO ₃ -PO ₄ system"
4	
5	Yuki Sugiura ^{1,2,3} , Kazuo Onuma ² , and Atsushi Yamazaki ¹
6	
7	¹ School of National Resources and Environmental Science, Department of Creative
8	Science and Technology, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo
9	169-8555,
10	Japan
11	² National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1,
12	Higashi, Tsukuba, Ibaragi 305-8566, Japan
13	³ Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1
14	Maidashi, Higashi, Fukuoka 812-0054, Japan
15	Corresponding authors:
16	ysugiura@dent.kyushu-u.ac.jp (Y.S), +81-92-642-6346
17	FAX (Y.S): +81-92-642-6346
18	

- 20 All authors approved the final manuscript.

38

Abstract

39 Vaterite is one of three non-hydrate calcium carbonate crystalline polymorphs and 40is formed as an initial phase under pseudo-biological conditions. However, biological hard tissues that use vaterite are rare; the reason for vaterite rarely appearing *in vivo* is 4142still unclear. There is consensus that, in phosphate-containing solutions, vaterite barely forms and amorphous calcium carbonate (ACC), the precursor of crystalline calcium 43carbonate and considered as aggregation of growth unit of vaterite, is stabilized. In this 44study, to clarify the biomineralization process, we investigated how phosphate act as an 4546inhibitor of vaterite growth. We measured vaterite growth rates *in situ* and estimated the 47essential crystal growth parameter, edge free energy, in the Ca-CO₃-PO₄ system in relation to the physico-chemical properties of ACC. The effects of PO_4 on the ACC 48structure and dynamics were also observed. 49

50 Co-existed PO₄ reduced the growth rate of vaterite even when it was added in μ M 51 concentrations. The surface free energy of vaterite increased with increasing PO₄ 52 concentration and was 10 times higher in a 10 μ M PO₄-containing solution than in a 53 PO₄-free solution. Spectroscopic analyses showed that the chemical bonds in ACC 54 particles were drastically changed by the addition of μ M scale PO₄, and the particles

55	could no longer transform into vaterite. We conclude that PO ₄ inhibits vaterite growth
56	and changed the ACC structure. And the original growth units of vaterite were also
57	modified to the other structures. Thus, vaterite crystals could not grow by association of
58	these growth units, which resulted in an increase in the apparent surface free energy of
59	vaterite.
60	
61	Key words: Vaterite, Crystal growth, intermediate phase, biomineralization
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	

74

75	
----	--

INTRODUCTION

76 Calcium carbonate minerals are the main component of hard tissues in 77 nonvertebrate animals such as mollusks, coral reefs and coccoliths (Deer et al., 1992; 78Dove et al., 2003; Mann, 2005; Sunagawa, 2005). These minerals have three anhydrous 79 crystalline phases, calcite. aragonite and vaterite; two hydrated phases, monohydrocalcite and ikaite; and amorphous phases (at least five phases), amorphous 80 calcium carbonates (ACC) (Deer et al., 1992; Kraji and Brecevic, 1995; Dove et al., 81 2003; Mann, 2005; Sunagawa, 2005; Colfen and Antonietti, 2008; Gebauer et al., 2010, 8283 Radha et al. 2010). These phases form as metabolic products in living creatures; this 84 process is known as biomineralization. Biomineralization normally occurs in weakly basic aqueous solutions such as body fluids and seawater under normal temperature and 85 86 pressure, i.e., it is a relatively stable reaction and process (Deer et al., 1992; Dove et al., 2003; Mann, 2005; Sunagawa, 2005). In addition, the numerous chemical species that 87 are present in organisms affect biomineralization (Deer et al., 1992; Dove et al., 2003; 88 89 Mann, 2005; Sunagawa, 2005; Bentov et al., 2010; Akiva-Tal et al., 2011; Sato et al., 90 2011). The final products have various morphologies and crystal structures that are 9/15

91 suitable for biological applications.

92	The growth dynamics of calcium carbonate minerals, particularly in simulated
93	biological environments, has been a matter of great research interest in the field of
94	geochemistry and biomineralization (Sunagawa, 2005; Colfen and Antonietti, 2008;
95	Gebauer et al. 2008). Studies in this area may assist in clarifying complex biological
96	crystallization processes, and biological evolution, and the knowledge gained may be
97	used to generate new functional biomaterials.
98	Vaterite is not only an anhydrous crystalline polymorph of calcium carbonate and
99	an intermediate and metastable phase in weak basic solutions (Plummer and Busenberg,
100	1982; Brecevic and Nielsen, 1989; Deer et al., 1992; Sunagawa, 2005;
101	Rodriguez-Blanco et al., 2010) but also occurs as a biogenic mineral a component of
102	marine organisms, fish otoliths, and gastropod egg shells (Carlstrom, 1963; Hall and
103	Taylor, 1971; Lowenstam, 1975). It has a higher solubility and a comparatively lower
104	crystallinity than calcite and aragonite (Plummer and Busenberg, 1982; Sunagawa,
105	2005; Colfen and Antonietti, 2008). It occurs in various shapes, namely, irregular,
106	wire-like, and hexagonal because of crystallization with additives such as polymers and
107	NH ₃ - ions (Xu et al. 2005; Balz et al. 2006). Although vaterite was an initial crystalline
108	phase in weak basic solution, the growth mechanism of vaterite is unclear compared

109	with those of calcite and aragonite. Olderøy et al. (2009) estimated the growth rate of
110	vaterite spherulites in supersaturated solutions. They measured the seeded-vaterite
111	radius ex situ and the Ca concentration as a function of vaterite growth rate.
112	Gomez-Morales et al. (1996) and Kawano et al. (2009) estimated the surface free
113	energy of vaterite, which is a key parameter in growth, using the incubation time for
114	nucleation in various supersaturated solutions. However, these studies have provided
115	little conclusive information on the growth mechanism of vaterite because there has
116	been a consensus that vaterite crystals do not grow simply by attachment of ionic
117	species in aqueous solutions. Gebauer et al. (2008/2010), Pouget et al. (2009/2010), and
118	Demichelis et al. (2011) indicated that vaterite is formed via ACC, which is a random
119	aggregate of nanometer-scale essential clusters (called pre-nucleation clusters) that form
120	the vaterite structure through cluster-based structural transformation. Sugiura et al.
121	(2014) showed that a vaterite-like intermediate phase (called pseudo-vaterite) appeared
122	prior to vaterite nucleation in the presence of PO ₄ . This intermediate phase had a more
123	poor structure and a higher C/Ca ratio than those of vaterite, and greatly affected the
124	formation of vaterite. Thus, it is necessary to investigate the relationship between the
125	physico-chemical properties of ACC and the growth dynamics of pseudo-vaterite and
126	vaterite in relation to their structures. In addition, when we apply the growth model of

127	vaterite estimated in vitro to actual living organisms, we should consider the effect of
128	PO4 because it is universally present in vivo. Sugiura et al. (2013) showed that one of
129	the roles of PO_4 is a strong inhibition of vaterite transformation from ACC in simulated
130	biological conditions. They also reported that PO ₄ is easily incorporated into ACC.
131	Taking into account these considerations, we provide here a new growth model of
132	vaterite from <i>in situ</i> optical microscopic observations in the Ca-CO ₃ -PO ₄ system under
133	simulated biological temperature, pressure, and pH. In addition to vaterite growth rate,
134	we characterized ACC structures in relation to vaterite growth. We show that vaterite
135	only formed via transformation from an ACC phase, and PO_4 affected the chemical
136	bond structure between Ca and CO ₃ , thus forming a non-vaterite structure in ACC,
137	resulting in inhibition of vaterite nucleation and growth.
138	
190	
139	EXPERIMENTAL METHODS
140	EXPERIMENTAL METHODS Solution preparation
140	Solution preparation
140 141	Solution preparation CaCl ₂ and NaHCO ₃ were purchased from Wako Pure Inc., Japan. NaCl, K ₂ HPO ₄

146	Measurement of vaterite spherulite growth rate and estimation of surface free
147	energy using direct Ca and CO ₃ containing solution mixing and observation cell.
148	The details of the optical measurements and the surface free energy calculation
149	using the two-dimensional nucleation theory are described in Appendix. Briefly, a
150	growth cell for <i>in situ</i> observation of vaterite spherulite growth at various levels of
151	supersaturation was prepared. Owing to the higher solubility of vaterite than that of
152	calcite, it is difficult to maintain supersaturation with respect to vaterite during
153	experiments with a constant flow of supersaturated solution through the whole system.
154	Thus, we performed a rapid mixing system of a cation solution with an anion solution in
155	the observation cell to avoid undesirable homogeneous nucleation before introduction
156	of the solution into the cell.
157	Fig. 1a shows the schematic solution-flow system. The system consisted of two
158	solution pumps and silicone and TeflonoR tubes. Two pumps delivered the cation and
159	anion solutions separately into the observation cell, where the solutions were rapidly
160	mixed. It also enabled the introduction of the highly supersaturated solution into the
161	observation cell and enabled its ejection thereby avoiding homogeneous nucleation. Fig.
162	1b shows the schematic image of both mixing and observation cell. The cell was

163	composed of pieces of glass slide which induced heterogeneous nucleation and
164	polypropylene spacers. It enabled that fresh mixed supersaturated solutions were carried
165	into crystals heterogeneous nucleation and growth. The observation area was
166	approximately 100 μ m thick, 1 mm wide and 7 mm long. The solution was disposed of
167	after passing the observation area, and fresh mixed solution was continuously supplied
168	to the area to maintain supersaturation with respect to precipitated vaterite. The flow
169	rates of cation and anion solutions were 2 mL/min, and the Reynolds number just after
170	the mixing was estimated to be about 4500 indicating that the two solutions were
171	completely mixed. The solution pH was maintained at about 8.6 by the buffering effect
172	of HCO ₃ ⁻ .

The ionic activities of vaterite and pseudo-vaterite were given using Ca^{2+} and CO_3^{2-} concentrations in the prepared solutions as

175
$$I_{p(vaterite, pseudo-vaterite)} = [Ca2+][CO32-]$$
(2)

176 The supersaturation ranges, σ in this study are 0.25–2.13 for vaterite and 177 0.16–1.89

178 for pseudo-vaterite. (see Resulting section and Appendix)

179

180 Characterization of formed vaterite and pseudo-vaterite in supersaturated

181 solutions.

182	The details are described in Appendix. In brief, the precipitated vaterite
183	spherulites, containing both vaterite and pseudo-vaterite, were characterized using
184	SAXS, EDX, and solid-state NMR.

185

186 **Characterization of ACC structure and dynamics.**

In addition to the vaterite spherulites growth experiments, we used Raman spectroscopy to measure how ACC, a precursor phase of the vaterite structure, altered in various PO_4 -containing solutions. In addition, the PO_4 molar ratio (Ca/PO₄) of ACC

190 was measured using ICP-AES. The experiment details are described in Appendix.

191

192RESULTS193Growth behaviors and phase characterization of vaterite spherulites194Our previous study (Sugiura et al. 2014) revealed that vaterite spherulites were195not a unique phase, but consisted of vaterite and pseudo-vaterite. The latter formed196before vaterite and had lower stability, higher solubility, poor crystallinity, and a higher197C/Ca ratio compared to those of vaterite. EDX and SAXS analyses can be used to198distinguish vaterite from pseudo-vaterite.

199	Figs. 2a show the same vaterite spherulite observed at different growth periods
200	using optical microscopy. The spherulite had a rounded morphology in the early stage
201	(20 s); however, the round shape was lost and became irregular over time (140 s). We
202	observed a decrease in the growth rate with time despite constant supersaturation (Fig.
203	2b). Furthermore, it displays very different physico-chemical properties from those of
204	the earlier formed rounded parts and the irregular shapes that formed on those rounded
205	parts (see Fig. 3 and Fig. S1 and S2).
206	The rounded spherulite morphology observed during the period of faster growth
207	rate also changed and became irregular after the growth rate became slower. The
208	FE-SEM images showed that the rounded vaterite spherulites comprised many sub 100
209	nm scale particles as has been demonstrated in previous studies (Pouget et al.
210	2009/2010; Rodriguez-Blanco et al. 2011). Irregularly shaped spherulites (Fig. 3a)
211	changed to a hollow-shell structure irrespective of the presence of PO ₄ (Fig. 3b) after
212	washed several times with 10 mM NaHCO3 solution. FE-SEM/EDX measurements
213	showed that the average C/Ca ratio of the outer regions of the shell (the part of irregular
214	shape) was 1.03 and that of the inner regions of the shell was 1.28 (Table 1).
215	The SAXS measurements for irregularly shaped spherulites showed a bi-modal
216	crystallite size distribution with peaks at approximately 5 nm and at 50-200 nm.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5184

217	However, the peak at 5 nm became weak for washed hollow-structure vaterite, and the
218	size distribution changed to almost unimodal with a peak at 50-200 nm (Fig. 3c). The
219	law data for the SAXS-XRD pattern is in Appendix (Fig. S1).
220	The solid state NMR (³¹ P and ¹³ C MAS spectra) for rounded vaterite and hollow
221	structural vaterite spherulites showed clear differences. This indicates that the
222	incorporation of PO ₄ into vaterite and pseudo-vaterite structures is distinctly different
223	(see Fig. S2).

224

225 Variation in surface free energy with PO₄ concentration

We assumed that the chemical formula of vaterite or pseudo-vaterite was stoichiometric, CaCO₃. The measured solubilities from the Ca concentrations were

228
$$K_{sp(vaterite)} = [Ca^{2+}][CO_3^{2-}] = 1.04 \times 10^{-8} [M/L]^2$$
 (2)

229 for vaterite and

230
$$K_{sp(pseudo-vaterite)} = [Ca^{2+}][CO_3^{2-}] = 1.44 \times 10^{-8} [M/L]^2$$
 (3)

for pseudo-vaterite, in our experimental conditions for ionic strength of 0.1 $[M/L]^2$ which values were similar to values of Plummer and Busenberg 1982 and lower than that of ACC ($2.9 \times 10^{-8} [M/L]^2$ calculated from Brecevic and Nielsen 1989).

Figs. 4a and b show R values for vaterite and pseudo-vaterite depending on σ in

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5184

PO₄ solutions. We measured *R* for each condition in more than 50 samples; the data were averaged and standard deviations were calculated. The maximum error of *R* was less than 25%.

238 *R* exponentially increased with increasing σ . With increasing PO₄ concentration, 239 on the other hand, *R* decreased even when σ was kept constant. At low values of σ (in a 240 PO₄-free solution, σ was 0.16 for pseudo-vaterite and 0.25 for vaterite, respectively) and 241 higher PO₄, nucleation of spherulites or growth of spherulite seeds was not detected, 242 despite observation for more than 3 h.

243Using the relationship between R and σ , we calculated γ for two-dimensional 244islands nucleated on vaterite or pseudo-vaterite in the PO₄ solutions. Fig. 5a shows the relationship between $1/ln(1 + \sigma)$ and $ln\{R/\sigma^{2/3}(1 + \sigma)^{1/3}\{ln(1 + \sigma)\}^{1/6}\}$. A change in slope 245246was observed for $1/ln(1 + \sigma)$ greater than 1.8 for pseudo-vaterite and greater than 1.5 for vaterite. As has been previously reported for several crystals that grow via a two 247248dimensional mode (Malkin et al., 1989; Onuma et al., 2000), we assumed that growth proceeded via homogeneous nucleation for $1/ln(1 + \sigma)$ less than 1.8 and via 249250heterogeneous nucleation for $1/ln(1 + \sigma)$ greater than 1.8. The apparent γ values were 251calculated using the plot in heterogeneous nucleation region. (Onuma et al., 1998). The apparent y values calculated for the homogeneous nucleation region were $2.43k_BT$ for 252

vaterite and $1.89k_BT$ for pseudo-vaterite in PO₄-free solutions.

254	The apparent γ values increased with increasing PO ₄ concentration. However,
255	apparent γ for pseudo-vaterite was lower than that for vaterite at all concentration of
256	PO ₄ . We calculated the surface free energy, ΔG_{i} , of vaterite and pseudo-vaterite using
257	apparent γ . Fig. 5b shows the relationship between ΔG and PO ₄ concentration. The ΔG
258	values in PO ₄ -free solutions were 30.7 mJ/m^2 for vaterite and 23.9 mJ/m^2 for
259	pseudo-vaterite, respectively. Gomez-Morales et al. (1996) reported $\Delta G = 40 \text{ mJ/m}^2$ for
260	vaterite using the relationship between incubation time for three-dimensional nucleation
261	versus σ . Lakshtanov et al. (2010) also reported $\Delta G = 42 \text{ mJ/m}^2$ for vaterite. Our results
262	are close
263	to this value. Furthermore, the value was smaller than that of calcite (48.5 mJ/m^2)
264	(Bruno

et al. 2013).

The value of ΔG increased with increasing PO₄ concentration; the rate of increase for vaterite was higher than that for pseudo-vaterite. The ΔG values were 223.9 mJ/m² for vaterite and 105.2 mJ/m² for pseudo-vaterite in solutions with 10 μ M PO₄ (Fig. 5b). We applied growth models other than two-dimensional nucleation, spiral growth and adhesive growth models (Ookawa, 1977; Saito, 2002), to analyze the growth rate

271	data because we could not observe the surfaces of the crystals directly. Both growth
272	models were inadequate because the calculated growth parameters and growth behavior
273	using both growth models showed clearly strange value (see details in Appendix).
274	
275	Dynamics and structures of ACC particles in Ca-CO ₃ -PO ₄ system
276	Fig. 6 shows the PO_4/Ca ratio of ACC formed immediately after solution
277	preparation in the presence of PO_4 . The ratio increased linearly with increasing PO_4
278	concentration. The ratio was 3.8×10^{-3} in 20 μ M PO ₄ and 9.7×10^{-3} in 50 μ M PO ₄ both of
279	which contained 12.5 mM CaCO ₃ .
280	The ACC structure were also altered with increasing PO ₄ content using Raman
281	spectroscopy. The details were described in Appendix. Briefly, as PO ₄ concentration
282	increasing, ACC structures were altered calcite-like to vaterite-like.
283	
284	Discussions
285	Calcium carbonate crystalline particles precipitated on the walls and at the bottom
286	of cells. In low-concentration PO ₄ solutions, they mainly consisted of vaterite
287	spherulites, and the amount of calcite increased with increasing in PO ₄ concentration.
288	Our study revealed the characteristics of vaterite growth dynamics in the

289	Ca-CO ₃ -PO ₄ system under simulated biological conditions. In PO ₄ -free solutions, the
290	values for apparent edge free energy were $\gamma = 2.43k_BT$ for vaterite and $\gamma = 1.89k_BT$ for
291	pseudo-vaterite. Malkin et al. (1989) investigated the growth dynamics of the (101) face
292	of ammonium dihydrogen phosphate (ADP) crystal, which is a representative soluble
293	inorganic crystal. The (101) face grew by two-dimensional nucleation and γ was
294	estimated to be $0.7k_BT$. Sazaki et al. (1996) investigated the (101) face of the lysozyme
295	crystal of a protein crystal, and found that $\gamma = 2.8k_BT$. These studies indicate that the
296	value of γ greatly depends on the size of the essential growth unit of crystals, i.e.,
297	whether a crystal is an ionic species or a macroscopic molecule. The apparent value of γ
298	for vaterite and pseudo-vaterite was two or three times larger than that for soluble
299	inorganic crystals; this value was comparable with that for protein crystals and
300	hydroxyapatite. These growth units are considered as cluster- sized molecules (nm sized
301	particles) (Onuma and Ito 1998). The large γ of vaterite and pseudo-vaterite is
302	consistent with that of the previous studies on the growth unit of calcium carbonates, i.e.,
303	they are clusters.
304	Next, we discuss the inhibiting effect of PO ₄ on vaterite growth. On the basis of
305	the growth rate measurements, there are two possibilities for the mechanism causing the

306 PO₄ effect. First, PO₄ is simply adsorbed onto the surface of vaterite and stops vaterite

307	growth. Second, PO ₄ changes the ACC structure and inhibits its transformation into
308	vaterite. Gebauer et al. (2008/2010) and Demichelis et al. 2011 indicated that ACC is a
309	precursor of vaterite and suggested that ACC was an aggregate of the growth unit of
310	vaterite under weak basic solutions. In addition, our previous study (Sugiura et al. 2013)
311	showed that a small amount of PO ₄ (PO ₄ /Ca ${\sim}1/1000$) altered later calcium carbonate
312	crystalline phases, such as vaterite to calcite. Furthermore, the dynamics of ACC are
313	also significantly altered as PO ₄ concentration increases.
314	Raman spectra indicated that the structure of ACC changed from calcite-like
315	amorphous into vaterite-like amorphous with an increase in PO ₄ concentration.
316	However, they could not be transformed into crystalline vaterite. We assume that the
317	increase in vaterite-like structures in ACC with PO_4 did not correspond to actual
318	vaterite structure. These vaterite-like structures are assumed as "junk parts," and it is
319	suggested that their increase resulted in a marked reduction in the actual vaterite growth
320	rate. The ICP-AES measurement showed that PO ₄ was easily incorporated into ACC
321	and altered its structure. The resulting physico-chemical properties from the
322	incorporation of Mg^{2+} ions and polymers into ACC have also been studied (Cheng et al.
323	2007; Oaki et al. 2008; Jiang et al. 2010). It suggests that ACC formed in relatively low
324	PO ₄ concentration solutions are one of precursors in the formation of vaterite and

325 pseudo-vaterite. Thus, it is indicated that PO₄-ACC no longer acts as a growth unit of

326 vaterite and pseudo-vaterite.

327	Gebauer et al. (2008/2010) and Demichelis et al. (2011) investigated the structure
328	of pre-nucleation clusters of calcium carbonate under various pH conditions. They
329	showed that the size, distribution, and coordination number of the cluster increased with
330	an increase in solution pH. The essential chemical bond between Ca and CO_3 in ACC is
331	Ca-C, corresponding to a calcite-like structure at lower pH condition about 8.5, which
332	is comparable to our experimental condition, and O-Ca, corresponding to a vaterite-like
333	structure, at higher pH condition about 11.5. This conclusion was also supported by
334	experiments (Nebel et al., 2008). At lower pH, HCO_3^- ion pairs are formed in which H^+
335	bonds O of CO ₃ . This inhibits the formation of O–Ca bonds, resulting in ACC particles
336	with small particle distributions. They also indicated that the average size of ACC
337	particles increases at higher pH because of the absence of H^+ ions, which acts to block
338	ACC aggregation.

Our conclusion concerning the effect of PO4 on ACC structure is comparable to that caused by increasing the pH of the solutions. When the results obtained by Demichelis et al. (2011) are applied to this case, it appears that PO4 (probably the HPO₄²⁻ form) binds H⁺ in ACC and changes the ACC structure. This drastically reduces

343	the number of growth units that originally construct the vaterite structure via
344	cluster-based phase transformation from ACC. Some previous studies had investigated
345	the effect of H^+ on amorphous phases (Wang et al., 2009; Sugiura et al., 2011), and they
346	support these conclusion.

The effect of PO_4 on vaterite growth can be summarized as follows. PO_4 is not only absorbed on the surface of vaterite as a conventional impurity but also changes the structure of the growth unit in ACC *before* the vaterite forms via phase transformation from ACC. This modified structure is vaterite-like, but is never the actual vaterite structure.

Although supersaturation of the solution is defined using the CaCO₃ 352353concentration, where PO₄ ions co-existed they reduced the growth units of vaterite; it is 354observed that vaterite grew through cluster-based crystal growth. For this reason, despite the average Ca-CO₃ ion concentration being kept constant, the actual 355356 supersaturation rate decreased as the PO₄ concentration increased. Because of this 357 decrease in actual supersaturation (from the retardation of vaterite growth by PO₄ ions) 358a higher supersaturation of the bulk solution than would be expected was required for 359the nucleation and growth of vaterite. Consequently, this causes an increase in the 360 apparent surface energy of vaterite in PO₄ containing solutions.

361	Because of the difference in apparent surface free energy, pseudo-vaterite phase is
362	likely to precipitate under high PO ₄ concentrations. When the PO ₄ concentration further
363	increases, crystalline vaterite dose not precipitate, and ACC with a vaterite-like
364	chemical structure is stable.
365	We obtained conclusive information in this study to explain why vaterite is rarely
366	observed in biological hard tissues. Small amounts of PO_4 ($PO_4/CaCO_3 = \sim 1/1000$),
367	which is essential for all living organisms, are sufficient to inhibit vaterite nucleation
368	and growth. We also observed that fluctuations in PO4 concentration caused the
369	formation of nonuniform vaterite-like structures, which are inadequate for stable hard
370	tissues in vivo.
370 371	tissues <i>in vivo</i> .
	tissues <i>in vivo</i> . Implications
371	
371 372	Implications
371 372 373	Implications We investigated the growth dynamics of vaterite and pseudo-vaterite in the
371 372 373 374	Implications We investigated the growth dynamics of vaterite and pseudo-vaterite in the Ca-CO ₃ –PO ₄ system under simulated biological conditions in relation to the
371 372 373 374 375	Implications We investigated the growth dynamics of vaterite and pseudo-vaterite in the Ca-CO ₃ –PO ₄ system under simulated biological conditions in relation to the physicochemical properties of ACC, the precursor of vaterite. A possible inhibition

379	more evident in vaterite than in pseudo-vaterite because the structure of
380	pseudo-vaterite is looser than that of vaterite. Therefore, in higher PO ₄ solutions, the
381	unstable phase of pseudo-vaterite is likely to appear instead of vaterite because of its
382	lower surface free energy in the early stages of calcium carbonate formation.
383	With an increase in PO ₄ concentration, the dominant phase in the solution
384	changes to a more unstable form of vaterite. Furthermore, it is suggested that unstable
385	vaterite phases formed in high PO ₄ solutions easily convert calcite through dissolution
386	and precipitation because their physico-chemical properties are highly unstable
387	compared with conventional vaterite (Sugiura et al. 2013).
388	This suggestion of how PO ₄ affects vaterite formation processes relating to its
389	precursor ACC contributes not only to biomineralization process investigation but also
390	suggests that calcium carbonate polymorphism by other biocompatible elements such
391	as Mg^{2+} and SO_4 is a possibility.
392	
393	
394	
395	

406 ACKNOWLEDGMENTS

407	We thank Dr. A. Ito and, Dr. Y. Sogo for their assistance with the optical
408	microscopy experiments. Dr. A. Oyane helped with FE-SEM/EDX measurements. We
409	also thank Mr. T. Goto for SAXS analysis, Mr. N. Sugimura and Dr. T. Shibue for
410	Raman and NMR measurements. We thank Dr. K. Nakamura and Prof. Y. Kimura for
411	their advice. This research was partially funded by the Material Characterization Central
412	Laboratory, Waseda University and a grant-in-aid for doctoral students from the Japan
413	Society for the Promotion of Science (JSPS), Ministry of Education, Culture, Sports,
414	Science and Technology (MEXT), grant number 25-2283.

416		
417		
418		
419		
420		
421		
422		

415

REFERENCES CITES 424

425	Akiva-Tal A	A.,	Kababya	S.,	Balazs	Y. S.,	Glazer	L.,	Berman	А.,	Sagi	А.	and
-----	-------------	-----	---------	-----	--------	--------	--------	-----	--------	-----	------	----	-----

Schmidt A. (2011) In situ molecular NMR picture of bioavailable calcium stabilized as 426

```
amorphous CaCO<sub>3</sub> biomineral in crayfish gastroliths. Proceedings of the National
427
```

- Academy of Science of USA, 108, 14763-14768. 428
- 429 Balz M., Therese H. A., Li J., Gutmann J. S., Kappl M., Nasdala L., Hofmeister W.,
- Butt H.-J., Tremel W. (2005) Crystallization of Vaterite Nanowires by the Cooperative 430
- Interaction of Tailor-Made Nucleation Surfaces and Polyelectrolytes. Advanced 431
- 432Functional Materials, 15, 683-688.

433	Bentov S.,	Weil S.,	Glazer L.,	Sagi, A.	and Berman,	A.	(2010)	Stabilization	of
-----	------------	----------	------------	----------	-------------	----	--------	---------------	----

- 434 amorphous calcium carbonate by phosphate rich organic matrix proteins and by single
- 435 phosphoamino acids. Journal of Structural Biology, 171, 207-215.
- 436 Brecevic L. and Nielsen A. E. (1989) Solubility of amorphous calcium carbonate.
- 437 Journal of Crystal Growth, 98, 504-510.
- 438 Bruno M., Massaro F. R., Pastero L., Costa E., Rubbo M., Prencipe M. and
- 439 Aquilano D. (2013) New Estimates of the Free Energy of Calcite/Water Interfaces for
- 440 Evaluating the Equilibrium Shape and Nucleation Mechanisms. Crystal Growth and
- 441 Design, 13, 1170-1179.
- 442 Carlstrom D. (1963) A crystallographic study of vertebrate otoliths. Biological
 443 Bulletin, 125, 124-128.
- 444 Cheng X. G., Varona P. L., Olszta M. J., Gower L. B. (2007) Biomimetic synthesis
- of calcite films by a polymer-induced liquid-precursor (PILP) process 1. Influence and
- incorporation of magnesium. Journal of Crystal Growth 307, 395-404.
- 447 Colfen H. and Antonietti M. (2008) Mesocrystals and Nonclassical Crystallization;
- 448 John Wiley and Sons Ltd., England.
- 449 Deer W. A., Howie R. A. and Zussman, J. (1992) An Introduction to the
- 450 Rock-Forming Minerals 2nd Edition; Pearson Education Ltd., UK.

- 451 Demichelis R., Raiteri P., Gale J. D., Quigley D. and Gebauer D. (2011) Stable
- 452 prenucleation mineral clusters are liquid-like ionic polymers. Nature Communications,
- 453 2,
- 454 590-597.
- Demichelis R., Raiteri P., Gale J. D. and Dovesi R. (2013) The multiple structure
 of vaterite. Crystal Growth and Design, 13, 2247-2251.
- 457 Dove P., DeYoreo J. J. and Weiner S. (2003) Reviews in Mineralogy and
- 458 Geochemistry, Vol. 54: Biomineralization. Mineralogical Society of America,
- 459 Geochemical Society, USA.
- 460 Gebauer D., Gunawidjaja P. N., Ko P. J. Y., Bacsik Z., Aziz B., Liu L., Hu Y.,
- 461 Bergstrom L., Tai C. W., Sham T. K., Eden M. and Hedin N. (2010) Proto-Calcite and
- 462 Proto-Vaterite in Amorphous Calcium Carbonates. Angewande Chemie International
 463 Edition, 49, 8889–8891.
- 464 Gebauer D., Volkel A. and Colfen H. (2008) Stable pre-nucleation clusters for
- 465 calcium carbonate. Science, 322, 1819–1822.
- 466 Gomez-Morales J., Torrent-Burgues J. and Rodriguez-Clemente R. (1996)
- 467 Nucleation of calcium carbonate at different initial pH conditions. Journal of Crystal
- 468 Growth, 169, 331-338.

469	Greenwald I. (1945) The effect of phosphate on the solubility of calcium carbonate
470	and of bicarbonate on the solubility of calcium and magnesium phosphates. Journal of
471	Biological Chemistry, 161, 697-704.
472	Hall A., and Taylor J. D. (1971) The occurrence of vaterite in gastropod egg-shells.
473	Mineralogical Magazine, 38, 522-525.
474	Jiang J., Gao M. R., Qiu Y. H., Yu S. H. (2010) Gram-scale, low cost, rapid
475	synthesis of highly stable Mg-ACC nanoparticles and their long-term preservation.
476	Nanoscale, 2, 2358-2361.
477	Kawano J., Shimobayashi N., Miyake A. and Kitamura M. (2009) Precipitation
478	diagram of calcium carbonate polymorphs: its construction and significance. Journal of
479	Physics; Condensed. Matter, 21, 425102-425109.
480	Kraji D. and Brecevic L. (1995) Dissolution kinetics and solubility of calcium
481	carbonate monohydrate. Colloidal Surface A, 96, 287-293.
482	Lakshtanov L. Z. and Stipp S. L. S. Interaction between dissolved silica and

- 483 calcium carbonate: 1. Spontaneous precipitation of calcium carbonate in the presence of
- 484 dissolved silica. Geochimica et. Cosmochimica Acta, 74, 2655-2664.
- Lowenstam H. A. and Abbott D. P. (1975) Vaterite: a mineralization product of the 485
- 486hard tissues of a marine organism (Ascidiacea). Science, 188, 363-365. Malkin A. I.,

487	Chernov A. A	A. and Alexeev L.	V. (1989)	Growth of	dipyramidal	face of	dislocation-f	free

488	ADP crystals; fr	ee energy o	f steps. Journa	al of Crystal	Growth, 97	,765-769.
						,

- 489 Mann S. (2005) Biomineralization, Principles and Concepts in Bioinorganic
- 490 Materials Chemistry. Oxford University Press, USA.
- 491 Nebel H., Neumann M., Mayer C. and Epple M. (2008) On the structure of
- 492 amorphous calcium carbonate-A detailed study by solid-state NMR spectroscopy.
- 493 Inorganic Chemistry, 47, 7874-7879.
- 494 Oaki Y., Kajiyama S., Nishimura T., Imai H., Kato T. (2008) Nanosegregated
- 495 amorphous composites of calcium carbonate and an organic polymer. Advanced
- 496 Materials 20, 3633-3637.
- 497 Olderøy M. Ø., Xie M., Strand B. L., Flaten E. M., Sikorski P. and Andreassen J. P.
- 498 (2009) Growth and nucleation of calcium carbonate vaterite crystals in presence of
- 499 alginate. Crystal Growth and Design, 9, 5176-5183
- 500 Onuma K. and Ito A. (1998) Cluster growth model for hydroxyapatite. Chemistry
- 501 of Materials, 10, 3346-3351.
- 502 Onuma K., Ito A. and Tateishi T. (1996) Investigation of a growth unit of
- 503 hydroxyapatite crystal from the measurements of step kinetics. Journal of Crystal
- 504 Growth, 167, 773-776.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5184

505	Onuma K., Kanzaki N., Ito A. and Tateishi T. (1998) Growth kinetics of the
506	hydroxyapatite (0001) face revealed by phase shift interferometry and atomic force
507	microscopy. Journal of Physical Chemistry B, 102, 7833-7838.
508	Plummer L. N. and Busenberg E. (1982) The solubilities of calcite, aragonite and
509	vaterite in CO ₂ -H ₂ O solutions between 0 and 90°C, and an evaluation of the aqueous
510	model for the system Ca-CO3-H2O. Geochimica et Cosmochimica Acta, 46,
511	1011-1040.
512	Pouget E. M., Bomans P. H. H., Goos J. A. C. M., Frederik P. M., de With G. and
513	Sommerdijk N. A. J. M. (2009) The initial stages of template-controlled CaCO3
514	formation
515	revealed by cryo-TEM. Science, 323, 1455-1458.
516	Pouget E. M., Bomans P. H. H., Dey A., Frederik P. M., deWith G. and
517	Sommerdijk N. A. J. M. (2010) The Development of Morphology and Structure in
518	Hexagonal Vaterite. Journal of American Chemical Societies, 132, 11560-11565.
519	Posner A. S. and Betts F. (1975) Synthetic amorphous calcium phosphate and its
520	relation to bone mineral structure. Accounts of Chemical Research, 8, 273-281.
521	Radha A. V., Forbes T. Z., Killian C. E., Gilbert P. U. P. A. and Navrotsky A. (2010)
522	Transformation and crystallization energetic of synthetic and biogenic amorphous

9/15

523 calcium carbonate. Proceeding of National Academy of Science of USA, 107,524 16438-16443.

525	Rodriguez-Blanco J. D., Shaw S. and Benning L. G. (2010) The kinetics and
526	mechanisms of amorphous calcium carbonate (ACC)crystallization to calcite, via
527	vaterite. Nanoscale, 3, 265–271.
528	Saito Y. (2002) Chapter 5: Surface kinetics. Crystal growth. Syokabo Co., Japan.
529	pp. 81-90. (in Japanese)
530	Sato A., Nagasaka S., Furihata K., Nagata S., Arai I., Saruwatari K., Kogure T.,
531	Sakuda S. and Nagasawa H. (2011) Glycolytic intermediates induce amorphous calcium
532	carbonate formation in crustaceans. Nature Chemical Biology, 7, 197–199.
533	Sazaki G., Kurihara K., Miyashita S., Komatsu H. and Nakada, T. (1996) In situ
534	observation of the concentration distribution around a lysozyme crystal by two-beam
535	interferometry. Journal of Japan Association of Cryst. Growth, 23, 413-421. (in
536	Japanese)
537	Sugiura Y., Onuma K., Kimura Y., Miura H. and Tsukamoto K. (2011)
538	Morphological evolution of precipitates during transformation of amorphous calcium
539	phosphate into octacalcium phosphate in relation to role of intermediate phase. Journal
540	of Crystal Growth, 332, 58-67.

9/15

541	Sugiura Y., Onuma K., Kimura Y., Tsukamoto K. and Yamazaki A. (2013)
542	Acceleration and inhibition effects of phosphate on phase transformation of amorphous
543	calcium carbonate into vaterite. American Mineralogist, 98, 262-270.
544	Sugiura Y., Onuma K., Nagao M., Momma K., Kimura Y. and Yamazaki A.
545	(2014) Dissolution behavior of vaterite spherulite in solutions containing phosphate ions.
546	Journal of the Ceramic Society of Japan, 122, 679-687.
547	Sunagawa I. (2005) Crystals-Growth, Morphology and Perfection. Cambridge
548	University Press, UK.
549	Tsuji T., Onuma K., Yamamoto A., Iijima M. and Shiba K. (2008) Direct
550	transformation from amorphous to crystalline calcium phosphate facilitated by
551	motif-programmed artificial proteins. Proceedings of National Academy Science of
552	USA, 105, 16866-16870.
553	Wang C. G., Liao J. W., Gou B. D., Huang J., Tang R. K., Tao J. H., Zhang T. L.
554	and Wang K. (2009) Crystallization at multiple sites inside particles of amorphous
555	calcium phosphate. Crystal Growth and Design, 9, 2620-2626.
556	Xu AW., Antonietti M., Colfen H., Fang YP. (2006) Uniform Hexagonal Plates
557	of Vaterite CaCO3 Mesocrystals Formed by Biomimetic Mineralization. Advanced
558	Functional Materials, 16, 903-908.

559	
560	
561	
562	
563	
564	
565	
566	
567	
568	
569	
570	
571	
572	Figure Captions
573	Fig. 1. Experimental setup for vaterite growth rate measurement. (a) Overall diagram of
574	the observation system. The arrows indicate the flow direction of the solutions. (b)
575	Schematic of the growth cell. The cell consists of three parts: the solution mixing part,
576	the observation part, and the waste part. The circles indicate vaterite spherulites, the

577 rectangular area containing circles denotes the observation part, and the arrows indicate578 the flow direction of the solutions.

579

580	Fig. 2. Growth behavior of precipitated spherulites in supersaturated solutions. (a)
581	Optical microscopic photograph of spherulites 20 s and 140 s after the start of growth.
582	Supersaturation σ was 1.80 for vaterite and 1.58 for pseudo-vaterite (PO ₄ -free
583	condition). The spherulites exhibit a well-rounded morphology. (b) Change in average
584	spherulite radius over time measured around at center of spherulites. Growth rate (slope
585	of line) of spherulites decreased after 60 s. The black dotted line corresponds to the
586	growth rate of pseudo-vaterite and the grey dotted line to that of vaterite.

587

Fig. 3. Phase characterization of spherulites. (**a**) FE-SEM photograph of irregularly shaped spherulites precipitated in the same solution as Fig. 2. The photograph was taken 300 s after the start of growth. (**b**) FE-SEM photograph of hollow spherulites obtained by washing the spherulites in (**a**) using 10 mM NaHCO₃ solution. (**c**) SAXS measurements for (**a**) and (**b**). The crystallite probability of (**a**) and (**b**) is indicated respectively.

595	Fig. 4. Relationship between R and σ in PO ₄ -containing solutions. (a) Pseudo-vaterite.
596	(b) Vaterite. The symbols and lines correspond to data measured at various PO_4
597	concentrations: grey solid diamonds with fine broken line (PO ₄ -free solution), grey
598	solid squares with fine broken line (1.25 μ M PO ₄ -containing solution), grey solid circles
599	with fine broken line (2.50 μ M PO ₄ -containing solution), black open diamonds with fine
600	broken line (5.00 μ M PO ₄ -containing solution), grey open squares with fine broken line
601	(6.25 μ M PO ₄ -containing solution), grey open circles with fine broken line (7.50 μ M
602	PO ₄ -containing solution), grey solid diamonds with roughly broken line (8.75 μ M
603	PO ₄ -containing solution) and grey solid squares with roughly broken line (10.00 μ M
604	PO ₄ -containing solution).

Fig. 5. (a) Logarithmic plots of growth rate of the vaterite (solid circles) and pseudo-vaterite (solid circles) for calculation of edge free energy under PO_4 free conditions. (b) Change in surface free energies of vaterite (solid circles with dotted line) and pseudo-vaterite (solid diamonds with dotted line) with PO_4 concentration.

610

Fig. 6. PO₄/Ca ratio of ACC precipitated in PO₄-containing solutions.

- Table 1. Summary of the physico-chemical properties of vaterite and pseudo-vaterite in
- 614 the Ca-CO₃-PO₄ system.

5 mm

	Vaterite	Pseudo-vaterite	
Crystal structure	Highly crystalline phase.	Low crystalline phase.	
	Crystallite size was around	Crystallite size distribution	
	200 nm	was bi-modal, around 10	
		nm and 150 nm.	
Chemical composition,	1.08 ± 0.08	1.28 ± 0.15	
C/Ca ratio			
Solubility, Ksp	Xx*10^xx	Yy*10^yy	
PO4 responce	High response and low	Relatively low response	
	absorption	and high absorption	