1 Revision 3

2	Ilmenite-magnetite-spinel spheroids in a garnetite layer associated with
3	eclogite and garnet peridotite, Blanský les Granulite Massif, Czech
4	Republic, are melt droplets
5	
6	Stanislav Vrána ¹ , Lukáš Ackerman ^{2,1} , Vojtěch Erban ¹ and Patricie Halodová ¹
7	
8	¹ Czech Geological Survey, Klárov 3, 118 21 Praha 1, Czech Republic
9	² Institute of Geology, The Czech Academy of Sciences, Rozvojová 269, 165 00, Praha 6,
10	Czech Republic.
11	
12	Abstract
13	Interlayered eclogite and symplectitic garnet rock that is interpreted as former garnetite
14	are found in the Gföhl Unit of the Bohemian Massif. They show unusual Fe-Ti-rich
15	compositions, characterized by TiO_2 contents up to 2.34 wt. %, and Mg-numbers of 59.8 and
16	51.6, respectively. Equilibration conditions of 1250 °C and 4.0 GPa are calculated for
17	eclogite. The petrogenesis of this rock association can be best explained as high-temperature
18	and ultra-high-pressure magmatic cumulates. Highly decoupled Sr-Nd isotopic composition
19	with nearly constant radiogenic 87 Sr/ 86 Sr values and a slightly negative ϵ Nd value suggests
20	interaction of aqueous fluid most likely derived from a subducting slab and/or from parental
21	magmas. The garnetite contains large (up to 0.5 mm) Fe-Ti-rich spheroids of ilmenite-
22	magnetite-spinel, interpreted as frozen droplets of a melt incorporated in the growing garnet.
23	The interstices between these garnet crystals are filled by ilmenite-magnetite-spinel

24	aggregates, with concave outer surfaces with trapped Fe-Ti-rich melt. These ilmenite-
25	magnetite-spinel spheroids represent possibly the first record of such an oxidized assemblage
26	in mantle rocks, and probably the first description of Fe-Ti-rich melt in eclogite-garnetite
27	mantle rocks. A calculation based on mineral proportions in the spheroids and mineral
28	composition indicates that the immiscible Fe–Ti-rich melt consisted of 29.8 TiO_2 , 5.1 Al_2O_3 ,
29	0.2 Cr ₂ O ₃ , 24.5 Fe ₂ O ₃ , 37.4 FeO, 0.9 MnO, and 2.1 MgO wt%. Petrology and geochemistry
30	of the garnetite indicates an unusual composition for an upper mantle melt with a high oxygen
31	fugacity and relatively high Fe content.
32	
33	Keywords: ilmenite-magnetite-spinel, Fe-Ti-rich melt, UHP crystallization, garnetite,
34	eclogite, garnet peridotite, Moldanubian Zone
35	
36	Introduction
36 37	Introduction
36 37 38	Introduction Eclogite and garnet pyroxenite represent a volumetrically minor, but very important rock
36 37 38 39	Introduction Eclogite and garnet pyroxenite represent a volumetrically minor, but very important rock types, inasmuch as they provide direct evidence for heterogeneity in the upper mantle. Their
36 37 38 39 40	Introduction Eclogite and garnet pyroxenite represent a volumetrically minor, but very important rock types, inasmuch as they provide direct evidence for heterogeneity in the upper mantle. Their petrogenesis is a matter of debate. They have been variously interpreted as basaltic protoliths
 36 37 38 39 40 41 	Introduction Eclogite and garnet pyroxenite represent a volumetrically minor, but very important rock types, inasmuch as they provide direct evidence for heterogeneity in the upper mantle. Their petrogenesis is a matter of debate. They have been variously interpreted as basaltic protoliths recycled back to the upper mantle (e.g., Allègre and Turcotte 1986) and/or high-pressure
 36 37 38 39 40 41 42 	Introduction Eclogite and garnet pyroxenite represent a volumetrically minor, but very important rock types, inasmuch as they provide direct evidence for heterogeneity in the upper mantle. Their petrogenesis is a matter of debate. They have been variously interpreted as basaltic protoliths recycled back to the upper mantle (e.g., Allègre and Turcotte 1986) and/or high-pressure crystal cumulates derived from migrating transient basaltic melts (e.g., Becker 1996; Medaris
 36 37 38 39 40 41 42 43 	Introduction Eclogite and garnet pyroxenite represent a volumetrically minor, but very important rock types, inasmuch as they provide direct evidence for heterogeneity in the upper mantle. Their petrogenesis is a matter of debate. They have been variously interpreted as basaltic protoliths recycled back to the upper mantle (e.g., Allègre and Turcotte 1986) and/or high-pressure crystal cumulates derived from migrating transient basaltic melts (e.g., Becker 1996; Medaris et al. 1995; Pearson et al. 1993). Eclogites show a wide range of major element, trace element
 36 37 38 39 40 41 42 43 44 	Introduction Eclogite and garnet pyroxenite represent a volumetrically minor, but very important rock types, inasmuch as they provide direct evidence for heterogeneity in the upper mantle. Their petrogenesis is a matter of debate. They have been variously interpreted as basaltic protoliths recycled back to the upper mantle (e.g., Allègre and Turcotte 1986) and/or high-pressure crystal cumulates derived from migrating transient basaltic melts (e.g., Becker 1996; Medaris et al. 1995; Pearson et al. 1993). Eclogites show a wide range of major element, trace element and isotopic composition reflecting the heterogeneity of their protoliths and/or parental melts.
 36 37 38 39 40 41 42 43 44 45 	Introduction Eclogite and garnet pyroxenite represent a volumetrically minor, but very important rock types, inasmuch as they provide direct evidence for heterogeneity in the upper mantle. Their petrogenesis is a matter of debate. They have been variously interpreted as basaltic protoliths recycled back to the upper mantle (e.g., Allègre and Turcotte 1986) and/or high-pressure crystal cumulates derived from migrating transient basaltic melts (e.g., Becker 1996; Medaris et al. 1995; Pearson et al. 1993). Eclogites show a wide range of major element, trace element and isotopic composition reflecting the heterogeneity of their protoliths and/or parental melts. Exceptionally Fe–Ti-rich eclogites are rather rare, and their petrogenesis is a matter of debate
 36 37 38 39 40 41 42 43 44 45 46 	Introduction Eclogite and garnet pyroxenite represent a volumetrically minor, but very important rock types, inasmuch as they provide direct evidence for heterogeneity in the upper mantle. Their petrogenesis is a matter of debate. They have been variously interpreted as basaltic protoliths recycled back to the upper mantle (e.g., Allègre and Turcotte 1986) and/or high-pressure crystal cumulates derived from migrating transient basaltic melts (e.g., Becker 1996; Medaris et al. 1995; Pearson et al. 1993). Eclogites show a wide range of major element, trace element and isotopic composition reflecting the heterogeneity of their protoliths and/or parental melts. Exceptionally Fe–Ti-rich eclogites are rather rare, and their petrogenesis is a matter of debate

48	Medaris et al. 1995b; Medaris et al. 2005; Medaris et al., 2006; Faryad 2009; Medaris et al.
49	2013; Faryad et al. 2013). The peridotites usually form variably serpentinized decimeter- to
50	kilometer-sized bodies enclosed in high temperature – high pressure crustal rocks such as
51	granulite, gneiss, and/or migmatite. The crustal rocks occur as centimeter to decimeter sized
52	lenses, layers and/or dikes within, or closely associated with, garnet peridotite.
53	Spheroid is a non-genetic term for a spheroidal or spherical particle. Spheroidal shape
54	is obtained by rotating an ellipse about one of its principal axes (shape more or less similar to
55	a sphere). Examples in the literature include tiny metallic spheroids at impact sites
56	(e.g. Meteor Crater, Arizona), in some tektites and lunar regolith (Mead et al. 1965; Blau et al.
57	1973), ilmenite-magnetite aggregates in gabbro (Liu et al. 2014), pyrite aggregates formed in
58	various environments (McClay and Ellis 1983), reduction spheroids in sediments (Hofmann
59	1991), and various applications in technology (Jacobs et al. 1976). Spheroid is not a common
60	term in upper mantle petrology.
61	In this study, we report detailed petrography, major/trace element and Sr-Nd isotopic
62	geochemistry for the Fe-Ti-rich eclogite-symplectitic garnet rock. We interpret the ilmenite-
63	magnetite grinal assemblage as having errotallized from an immissible Fe. Ti malt under
	magnetite-spiner assemblage as having crystamzed from an immiscible re-11 melt under
64	upper mantle conditions at relatively high oxygen fugacity. The spheroids of ilmenite–
64 65	upper mantle conditions at relatively high oxygen fugacity. The spheroids of ilmenite– magnetite–spinel are interpreted as crystallized melt droplets trapped in growing garnet.
64 65 66	upper mantle conditions at relatively high oxygen fugacity. The spheroids of ilmenite– magnetite–spinel are interpreted as crystallized melt droplets trapped in growing garnet.
64 65 66 67	upper mantle conditions at relatively high oxygen fugacity. The spheroids of ilmenite– magnetite–spinel are interpreted as crystallized melt droplets trapped in growing garnet. Geological setting and samples
64 65 66 67 68	upper mantle conditions at relatively high oxygen fugacity. The spheroids of ilmenite– magnetite–spinel are interpreted as crystallized melt droplets trapped in growing garnet. Geological setting and samples The Bohemian Massif represents the easternmost and largest exposure of the Variscan
 64 65 66 67 68 69 	Inagnetite-spiner assemblage as having crystallized from an infinite-free free free free free free free fre
 64 65 66 67 68 69 70 	upper mantle conditions at relatively high oxygen fugacity. The spheroids of ilmenite– magnetite–spinel are interpreted as crystallized melt droplets trapped in growing garnet. Geological setting and samples The Bohemian Massif represents the easternmost and largest exposure of the Variscan orogenic belt in Europe, which formed during the Late Paleozoic collision of Gondwana, Laurasia and intervening microcontinents (Franke 1989; Matte 2001; Schulmann et al. 2009).

72	Saxothuringian, Moldanubian, and Moravo–Silesian. The Moldanubian Zone consists of three
73	different units: the Monotonous, the Varied and the Gföhl, the latter showing the highest
74	grade of metamorphism (2.3 GPa, 850–1050 °C; Vrána et al. 2013). In the Moldanubian Zone
75	of southern Bohemia, large lenses of garnet and spinel peridotites are enclosed in
76	predominantly felsic kyanite-garnet granulites of the Blanský les Granulite Massif (Kodym
77	1972, Medaris et al. 2005; Naemura et al. 2009; Franěk et al. 2011; Vrána et al. 2013).
78	Based on their lithology, chemical composition and the P/T regime, Medaris et al. (2005,
79	Table 1) characterized three types of peridotites (Types I, II and III) in the Gföhl Unit.Given
80	the widespread overlaps in lithology and chemistry, $\mathrm{Al}_2\mathrm{O}_3$ content in orthopyroxene serves as
81	a reliable distinguishing feature: Type I: 2.3–6.3 Al_2O_3 in Opx; Type II: 0.7–2.1 Al_2O_3 in
82	Opx; Type III: 0.4–1.9 Al ₂ O ₃ in Opx. Type I peridotites comprise both spinel- and garnet-
83	bearing varieties, contain high-Al ₂ O ₃ orthopyroxene, and equilibrated in a low P/T regime.
84	Type II peridotites are characterized by generally lower Mg#'s than those of Type I,
85	association with abundant pyroxenite, the local coexistence of garnet and spinel, low-Al $_2O_3$
86	orthopyroxene and a range of P/T regimes. Type III peridotites have the most uniform
87	characteristics among the three groups, consisting solely of garnet peridotite (with one
88	exception) with low- Al_2O_3 orthopyroxene and a medium P/T regime.
89	Garnet peridotite from Hamry, near the Chlum locality of the present study (Fig. 1),
90	was characterized by Medaris et al (2005) as Type III, equilibrated at T=1245 $^{\circ}$ C and 4.43
91	GPa. Garnet pyroxenites and eclogites in the Czech Type II peridotites were interpreted as
92	high-pressure crystal cumulates from melts that migrated through the lithospheric mantle
93	(Medaris et al. 1995a; Becker 1996; Ackerman et al. 2009). It is particularly interesting that
94	Nd, Sr and O isotope analyses and negative Eu anomalies in the Gföhl garnet pyroxenites

95 indicate that subducted oceanic crust contributed to melts from which they crystallized

96 (Medaris et al. 1995a; Ackerman et al. 2009). 97 The Chlum locality (48°54'18" N, 14°16'52" E) and Hamry locality (Medaris et al. 98 2005) are shown in Fig. 1. A twenty cm long fragment of an interlayered eclogite and 99 symplectitic garnet rock was collected from a large Type III mafic/ultramafic lens 0.5 km 100 west of the Chlum village (Fig. 1) as a loose piece. Fairly fresh loose pieces of garnet 101 peridotite, kyanite-garnet felsic granulite and garnet-bearing two-pyroxene mafic granulite 102 accompany the eclogite and symplectitic garnet rock (sample BD112 and BD110, 103 respectively). Because it is likely that boudins of mantle rocks can be relatively small and 104 somewhat variable, it is uncertain whether the garnet peridotite collected at the same place 105 (sample BD134) has a direct relationship to the eclogite and symplectitic garnet sample or 106 might be derived from another boudin. 107 Minor layers of eclogite and garnet pyroxenite within bodies of garnet peridotite are 108 common throughout the Bohemian Massif (Medaris et al. 1995a,b, Medaris et al. 2006). What 109 makes geological interpretation difficult is the polyphase deformation history of the hosting 110 felsic granulites, including typically two to three deformation events, penetrative shearing and 111 metamorphic reactions under granulite and amphibolite facies. These processes transformed 112 peridotite bodies to elongated lenses, such as seen in Fig. 1. A similar lenticular/boudin shape 113 is characteristic for mafic granulites (garnet-bearing two-pyroxene rocks) of dioritic to 114 gabbroid composition down to meter-scale bodies scattered in felsic granulites. There is 115 information indicating that many of these mafic boudins are retrogressed eclogites (Vrána et 116 al. 2013), which were completely metamorphosed to two-pyroxene \pm biotite rock without 117 garnet during low-P, high-T decompression. Other mafic samples show incomplete

decompression reactions involving omphacite and partial garnet breakdown dominantly toorthopyroxene and plagioclase.

- 120
- 121

Methods

122 Major-element whole-rock analysis was performed by wet chemical methods in the 123 laboratory of the Czech Geological Survey, Prague. The relative 2σ uncertainties are smaller 124 than 1 % (SiO₂), 2 % (FeO), 5 % (Al₂O₃, K₂O, Na₂O), 7 % (TiO₂, MnO, CaO), 6 % (MgO) 125 and 10 % (Fe₂O₃, P₂O₅) (Dempírová 2010). Minor and trace elements in whole-rock samples 126 were determined by the Thermo Element2 ICP-MS in the Institute of Geology, Academy of 127 Sciences of the Czech Republic, with a precision better than 5 % for each element analyzed. 128 The accuracy of the analyses was monitored by means of long-term reproducibility of BCR-2 129 reference material (USGS), yielding values between 5 and 15 % of recommended values 130 (Jochum and Nohl 2008). 131 Major element mineral composition was obtained using a CAMECA SX 100 WDS 132 electron microprobe in the Institute of Geological Sciences, Masaryk University, and Czech 133 Geological Survey, Brno. The analytical conditions varied according to the mineral analyzed, 134 but typically 15 kV accelerating voltage, beam current of 10–20 nA and acquisition time of 135 10-30 s were employed. The main standards used were spessartine (Si, Mn), almandine (Fe), 136 andradite (Ca), MgAl₂O₄ (Mg), hornblende (Ti), sanidine (Al, K), albite (Na), fluorapatite (P) 137 and chromite (Cr). Mineral abbreviations follow the convention of Whitney and Evans 138 (2010). 139 Trace element concentrations in clinopyroxene and garnet were determined by laser

140 ablation ICP-MS, using an Element2 mass spectrometer (Thermo), coupled with a 213-nm

laser system (NewWave Research). The analytical conditions followed those of Ackerman et
al. (2012). The analytical precision of all elements was always better than 5 %. The accuracy
was monitored by the analysis of BCR-2G material yielding values better than 10 % for most
analyzed elements in comparison to values of Jochum and Nohl (2008).

145 For the strontium and neodymium isotopic determinations, dissolved garnet and 146 clinopyroxene mineral separates were isolated from the rest of the elements by column 147 exchange chromatography using Eichrom Sr.spec, TRU.spec and Ln.spec resins (see Míková 148 and Denková 2007, and references therein). Isotopic analysis was performed on a Finnigan 149 MAT 262 thermal ionization mass spectrometer at the Czech Geological Survey in the 150 dynamic mode, using a single Re filament with Ta activator solution for Sr and double Re filament assembly for Nd. The ¹⁴³Nd/¹⁴⁴Nd ratios were corrected for mass bias to ¹⁴⁶Nd/¹⁴⁴Nd 151 = 0.7219, ⁸⁷Sr/⁸⁶Sr ratios assuming ⁸⁶Sr/⁸⁸Sr = 0.1194. External reproducibility was controlled 152 by repeated analyses of the JNdi-1 with 143 Nd/ 144 Nd = 0.512107 ± 17 (1 σ , n = 14) and NBS 153 987 with ${}^{87}\text{Sr}/{}^{86}\text{Sr} = 0.710232 \pm 10$ (1 σ , n = 14) isotopic standards. The Rb, Sr, Sm and Nd 154 155 concentrations for age determination were obtained using ICP-MS solution analyses as 156 described above.

Modal analysis of symplectite in sample BD110 was conducted on Tescan MIRA
3GMU fitted with SDD X-Max^N 80mm² EDS detector and AZtecEnergy AutoPhaseMap
software (Oxford Instruments) at the Czech Geological Survey. Three areas of interest, 500
µm by 500 µm, were chosen. For each area an EDS map was individually acquired, all at high
magnification (405x), resolution of 1024x1024pixels, step size 500 nm, accelerating voltage
of 7 kV, WD 15 mm, 365counts/pixel. These conditions enabled the precise phase
identification and calculation of percentage of individual minerals. For image analysis of

mineral proportions in ilmenite-magnetite-spinel spheroids or proportion of the same mineral
aggregates in symplectite of the sample BD110, NIS Element program was used.

- 166
- 167

Results

168 **Petrography**

The composite sample of eclogite–symplectitic garnet rock consists of an eclogite
layer with garnet completely preserved, and very fine-grained 4 cm layer in which garnet was
extensively replaced by plagioclase-orthopyroxene-clinopyroxene-spinel symplectite (Figs.
2a,c). This layer contains relict garnet grains and opaque mineral aggregates amounting to c.
7.4 vol%.

174 The eclogite has a nearly isotropic fabric. The typical grain size of garnet (c. 54 vol%) 175 and clinopyroxene (43 vol%) is 1–4 mm. The undeformed granoblastic structure and mineral 176 compositions are largely preserved. Some of the garnet-clinopyroxene interfaces are 177 decorated by a narrow zone of khaki-colored pargasite, which turns to a brown variety in rims 178 around ilmenite. The rock is cut by widely spaced fractures accompanied by minor secondary 179 amphibole and by a dense network of subparallel straight fractures across both garnet and 180 clinopyroxene (Fig. 2b). The total content of pargasite is estimated at 2–3 vol% and ilmenite 181 at ~1%.

The symplectitic garnet rock (sample BD110) has a nearly isotropic fabric, as indicated by relict garnet and interstitial ilmenite–magnetite–spinel aggregates (Figs. 2c, d). The relict garnet is surrounded by very fine-grained symplectite, which constitutes as much as 74 vol% of the rock. The relict garnet accounts for ~20 vol%. The opaque mineral aggregates (Ilm+Mt+Spl) comprise ~7 vol%, have concave shapes and fill the interstitial spaces between areas of symplectite. The average modal composition of symplectite (wt%) is as follows:

188 anorthite 30.8, orthopyroxene 35.4, clinopyroxene + minor amphibole 16.8, spinel 14.7, 189 magnetite 2.3. Modal analyses of three areas and their colour-coded maps are included in 190 Supplementary File 1. In addition, a detail of frozen reaction of garnet to polymineralic 191 symplectite with colour-coded minerals is given in Figure 4, whereas Figure 5 shows a sketch 192 of textures of partly symplectitized garnetite and interpreted garnetite prior to 193 symplectitization. 194 Aggregates of opaque minerals also occur as small 300–700 µm inclusions in the 195 symplectite (Figs. 3a, b). Presumably the spheroidal inclusions were originally enclosed in the 196 garnet. Image analysis of 11 spheroids yields the following modal composition (vol%): 56.4 197 ilmenite, 36.8 magnetite and 6.8 spinel. Detailed microprobe investigations revealed presence 198 of accessory apatite and minor barite probably of a late hydrothermal origin in sample BD110. 199 The garnet peridotite, sample BD134, is a partially serpentinized lherzolite that shows 200 a porphyroclastic texture. Large garnet grains 3-7 mm are rimmed by kelyphite within a fine-201 grained, 0.1–1.0 mm, olivine + orthopyroxene + clinopyroxene matrix (Fig. 6). Antigorite 202 veinlets penetrate olivine aggregates and amount to ~15 vol%. 203 204 Whole-rock major and trace element chemical composition 205 The eclogite BD112 has a composition similar to that of other eclogites within the Gföhl Unit 206 (Table 1; Medaris et al. 1995b) except for its very low Mg# [100 * Mg/(Mg+Fe)] of 59.8, 207 which is similar to the eclogite sample from the Nové Dvory locality (Southern Moravia; 208 Medaris *et al.*, 1995a). Such a low Mg #, accompanied by Na₂O>0.75 wt%, Cr₂O₃ < 0.15 209 wt%, and Ni<200 ppm (Table 1), fulfills compositional criteria for distinguishing this rock as

- an eclogite rather than pyroxenite (Medaris et al. 1995a). In contrast, the whole-rock
- 211 chemistry of the symplectitic garnet rock (BD110) is similar to that of the garnet in the same

212	rock with an addition of several percent of ilmenite and magnetite. Correction of the whole-
213	rock analysis of symplectitic garnet rock BD110 for 5.3 wt% of Fe-Ti oxides results in a
214	composition (Tab. 1) that is closely comparable to microprobe analysis of relict garnet in the
215	same sample (Tab. 1).
216	Rare earth element (REE) and extended trace element patterns samples BD112 and
217	BD110, normalized to primitive mantle (PM - McDonough and Sun 1995), are given in Fig.

218 7. The eclogite exhibits overall REE concentrations higher than PM and a slight depletion in

219 light rare earth elements (LREE) in comparison to heavy rare earth elements (HREE) with

220 La_N/Yb_N of 0.5, coupled with a small negative anomaly (Eu/Eu* = 0.9). Among the other

trace elements, the eclogite is enriched in some large ion lithophile elements (LILE) and U-

222 Th but shows Nb, Rb and Sr negative anomalies. The symplectitic garnet rock BD110 differs

from the eclogite by showing a sinusoidal REE pattern with enrichments for La–Ce with

respect to Pr–Nd. Both are enriched in HREE.

225

226 Sr-Nd isotopic compositions

227 Strontinum and Nd isotopic data for whole-rock samples and mineral separates from Chlum 228 are given in Table 2. They yield a poorly defined isochron age of 328 ± 54 Ma due to high errors on the calculated ¹⁴⁷Sm/¹⁴⁴Nd ratios. The data are plotted in Fig. 8 with the initial 229 230 isotopic ratios recalculated at 330 Ma. When compared to other eclogites from the Bohemian Massif (Fig. 8), the Chlum samples exhibit very different Sr-Nd compositions with highly 231 radiogenic and variable initial ⁸⁷Sr/⁸⁶Sr values of 0.70825–0.71033 and the highest value in 232 233 whole-rock sample of symplectitic garnet rock. In comparison, calculated ε Nd values have 234 only a very limited range between -1.2 and +0.4. Such compositions form a horizontal array

- in Fig. 8, where most of the samples overlap with the composition of the Enriched Mantle 2
- 236 (EM 2) component.

237 Mineral chemistry

238 Clinopyroxene

239 Clinopyroxene from the eclogite has Mg# of 73.3–74.7 and contains a high percentage 240 of components other than diopside: 10.4–12.3 mol% jadeite, 4.6–5.1 mol% aegirine, and 8.0– 241 9.5 mol% Ca-tschermak component. With Na₂O contents between 2.10 and 2.42 wt%, this 242 pyroxene plots close to the divide between compositional fields of diopside and omphacite, 243 with a low jadeite component (Morimoto et al. 1988). Minor variation in composition across 244 the grains is documented by core and rim analyses (Table 3). Although these rocks do not 245 contain omphacite, and therefore are not eclogites sensu stricto, they are commonly referred 246 to as eclogites in the literature on the Bohemian massif (Beard et al. 1992; Medaris et al. 247 1995b; Medaris et al. 2005). 248 The clinopyroxene exhibits a typical LREE-enriched, convex-upward REE pattern 249 (Fig. 7) with La_N/Yb_N of ~17 and no Eu anomaly. The extended trace element pattern 250 resembles similar characteristics as the whole rock, except LILE which are largely depleted in 251 clinopyroxene. 252 253 Garnet 254 In the eclogite, cores of garnet contain 35.2 mol% pyrope, 29.7 mol% almandine and 255 30.2 mol% grossular components, whereas the rim contains 34.3 mol% pyrope, 35.0 mol% 256 almandine and 27.3 mol % grossular (Table 3). The chromium content is very low, with 257 values from 0.02 to 0.04 wt% Cr₂O₃. In comparison, relict garnet in garnetite exhibits a more

258 Mg-rich composition with 39.7–40.8 mol% pyrope, 28.9–29.4 mol% almandine and 26.9– 259 27.5 mol% grossular. Also, the chromium content is somewhat higher (0.09 wt. % Cr₂O₃). 260 The garnets from the eclogite and symplectitic garnet rock show similar trace element 261 characteristics, being largely depleted in LREE with respect to HREE (Fig. 7), reflected by 262 very low La_N/Yb_N ratios between 0.006 and 0.007. In the eclogite, the extended trace element 263 pattern for garnet is similar to that of clinopyroxene in spite of its general more pronounced 264 depletions. In contrast to the pronounced major element compositional zoning in eclogite, 265 garnet trace elements exhibit very little core-to-rim variations. Nevertheless, the garnet cores 266 contain higher contents of HREE, Y, Nb and Li than do the rims (Table 5). Symplectite 267 planimetric mineral analyses in sample BD110, characterized in the petrography section, in 268 combination with microprobe analyses of the symplectite minerals, give a composition 269 closely comparable with the mineral chemistry of the relict garnet as follows from comparison 270 of columns 2 and 4 in Table 1. 271

272 Ilmenite-magnetite-spinel spheroids

273 Calculation based on mineral proportions obtained by image analysis and mineral chemistry 274 (Table 4) results in the following composition of the Fe-Ti-rich spheroids (wt%): 28.7 TiO₂, 275 3.7 Al₂O₃, 0.2 Cr₂O₃, 27.9 Fe₂O₃, 37.0 FeO, 0.8 MnO, and 1.7 MgO. Magnetite in spheroids 276 and in intersticial aggregates is free of exsolution lamellae of ilmenite, common in crustal 277 gabbros (Beckman et al. 2015). On the other hand, magnetite contains minute exsolution 278 lamellae of spinel, visible at high magnification, with 4.14 wt% Al₂O₃, 1.14 wt% MgO and 279 0.52 Cr₂O₃ (Table 6), indicating high-T crystallization in Al-rich system. Ilmenite contains 280 elevated Mg contents (1.79 wt% MgO).

282 Garnet peridotite

283	Mineral analyses of two pyroxenes, garnet, and olivine from peridotite BD134 are presented
284	in Table 7. The peridotite may or may not have a genetic relationship with the eclogite –
285	garnetite but it provides independent information for comparison with sample BD112/110.
286	Olivine in sample BD134 contains 89.3 mol% forsterite. Porphyroclastic garnet (Table 7; Fig.
287	6) contains 70.8–73.0 mol% pyrope, 14.4–16.5 mol% almandine, 5.2–5.7 mol% grossular,
288	4.6–4.7 mol% uvarovite, and minor andradite and spessartine. Clinopyroxene is highly
289	magnesian with 40.2-41.1 mol% enstatite, and 13.7-14.2 mol% jadeite. Orthopyroxene
290	contains 86.1-86.3 mol% enstatite and 1.8 mol% Ca-tschermak molecule.
291	
292	Geothermobarometry
293	The garnet and clinopyroxene cores from eclogite equilibrated at a temperature of 1256 °C
294	(Powell 1985; Ai 1994; Ganguly et al. 1996; Krogh-Ravna 2000) assuming a pressure
295	estimate of 4.0 GPa (i.e. the pressure obtained by Medaris et al. 1995a for Type III
296	peridotites), while the garnet and clinopyroxene rims yield 1090 °C. A pressure calculation
297	for garnet peridotite BD134 was obtained using the Al-in-orthopyroxene barometer (Brey and
298	Köhler 1990), assuming equilibrium temperature calculated from olivine-garnet and
299	clinopyroxene-garnet pairs (T = 1100 °C; Harley 1984; Powell 1985; Ai 1994). This
300	calculation yields a pressure of 3.41 GPa for the garnet peridotite, significantly lower than the
301	4.0 pressure calculated by Medaris et al. (1995a). However, using the higher temperature of
302	T=1250 °C obtained from eclogite BD112, the peridotite yields a pressure estimate of 4.23
303	GPa. This value for the Chlum peridotite agrees well with that for the nearby Hamry garnet
304	peridotite (T=1245 °C, P=4.43 GPa) by Medaris et al. (2005).
305	

306 307 Discussion 308 Petrogenesis of eclogite and symplectitic garnet rock 309 Whole-rock analysis of the symplectitic garnet rock, sample BD110 (Table 1), is similar to 310 the composition of relict garnet in the same sample. If the analysis of the symplectitic garnet 311 rock is corrected for the content of 5.3 wt% ilmenite+magnetite+spinel aggregates, as in column 3, Table 1, the resulting composition corresponds to the mineral chemistry of relict 312 313 garnet in the same sample. As a following step, planimetric analysis of the mineralogical 314 composition of symplectite was undertaken. Combination of this data with the chemistry 315 obtained from microprobe analysis of symplectite minerals yielded a calculated composition 316 of symplectite, shown in column 2, Table 1. Thus two independent methods show that the 317 symplectitic garnet rock, sample BD110, was originally a garnetite, modified by extensive 318 conversion of garnet to anorthite+orthopyroxene+clinopyroxene+spinel+magnetite 319 symplectite in the process of low-P high-T decompression. Figure 5 shows a sketch of 320 textures of partly symplectitized garnetite and the interpreted garnetite prior to 321 symplectitization. 322 Widespread eclogites and garnet pyroxenites occurring within the Gföhl Unit of the 323 Moldanubian Zone are usually interpreted as having been formed as high-pressure cumulates 324 from transient, upper mantle-derived, basaltic melts with a significant contribution of recycled 325 crustal material (Medaris et al. 1995a; Medaris et al. 2006; Ackerman et al. 2009; Medaris et 326 al. 2013). Eclogite and garnetite described here differ significantly from previously studied 327 rocks in several important ways: (1) very low Mg #, (2) very high TiO₂ contents (up to 2.34) 328 wt. %), (3) almost flat whole-rock REE distribution above the primitive mantle values, (4) no 329 significant Eu anomaly, (5) large scale Sr-Nd isotopic decoupling, and (6) high equilibration

330 temperature (1256 °C for the eclogite). A similar Fe–Ti-rich eclogite with a low Mg # of 331 51.8–58.7 and TiO₂ contents up to 1.91 wt. % was described from the Úhrov locality in 332 eastern Bohemia (Medaris et al. 1995); however, no magnetite or ilmenite-magnetite-spinel 333 spheroids were reported from the Uhrov occurrence. The presence of eclogite and garnetite 334 layers together in a single hand specimen strongly supports the idea of their formation by 335 high-pressure crystal accumulation. If this is correct, the highly Fe–Ti-rich nature of the 336 eclogite–garnetite association requires a specific parental magma which could reflect either a 337 low degree of partial melting of mantle sources or extensive basaltic melt fractionation of 338 olivine, clinopyroxene, and garnet. Highly decoupled Sr-Nd isotopic data forming a horizontal array, with initial radiogenic ⁸⁷Sr/⁸⁶Sr values of up to 0.71033 and a slightly 339 negative ε Nd value (-1.2) in garnetite argue for a ⁸⁷Sr-rich fluid interaction, most likely 340 341 derived from a subducting slab and/or derivation of parental magmas from subduction-related 342 mantle overprinted by a hydrous fluid. No matter which process is correct, a high activity of 343 H₂O is confirmed by the occurrence of minor amphibole within eclogite and garnetite. 344 However, most of increased H₂O activity relates to a late decompression recrystallization 345 stage; possibly, ⁸⁷Sr-rich fluid interaction took place during this late stage. Because the REE 346 budget in eclogite is predominantly controlled by clinopyroxene and garnet, the REE 347 composition of the melt from which eclogite crystallized can be directly calculated using the 348 mineral composition of clinopyroxene and partitioning coefficients of Johnson (1998). This 349 approach was discussed by Medaris et al. (2013) and it should be reliable, if the cumulate 350 rock (eclogite) has a composition consistent with high temperature and $D_{cpx/grt}$ values that 351 closely follow those obtained from high temperature experiments. Both requirements are met 352 in the case of our eclogite sample. Thus, the calculated melt composition in equilibrium with

353 clinopyroxene shows a highly enriched LREE composition with La_N/Yb_N ratio of ~207. Such

a composition suggests a derivation of the parental melts from an enriched source with a

- 355 significant contribution of continental material.
- 356

357 Ilmenite-magnetite-spinel spheroids and interstitial aggregates

358 Spheroids, originally enclosed in growing garnet crystals, are interpreted as former droplets of

- a Fe–Ti-saturated melt. Most of the Fe–Ti-rich melt filled the interstitial spaces between the
- 360 settled garnet crystals (Fig. 2c). The trapped melt crystallized to form polymineralic
- 361 aggregates. This textural information strongly supports a relatively early separation of

362 immiscible Fe–Ti-rich melt from a silicate melt. Basaltic melts generally have a high Ti

363 solubility (up to 9 wt. %; Green and Pearson 1986; Ryerson and Watson 1987) and, therefore,

it is unlikely that they can reach Ti saturation. On the other hand, high CO₂ content in silicate

365 melts can strongly reduce Ti solubility and hence permit magmas to reach their Ti saturation.

366 Such alkaline magmas would have very low SiO₂, but high LREE contents, both features that

367 are characteristic of the Chlum eclogite-garnetite association.

368 A recent study of magnetite-ilmenite (\pm hornblende \pm phlogopite \pm apatite) spheroids in 369 cumulus olivine and interstitial aggregates in the mafic-ultramafic Baima intrusion in SW 370 China (Liu et al. 2014) represents a strong case in support of relatively early separation of 371 immiscible Fe-Ti-O melt. This intrusion is of Permian age and crystallized at mid-crustal to 372 upper-crustal conditions. In the Chlum garnetite BD110, the melt crystallization took place 373 under upper-mantle conditions at P=4.2 GPa and T=1240 °C. It is uncertain, what effect these 374 high P–T conditions have on the process Fe–Ti-rich melt unmixing. To gain some information 375 on the conditions of liquidus crystallization of ilmenite, magnetite and spinel, Fe-Ti oxides 376 thermo-oxybarometry data could be applied. However, the low ulvöspinel component in

377 magnetite (9.1 mol%, Table 5) indicates that the magnetite-ilmenite assemblage has been 378 severely re-equilibrated during prolonged annealing (Hammond and Taylor 1982). 379 There is a puzzling difference in garnet preservation in BD112 eclogite compared to that in 380 partly symplectitic BD110 garnetite, even though the garnet composition in both rocks is very 381 similar. In garnetite, the formation of the Pl+Opx+Cpx+Spl decompression symplectite after 382 garnet proceeded in a similar manner as it is common in local mafic and intermediate 383 granulites (Owen and Dostal 1996; Vrána et al. 2013). In eclogite, there is minor pargasitic 384 amphibole locally forming rims at the garnet interface with clinopyroxene, but no symplectite 385 after garnet is present. We suggest that the nearly monomineralic garnetite was more affected 386 by brittle deformation than was the pyroxene-bearing eclogite. If so, fractures allowed better 387 access of fluids into garnetite, which promoted symplectite formation.

388

389 Implications

390 In a wider context, several types of liquid immiscibility in basaltic magmas are known at 391 present. These include sulfide-rich melts in some layered intrusions (Pye et al. 1984), ilmenite 392 and apatite-rich domains (nelsonites) in some gabbro-anorthosite massifs (Kolker 1982), 393 microscopic scale silica-rich and Fe-rich inclusions documented from the Skaergaard 394 intrusion (Jakobsen et al. 2005), and silicate domains in accumulations of native iron in trap 395 formation in Siberia (Kamenetsky et al. 2013). The early separation of immiscible Fe–Ti-rich 396 melt from crystallizing ferrobasaltic magma under shallow crustal conditions (Baima pluton, 397 China), has been now recognized (Liu et al. 2014). The formation of Ilm+Mt+Spl spheroids in 398 garnetite/eclogite association from Chlum, the Variscan belt in the Bohemian Massif, seems 399 to be a single example of separation of immiscible Fe–Ti-rich melt under high PT conditions

400	at present. We interpret these spheroids as crystallized from melt droplets. This may indicate
401	probable occurrence of the Fe–Ti-rich melt unmixing across a range of pressure conditions.
402	The evidence for recycled crustal material within the upper mantle is indicated by Sr-Nd
403	isotope composition of garnet pyroxenites and eclogites (Medaris et al. 1995; Brueckner and
404	Medaris; Becker 1996; Ackerman et al. 2009), and gross chemical features of resulting
405	eclogites and garnet pyroxenites. Liou and Tsujimori (2013) and Gilotti (2013) reviewed the
406	ever-increasing abundance of mineral data on ultrahigh-pressure metamorphism involving
407	subducted continental crust. The Chlum sample shows a potential of other, as yet unknown,
408	compositional characteristics of the subducted crustal material. The novel information from
409	Chlum garnetite-eclogite is the significant Fe-Ti-enrichment, demonstrated by high ilmenite
410	and magnetite contents, and an elevated oxygen fugacity indicated by magnetite. The
411	presence of ilmenite-magnetite-spinel spheroids in the Chlum garnetite sample sheds new
412	light on redox variation in rocks with a history of mantle residence, but with a
413	crustal/supracrustal component.
414	
415	Acknowledgments
416	
417	We would like to gratefully acknowledge the contribution of J. Gilotti, and the reviewers R.N.
418	Abbott and H. Brueckner for their detailed and constructive reviews, which contributed to an
419	improved version of the article. We thank P. Gadas, Faculty of Science, Masaryk University,
420	Brno, for microprobe analyses and J. Ďurišová for ICP-MS analyses. M. Rieder critically read
421	an early version of the manuscript. The study was supported by a Project of the Czech
422	Geological Survey, No. 390000. This work was partly supported by the Scientific Programme

423	CEZ: RVO67985831	of the Institute of	of Geology, A	cademy of	f Sciences	of the	Czech
-----	------------------	---------------------	---------------	-----------	------------	--------	-------

- 424 Republic.
- 425

426	References cited
427	Ackerman, L., Jelínek, E., Medaris, G., Ježek, J., Siebel, W., and Strnad, L. (2009) Geochemistry of
428	Fe-rich peridotites and associated pyroxenites from Horní Bory, Bohemian Massif: Insights into
429	subduction-related melt-rock reactions. Chemical Geology, 250, 152-167.
430	Ackerman, L., Špaček, P., Medaris, L.G., Hegner, E., Svojtka, M., and Ulrych, J. (2012) Geochemistry
431	and petrology of pyroxenite xenoliths from Cenozoic alkaline basalts, Bohemian Massif. Journal
432	of Geosciences, 58,199–219.
433	Ai, Y. (1994) A revision of the garnet-clinopyroxene Fe ²⁺ -Mg exchange geothermometer.
434	Contributions to Mineralogy and Petrology, 115, 467–473.
435	Allégre, C.J. and Turcotte, D.L. (1986) Implications of a two component marble cake mantle. Nature,
436	323, 123–127.
437	Beard, B.L., Medaris, Jr.L.G., Johnson, C.M., Brueckner, H.K., Mísař, Z. (1992) Petrogenesis of
438	Variscan high-temperature group A eclogites from the Moldanubian Massif, Czechoslovakia.
439	Contribution to mineralogy and Petrology, 111, 468-483.
440	Beckman, V., Möller, C., Söderlund, U., Corfu, F., Pallon, J., and Chamberlain, K.R. et al.
441	(2015) Metamorphic zircon formation at the transition from gabbro to eclogite in
442	Trollheimen-Surnadalen, Norwegian Caledonides. Corfu, F., Gasser, D. & Chew, D. M.
443	(eds) 2014. New Perspectives on the Caledonides of Scandinavia and Related Areas.
444	Geological Society, London, Special Publications, 390, 403-424).
445	Becker, H. (1996) Crustal trace element and isotopic signatures in garnet pyroxenites from garnet
446	peridotite massifs from lower Austria. Journal of Petrology, 37, 785-810.

- 447 Blau, P.J., Axon, H.J., and Goldstein, J.I. (1973) Investigation of the Canyon Diablo metallic
- spheroids and their relationship to the breakup of the Canyon Diablo meteorite. Journal of
- 449 Geophysical Research 78, 363–374.
- 450 Brey, G.P. and Köhler, T. (1990) Geothermobarometry in four-phase lherzolites II. New
- thermobarometers, and practical assessment of existing thermobarometers. Journal of Petrology,
- 452 31, 1353–1378.
- 453 Dempírová, L. (2010) The evaluation of precision and relative error of the main components of silicate
- 454 analyses in Central Laboratory of the CGS. Zprávy o geologických výzkumech v roce 2009. 326–
- 455 330 (in Czech).
- 456 Faryad, S.W. (2009) The Kutná Hora Complex (Moldanubian zone, Bohemian Massif): A composite
- 457 of crustal and mantle rocks subducted to HP/UHP conditions. Lithos, 109:193–208
- 458 Faryad, S.W., Jedlička, R. and Collett, S. (2013) Eclogite facies rocks of the Monotonous unit, clue to
- 459 Variscan suture in the Moldanubian Zone (Bohemian Massif). Lithos, 179:353–363
- 460 Franěk, J., Schulmann, K., Lexa, O., Ulrich, S., Štípská, P., Haloda, J. and Týcová, P. (2011) Origin of
- 461 felsic granulite microstructure by heterogeneous decomposition of alkali feldspar and extreme
- 462 weakening of orogenic lower crust during the Variscan orogeny. Journal of Metamorphic
- 463 Geology, 29, 103–130.
- 464 Franke, W. (1989) Tectonostratigraphic units in the Variscan belt of Central Europe. Geological
 465 Society of America, Special Paper 23, 67–90.
- 466 Ganguly, J., Cheng, W., and Tirone, M. (1996) Thermodynamics of alumosilicate garnet solid
- 467 solution: new experimental data, an optimized model, and thermodynamic application.
- 468 Contributions to Mineralogy and Petrology, 126, 137–151.
- 469 Gilotti, J.A. (2013) The realm of ultrahigh-pressure metamorphism. Elements, 9, 255–260.
- 470 Green, T. H. and Pearson, N. (1986) Ti-rich accessory phase saturation in hydrous mafic—felsic
- 471 compositions at high P, T. Chemical Geology, 54, 185–201.

- 472 Hammond, P.A. and Taylor, L.A. (1982) The ilmenite/titanomagnetite assemblage: kinetics of
- 473 reequilibration. Earth and Planetary Science Letters, 61, 143–150.
- 474 Harley, S.L. (1984) An experimental study of the partitioning of Fe and Mg between garnet and
- 475 orthopyroxene. Contributions to Mineralogy and Petrology, 86, 359–373.
- 476 Hart, S. R. (1988) Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth
- 477 and Planetary Science Letters, 90, 273–296.
- 478 Hofmann, B.A. (1991) Mineralogy and geochemistry of reduction spheroids in Red Beds. Mineralogy
- 479 and Petrology, 44, 107–124.
- 480 Jacobs, M.H., Law, T.J., Melford, D.A., and Stowell, M.J. (1976) Identification of heterogenous nuclei
- 481 for graphite spheroids in chill-cast iron. Material Science and Technology, 3, 99–108.
- 482 Jakobsen, J.K., Veksler, I.V., Tegner, C., and Brooks, C.K. (2005) Immiscible iron- and silica-rich
- 483 melts in basalt petrogenesis documented in the Skaergaard intrusion. Geology, 33, 885–888.
- 484 Jochum, K.P. and Nohl, U. (2008) Reference materials in geochemistry and environmental research

485 and the GeoReM database. Chemical Geology 253:50–53

- 486 Johnson, K.T.M. (1998) Experimental determination of partition coefficients for rare earth and high-
- 487 field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures.
- 488 Contributions to Mineralogy and Petrology, 133, 60–68.
- 489 Kamenetsky, V.S., Charlier, B., Zhitova, L., Sharygin, V., Davidson, P. and Feig, S. (2013) Magma
- 490 chamber–scale liquid immiscibility in the Siberian Traps represented by melt pools in native iron.
- 491 Geology, 41, 1091–1094.
- 492 Kodym O. (1965) Geological map 1:25 000 of the Křemže area, 32-214. Geological Survey of the
- 493 Czech Republic, Prague.
- 494 Kodym, O. (1972) Multiphase deformation in the Blanský les granulite massif (South Bohemia).
- 495 Krystalinikum, 9, 91–105.
- 496 Kodym, O., Jakeš, P., and Schovánek, P. (1978) Granulite und ultramafische Gesteine aus der
- 497 Strukturbohrung Holubov. Journal of Geological Sciences, Geology, 32, 7–47.

- 498 Kolker, A. (1982) Mineralogy and geochemistry of Fe-Ti oxide and apatite (nelsonite) deposits and
- 499 evaluation of the liquid immiscibility hypothesis. Economic Geology, 77, 1146–1158.
- 500 Krogh Ravna, E. (2000) The garnet-clinopyroxene Fe^{2+} -Mg geothermometer: an updated calibration.
- 501 Journal of Metamorphic Petrology, 18, 211–219.
- 502 Liou, J.G. and Tsujimori, T. (2013) The fate of subducted continental crust: evidence from recycled
- 503 UHP–UHT minerals. Elements, 9, 248–250.
- Liu, Y., Yang, H., Shau, Y., Meng, F., Zhang, J., Yang, J. and Yu, S. (2007) Compositions of high Fe-
- 505 Ti eclogites from the Sulu UHP metamorphic terrane, China: HFSE decoupling and protolith
- 506 characteristics. Chemical Geology, 239, 64–82.
- 507 Liu, P.P., Zhou, M.F., Chen, W.T., Boone, M. and Cnudde, V. (2014) Using multiphase solid
- 508 inclusions to constrain the origin of the Baima Fe–Ti–(V) oxide deposits, SW China. Journal of
- 509 Petrology, 55, 951–976.
- 510 Matte, P. (2001) The Variscan collage and orogeny (480-290 Ma) and the tectonic definition of the
- 511 Armorica microplate: A review. Terra Nova, 13, 122–128.
- 512 McClay, K.R. and Ellis, P.G. (1983) Deformation and recrystallization of pyrite. Mineralogical
- 513 Magazine, 47, 527–538.
- 514 McDonough, W. and Sun, S. (1995) The composition of the Earth. Chemical Geology, 120, 223–253.
- 515 Mead, C.A., Chao, E.C.T., and Littler, J. (1965) Metallic spheroids from Meteor Crater, Arizona.
- 516 American Mineralogist 50, 667–681.
- 517 Medaris, G.Jr., Beard, B.L., Johnson, C.M., Valley, J.W. Spicuzza, M.J., Jelínek, E. and Mísař, Z.
- 518 (1995a) Garnet pyroxenite and eclogite in the Bohemian Massif: geochemical evidence for
- 519 Variscan recycling of subducted lithosphere. Geologische Rundschau, 84, 489–505.
- 520 Medaris, G.Jr., Jelínek, E. and Mísař, Z. (1995b) Czech eclogites: terrane settings and implications for
- 521 Variscan tectonic evolution of the Bohemian Massif. European Journal of Mineralogy, 7, 7–28.

522	Medaris, G.Jr., Wang, H., Jelínek, E., Mihaljevič, M. and Jakeš, P. (2005) Characteristics and origins
523	of diverse Variscan peridotites in the Gföhl Nappe, Bohemian Massif, Czech Republic. Lithos,
524	82, 1–23.
525	Medaris, L. G., Beard, B. L., and Jelínek, E. (2006) Mantle-Derived, UHP Garnet Pyroxenite and
526	Eclogite in the Moldanubian Gföhl Nappe, Bohemian Massif: A Geochemical Review, New P-T
527	Determinations, and Tectonic Interpretation. International Geology Review, 48, 765-777.
528	Medaris, G.L.Jr., Jelínek, E., Beard, B.L., Valley, J.W. Spicuzza, M.J., and Strnad, L. (2013) Garnet
529	pyroxenite in the Biskupice peridotite, Bohemian Massif: anatomy of a Variscan high-pressure
530	cumulate. Journal of Geosciences, 58, 3–19.
531	Míková, J. and Denková, P. (2007) Modified chromatographic separation scheme for Sr and Nd
532	isotope analysis in geological silicate samples. Journal of Geosciences, 52, 221-226.
533	Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A, Zussman, J., Aoki,
534	K. and Gottardi, G. (1988) Nomenclature of pyroxenes. American Mineralogist, 73, 1123-1133.
535	Naemura, K., Hirajima, T. and Svojtka, M. (2009) The Pressure-Temperature Path and the Origin of
536	Phlogopite in Spinel-Garnet Peridotites from the Blansky Les Massif of the Moldanubian Zone,
537	Czech Republic. Journal of Petrology, 50, 1795–1827.
538	Owen, J.V., and Dostal, J. (1996) Contrasting corona structures in mafic granulite from the Blanský
539	Les Complex, Bohemian Massif, Czech Republic. Canadian Mineralogist, 34, 959–966.
540	Pearson, D., Davies, G., and Nixon, P. (1993) Geochemical constraints on the petrogenesis of diamond
541	facies pyroxenites from the Beni Bousera peridotite massif, North Morocco. Journal of Petrology,
542	34, 125–172.
543	Powell, R. (1985) Regression diagnostics and robust regression in geothermometer/geobarometer
544	calibration: the garnet-clinopyroxene geothermometer revisited. Journal of Metamorphic
545	Geology, 3, 231–243.

546	Pve, E.G., Naldrett	. A.J. and Giblin	. P.E. (1984)) The Geology an	d Ore Deposits	s of the Sudbury
• • •			,			

- 547 Structure. Ontario Geological Survey, Special Volume 1, Ontario Ministry of Natural Resources.
- 548 Ryerson, F. J. and Watson, E. B. (1987) Rutile saturation in magmas: implications for Ti-Nb-Ta
- 549 depletion in island-arc basalts. Earth and Planetary Science Letters, 86, 225–239.
- 550 Schulmann, K., Konopásek, J., Janoušek, V., Lexa, O., Lardeaux, J-M., Edel, J., Štípská, P. and
- 551 Ulrich, S. (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. Comptes
- 552 Rendus Geosci 341:266–286
- 553 Vrána, S., Janoušek, V. and Franěk, J. (2013). Contrasting mafic to felsic HP-HT granulites of the
- 554 Blanský les Massif (Moldanubian Zone of southern Bohemia): complexity of mineral
- assemblages and metamorphic reactions. Journal of Geosciences, 58, 347–378.
- Whitney, D.L. and Evans, B.W. (2010): Abbreviations for names of rock-forming minerals. American
 Mineralogist, 95, 185–187.
- 558 **Figure captions**
- 559 **Figure 1.** Simplified geology of the Křemže area in the central-eastern part of the Blanský les
- 560 Granulite Massif. Adopted from 1:25 000 geological map (Kodym 1965).
- 561
- 562 Figure 2. (a) A section of eclogite (top) and symplectitic garnet rock (nearly black) layers,
- 563 (b) garnet and clinopyroxene with minor pargasite and ilmenite in eclogite layer; scanner
- 564 image in transmitted light,(c) garnetite with wide symplectite rims (black) around relict
- 565 garnet, intersticial ilmenite-magnetite-spinelaggregates have concave outlines; small
- ilmenite-magnetite-spinel spheroids are framed yellow; macrophoto of polished slab, (d)
- 567 symplectitic garnet rock with intersticial ilmenite-magnetite-spinel aggregates. Residual
- 568 garnet exhibits a system of parallel fractures. At right bottom are two spheroids of Fe-Ti-
- oxides. Grt garnet; Sy symplectite; scanner image in transmitted light.

570	Figure 3. (a) thin section of symplectitic garnet rock showing two Ilm + Mt + Spl spheroids
571	in symplectite after garnet. Relict garnet (Grt) is preserved at top right, (b) ilmenite, magnetite
572	and spinel I spheroid within symplectitic garnet rock; Magnetite contains two sets of minute
573	spinel II lamellae.
574	
575	Figure 4. A datail of frozen in reaction of garnet to polymineralic symplectite with colour-
576	coded minerals. Sample BD110.
577	
578	Figure 5. (a) Schematic diagram showing the textural and mineralogical changes in extensive
579	decompression symplectitization of the garnetite, (b) the interpreted original texture of
580	garnetite.
581	
582	Figure 6. Garnet peridotite (BD134) with kelyphite reaction rims around garnet.
583	
584	Figure 7. Rare earth element (REE) and extended trace element patterns of the studied
585	eclogite, garnetite and their mineral phases normalized to primitive upper mantle values of
586	McDonough and Sun (1995).
587	
588	Figure 8. Initial (330 Ma) Sr-Nd isotopic compositions of whole-rock samples and mineral
589	separates from Chlum eclogite and garnetite. Mantle components (DMM, EM1, EM2, HIMU)
590	are from Hart (1988), calculated at 330 Ma. Composition of other Bohemian Massif eclogites
591	from Medaris et al. (2006) and references therein are also plotted.
592	
593	

Sample	BD112	BD110	BD110	BD110**	BD110		BD112	BD110	BD110
Rock/Miner- al	eclogite	symplectitic garnet rock	composition calculated from symplectite modal analyses	whole-rock minus 5.3 wt% Ilm+Mt+Spl	relict garnet microprobe analysis**		Eclogite	symplectitic garnet rock	Garnet*
SiO ₂ (wt%)	42.71	35.83	39.84	38.95	40.61	Y	40	76	85
TiO ₂	1.21	2.34	0.22	0.89	0.22	Zr	79	91	58
Al ₂ O ₃	16.09	20.06	22.23	21.58	22.04	Nb	2.2	6.1	0.01
Fe ₂ O ₂	1.89	7.13			n.a.	Cs	0.61	1.2	n.a.
FeO	10.66	11.44	14.17	15.84	15.19	Ba	55.5	468	< 0.02
MnO	0.27	0.44	0.39	0.43	0.5	La	3.9	4.3	0.036
MgO	10.34	10.68	12.40	11.50	10.92	Ce	12	6.7	0.35
CaO	14.85	9.4	10.30	10.81	10.86	Pr	2.1	0.77	0.18
Na ₂ O	1.05	0.08	0.04		b.d.	Nd	12	4.5	2.6
K ₂ O	0.05	0.04			b.d.	Sm	4.4	3.3	3.5
P_2O_5	0.04	0.05			0.02	Eu	1.4	1.4	1.6
CO_2	0.08	0.02			n.a.	Gd	5.9	7.4	7.8
H ₂ O+	0.77	1.02			n.a.	Tb	1.0	1.7	1.8
H ₂ O-	0.18	0.37			n.a.	Dv	7.1	13	13.6
Total	100.25	99.54	99.59	100.00	100.36	Ho	1.6	2.8	3.2
Mg #	59.8	51.6			56.2	Er	4.9	8.6	9.7
Li (ppm)	9.3	7.9			0.83	_ Tm	0.75	1.3	1.4
Sc	61	76			n.a.	Yb	4.9	8.7	10.2
V	379	380			n.a.	Lu	0.79	1.4	1.5
Cr	373	589			n.a.	Hf	2.4	2.01	1.0
Со	54	61			n.a.	Та	0.36	0.76	< 0.001
Ni	119	91			n.a.	W	0.49	1.1	n.a.
Cu	15	26			n.a.	Pb	3.4	3.0	0.09
Zn	71	51			n.a.	Bi	0.08	0.07	n.a.
Ga	15	10			n.a.	Th	1.8	3.8	0.08
Rb	0.82	1.6			< 0.02	U	0.89	1.6	0.22
Sr	64	34			0.18				

Table 1. Whole-rock major and trace element compositions of the studied eclogite and symplectitic garnet rock

BD110** - garnetite minus 5.3 wt% Ilm+Mt+Spl (see text for explanation)

** total includes 0.07 wt% Cr₂O₃. For the precision and accuracy of the analyses, see Methods section

594

595

Sample	BD110	BD112	BD112	BD112	BD112
Fraction	Bulk Rock	Bulk Rock	Garnet	Clinopyroxene	Clinopyroxene + Pargasite
Rb (ppm)	1.57	0.82	0.38	6.53	4.97
Sr (ppm)	33.96	63.53	21.00	174.38	198.33
⁸⁷ Rb/ ⁸⁶ Sr	0.134	0.0374	0.0524	0.108	0.0725
⁸⁷ Sr/ ⁸⁶ Sr	0.710981	0.708814	0.709339	0.708421	0.708607
2S(M)	0.000015	0.000014	0.000013	0.000017	0.000011
⁸⁷ Sr/ ⁸⁶ Sr (330 Ma)	0.71035	0.70864	0.70909	0.70791	0.70827
Nd (ppm)	4.53	12.24	6.53	19.30	19.44
Sm (ppm)	3.28	4.42	4.16	4.44	4.83
¹⁴⁷ Sm/ ¹⁴⁴ Nd	0.44	0.22	0.39	0.14	0.15
28	0.06	0.03	0.06	0.02	0.02
¹⁴³ Nd/ ¹⁴⁴ Nd	0.513118	0.512705	0.513065	0.512507	□.512548
2S(M)	0.000020	0.000020	0.000015	0.000019	0.000021
¹⁴³ Nd/ ¹⁴⁴ Nd (330 Ma)	0.512172	0.512233	0.512233	0.512207	0.512223
ε _{Nd} (330 Ma)	-0.8	0.4	0.4	-0.1	0.2

Table 2. Sr-Nd isotopic composition of bulk rock samples BD110 and BD112 and rock-forming minerals of BD112

Measured ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd ratios with instrumental error expressed as double standard error of the mean (2S(M)). Rb, Sr, Sm and Nd concentrations determined using ICP-MS, ⁸⁷Rb/⁸⁶Sr and ¹⁴⁷Sm/¹⁴⁴Nd calculated

	gai	rnet		clinopy	roxene	ilmenite	
sample	BD112	BD112		BD112	BD112		BD112
analysis	13 c	12 r		10 c	11 r		1
SiO ₂	40.21	39.93		51.22	50.10		0
TiO ₂	0.40	0.21		0.83	1.00		49.94
Al_2O_3	21.28	21.96		7.62	9.26		0
Cr ₂ O ₃	0.04	0.02		0.00	0.00		0
FeO	16.37	17.88		7.10	6.25		45.37
MnO	0.43	0.49		0.00	0.08		0.34
MgO	9.25	9.16		11.76	11.30		2.06
CaO	12.52	11.01		19.79	20.28		0
Na ₂ O	0.01	0.01		2.36	2.11		0
total	100.51	100.67		100.68	100.38		97.71
oxygen No.	12	12		6	6		3
Si	3.007	2.992		1.873	1.833		
Al ^{IV}	0.000	0.008		0.127	0.167		
Al^{VI}	1.882	1.935		0.201	0.232		
Ti	0.022	0.012		0.023	0.028		0.953
Cr	0.002	0.001		0.000	0.000		0.000
Fe ³⁺	0.076	0.046		0.048	0.029		0.095
Fe ²⁺	0.947	1.074		0.169	0.162		0.867
Mn	0.027	0.031		0.000	0.002		0.007
Mg	1.031	1.023		0.641	0.616		0.078
Ca	1.003	0.884		0.775	0.795		
Na				0.167	0.150		
total	7.999	8.007		4.024	4.015		
Mg#	50.2	47.7		74.7	73.3		
almandine	29.68	34.96	acmite	4.8	2.9	ilm	86.7
andradite	3.91	2.32	jadeite	11.9	12.1	geik	7.8
grossular	30.19	27.28	Ca-Ts	8.2	11.2	pyroph	0.7
pyrope	35.17	34.33	enstatite	32.0	30.8	hem	4.7
spessartine	0.93	1.04	orthoferrosilite	8.4	8.1		
uvarovite	0.12	0.06	wollastonite	33.5	32.8		

Table 3. Composition of minerals in garnet clinopyroxenite BD112

Standard deviations 2σ (wt%) are as follows: 0.20, 0.19 Si (Grt, Cpx), 0.13, 0.12 Al (Grt, Cpx), 0.31, 0.34 Fe (Grt, Cpx), 0.05, 0.09 Mg (Grt, Cpx), 0.19, 0.22 Ca (Grt, Cpx).

608

609

610

				-	Fe - Ti - 0	O spheroid				
	gar	met		Ilm		Mt	Spl			
sample	BD110	BD110		BD110		BD110	BD110			
analysis	22	23		17		16	15			
SiO_2	40.74	40.61				0.19				
TiO ₂	0.18	0.22		51.17		3.43	0.05			
Al_2O_3	22.38	22.04				4.14	60.26			
Cr_2O_3	0.09	0.09		0.04		0.52	0.49			
FeO	15.41	15.19		44.48		82.88	29.64			
MnO	0.51	0.50		1.48		0.27	0.35			
MgO	10.79	10.92		1.79		1.14	11.11			
CaO	11.28	10.86				0.02				
Na ₂ O	0.02									
total	101.40	100.43		98.96		92.59	101.9			
oxygen No.	12	12		3		4	4			
Si	2.996	3.009								
Al^{IV}	0.004	0.000								
Al^{VI}	1.939	1.928					1.884			
Ti	0.010	0.012		0.966		0.047	0.001			
Cr	0.005	0.005		0.001		0.012	0.010			
Fe ³⁺	0.041	0.040		0.066		1.861	0.104			
Fe ²⁺	0.907	0.902		0.868		1.038	0.554			
Mn	0.032	0.031		0.031			0.008			
Mg	1.183	1.206		0.067		0.008	0.439			
Ca	0.889	0.862								
Na										
total	8.005	7.997		1.999		3.000	3.000			
Mg#	55.5	56.2					44.2			
almandine	29.39	28.94	ilm	86.8	Fe₂TiO₄	4.6	0.1			
andradite	2.06	2.02	geik	6.7	FeCr ₂ O ₄	0.6	0.3			
grossular	27.51	26.89	pyroph	3.1	hercynit	1.7	52.1			
pyrope	39.71	40.82	hem	3.3	spinel	0.0	41.3			
spessartine	1.07	1.06			magnetit	92.3	2.9			
uvarovite	0.26	0.27			MnAl ₂ O ₄	0.0	0.7			
					MgFe ₂ O ₄	0.7	2.3			

Table 4. Composition of minerals in symplectitic garnet rock BD110

Standard deviations 2σ (wt%) are as follows: 0.20 Si (Grt), 0.13 Al (Grt), 0.29, 0.70, 1.23 Fe (Grt, Ilm, Mt), 0.06 Mg (Grt), 0.17 Ca (Grt), 0.03, 0.46 Ti (Mt, Ilm), 0.09 Mn (Ilm).

612

613

Mineral	Clinopyroxene	Garnet (core)	Garnet (rim)
Li (ppm)	43	0.70	0.27
Rb	0.027	0.014	0.016
Sr	90	0.67	0.39
Y	3.7	81	62
Zr	72	48	47
Nb	0.13	0.022	0.015
Ba	0.38	0.036	0.026
La	4.65	0.099	0.095
Ce	18	1.5	1.1
Pr	3.5	0.67	0.48
Nd	18	6.5	5.4
Sm	4.0	3.5	3.8
Eu	0.95	1.4	1.6
Gd	2.3	5.6	5.7
Tb	0.25	1.4	1.2
Dy	1.1	12	10
Но	0.15	3.0	2.4
Er	0.32	10	7.6
Tm	0.034	1.6	1.2
Yb	0.19	12	8.7
Lu	0.023	1.8	1.3
Hf	3.5	1.0	0.87
Та	0.094	0.005	0.003
Pb	1.7	0.14	0.13
Th	1.4	0.13	0.14
<u>U</u>	0.54	0.42	0.35

Table 5. Trace element compositions of clinopyroxene and garnet from the eclogite BD112

For the precision and accuracy of the analyses, see Methods section

616

617

618

619

mineral	anorthite	orthopyroxene	clinopyroxene	amphibole	spinel
analysis	20	1	19	3	15
SiO ₂	42.99	51.04	50.51	46.75	
TiO ₂		0.16	0.57	1.51	0.05
Al_2O_3	36.26	3.71	4.09	11.74	60.26
Cr_2O_3					0.49
FeO	0.41	18.43	6.88	10.07	29.64
MnO		0.82	0.33	0.22	0.35
MgO		23.72	14.07	14.55	11.11
CaO	19.92	0.57	23.45	12.79	
Na ₂ O				0.64	
total	99.58	98.45	99.90	98.27	101.9
oxygen No.	8	6	6	23	4
Si	1.997	1.903	1.879	6.604	
Al^{IV}	1.986	0.163	0.179	1.396	1.884
Al^{VI}				0.559	
Ti		0.004	0.016	0.160	0.001
Cr				0.000	0.010
Fe ³⁺	0.016	0.023	0.038	0.468	0.104
Fe ²⁺		0.552	0.176	0.721	0.554
Mn		0.026	0.010	0.026	0.008
Mg	0.003	1.318	0.780	3.064	0.439
Ca	0.991	0.023	0.934	1.936	
Na	0.007	0.000	0.006	0.175	
OH				2.000	
total	5.000	4.011	4.019	17.111	3.000

Table 6. Composition of minerals in symplectite, sample BD110

	ga	arnet		clinopy	roxene	orthopy	orthopyroxene		
analysis	25	26		21	19	20	22	28	
SiO ₂	42.02	41.89		54.55	54.24	57.41	57.35	41.30	
TiO ₂	0.31	0.39		0.50	0.49	0.11	0.11	0.00	
Al_2O_3	22.06	22.00		4.39	4.41	1.91	1.89	0.00	
Cr_2O_3	1.65	1.62		1.01	1.05	0.28	0.24	0.02	
FeO	8.45	9.35		2.49	2.69	6.37	6.55	9.98	
MnO	0.31	0.35		0.06	0.07	0.14	0.19	0.17	
MgO	20.50	19.71		15.03	15.35	33.76	33.65	48.23	
CaO	4.66	4.63		20.36	19.87	0.42	0.36	0.04	
Na ₂ O	0.04	0.04		2.22	2.25	0.02	0.01	0.02	
total	99.99	99.97		100.62	100.41	100.42	100.36	99.74	
oxvgen No.	12	12		6	6	6	6		
Si	2.990	2.995		1.956	1.950	1.969	1.970	1.015	
Al^{IV}	0.010	0.005		0.044	0.050				
Al^{VI}	1.844	1.851		0.141	0.137	0.077	0.077		
Ti	0.017	0.021		0.013	0.013	0.003	0.003		
Cr	0.093	0.091		0.029	0.030	0.008	0.007		
Fe ³⁺	0.041	0.033		0.001	0.014				
Fe ²⁺	0.462	0.526		0.074	0.067	0.183	0.188	0.205	
Mn	0.019	0.021		0.002	0.002	0.004	0.006	0.004	
Mg	2.174	2.101		0.803	0.822			1.766	
Ca	0.355	0.355		0.782	0.765	1.726	1.723	0.001	
Na				0.154	0.157	0.016	0.013	0.001	
total	8.004	7.998		3.998	4.007	3.985	3.985	2.992	
Alm	14 41	16 51	Acm	0.10	1 40				
Adr	2.08	1.66	Jd	14.20	13.68				
Grs	5.17	5.67	Ca-Ts	1.35	1.32	1.80	1.80		
Prp	73.03	70.81	En	40.20	41.10	86.30	86.13		
Sps	0.62	0.71	Fs	3.68	3.34	9.14	9.41		
Ūv	4.69	4.62	Wo	37.60	36.41				
			CaCrAlPx	1.68	2.37	0.75	0.65		

Table 7. Composition of minerals in garnet peridotite BD134

Standard deviations 2σ (wt%) are as follows: 0.19–0.29 Si (Ol, Opx), 0.07–0.13 Al (Cpx, Grt), 0.12–0.23 Fe (Cpx, Ol), 0.11–0.19 Mg (Cpx, Ol), 0.07–0.22 Ca (Grt, Cpx).

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2016-5298

Fig. 1

Pyrope peridotite
Hamry
Holubov

Fig. 2

Fig. 3

Fig. 4

Fig. 6

Fig. 7

