1	Revision-1
2 3 4	A spreadsheet for calculating normative mole fractions of end- member species for Na-Ca-Li-Fe ²⁺ -Mg-Al tourmalines from electron microprobe data
5 6 7 8 9	George B. Morgan VI Electron Microprobe Laboratory, University of Oklahoma 100 East Boyd Street, SEC 710 Norman, OK 73019
10	Abstract
11	This work presents a spreadsheet that calculates the mole fractions of end-member components
12	for simple Na-Ca-Li-Mg-Fe ²⁺ -Al tournalines from electron microprobe data. The input includes
13	the B ₂ O ₃ concentration obtained either from direct analysis or by estimation on the basis of
14	stoichiometry. The concentration of Li_2O can either be input from other analysis or estimated by
15	the spreadsheet. The spreadsheet does not address the mole fractions of Cr, V, oxidized or
16	deprotonated tourmaline species, nor account for species involving tetrahedral boron or
17	aluminum. Therefore, the spreadsheet is not a comprehensive tool that includes all IMA
18	approved tourmaline species, and so is not intended for naming tourmalines according to IMA
19	convention. The present method includes a useful subset of end-member species that can be
20	described simply from electron microprobe data and so, akin to a normative mineralogical
21	analysis for rock composition, the calculations are intended to provide a normative result that
22	serves as simple basis for comparing tourmalines that is more direct than names derived from the
23	most abundant species present.
24	
25	Keywords: tourmaline, formula, mole fractions, end-members, electron microprobe analysis

26

8/4

27

Introduction

28	Tourmaline is by far the most important mineral phase in the earth's crust that contains
29	boron as an essential structural component. A complex borosilicate, the general formula for
30	tourmaline can be expressed as $XY_3Z_6(BO_3)_3(T_6O_{18})V_3W$, where most commonly $X = (Na, Ca, Ca, Ca)$
31	K, or vacancy), $Y = (Mg, Fe^{2+}, Al, Li, Mn, Ti, Cr^{3+}, V^{3+}, Z = Al, Fe^{3+}, Cr^{3+}, V^{3+}, Fe^{2+}, Mg, or$
32	vacancy), T = (Si, Al, or B), B = (B or vacancy), V = (OH, O), and W = (OH, O, F, Cl)
33	(Hawthorne and Henry 1999; Filip et al. 2012; Henry et al. 2011; Bosi et al. 2012). Simple, yet
34	informative, description of tourmaline composition is hindered by naming the mineral for the
35	most abundant end-member species present - with or without other compositional modifiers. A
36	more direct approach for tourmaline description would result from presentation of the mole
37	fractions of end-member species, similar to methods used for other mineral groups such as the
38	feldspars and pyroxenes. Despite considerable previous efforts toward calculating tourmaline
39	chemical formula, a mole fraction approach has been hindered by the complexity of tourmaline
40	crystal chemistry and resultant lack of a simple tool for calculation.
41	Calculating a chemical formula for tourmaline from an electron microprobe analysis
42	(EMPA) is complicated by the incorporation of up to three elements (B, H, and Li) that are
43	difficult or impossible to analyze using fluorescent X-rays. Moreover, the stoichiometric
44	abundance of hydrogen can vary due to several coupled substitutions and, thus, change the total
45	charge basis that provides the normalizing factor for calculating the chemical formula. Several
46	methods and spreadsheets for recalculating composition and formula from EMPA previously
47	have been discussed and distributed (e.g., Henry and Dutrow 2002; Selway and Xiong 2002;
48	Yavuz et al. 2006; Clark 2007), and these are useful for naming a tourmaline species and/or
49	classifying composition using a series of ternary and quaternary diagrams (e.g., Selway and

50 Xiong 2002; Hawthorne and Henry 1999; Henry et al. 2011). The program of Yavuz et al. (2006) 51 calculates the structural formula, including estimation of oxidized species, and provides the relative percentages (mole fractions) of tournaline types based on X site speciation (sodic, 52 53 calcic, and vacancy series), but the program does not estimate mole fractions of any tourmaline 54 end-member species. The TOURCOM program of Pesquera et al. (2008) calculates mole fractions of tourmaline species, albeit using a somewhat outdated list of species, but does so 55 from a tournaline formula as input rather than from compositional (oxide weight percent) data. 56 57 Hence, to date none of these approaches easily furnish mole fractions of end-member components from an oxide weight fraction analysis, which is unfortunate because component 58 mole fractions would more instructive for conveyance of tournaline composition in text than a 59 simple name, and so would be more useful for comparing tournaline compositions and relating 60 those compositions to chemical environment of formation. For example, consider the 61 62 hypothetical tournaline composition shown in Table 1. This composition was calculated from a formula corresponding to 40% schorl, 25% dravite, 20% foitite, and 15% olenite on a molar 63 basis. Use of spreadsheets like that of Selway and Xiong (2002) does a fine job of calculating the 64 65 atomic formula and assigns the name "schorl" to the phase. Although "schorl" is the correct name for this mineral according to the present rules (e.g., Henry et al. 2011), the name does not 66 convey a compositional difference relative to a mineral that is pure schorl. The use of other 67 descriptive or Schaller modifiers along with species name (cf. Henry et al. 2011) can provide 68 more compositional information, but typically yield convoluted names that provide at best a 69 qualitative description of composition. For example "dravitic-foititic-olenitic- schorl" requires 70 about the same number of characters to print, but provides less direct information than 71 Shl(40)Drv(25)Ftt(20)Oln(15)xF(0), where xF represents the mole fraction of F in the W site. 72

8/4

73	To date, the lack of use of tourmaline end-member components likely stems from the
74	complexity of tourmaline crystal chemistry and resultant lack of a simple tool for calculation.
75	This work describes a spreadsheet (Morgan_ProportionalTourmalineFormula_09July2015.xls)
76	that calculates the mole fractions of end-member components for Na-Ca-Li-Mg-Fe ²⁺ -Al
77	tourmalines from electron microprobe data that includes TiO ₂ and MnO. The compositional
78	input also includes the B ₂ O ₃ concentration either obtained by direct analysis (e.g., by SIMS or
79	EMPA) or estimated from stoichiometry. The method utilized is based upon a 31 anion formula
80	calculation as discussed by Clark (2007). Although knowledge or estimation of the actual H (i.e.,
81	H ₂ O) concentration is commonly helpful for accurate calculation of formulae (e.g., Clark 2007;
82	Henry et al. 2011), it is not necessary for the present purpose as the H ₂ O concentration is used as
83	a variable in the present spreadsheet to optimize the cation formula based upon either or both
84	filling the Y site at 3 atoms per formula unit and/or estimation of the OH site occupancy. It is re-
85	emphasized here that the calculations in this spreadsheet do not include all IMA approved
86	tourmaline species, and that the spreadsheet is not intended to produce a species name according
87	to IMA conventions. Rather, this spreadsheet contains a subset of what are considered to be
88	useful tourmaline end-members that are easily applicable to electron probe data, intended for the
89	simple purpose of normative comparison of composition.

- 90
- 91

Methods

92 Calculational Approach

The approach to calculation was to first develop a spreadsheet (in Microsoft Excel) that
calculates a chemical formula based upon a 31 anion normalization (default 62⁻ total anionic
charge) from electron microprobe data that includes wt% B₂O₃ (e.g., Clark 2007). The decision
to include B₂O₃ concentration in the input was based on several factors: (1) addition of boron

97 reduces unconstrained components to two (Li, H); (2) boron can be analyzed directly by EMPA 98 or SIMS; (3) in cases where boron cannot, or is not, analyzed directly, the B_2O_3 concentration 99 can be estimated by the assumption of stoichiometric abundance (Selway and Xiong 2002; Clark 100 2007); and (4) the desire to accommodate tourmaline compositions that contain boron at the T 101 site. The latter desire partly stems from application to experimental tournaline synthesis at the 102 University of Oklahoma, of which some products have been shown by both EMPA and other methods (e.g., SIMS, ¹¹B NMR) to contain tetrahedrally-coordinated boron in excess of that 103 104 required to fill the trigonally-coordinated boron site, along with a concomitant Si deficiency 105 (e.g., London 2011; Guttery 2012).

Once a chemical formula is derived from the compositional data, atoms are assigned to 106 107 structural sites according to current tourmaline nomenclature (e.g., Henry et al. 2011). The moles and subsequent mole fractions of components are then derived using a series of simple "IF" or 108 "IF/AND" logical statements that progressively calculate the moles of end-member species and 109 110 subtract the associated number of atoms associated with each from the starting stoichiometry, ideally to arrive at a zero residual sum for all elements in the formula. Because they were 111 112 developed separately, but from a common root file, calculations for lithium-free and lithiumbearing tourmalines are performed on separate sheets that draw their compositions by link to the 113 "front-end" sheet (Sheet 1) on which the user enters the composition and sample name for 114 115 calculation. Following entry of the composition, the user simply adjusts the water content of the phase to optimize the sums of the Y site and OH site in the field (Li-free or Li-bearing) that is 116 appropriate for the mineral being considered; if necessary, the oxygen (anion) basis also can be 117 adjusted to provide an optimization of Σ YZTB cations (ideal = 18.000) but this is typically only 118 119 needed in the case of complex, oxidized (deprotonated) compositions. If the Li₂O content is

120	initially unknown, as is usually the case for minerals analyzed by electron probe, the Li-bearing
121	sub-sheet will calculate the approximate Li apfu allowing the user to refine the formula by
122	adjusting the Li_2O concentration on the front-end sheet; in such cases several subtle adjustments
123	of Li_2O and H_2O concentrations may be necessary to optimize the Y and OH site totals. The
124	atoms of Ti in the formula are added to Fe for the mole fraction calculations, and thus are added
125	to the schorl component. This does not produce a large error because Ti typically is present only
126	at trace levels (<0.5 wt%) in reduced tourmalines. A concentration of 0.5 wt% TiO_2 corresponds
127	to only a 2 mol% fictive schorl component in dravite, the Li-free tourmaline for which
128	stoichiometry would be most strongly affected by Ti(Y) substitution because of its low average
129	atomic number. All Ca in lithium tourmaline is calculated as a "hydroxy-liddicoatite" component
130	(not an IMA approved species). The calculations do not distinguish between "fluor-" or
131	"hydroxy-" end-members of relevant species, but do provide the mole fractions of F and Cl in
132	the W site (cells K32 & K33) for comparison; because F and Cl are believed not to enter the V
133	site (e.g., Henry et al. 2011), this value is not allowed to exceed 1.00.
134	Performing a normalization series that identifies the dominant species, based upon the
135	most abundant component (cation or vacancy) in the X site and most abundant cation in the Y
136	site (e.g., Henry et al. 2011), and then subtracts its associated cations from the bulk formula
137	would be most in line with the convention used for naming tourmalines (e.g., Henry et al. 2011).
138	Because ratios among Na, Ca, and vacancy in the X site, and among Fe, Mg, Al, and Li in the Y
139	site vary among different tourmaline species, however, such an approach would require a
140	procedure in which the order of calculation of the amounts of different tourmaline species is
141	variable dependent upon bulk composition. Moreover, attempts at such a simple, directly
142	"subtractive" approach commonly run into calculational difficulties involving balance of Mg and

Fe with Al in the Y site for tournalines with significant X site vacancy. A way found to 143 144 circumvent these issues is to perform calculations for group based upon X site components (sodic, calcic, and vacancy series), and to derive the abundances of Fe and Mg species within 145 146 these groups according to the Fe/Mg ratio of the bulk composition. Although this approach tends 147 to slightly reduce the calculated norm for the more abundant Fe or Mg species in each group (e.g., schorl versus dravite, foitite versus magnesio-foitite), it typically does not decrease the 148 149 dominant species enough to affect naming the tourmaline for the most abundant species as 150 derived from simple consideration of chemical formula.

151

152 End-Members Included

The end-member components included in the calculations are listed in Table 2. End-153 154 members represented among the common tourmaline species include all except Cr-rich, V-rich, and Fe³⁺-bearing compositions. Although Cr- and V-rich members should be easy enough to 155 156 accommodate, they are comparatively rare and were not considered a high priority for the 157 present spreadsheet. Calculation of ferric iron species was neglected because of multiple 158 substitution mechanisms that accommodate trivalent cations at the Y crystallographic site, and so results would not be conclusive without direct analysis of Fe³⁺ and/or Li and H that are not 159 160 amenable to analysis by electron probe. Lithium-rich tourmaline species included in the calculations are elbaite, rossmanite, and (hydroxy-) liddicoatite. Although darrellhenryite, 161 162 Na(LiAl₂)Al₆(BO₃)₃Si₆O₁₈(OH)₃O, has recently been accepted as a tourmaline species (Novak et 163 al. 2013), it was not included in the present calculations because it would be impossible to 164 resolve from a combination of elbaite and olenite using electron microprobe data.

165

166

Results

167 Example of calculation for a nominally Li-Free tourmaline

As a starting point, consider calculating the end member mole fractions for the 168 169 tourmaline composition shown in Table 1. The user enters the known, and/or estimated, concentrations of oxide components and the name of the sample in the blue cells of Sheet 1 of 170 the spreadsheet (Fig. 1a: name in cell C3, oxides in cells B7-B20). After data entry (Fig 1a), note 171 an analytical total less than 100 wt%, calculated sums at the Y crystallographic site (red cells) for 172 both Li-free and Li-bearing tourmalines significantly in excess of 3, and a poor match to the 173 ideal stoichiometry of the phase (40-25-0-0-20-0-15, listed in the mole percent sequence 174 schorl-dravite-tsilaisite-uvite-feruvite-foitite-magnesio-foitite-olenite that is used by convention 175 for Li-free tournalines hereafter). Excesses at the Y site and errors in the end-member 176 177 components at this stage are due to an incorrect number of cations to charge balance the oxygen (anion) basis of the calculation, so is due to the absence of hydrogen. The easiest logical 178 adjustment to make at this point is to add water by difference, in the amount of 100-(Total), 179 180 which is 3.18 wt%. The Li-free calculations show that addition of this concentration of water (Fig. 1b) yields a 3.00 apfu sum at the Y site and a sum of YZBT cations of 18.0005, indicating 181 182 that the calculations are complete. Note that whereas calculation of the mole fractions of species by the Li-free sheet does not exactly reproduce the theoretical stoichiometry used for calculating 183 the tourmaline composition, the Li-bearing sheet does. This is because the Li sheet performs a 184 strictly progressive subtractive calculation routines whereas the Li-free sheet uses a proportional 185 normalization based upon the bulk Mg/Fe ratio for each of the tourmaline groups based upon X 186 site occupancy. Although the Li-bearing sheet performs well for this particular sodium-dominant 187

8

8/4

188 composition, the simple subtractive method fails for tournalines with dominant X site vacancy,189 as discussed above.

190	Discrimination of the Table-1 tourmaline composition from a Li-bearing tourmaline is
191	indicated by the 100 wt% analytical total obtained with added water and a zero estimated Li
192	content from the Li-bearing calculation routine. Note that the OH site total, = ΣV +W, is 3.55 (Fig
193	1b); this value is correct given the presence of 15 mol% olenite, each mole of which removes 3
194	moles of H. Calculated residuals from the sheet making the Li-Free calculations (Table 5) are
195	very low and essentially represent rounding errors in the calculations.
196	
197	Example of calculation for a Li-bearing tourmaline

For a lithium-bearing tourmaline, consider calculation for a 50-50 molar mixture of 198 elbaite and rossmanite. As in the example above, the weight percent values for known oxide 199 200 components (excluding Li₂O) are entered in the blue cells (Fig. 2a: name in cell C3, oxides in 201 cells B7-B20). Note that in this example, a MgO concentration of 0.001 wt% was added to avoid 202 a division by zero error in the Li-Free sheet (sum of FeO+MgO=0); this addition is not necessary 203 for calculation of Li-bearing tourmalines. After data entry, again the analytical total is significantly less than 100 wt% and the Y site sum for Li-free calculation is significantly 204 different than 3.00 (Fig. 2a). Identification as a Li-rich tourmaline is apparent from the 205 206 aluminous nature of the tournaline, the positive estimated Li content from the Li-bearing 207 calculation, and the Y site sum for the Li-free calculation being much less than 3.00. Among the remaining calculations, the addition of water to the analysis would only decrease the Y site sum 208 further and, hence, the calculations fail for a Li-absent composition. Note at this point that the Y 209 site sum for the Li-bearing calculation is 3.00 because Li is calculated by difference at this site, 210

211	but that the amount of Li calculated is underestimated. Similar to the previous example, the
212	easiest second step is to add water to obtain the proper OH site total (full at ~3.79 wt% H_2O for
213	this case: Fig. 2b). With the addition of water, note that the cations of Li calculated by the
214	spreadsheet increases, but is less than the ideal value, and that analytical total is still significantly
215	less than 100 wt%. The next step will be to add Li to the analysis. An initial estimate based on
216	difference of the analytical total from 100 wt%, =2.08 wt% Li_2O yields the correct mole
217	fractions of end-members, but provides slightly more Li to the formula (1.29 apfu) than is
218	calculated by the Li-bearing sheet (1.25 apfu), and yields a slightly deficient OH site sum as well
219	(Fig. 2c). Therefore, slight iterative adjustments to both Li_2O and H_2O (Fig. 2d) eventually
220	provide agreement between added and calculated Li, and better sums at the OH site (3.996) and
221	total of YZBT sites (18.002). Upon conclusion of calculation, the sheet performing the Li-
222	bearing calculations again shows zero or near-zero residuals for all components except
223	cumulative Li (which is correct) (Table 5).

224

225 **Compositions tested**

To test the spreadsheet, the chemical formulae of selected tourmaline stoichiometries 226 were converted to weight percent oxides using a spreadsheet that derives the oxide (and 227 elemental) weight fractions for a phase based upon the numbers of cations and anions in its 228 229 chemical formula unit. The compositions of Li-absent tourmalines tested include all of the end-230 members in the calculation (tsilaisite not shown in table), 50-50 molar mixtures of dravite-schorl, 231 dravite-uvite, uvite-foitite, and schorl-foitite, a limited number of ternary compositions, and a 232 variety of more complicated 4- and 5-component theoretical phases plus some natural complex 233 compositions. The compositions and results from calculation for the simple Li-absent phases are 234 provided in Table 4, and those for the more complex Li-absent compositions in Table 5. The

residuals resulting from all Li-absent calculations are provided in Table 6. As can be seen, the

235

236 spreadsheet exactly reproduced the mole fractions of simple unary and binary compositions. As 237 compositions become more complex, there is slightly poorer agreement between theoretical and 238 calculated mole fractions due primarily to the effect of Fe/Mg proportionation among members 239 of the various X-site compositional groups. For example, note that the 50-30-0-20-0-0-0 240 composition yielded 40-40-0-10-10-0 because Na and Fe from the schorl component are redistributed toward dravite and feruvite components. Note that the solution obtained, 40-40-0-10-241 242 10-0-0, represents a schorl-dravite that is just as consistent with the stoichiometry of the mineral as the formula used to calculate the composition. This demonstrates a complication with 243 calculating tourmaline mole fractions: a single composition may be described algebraically by 244 245 more than one combination of accepted tourmaline species. Among the compositions tested (Tables 3 and 4), however, this is one of only two cases noted where the mole fraction 246 247 calculations made naming the tourmaline for the most abundant species ambiguous or inaccurate 248 in comparison to the mole fractions used to calculate it. Compositions input for Li-bearing tourmalines were calculated in the same manner as for 249 250 Li-free tourmalines. The compositions tested included elbaite, rossmanite, liddicoatite, a 50-50 molar mixture of elbaite-rossmanite, an elbaite(50)foitite(25)olenite(25) molar mixture, and 251 natural elbaitic tourmalines from the Little Three pegmatite (Morgan and London 1999) and 252 253 Elba, Italy. The results, residuals, and calculated Li atoms per formula unit are shown in Table 6. Again, the spreadsheet faithfully reproduced the ideal mole fractions, and independently 254 calculated the cations of Li present to within 0.01 apfu of the ideal mineral formulae for the 255 calculated compositions. Calculations from the natural "elbaites" shows olenitic, rossmanitic, 256 and even tsilaisite –dominated results, consistent with the observation of Guttery (2012) that no 257

258	reported natural elbaite has been found to contain more than about 67 mole% of the elbaite end-
259	member.
260	
261	
262	Discussion
263	The present spreadsheet faithfully reproduces the formulae and mole fractions of the ideal
264	Li-absent end-members and their simple solid solutions tested here (Table 3). Reproduction of
265	mole fractions for more complex, quaternary and higher, calculated compositions (Table 4)
266	shows less perfect agreement with norms used to calculate the compositions for two reasons: (1)
267	not all compositions have a unique solution (e.g., a mixture of schorl and magnesio-foitite can
268	have an identical composition to a mixture of dravite and foitite); and (2) calculation of Fe and
269	Mg species among the different X site groups according to bulk Fe/Mg ratio can yield a
270	decrease in the mole fraction of the dominant component versus increase in that of the less
271	dominant one (e.g., schorl versus dravite; foitite versus magnesio-foitite). Both of these factors
272	are exacerbated for compositions with intermediate proportions of X site vacancy, and such
273	compositions can result in a dominant species mole fraction that is inconsistent with the species
274	name based upon simple consideration of the most abundant components in the X and Y sites.
275	An example of this is the 50-30-0-20-0-0-0 composition in Table 3 that yielded a 40-40-0-10-
276	10-0-0 norm, so would be named schorl-dravite even though the formula used for calculating
277	composition was schorl-dominant. As mentioned above, the solution obtained is correct for the
278	atomic proportions obtained from the composition, and highlights the problem that all
279	compositions may not have a unique solution with respect to mole fractions. This apparently
280	indicates that at least some of the accepted tourmaline species do not represent algebraically

281	discrete end-members. Such cases appear to be rare, however, and in some cases the calculated
282	mole fraction of the dominant species is greater than that of the theoretical formula used to
283	calculate the composition (e.g., the 40-25-0-0-020-0-15 composition yielded 44-21-0-0-0-14-6-
284	15, and the 40-30-0-0-10-0-10 composition yielded 46-27-0-4-6-6-4-7: Table 4).
285	Among the admittedly few calculated Li tourmaline compositions tested, the spreadsheet
286	accurately reproduced the ideal mole fractions and calculated cations of Li to within 0.01 apfu of
287	the ideal mineral formulae. Because the Li content is calculated by difference at the Y site, Li
288	can be slightly overestimated for crystals having significant vacancy at that site. There is,
289	however, no way to determine such vacancy from electron probe data: other methods are needed
290	(e.g., Filip et al. 2012). Because such vacancy cannot be evaluated from microprobe data, and
291	because tourmalines that contain appreciable Li commonly are Li-rich (i.e., elbaite-rossmanite-
292	liddicoatite solid solutions), this uncertainty is not considered an important (or addressable)
293	source of error for the mole fraction calculations presented here.
294	Noting reproduction of the mole fractions for calculated compositions within the limits
295	discussed, application can be turned to natural compositions. A dravite-uvite composition taken
296	from Deer, Howie, and Zussman (1982), DHZ, was indicated in its reference to have 4.40 wt%
297	$\mathrm{H}_{2}\mathrm{O}$, but the Li-free calculations yielded both an analytical total in excess of 100 wt% and
298	significantly more than four OH radicals per formula unit using that concentration. Lowering the
299	water content to 3.72 wt% (Table 4) yields 4.005 OH per formula unit, consistent with zero
300	olenite and ferric iron components, and lowers the analytical total to slightly less than 100 wt%.
301	Calculation by the Li-absent spreadsheet yields the result of 0-53-0-40-2-0-0 identifying this
302	tourmaline as dravite (dravite-uvite), consistent with Na>Ca and Mg>Fe. The DHZ composition
303	is notable in having 3.288 Mg apfu – a number greater than can be accommodated by the Y site

(DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5392 in tourmaline. The spreadsheet handles this by allocating Mg to the Z site, in agreement with

formulae for uvite and feruvite in which Mg^{2+} at the Z site provides charge compensation for Ca²⁺ at the univalent X site (e.g., Hawthorne and Henry, 1999), although the presence of Mg in the Z site led to slightly larger negative residuals at the T and Y sites than other compositions tested (Table 5).

304

309 The mole fraction calculations for the L35f, HGTR40, BMR-CT, and India Dravite tournalines analyzed in our lab at Oklahoma (Table 4) all produce low residuals (Table 5) and 310 311 would vield names based on most abundant component consistent with the convention based upon bulk X site occupancy and Mg/Fe ratio. The discussed uncertainties in formulae and 312 313 naming for tournalines having intermediate values of X site occupancy, however, are 314 particularly notable for the Bačík -1 and Bačík -2 compositions (from Bačík et al. 2015) in Table 315 4. For the Bačík-1 composition, Na has slightly greater abundance than both vacancy and 316 calcium in the X site, and Fe>Mg in the Y site; by convention this species would be named 317 "schorl". The most abundant species calculated by the spreadsheet, however, is foitite at 22% as compared to schorl at 19%. The result is similar, but slightly better, for the Bačík-2 composition 318 319 for which the two most abundant calculated species are schorl (22%) and foitite (19%). These results show the uncertainty for naming tourmaline species with intermediate X site occupancies 320 321 from mole fraction calculations. Given that both tournalines contain <0.44 apfu Na and have 322 Fe/(Fe+Mg)~0.6, it is suggested here that the name "schorl" is perhaps no less misleading than "foitite" or "schorl-foitite-feruvite". Regardless of species name derived, however, the relative 323 fractions of sodic, calcic, and vacancy species produced by the spreadsheet are correct. In these 324 latter cases, the relative fractions of sodic species (schorl, dravite, olenite) are greater than that of 325 326 the other X-site groups (calcic, vacancy). Hence, although such compositions provide the

327 greatest uncertainty for naming a tourmaline species from mole fractions, the conveyance of 328 mole fractions provides more information about the true chemical nature of the mineral than 329 naming for the dominant species.

As discussed above, the spreadsheet does not address the abundances of oxidized species 330 331 containing trivalent cations in the Y crystallographic site. Although reasons have been presented 332 for not considering the abundances of oxidized atoms of Fe or other multivalent transition metals, there is an additional complicating factor that is not yet well addressed by present 333 334 tourmaline nomenclature - namely the coupled substitution of trivalent cations in the Y and T crystallographic sites. Boron can substitute for Si in the T site with charge balance mostly 335 maintained by the substitution of Al at the Y site (e.g., Hughes et al. 2009; Lussier et al. 2009). 336 337 Because significant tetrahedral boron is rare in natural tourmaline, and because there is no endmember species named for this substitution, it does not affect mole fraction calculations (or 338 339 naming). Perhaps the most common trivalent ion substituting in the T site of tourmaline is aluminum (e.g., Lussier et al. 2009), yielding a net substitution of the form: $M^{3+}(Y) + Al^{3+}(T) =$ 340 $M^{2+}(Y) + Si^{4+}(T)$. Tourmaline is commonly formed in aluminous schists and in association with 341 342 highly-fractionated peraluminous granitic magmas, the latter of which become more aluminous and transition metal-depleted with fractionation (London 2011). Tournalines produced in both 343 environments often are more aluminous than ideal formulae, and often appear to involve the 344 operation of a "Tschermak"-like substitution of the form $Al(Y)Al(T) = M^{2+}(Y)Si(T)$ that could 345 346 progress toward a hypothetical hyper-aluminous tourmaline similar to $NaAl_{3}Al_{6}(BO_{3})_{3}(Si_{3}Al_{3})O_{18}(OH)_{4}$. This substitution (with lesser Al(Y)B(T)) appears to lie at the 347 heart of hyper-aluminous, but Li-poor, tournalines produced by experimental synthesis at the 348 University of Oklahoma (e.g., Guttery 2012; London 2011). Even though aluminum in the T site 349

350 is recognized to be common in natural tourmaline (Lussier et al. 2009), to date only one species 351 has been named that is distinctive for T-site Al: adachiite, CaFe₃Al₆(Si₅Al)O₁₈(BO₃)₃(OH)₃(OH) 352 (Nishio-Hamane et al. 2013). At present, however, there is no Mg-analog of this mineral, and 353 definition as a Ca- and Fe-rich tournaline makes it of little application to hyper-aluminous tourmalines from evolved pegmatite systems that tend to be depleted in both Ca and Fe and, as 354 355 discussed above, could potentially contain more than one Al in the T site. Therefore, even though 356 an approved species, adachite was not considered an algebraically useful end-member for the 357 present calculations, and T site substitution of Al is omitted from the present calculation of endmember mole fractions. Fortunately this is not a significant concern for mole fraction 358 359 calculations (or naming) for most natural tournaline compositions, but it does complicate 360 estimating the abundances of other trivalent cations and lithium at the Y site as well as the abundance of "oxy"-tourmaline species including olenite. With respect to "oxy-" tourmalines, 361 362 oxy-dravite [Na(Al₂Mg)(Al₅Mg)(Si₆O₁₈)(BO₃)₃(OH)₃O] (Bosi and Skogby 2013) and oxy-schorl [Na(Fe₂Al)(Al₆)(Si₆O₁₈)(BO₃)₃(OH)₃O] (Bačík et al. 2013) are both approved tourmaline species 363 364 that are not addressed in the present calculations. Not only is the deprotonation in these minerals 365 not determinable from microprobe data, but at least algebraically both of these minerals represent a combination of the root minerals (dravite and schorl) with olenite. Comparing the formula for 366 367 oxy-dravite, above, with that of olenitic-dravite, $Na(Mg_2Al)Al_6(Si_6O_{18})(BO_3)3(OH)_3O_5$, shows 368 the main distinction between phases to be disordering of Mg between the Y and Z sites in oxydravite. Such disorder cannot be evaluated from electron probe data. Because of a lack of 369 algebraic uniqueness and inability to discern from electron probe data, the "oxy-" tourmaline 370 species are not addressed in the present spreadsheet; oxidized species in the present calculations 371 372 will at least partly be reflected by the olenite mole fraction, which represents a discrete

calculable component. If, however, a true Tschermak-like tourmaline end-member is ever
adopted as an approved end-member, then the present spreadsheet likely should be revised to
include that species – perhaps at the expense olenite. In that way, the aluminous component
reflected by Al(Y) would be treated in an equal manner to other tourmaline species without
regard to oxidation state or water activity.

- 378
- 379

Implications

Potential users should bear in mind that this spreadsheet is directed at simple normative 380 calculations from electron probe data for Na-Ca-Li-Fe²⁺-Mg-Al tourmalines. For reasons 381 outlined previously, it does not address the mole fractions of Cr-rich, V-rich, or Fe³⁺-rich 382 383 tourmalines, does not include calculation for K-rich tourmaline (although K is included in 384 calculating X site occupancy), and does not include deprotonated "oxy"-tourmalines other than 385 olenite. Some of these components, such as Cr and V, should be comparatively easy to address in calculation whereas some, especially Fe^{3+} and deprotonated species, may be impractical unless 386 analyses in addition to EMPA are performed. The incorporation of Fe³⁺ species likely would 387 require a significant re-working of the spreadsheet which was deemed unnecessary given its 388 389 primary application for calculating tournaline formula from EMPA data. Because not all IMA 390 approved tourmaline species are included, nor can even be distinguished on the basis of electron probe data alone, this spreadsheet cannot be used to definitively name or classify a tourmaline 391 392 according to IMA rules and accepted species. Rather, this spreadsheet is intended to fill a niche 393 similar to that of a mineralogical norm for rock composition by providing a tool for direct comparison of tournalines from different deposits according to a common standard. Even if this 394 395 particular spreadsheet does not prove to be the accepted tool for such comparison, it is my hope

8/4

396	that other researchers will either improve upon this work or develop and distribute a more
397	comprehensive and user-friendly tool for calculating tourmaline mole fractions. In this way we
398	can move past the vague "(species)-itic" procedure of describing tourmaline towards a method
399	with more chemical specificity.
400	
401	Acknowledgements
402	The author wishes to thank Christine Clark, Peter Bačík, and Milan Novak, whose
403	thoughtful reviews of the first submission of this work spurred a necessary reassessment of the
404	calculational model and, therefore, significantly improved all aspects of the manuscript. In this
405	regard, special thanks are given to Peter Bačík who tested the previous model with natural
406	compositions from his own database, some of which have been incorporated in this work as
407	computational test cases. The re-submitted manuscript was further strengthened by reviews of
408	Peter Bačík and Ferdinando Bosi. The Electron Microprobe Laboratory gratefully acknowledges
409	generous supported by the Office of the Vice President for Research at the University of
410	Oklahoma.
411	

413	References Cited			
414	Bačík P., Cempírek, J., Uher, P., Novák, M., Ozdín, D., Filip, J., Škoda, R., Breiter, K.,			
415	Klementová, M., Ďuda, R., and Groat, L.A. (2013) Oxy-schorl,			
416	Na(Fe ²⁺ ₂ ,Al)Al ₆ Si ₆ O ₁₈ (BO ₃) ₃ (OH) ₃ O, a new mineral from Zlatá Idkam Slovak Republic and			
417	Přibyslavice, Czech Republic. American Mineralogist, 98, 485-492.			
418				
419	Bačík P., Koděra P., Uher P., Ozdín D., Jánošík M. (2015) Chlorine-enriched tourmalines in			
420	hydrothermally altered diorite porphyry from the Biely Vrch porphyry gold deposit (Slovakia).			
421	Can. Mineral., in press.			
422				
423	Bosi, F. and Skogby, H. (2013) Oxy-dravite, Na(Al ₂ Mg)(Al ₅ Mg)(Si ₆ O ₁₈)(BO ₃) ₃ (OH) ₃ O, a new			
424	mineral species of the tourmaline supergroup. American Mineralogist, 98, 1442-1448.			
425				
426	Bosi F., Skogby H., Agrosì G., Scandale E. (2012) Tsilaisite,			
427	NaMn3Al6(Si6O18)(BO3)3(OH)3OH, a new mineral species of the tourmaline supergroup from			
428	Grotta d'Oggi, San Pietro in Campo, island of Elba, Italy. American Mineralogist, 97, 989-994.			
429				
430				
431	Clark, C.M. (2007) Tourmaline structural formula calculations. Canadian Mineralogist, 45, 229-			
432	237.			
433				
434	Deer, W.A., Howie, R.A., and Zussman, J. (1982) An Introduction to the Rock Forming			
435	Minerals. Longman Group Limited, Essex, England, pp 92.			

- 436 Dunn, P.T., Appleman, D., Nelen, J.A., and Norberg, J. (1977) Uvite, a new calcium member of
- the tourmaline group, and its implications for collectors. American Mineralogist, 62, 1121-1124.
- 438
- 439 Filip, J., Bosi, F., Novák, M., Skogby, H., Tuček, J., Čuda, J., and Wildner, M. (2012) Redox
- 440 processes of iron in the tourmaline structure: example of the high-temperature treatment
- 441 of Fe^{3+} -rich schorl. Geochimica et Cosmochimica Acta, 86, 239–256.
- 442
- 443 Grice, J.D., and Robinson, G.W. (1989) Feruvite, a new member of the tourmaline group, and its
- 444 crystal structure. Canadian Mineralogist, 27, 199-203.
- 445
- 446 Guttery, B.G. (2012) The stability field and conditions of formation of elbaite. MS Thesis,
- 447 University of Oklahoma, Norman, 74pp.
- 448
- Hawthorne, F.C., and Henry, D.J. (1999) Classification of the minerals of the tourmaline group.
- 450 European Journal of Mineralogy, 11, 201-215.
- 451
- 452 Henry, D.J., and Dutrow, B.L. (2002) Metamorphic tourmaline and its petrologic applications.
- 453 In: Boron Mineralogy, Petrology, and Geochemistry, Mineralogical Society of America,
- 454 Reviews in Mineralogy, 33, 503-557.
- 455
- 456 Henry, D.J., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B.L., Uher, P., and Pezzotta, F.
- 457 (2011) Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 96, 895-
- **458** 913.

8/4

- 460 Hughes, J.M., Ertl, A., Dyer, M.D., Grew, E.S., Shearer, C.K., Yates, M.G., and Guidotti, C.V.
- 461 (2009) Tetrahedrally coordinated boron in tourmaline: Boron-rich olenite from Stoffhütte,
- 462 Koralpe, Austria. Canadian Mineralogist, 38, 861-868.
- 463
- London, D. (2011) Experimental synthesis and stability of tourmaline: a historical overview.
- 465 Canadian Mineralogist, 49, 117-136.
- 466
- 467 Lussier, A.J., Aguiar, P.M., Michaels ,V.K., Kroeker, C., and Hawthorne, F.C. (2009) The
- 468 occurrence of tetrahedrally coordinated Al and B in tourmaline: An ¹¹B and ²⁷Al MAS NMR
- 469 study. American Mineralogist, 94, 785-792.
- 470
- 471 Nishio-Hamane, D., Minakawa, T., Yamaura, J., Oyama, T., Ohnishi, M. and Shimobayashi, N.
- 472 (2013) Adachiite, IMA 2012-101. Mineralogical Magazine, 77, 2695-2709.
- 473
- 474 Novák, M., Ertl, A., Povondra, P., Vašinová Galiová, M., Rossman, G.R., Pristacz, H., Prem, M.,
- 475 Giester, G., Gadas, P., and Škoda, R. (2013) Darrellhenryite, Na(LiAl₂)Al₆(BO₃)₃Si₆O₁₈(OH)₃O,
- a new mineral from the tourmaline supergroup. American Mineralogist, 98, 1886-1892.
- 477
- 478 Selway, J.B., and Xiong, J. (2002) Tourmaline recalculation software (quoted in Tindle AG,
- 479 Breaks, F.W., and Selway, J.B. (2002) Tourmaline in petalite-subtype granitic pegmatites:
- 480 evidence of fractionation and contamination from the Pakeagama Lake and Separation Lake

- 481 areas of northwestern Ontario, Canada. Canadian Mineralogist, 40, 753-788);
- 482 <u>http://www.open.ac.uk/earth-research/tindle/</u>
- 483
- 484 Yavuz, F., Yavuzm V., and Sasmaz, A. (2006) WinClastour a Visual Basic program for
- tourmaline formula calculation and classification. Computer and Geosciences, 32, 1156-1168.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5392					
487					
488	Table 1. Hypothetical tourmaline composition				
	(5 	Dxide SiO ₂ B_2O_3 Al ₂ O ₃ FeO* MgO Na ₂ O H ₂ O Total	Wt.% 35.84 10.38 33.70 11.43 3.01 2.46 3.18 100.00		
489					
490					

- 491
- 492 Table 2. Tourmaline end-members included in the calculations; \Box denotes a site vacancy.

Phase	Abbreviation	Formula
Common tourmalines		
Schorl	Shl	NaFe ₃ Al ₆ (BO ₃) ₃ Si ₆ O ₁₈ (OH) ₃ OH
Dravite	Drv	NaMg ₃ Al ₆ (BO ₃) ₃ Si ₆ O ₁₈ (OH) ₃ OH
Tsilaisite	Tsl	NaMn ₃ Al ₆ (BO ₃) ₃ Si ₆ O ₁₈ (OH) ₃ OH
Feruvite	Fuv	CaFe ₃ (Al ₅ Mg)(BO ₃) ₃ Si ₆ O ₁₈ (OH) ₃ OH
Uvite	Uvt	CaMg ₃ (Al ₅ Mg)(BO ₃) ₃ Si ₆ O ₁₈ (OH) ₃ OH
Olenite	Oln	$NaAl_3Al_6(BO_3)_3Si_6O_{18}((OH)O_2)O$
Foitite	Ftt	$\Box(Fe_2Al)Al_6Si_6(BO_3)_3Si_6O_{18}(OH)_3OH$
Magnesio-foitite	Mft	$\Box(Mg_2Al)Al_6Si_6(BO_3)_3Si_6O_{18}(OH)_3OH$
Lithium tourmalines		
Elbaite	Elb	Na(Li _{1.5} Al _{1.5})Al ₆ (BO ₃) ₃ Si ₆ O ₁₈ (OH) ₃ OH
Rossmanite	Rss	\Box (LiAl ₂)Al ₆ (BO ₃) ₃ Si ₆ O ₁₈ (OH) ₃ OH
Liddicoatite-OH	Ldd	$Ca(Li_2Al_1)Al_6(BO_3)_3Si_6O_{18}(OH)_3OH$

497 Table 3. Simple theoretical Li-free compositions tested

	Shorl	Dravite	Uvite	Feruvite	Foitite	Mg-	Olenite	Shl(50)-	Drv(50)-	Uv(50)-	Shl(50)-	Shl(50)-	50,30,0,	0,20,0,	0,0,0,
						Foitite		Drv(50)	Uv(50)	Mft(50)	Oln(50)	Ftt(50)	20,0,	40,40,	30,40,
													0,0,0	0,0,0	0,0,30
Wt%	24.22	27 (0	25.04	22 54	26.00	20.42	27.41	25.02	25.22	27 (0		25.00		05.54	25.54
S_1O_2	34.23	37.60	37.04	33.76	36.00	38.42	37.41	35.83	37.32	37.68	35.75	35.09	35.73	35.76	35.76
B_2O_3	9.92	10.89	10.73	9.78	10.43	11.13	10.84	10.38	10.81	10.92	10.36	10.17	10.35	10.36	10.35
Al_2O_3	29.04	31.90	26.19	23.87	35.63	38.02	47.60	30.40	29.02	34.64	37.91	32.25	29.30	26.29	31.35
FeO	20.46			20.19	14.35			10.71			10.69	17.48	10.68	8.55	8.55
MgO		12.62	16.57	3.78		8.59		6.01	14.61	10.54			6.79	10.40	6.40
CaO			5.76	5.25					2.90	2.93			1.11	4.45	3.89
Na ₂ O	2.94	3.23					3.22	3.08	1.60		3.07	1.51	2.46	0.62	0.92
H_2O	3.42	3.76	3.70	3.37	3.60	3.84	0.93	3.58	3.73	3.30	2.23	3.51	3.57	3.57	2.77
Total	100.00	100.00	99.99	100.00	100.01	100.00	100.00	99.99	99.99	100.01	100.01	100.01	99.99	100.00	100.01
Results															
APFU (#Ox)	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
Si	6.000	6.000	6.000	6.000	6.000	6.001	6.001	6.000	6.001	5.999	6.000	5.999	6.001	6.001	6.000
Ti															
В	3.001	2.999	3.000	3.000	3.000	3.000	3.001	3.000	3.000	3.000	3.001	3.001	3.000	3.000	3.000
Al	6.000	6.000	5.000	5.001	6.999	6.999	9.000	6.001	5.500	6.500	7.500	6.499	5.800	5.200	6.200
Fe	2.999		0.000	3.001	2.000			1.500			1.501	2.500	1.500	1.200	1.200
Mg		3.001	4.000	1.001		2.000		1.500	3.501	2.501			1.700	2.601	1.600
Ca			1.000	1.000					0.500	0.500			0.200	0.800	0.699
Na	0.999	0.999					1.001	1.000	0.499		0.999	0.501	0.801	0.202	0.299
[] _x	0.000	0.000	0.000	0.000	1.000	1.000	0.000	0.000	0.000	0.000	0.001	0.499	0.000	0.000	0.000
OH	3.999	4.002	3.998	3.995	4.002	4.001	0.995	3.999	4.000	3.504	2.497	4.003	3.999	3.996	3.100
Mole Fraction															
Schorl	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.00	0.00	0.50	0.50	0.40	0.08	0.10
Dravite	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.50	0.50	0.00	0.00	0.00	0.40	0.12	0.13
Tsilaisite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Uvite	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.50	0.50	0.00	0.00	0.10	0.48	0.40
Feruvite	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.32	0.30
Foitite	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.00	0.00	0.00
Mg-Foitite	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.00	0.00
Olenite	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.50	0.00	0.00	0.00	0.07

498	Table 4. Com	plex theoretical	and natural Li-free c	ompositions tested	(*-value calculated	l for microprobe ana	lysis)
-----	--------------	------------------	-----------------------	--------------------	---------------------	----------------------	--------

1	40.25.0	30,10,0	40.30.0	10.40.0	DHZ1	Băćik	Băćik	L35f	HGTR-	BMR-	India	Uvite	Feruvite ⁴
	0,0,	10,10,	0,10,	20,20,	DIIL	-1 ²	-2^2	1001	40	СТ	Dravite	$C5212^{3}$	1 cruvite
	20,0,15	30,10,0	10,0,10	0,0,10									
Wt. %													
SiO ₂	35.84	35.64	35.61	36.05	35.96	34.77	35.45	35.61	35.39	37.73	36.64	35.96	32.33
TiO ₂					0.14	0.30	0.20	0.24	0.20	0.45	0.42	0.62	2.19
B_2O_3	10.38	10.33	10.32	10.45	10.73	10.37	10.31	*10.53	*10.61	*10.97	10.84	11.49	11.25
Al_2O_3	33.70	32.25	31.73	31.09	30.85	34.08	32.81	34.64	35.18	33.27	34.28	26.80	23.38
FeO	11.43	12.79	12.07	7.90	0.76	10.26	10.56	13.57	6.96	5.79	0.74	0.41	13.56
MnO						0.02	0.01	0.18	0.06	0.03	0.30		0.07
MgO	3.01	3.19	3.98	7.26	13.67	3.70	3.82	1.62	5.76	8.64	10.30	15.20	7.80
CaO		1.11	0.55	2.24	2.41	1.41	1.46	0.21	0.14	0.86	0.32	5.50	3.30
Na ₂ O	2.46	1.23	2.45	1.86	1.63	1.16	1.32	1.72	1.68	2.22	2.47	0.13	1.16
K ₂ O					0.09	0.03	0.00	0.05	0.07	0.01	0.00	0.00	0.05
H_2O	3.18	3.47	3.29	3.15	3.72	3.21	3.45	*3.56	*3.56	*3.49	*3.57	2.74	3.48
F						0.00	0.00	0.13	0.18	0.65		1.49	
Cl						0.11	0.05						
Total	100.00	100.01	100.00	100.00	99.96	99.37	99.43	102.01	99.71	103.85	99.88	99.71	99.57
Results													
APFU (#Ox)	31	31	31	31	31	31	31.2	31.13	31	31.08	31	31.13	30.98
Si	6 000	6 000	6 000	6 000	5 803	5 840	5 986	5 896	5 799	5 957	5 872	5 877	5 745
Ti					0.017	0.038	0.025	0.030	0.025	0.053	0.051	0.076	0.284
В	2,999	3 000	3 001	3 002	2,988	3 006	3 004	3 009	3 000	2,989	2,998	3 240	3 346
Al	6.650	6.400	6.301	6.100	5.869	6.747	6.530	6.671	6.795	6.192	6.475	5.162	4.750
Fe	1 600	1 800	1 701	1 100	0.103	1 441	1 491	1 879	0.954	0 765	0.099	0.056	1 955
Mn						0.003	0.001	0.025	0.008	0.004	0.041	0.000	0.010
Mg	0.751	0.800	0.999	1.801	3.288	0.926	0.961	0.400	1.407	2.033	2.460	3.702	2.004
Ca		0.200	0.099	0.400	0.417	0.254	0.264	0.037	0.025	0.146	0.055	0.963	0.610
Na	0.799	0.400	0.800	0.600	0.510	0.378	0.432	0.552	0.534	0.680	0.768	0.041	0.388
K					0.019	0.006	0.000	0.011	0.015	0.002	0.000	0.000	0.011
[],	0.201	0.400	0.100	0.000	0.055	0.362	0.304	0.400	0.427	0.173	0.178	0.000	0.000
OH	3.551	3.900	3.697	3.497	4.005	3.596	3.886	3.932	3.891	3.676	3.816	2.987	4.001
F								0.068	0.093	0.324		0.770	
Cl						0.020	0.009						
Mole Frentier													
Schorl	0.44	0.28	0.46	0.22	0.00	0.10	0.22	0.30	0.20	0.10	0.04	0.00	0.20
Dravite	0.44	0.20	0.40	0.22	0.00	0.19	0.22	0.39	0.20	0.19	0.04	0.00	0.29
Tsilaisite	0.21	0.12	0.27	0.55	0.55	0.12	0.14	0.00	0.29	0.49	0.00	0.04	0.10
Ivite	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.15
Feruvite	0.00	0.00	0.04	0.25	0.40	0.10	0.10	0.01	0.01	0.10	0.05	0.92	0.15
Foitite	0.00	0.14	0.00	0.15	0.02	0.10	0.10	0.03	0.01	0.04	0.00	0.04	0.45
Mg-Foitite	0.14	0.20	0.00	0.00	0.00	0.22	0.12	0.35	0.10	0.05	0.01	0.00	0.00
Olenite	0.00	0.12	0.04	0.00	0.00	0.14	0.12	0.07	0.25	0.12	0.17	0.00	0.00
Olemite	0.15	0.00	0.07	0.05	0.00	0.00	0.07	0.09	0.00	0.00	0.00	0.00	0.00

1 – Deer et al. (1982); 2 – Băćik et al. (2015); 3 – Dunn et al. (1977); 4 – Grice et al. (1989)

500 501

502 Table 5. Residuals from calculation of Li-absent tourmalines

												504
Composition	Shl	Drv	Uvt	Fuv	Ftt	Mft	Oln	Drv50	Drv50	Uvt50-	Shl50-	Shl50-
Tested:								-Shl50	-Uv50	Mft50	Oln50	Ftt50
Ca	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Mg(Y)	0.0000	0.0017	0.0013	0.0000	0.0000	-0.0005	0.0000	0.0000	0.0022	0.0009	0.0000	0.0000
Fe+Ti	0.0001	0.0000	0.0000	0.0029	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Mn	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Na	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0016	0.0000	0.0000	0.0000	0.0000	0.0004
$\Box X$	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Al(Y)	-0.0007	-0.0006	-0.0002	-0.0002	-0.0007	-0.0007	0.0000	0.0001	-0.0016	-0.0015	0.0004	-0.0002
Ť	0.0001	0.0000	0.0002	0.0001	0.0000	0.0007	0.0015	-0.0005	0.0005	0.0000	0.0003	0.0024
Y	-0.0006	0.0011	0.0011	0.0027	-0.0005	-0.0012	0.0000	0.0001	0.0007	-0.0006	0.0003	-0.0002
Ζ	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0008	-0.0006	0.0000	0.0000	0.0000	0.0023
Х	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0016	0.0000	0.0000	0.0000	0.0000	0.0004
-												
Composition	50,30,0	0,20,0,	0,0,0,	40,25,0,	30,10,0	40,30,0	10,40,0				Little 3	BMR
Composition Tested:	50,30,0 20,0,	0,20,0, 40,40,	0,0,0, 30,40,	40,25,0, 0,0,	30,10,0 10,10,	40,30,0 0,10,	10,40,0 20,20,	Băćik	Băćik	DHZ	Little 3 5f	BMR CT
Composition Tested:	50,30,0 20,0, 0,0,0	$0,20,0,\ 40,40,\ 0,0,0$	0,0,0, 30,40, 0,0,30	40,25,0, 0,0, 20,0,15 Tabla 1	30,10,0 10,10, 30,10,0	40,30,0 0,10, 10,0,10	10,40,0 20,20, 0,0,10	Băćik -1	Băćik -2	DHZ	Little 3 5f	BMR CT
Composition Tested:	50,30,0 20,0, 0,0,0	0,20,0, 40,40, 0,0,0	0,0,0, 30,40, 0,0,30	40,25,0, 0,0, 20,0,15 Table 1 0,0000	30,10,0 10,10, 30,10,0	40,30,0 0,10, 10,0,10 0,0000	10,40,0 20,20, 0,0,10	Băćik -1 0 0000	Băćik -2 0 0000	DHZ 0.0000	Little 3 5f	BMR CT 0.0000
Composition Tested: Ca	50,30,0 20,0, 0,0,0 0.0002 0.0000	0,20,0, 40,40, 0,0,0 0.0015 0.0000	0,0,0, 30,40, 0,0,30 0.0000 0.0000	40,25,0, 0,0, 20,0,15 Table 1 0.0000 0.0000	30,10,0 10,10, 30,10,0 0.0000 0.0000	40,30,0 0,10, 10,0,10 0.0000 0.0000	10,40,0 20,20, 0,0,10 0.0000 0.0000	Băćik -1 0.0000 0.0000	Băćik -2 0.0000 0.0000	DHZ 0.0000 0.0672	Little 3 5f 0.0000 0.0000	BMR CT 0.0000 0.0000
Composition Tested: Ca Mg(Y) Fe+Ti	50,30,0 20,0, 0,0,0 0.0002 0.0000 0.0000	0,20,0, 40,40, 0,0,0 0.0015 0.0000 0.0000	0,0,0, 30,40, 0,0,30 0.0000 0.0000 0.0000	40,25,0, 0,0, 20,0,15 Table 1 0.0000 0.0000 0.0000	30,10,0 10,10, 30,10,0 0.0000 0.0000 0.0000	40,30,0 0,10, 10,0,10 0.0000 0.0000 0.0000	10,40,0 20,20, 0,0,10 0.0000 0.0000 0.0000	Băćik -1 0.0000 0.0000 0.0000	Băćik -2 0.0000 0.0000 0.0000	DHZ 0.0000 0.0672 0.0668	Little 3 5f 0.0000 0.0000 0.0000	BMR CT 0.0000 0.0000 0.0279
Composition Tested: Ca Mg(Y) Fe+Ti Mn	50,30,0 20,0, 0,0,0 0.0002 0.0000 0.0000 0.0000	0,20,0, 40,40, 0,0,0 0.0015 0.0000 0.0000 0.0000	0,0,0, 30,40, 0,0,30 0.0000 0.0000 0.0000 0.0000	40,25,0, 0,0, 20,0,15 Table 1 0.0000 0.0000 0.0000 0.0000	30,10,0 10,10, 30,10,0 0.0000 0.0000 0.0000 0.0000	40,30,0 0,10, 10,0,10 0.0000 0.0000 0.0000 0.0000	10,40,0 20,20, 0,0,10 0.0000 0.0000 0.0000 0.0000	Băćik -1 0.0000 0.0000 0.0000 0.0000	Băćik -2 0.0000 0.0000 0.0000 0.0000	DHZ 0.0000 0.0672 0.0668 0.0000	Little 3 5f 0.0000 0.0000 0.0000 0.0000	BMR CT 0.0000 0.0000 0.0279 0.0000
Composition Tested: Ca Mg(Y) Fe+Ti Mn	50,30,0 20,0, 0,0,0 0.0002 0.0000 0.0000 0.0000 0.0000	0,20,0, 40,40, 0,0,0 0.0015 0.0000 0.0000 0.0000 0.0000	0,0,0, 30,40, 0,0,30 0.0000 0.0000 0.0000 0.0000 0.0000	40,25,0, 0,0, 20,0,15 Table 1 0.0000 0.0000 0.0000 0.0000	30,10,0 10,10, 30,10,0 0.0000 0.0000 0.0000 0.0000 -0.0001	40,30,0 0,10, 10,0,10 0.0000 0.0000 0.0000 0.0000 0.0000	10,40,0 20,20, 0,0,10 0.0000 0.0000 0.0000 0.0000 0.0000	Băćik -1 0.0000 0.0000 0.0000 0.0000	Băćik -2 0.0000 0.0000 0.0000 0.0000	DHZ 0.0000 0.0672 0.0668 0.0000 0.0000	Little 3 5f 0.0000 0.0000 0.0000 0.0000 0.0000	BMR CT 0.0000 0.0000 0.0279 0.0000 0.0000
Composition Tested: Ca Mg(Y) Fe+Ti Mn Na	50,30,0 20,0, 0,0,0 0.0002 0.0000 0.0000 0.0000 0.0008 0.0000	0,20,0, 40,40, 0,0,0 0.0015 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000	0,0,0, 30,40, 0,0,30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	40,25,0, 0,0, 20,0,15 Table 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	30,10,0 10,10, 30,10,0 0.0000 0.0000 0.0000 0.0000 -0.0001 0.0000	40,30,0 0,10, 10,0,10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	10,40,0 20,20, 0,0,10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Băćik -1 0.0000 0.0000 0.0000 0.0000 0.0000	Băćik -2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	DHZ 0.0000 0.0672 0.0668 0.0000 0.0000 0.0000	Little 3 5f 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	BMR CT 0.0000 0.0000 0.0279 0.0000 0.0000 0.0000
Composition Tested: Ca Mg(Y) Fe+Ti Mn Na IX	50,30,0 20,0, 0,0,0 0.0002 0.0000 0.0000 0.0000 0.0000 0.0008 0.0000	0,20,0, 40,40, 0,0,0 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0,0,0, 30,40, 0,0,30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	40,25,0, 0,0, 20,0,15 Table 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	30,10,0 10,10, 30,10,0 0.0000 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000	40,30,0 0,10, 10,0,10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	10,40,0 20,20, 0,0,10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Băćik -1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Băćik -2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	DHZ 0.0000 0.0672 0.0668 0.0000 0.0000 0.0000 0.0000	Little 3 5f 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	BMR CT 0.0000 0.0000 0.0279 0.0000 0.0000 0.0000
Composition Tested: Ca Mg(Y) Fe+Ti Mn Na IX Al(Y) T	50,30,0 20,0, 0,0,0 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0,20,0, 40,40, 0,0,0 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0,0,0, 30,40, 0,0,30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0002	40,25,0, 0,0, 20,0,15 Table 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	30,10,0 10,10, 30,10,0 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0000	40,30,0 0,10, 10,0,10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00012	10,40,0 20,20, 0,0,10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0003 0.0001	Băćik -1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014 0.0000	Băćik -2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006	DHZ 0.0000 0.0672 0.0668 0.0000 0.0000 0.0000 -0.0546 0.0000	Little 3 5f 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000	BMR CT 0.0000 0.0279 0.0000 0.0000 0.0000 -0.0241 0.0000
Composition Tested: Ca Mg(Y) Fe+Ti Mn Na IX Al(Y) T	50,30,0 20,0, 0,0,0 0.0002 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000 0.0000 0.0015 0.0000	0,20,0, 40,40, 0,0,0 0.0015 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0,0,0, 30,40, 0,0,30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0002 0.0002	40,25,0, 0,0, 20,0,15 Table 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001	30,10,0 10,10, 30,10,0 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0003 0.0000	40,30,0 0,10, 10,0,10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001	10,40,0 20,20, 0,0,10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0003 0.0001 -0.0003	Băćik -1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014 0.0000 0.0014	Băćik -2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0000	DHZ 0.0000 0.0672 0.0668 0.0000 0.0000 0.0000 -0.0546 0.0000 0.0794	Little 3 5f 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0002	BMR CT 0.0000 0.0279 0.0000 0.0000 0.0000 -0.0241 0.0000 0.00037
Composition Tested: Ca Mg(Y) Fe+Ti Mn Na IX Al(Y) T Y	50,30,0 20,0, 0,0,0 0.0002 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000 0.0000 0.00015 0.0000	0,20,0, 40,40, 0,0,0 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0002 0.0000 -0.0002	0,0,0, 30,40, 0,0,30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0002 0.0000 0.0000	40,25,0, 0,0, 20,0,15 Table 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0014	30,10,0 10,10, 30,10,0 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	40,30,0 0,10, 10,0,10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00012 0.0001 0.0012 0.0001	10,40,0 20,20, 0,0,10 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0003 0.0001 -0.0003 0.0000	Băćik -1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014 0.0000 0.0014	Băćik -2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0006 0.0000 0.0006	DHZ 0.0000 0.0672 0.0668 0.0000 0.0000 0.0000 -0.0546 0.0000 0.0794 0.0000	Little 3 5f 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0002	BMR CT 0.0000 0.0279 0.0000 0.0000 0.0000 -0.0241 0.0000 0.0037 0.0000
Composition Tested: Ca Mg(Y) Fe+Ti Mn Na IX Al(Y) T Y Z Z	50,30,0 20,0, 0,0,0 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0015 0.0000 0.0010	0,20,0, 40,40, 0,0,0 0.0015 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0002 0.0000 -0.0002 0.0000 -0.0007	0,0,0, 30,40, 0,0,30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0002 0.0000 0.0002	40,25,0, 0,0, 20,0,15 Table 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0000 0.0000	30,10,0 10,10, 30,10,0 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0004	40,30,0 0,10, 10,0,10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00012 0.0001 0.00012 0.0000	10,40,0 20,20, 0,0,10 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0003 0.0001 -0.0003 0.0000	Băćik -1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0014 0.0000 0.0014 0.0000	Băćik -2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	DHZ 0.0000 0.0672 0.0668 0.0000 0.0000 0.0000 0.0546 0.0000 0.0794 0.0000 0.0000	Little 3 5f 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0002 0.0000	BMR CT 0.0000 0.0279 0.0000 0.0000 0.0000 -0.0241 0.0000 0.0037 0.0000 0.0000

505 Table 6. Li-bearing compositions tested

tle 3 Elbaite
59B Elba
CKEL
7 55 37 89
0.83 10.28
0.07 0.04
9.50 43.85
0.02 0.11
6.68 0.11
0.00
0.99 1.66
0.03 $0.072.38 2.43$
2.30 2.43 2.70 3.47
1.11 0.10
1.41 99.97
004 5.942
989 2.782
445 8.106
003 0.014
000
009 0.012
.637 1.047
.738 0.739
989 3.680
561 0.050
.01 0.01
.25 0.44
.25 0.24
.30 0.00
.00 0.00
.00 0.00
19 0.00
.19 0.50
0.000 0.0000
0000.0 0000
0000.0 0000
0000.0 0000
0.000 0.000
0.0000
o392 0.9180
d by spreadsheet

555	Figure Captions
556	Figure 1. Li-free tourmaline calculations for the Li-absent tourmaline of Table 1: (a) initial data
557	entry into blue cells (B7-B20) of Sheet1; (b) addition of water concentration (cell B18).
558	
559	Figure 2. Li-bearing tourmaline calculations for Elb(50)Rss(50) composition: (a) initial data
560	entry into blue cells (B7-B20) of Sheet1; (b) first addition of water concentration (cell B18) in
561	Sheet1; (c) first addition of Li ₂ O concentration by difference (cell B14); (d) final calculation
562	after optimizing H_2O (cell B18) and Li ₂ O (cell B14).
563	

Figure 1. Li-Free calculation

565

564

1	A	В	C	D	E	F	G	н	T	J	К	L	M	N	0
1	Tourm	aline No	rmative	Calcula	ation Sh	neet									
2	user inp	uts Sample	e name, '	Wt% valu	es in blu	e cells, th	en adjus	t H ₂ O cor	itent (and	l #O, if neo	essary) to	yield 3	apfu in `	site	
3	Si	ample:	Table	1:40,	25,0,0	0,20,0	,15								
4	# Oxyge	31.0000	=	62.0000	negative	charge		-							
5															
6		Wt.% Ox	gpfu	mol prp	Ox prp	#anions	IPFU		Li-Fre	ee Mole Fra	octions				
7	SiO2	35,84	60.09	0.5964	1,1929	12,7294	6.3647	1.1.1	1.000	Schorl:	0.50	0.85	Σ Sodiu	Im Speci	es
8	TiO2		79.90	0.0000	0.0000	0.0000	0.0000		-	Dravite:	0.23	0.15	Σ Vacar	ncy Spec	ies
9	AI203	33.70	101.96	0.3305	0.9916	10.5812	7.0541		Т	silaisite:	0.00	0.00	Σ Calci	um Spec	ies
10	FeO	11.43	71.85	0.1591	0.1591	1.6976	1.6976			Uvite	0.00				
11	MnO		70.94	0.0000	0.0000	0.0000	0.0000		1	Feruvite	0.00				
12	MgO	3.01	40.32	0.0747	0.0747	0.7966	0.7966		1 1 1	Foitite:	0.10				
13	CaO		56.08	0.0000	0.0000	0.0000	0.0000		M	g-Foitite	0.05				
14	Li2O		29.88	0.0000	0.0000	0.0000	0.0000		1 in P	Olenite:	0.12				
15	Na2O	2.46	61.98	0.0397	0.0397	0.4235	0.8471		1	sum	1.00				
16	K20		94.20	0.0000	0.0000	0.0000	0.0000		1	C Logic	155				
17	B2O3	10,38	69.64	0.1491	0.4472	4.7717	3.1811	OHSum							
18	H2O		18.02	0.0000	0.0000	0.0000	0.0000	0.0000	-	1.00	-				
19	F		19.00	0.0000	0.0000	0.0000	0.0000		Li-Bear	ring Mole F	ractions				
20	Cl		35.45	0.0000	0.0000	0.0000	0.0000		Lidd	icoatite:	0.00	0.85	Σ Sodiu	im Speci	es
21					1000	1		_	-	Elbaite:	0.00	0.15	Σ Vacai	ncy Spec	ies
22	sub				2.9050				Ros	smanite:	0.00	0.00	Σ Calci	um Spec	ies
23	O=F	0.00	-		0.0000				Т	silaisite:	0.00				
24	0=Cl	0.00	_		0.0000		1			Schorl:	0.46				
25	Total	96.82			2.9050		19.0941		1.1	Dravite:	0.27				
26							ΣYZBT	_		Foitite:	0.15				
27				norm=	10.6712				Mg	-Foitite:	0.00		_		
28										Olenite:	0.12				
29										Sum:	1.00			_	
30					SIT	E Calcu	lations			Li apfu	0.00				
31						B(T)	0.0000			1.040	18		-		
32						AI(T)	0.0000								
33						AI(Y)	1.0541				-				
34				assume	es Tilis VI:	[]X	0.1529		Fract	ion F/W:	0.00				
35									Fracti	on CI/W:	0.00				

	A	B	C	D	E	F	G	Н	T J	К	L	М	N	
1	Tourm	aline Noi	mative	Calcula	ation Sh	neet			1 1 1 1 1 1 1 1				100	
2	user inp	uts Sample	e name, 1	#t% valu	es in blu	e cells, the	en adjus	H ₂ U cor	ntent (and #U, if nec	essary) to	yield 3	aptu in Y	site	
3	Sa	ample:	Table	1:40,	25,0,0	,0,20,0	15							
4	# Oxyge	31,0000	=	62.0000	negative	charge								
5														
6		Wt.% Ox	gpfu	mol prp	Ox prp	#anions	IPFU		Li-Free Mole Fra	ctions				
7	SiO2	35.84	60.09	0.5964	1.1929	12.0003	6.0001	1	Schori:	0.44	0.80	Σ Sodiur	n Speci	es
8	TiO2		79.90	0.0000	0.0000	0.0000	0.0000		Dravite:	0.21	0.20	Σ Vacan	cy Spec	ies
9	AI2O3	33.70	101.96	0.3305	0.9916	9.9751	6.6501		Tsilaisite:	0.00	0.00	Σ Calciu	m Speci	ies
10	FeO	11.43	71.85	0.1591	0.1591	1.6004	1.6004		Uvite	0.00				
11	MnO		70.94	0.0000	0.0000	0.0000	0.0000	1	Feruvite	0.00				
12	MgO	3.01	40.32	0.0747	0.0747	0.7510	0.7510		Foitite:	0.14				
13	CaO		56.08	0.0000	0.0000	0.0000	0.0000		Mg-Foitite	0.06				
14	Li2O		29.88	0.0000	0.0000	0.0000	0.0000		Olenite:	0.15				
15	Na2O	2.46	61.98	0.0397	0.0397	0.3993	0.7986		sum	1.00				
16	K20		94.20	0.0000	0.0000	0.0000	0.0000	1	Constantion of Constantion	101				
17	B2O3	10.38	69.64	0.1491	0.4472	4.4984	2.9989	OHSum						
18	H2O	3.18	18.02	0.1765	0.1765	1.7756	3.5512	3.5512	1000					
19	F		19.00	0.0000	0.0000	0.0000	0.0000		Li-Bearing Mole F	ractions				
20	CI		35,45	0.0000	0.0000	0.0000	0.0000		Liddicoatite:	0.00	0.80	Σ Sodiur	n Speci	es
21					1.00	1 - 1 - 1			Elbaite:	0.00	0.20	Σ Vacan	cy Spec	ies
22	sub				3.0815	1			Rossmanite:	0.00	0.00	Σ Calciu	m Speci	ies
23	O=F	0.00	1.4		0.0000	1	1 4		Tsilaisite:	0.00				
24	O=CI	0.00		A	0.0000	1			Schorl:	0.40				
25	Total	100.00			3.0815	1.1.1.1.1.1	18.0005		Dravite:	0.25				
26							ΣYZBT		Foitite:	0.20				
27				norm=	10.0600				Mg-Foitite:	0.00				
28									Olenite:	0.15				
29									Sum:	1.00			_	
30					SIT	E Calcu	lations		Li apfu	0.00			n	
31						B(T)	0.0000		9 Burn	100				
32						AI(T)	0.0000		1 1 1	-				
33						AI(Y)	0.6501							
34				assume	s Tiis VI:	[]X	0.2014	1	Fraction F/W:	0.00				
35									Fraction CI/W:	0.00				

566

Figure 2. Li-bearing calculation

