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ABSTRACT 11 

Hundred µm-sized Calcium-Aluminum-Silicates (CAS) inclusions occur in moissanite-12 

4H, -15R and -6H from Turkey. These inclusions commonly consist of tabular exsolution 13 

lamellae of two different minerals. By combined electron microprobe and Raman spectroscopy 14 

analysis, at least eight different, essentially Mg- and Fe-free Ca-Al-silicate or Al-silicate phases 15 

have been discerned. The most common phase is dmisteinbergite, a hexagonal modification of 16 

CaAl2Si2O8, occurring in association with lamellae of Cax(Al,Si)1-xO3 or Ca1-x(Al,Si)2+xO5 17 

compositions. All three phases contain significant amounts of BaO (up to 2 mol% of celsiane 18 

component in dmisteinbergite), SrO, SO2 and Light Rare Earth Elements (LREE). In particular, 19 

Ca1-x(Al,Si)2+xO5 contains up to 2.1wt% of LREE, 3.9wt% of F and significant traces of Cl, while 20 

it is also associated to osbornite (TiN). Pure ghelenite, Ca2Al2SiO7, and three additional 21 

compositions, namely CaAl4-xSixO7, Ca1-x(Al,Si)3+xO6 and Ca3-x(Al,Si)6+xO14 have been found, 22 

either occurring as single grains or forming exsolution lamellae. They also contain significant 23 
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amounts of BaO, SrO, SO2 and LREE. One last intriguing phase is composed in average of 24 

65.9wt % SiO2, 17.4% Al2O3, 3.0% alkalis, 6.0% BaO, 2.0% CaO+MgO, 0.9% ZrO2 and up to 25 

0.5% LREE. Dmisteinbergite and ghelenite show Raman peaks in very-good agreement with 26 

literature data, Cax(Al,Si)1-xO3 shows main Raman modes at 416 and 1009 cm-1, Ca1-x(Al,Si)3+xO6 27 

at 531 and 1579 cm-1 while Ca3-x(Al,Si)6+xO14 has a strong peak at 553 cm-1. CaAl4-xSixO7 shows a 28 

weak Raman pattern, while Ca1-x(Al,Si)2+xO5 has no detectable Raman modes. Since the 29 

association moissanite-CAS is thermodynamically not stable at ambient pressure and moissanite 30 

crystals hosting the CAS phases have δ13C values typical of deep-mantle origin, we interpret the 31 

CAS inclusions as partially retrogressed HP minerals. Striking analogies exist between observed 32 

CAS compositions and experimentally-obtained HP-HT mineralogy. For instance, Cax(Al,Si)1-33 

xO3 contains up to 25 mol% of Al2O3, which is considered as the upper limit of alumina solubility 34 

in Ca-perovskite. The study confirms that CAS phases are an important mantle depository for 35 

large ion lithophile elements (LILE) and LREE. 36 

 Keywords: Moissanite, dmisteinbergite, gehlenite, unknown CAS mineral, Raman 37 

spectra, mineral composition 38 

 39 

INTRODUCTION 40 

 41 

The natural occurrence of moissanite, natural α-silicon carbide, under terrestrial conditions was 42 

vigorously debated until the end of the 1980s’. Milton and Vitaliano (1984) critically but 43 

correctly proposed a series of six independent criteria to discern natural moissanite occurrences 44 

from synthetic SiC contaminations. Extensive field researches in the last three decades fulfilled 45 

most of these criteria. The first one concerned the finding of moissanite as inclusion in other 46 
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minerals. In fact, moissanite crystals were reported included in diamonds and carbonados from 47 

kimberlites and lamproites from many continental cratons in Russia (Yakutia; Marshintsev 1990), 48 

China (Fuxian; Leung 1990), USA (Colorado; McCammon et al. 1997; Otter and Gurney 1986; 49 

1989), South Africa (Monastery Mine; Moore et al. 1986; Moore and Gurney 1989; 50 

Koffiefontein mine, Klein-BenDavid et al. 2007), Central Africa (De et al. 1998), Australia 51 

(Argyle lamproite; Jacques et al. 1989), and Brazil (Sao Luis River placers; Wilding et al. 1991; 52 

Svizero 1995; De et al. 1998; Kaminsky 2012). Moissanite was also reported included in garnets 53 

from a Chinese retrogressive eclogite (Qi et al. 2007). These authors show excellent thin section 54 

microphotographs of a dozen of moissanite crystals included, along with coesite and rutile, in 55 

pyrope. In serpentinite from the Chinese Dabie Mountains, Xu et al. (2008) present thin section 56 

microphotographs of moissanite associated to rutile and baddeleyite. Moreover, moissanite was 57 

also reported as inclusions in olivine from the diamondiferous Karashoho pipe from the Bukantau 58 

mountains from Uzbekistan (Golovko and Kaminsky 2010), and in garnets from felsic granulites 59 

from the Moldanubian Zone of the Bohemian Massif (Perraki and Faryad 2014). These latter 60 

authors also show thin section microphotographs where moissanite is unequivocally contained 61 

within the hosting mineral. Finally, from the Luobusa ophiolite, Tibet, Robinson et al. (2015) and 62 

Liang et al. (2014), reported moissanite in olivine from peridotite, and in Cr-spinel from dunite, 63 

respectively. Euhedral, unbroken crystals, the second criterion, have been reported from Fuxian 64 

(Leung et al. 1990; Leung 1990), Turkey (Di Pierro et al. 2003) and Yakutia (Shiryaev et al. 65 

2011), while abundant silicon and Fe-silicides, systematically reported as inclusions in terrestrial 66 

moissanite and considered to represent former melt-inclusions (Marschintsev 1990; Pankov and 67 

Spetius 1990, Mathez et al. 1995; Bai et al. 1993; 2000; 2003; Di Pierro et al. 2003; Robinson et 68 

al. 2004), is the third criterion to distinguish synthetic from natural moissanite. Besides the 69 

above-mentioned Chinese findings, freshly broken rocks showing abundant enclosed SiC, the 70 
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fourth criterion, have been reported by Bauer et al. (1963), Leung (1988) and Di Pierro et al. 71 

(2003). The fifth criterion proposed by Milton and Vitaliano (1984) is to find moissanite in 72 

eutectic or sutured intergrowth with magmatic minerals. Mathez et al. (1995) reported three 73 

oxygen-bearing inclusions in natural SiC from Yakutia, namely one FeMg-silicate grain directly 74 

associated to moissanite, a sinoite grain, Si2N2O, and a crystal of a Light Rare Earth Element 75 

(LREE) silicate containing 75wt% of LREE2O3, both associated to silicide inclusions in SiC. 76 

Leung et al. (1996) reported rutile grains included in moissanite in kimberlite at Kimberley. 77 

Oleynikov et al. (1987) reported Al-silicate included in moissanite from mafic rocks from Russia. 78 

Robinson et al. (2004) reported gehlenite-like composition from a grain included in moissanite 79 

from Luobusa, while Gao and Liu (2008) found zircon included in moissanite from a carbonatite 80 

xenolith. At the best of our knowledge no association of SiC and oxides has been reported in 81 

synthetic SiC literature. The sixth, arguable, criterion of Milton and Vitaliano (1984) of finding 82 

large (over 1 cm) crystal has not been fulfilled so far. 83 

By analogy with similar findings from kimberlitic (Pankov and Spetius 1990, Leung et al. 84 

1990; Mathez et al. 1995; Shiryaev et al. 2011) and ophiolitic environments (Bai et al. 2000; 85 

Robinson et al. 2004; Trumbull et al. 2009; Yang et al. 2011), a natural origin of the Turkish 86 

moissanite was proposed, mainly based on presence of silicon and Fe-silicide inclusions (Di 87 

Pierro et al. 2003). A subsequent carbon isotope study confirmed that the moissanites have δ13C 88 

values typical of other occurrences from the deep mantle (Trumbull et al. 2009). 89 

Here we report the discovery of eight different LREE- and Ba-bearing Ca-Al-silicates 90 

(CAS) and Al-silicates (AS), found as hundred-µm grain-sized inclusions in moissanite from 91 

Turkey (Di Pierro et al. 2003). We will show that from a thermodynamic point of view the 92 

observed Ca-Al mineral association can neither be stable under ambient pressure conditions of 93 
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the Acheson process nor any other industrial way of producing silicon-carbide (Knippenberg 94 

1963; Gauthier 1978; Jepps and Page 1983; Lindstad 2002). Zhou and Telle (2010), in fact, using 95 

FactSage software package found that undesired Al2O3, CaO, Fe2O3 and MgO impurities from 96 

the Acheson raw materials, can condense as anorthite, gehlenite, krotite, CaAl2O4, wollastonite 97 

and mullite, in areas at temperatures below 1500° C during the run, while in the internal and 98 

hotter part of the Acheson reactor above 1900° C, where α-SiC modifications are stable, 99 

elementary Al, Ca, Fe and Mg are present in the gas form. 100 

 101 

SAMPLE AND METHODS 102 

 103 

 As described in Di Pierro et al. (2003), the here-reported rock is one unique specimen 104 

found at beach by Salvatore Musacchia, around 150 km NW from Izmir, Turkey. The source 105 

outcrop having not been found so far, the sample is thought to be derived from Tertiary volcanic 106 

rocks outcropping in the area (e.g., Innocenti et al., 2005; Aldanmaz et al., 2006). The sample 107 

shows a bulk bluish color and consists of a very fine-grained mixture of brucite, phlogopite, 108 

calcite and magnesite, in which abundant macrocrysts of quartz and moissanite occur. 109 

Besides optical microscopy, electron microprobe analyses (EMPA) have been performed 110 

at the Institute for Geology, University of Bern using a Cameca SX 50 microprobe, wavelength 111 

dispersive spectrometers (WDS), and operating conditions of 15 kV and 20 nA. Natural and 112 

synthetic silicate and oxide standard were used: almandine (Fe), olivine (Mg), orthoclase (K, Si), 113 

anorthite (Ca, Al), eskolaite (Cr), tephroite (Mn), albite (Na), ilmenite (Ti) and bunsenite (Ni). 114 

Detection limits in element wt% are: Si 0.02; Ti 0.03; Zr 0.04; Na 0.03; Al 0.02; Y 0.06; Ce 0.08; 115 

La 0.08; Fe 0.07; Mn 0.08; Mg 0.03; Ca 0.02; Sr 0.07; Ba 0.08; K 0.02; Na 0.03; S 0.03; F 0.13 116 
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and Cl 0.04. Additional analyses were obtained at the University Claude Bernard Lyon-1 and 117 

Ecole Normale Supérieure (ENS) of Lyon (Joint Laboratory of Earth Sciences), operating 118 

conditions of 15 kV and 20 nA.  119 

Raman spectra were recorded with a DILOR XY spectrometer equipped with confocal 120 

optics and a nitrogen-cooled CCD detector, at the ENS-Lyon. A microscope has been used to 121 

focus the excitation laser beam (514 nm lines of a Spectra Physics® Ar+ laser) to a 2 μm spot and 122 

to collect the Raman signal in the backscattered direction. Collecting times were 20 to 60 s at low 123 

power of 2-30 mW, to avoid sample deterioration (not observed during spectra acquisition). 124 

X-ray mapping was performed with a energy dispersive system (EDS) on a Jeol 7600F 125 

Scanning Electron Microscope (SEM) using an acceleration voltage of 15 keV conditions, at 126 

Saint-Gobain Recherche. 127 

 128 

CHARACTERIZATION OF CAS PHASES 129 

 130 

In a polished thin section containing 341 moissanite crystals, CAS inclusions have been 131 

observed in at least 21 grains (~6%). Hosting silicon-carbide crystals are 6H, 15R or 4H 132 

polytypes.  133 

Ca-Al-silicates and Al-silicates are coarse-grained, up to 150 μm in length, tabular or 134 

xenomorphic, or drop-like in shape (Figs. 1–3) and found as inclusions or in oriented contact 135 

with moissanite crystals. 136 

In reflected light and in BSE images, CAS and AS phases show different shades of grey 137 

while they normally show either very-low or no birefringence (Fig. 1). They are mainly included 138 

in moissanite crystals, but some are growing on SiC boundaries (Fig. 1). They occur also 139 

associated to silicon and Fe-Ti-Al-Ca-silicide inclusions in moissanite (Fig. 1). Most CAS 140 
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inclusions present exsolution textures, consisting of 10-20 µm wide and maximally 50 µm long 141 

dark and bright lamellae, intersecting at low angles (Figs. 2-3). Point counting shows that the two 142 

exsolved phases occupy each about 50 vol.% of the Ca-Al inclusions. 143 

Microprobe analyses of CAS crystals have been carried out in fourteen moissanite grains 144 

and representative analyses are compiled in Table 1. Compositions are somewhat variable but at 145 

least eight different compounds can be distinguished. 146 

The most common type of CAS inclusion consist of an association of dark lamellae of 147 

stoichiometric CaAl2Si2O8 (Table 1) and bright lamellae of an unreported, apparently 148 

stoichiometric, Cax(Al,Si)1-xO3 phase (Table 1; Fig. 2). About 1-2 mol% of “celsiane”-component 149 

is found in the CaAl2Si2O8 structure, which is also SrO-, SO2- and LREE-bearing (up to 0.30 150 

wt%; Table 1). CaAl2Si2O8 shows main Raman modes at 120, 225, 330, 442, 508, 807, 897, 917 151 

and 1126 cm-1 (in bold the strongest ones, see Fig. 4a), which corresponds to the pseudo-152 

hexagonal polymorph (Daniel et al. 1995) named dmisteinbergite (Jambor and Vanko 1992; 153 

Sokol et al. 1998). Dmisteinbergite was also observed as the only mineral present in some 154 

inclusions. Cax(Al,Si)1-xO3 can contain up to 40.18 wt% of Al2O3, while it is also BaO-, SrO-, 155 

SO2-, and LREE-bearing (up to 0.33 wt%; Table 1). This phase shows main Raman modes at 156 

175, 416, 1009 and 1136 cm-1 (Fig. 4b). 157 

In a second association, dmisteinbergite occurs associated in a bright and dark lamellae 158 

structure with stoichiometric Ca1-x(Al,Si)2+xO5  (Table 1; Fig. 3). This phase can accommodate up 159 

to 21.84 wt% of Al2O3, while it is also BaO-, SO2-, LREE- (up to 2.05 wt%), F- (up to 3.91 wt%) 160 

and Cl-bearing (Table 1). No detectable Raman modes are active for Ca1-x(Al,Si)2+xO5 phase. It 161 

has also been found in contact to TiN (osbornite; Fig. 3). 162 

Stoichiometric, Mg- and Fe-free, but BaO-, SrO-, and SO2-bearing gehlenite, Ca2Al2SiO7 163 

(Table 1) has been found bordering three moissanite crystals. The studied gehlenite shows Raman 164 
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modes at 182, 221, 248, 310, 632, 658, 798, 914, 982 and 1009 cm-1 (Fig. 4c), which fits 165 

literature data (Sharma et al. 1983; Bouhifd et al. 2002). Gehlenite-like composition has been also 166 

reported from a grain included in moissanite from Luobusa (Robinson et al., 2004). 167 

Four other CAS and AS compositions have been measured with the microprobe, either 168 

occurring as single inclusions or associated to dmisteinbergite. 169 

The first mineral is a silica-bearing Ca-aluminate, with the stoichiometry of CaAl4-xSixO7. 170 

The mineral is also BaO-, SrO-, and SO2-bearing (Table 1) and shows weak Raman modes at 171 

118, 138, 252, 303, 326, 412, 458 and 1125 cm-1. The mineral is compositionally comparable to 172 

grossite, CaAl4O7 (e.g., Boyko and Wisnyi 1958: Weber and Bischoff 1994) but the Raman 173 

spectrum obtained is not in agreement with data reported by Hofmeister et al. (2004). 174 

A second CAS phase has a composition of Ca1-x(Al,Si)3+xO6, close to that of the pyroxene 175 

kushiroite, CaAl2SiO6. This phase also contains BaO, SrO, SO2 and traces of LREE (Table 1). It 176 

shows weak Raman modes at 239, 291-301, 326-347, 546-548, 604, 622-626 and 966 cm-1 on 177 

one grain, and strong Raman modes at 531 and 1579 cm-1 on a second grain (Fig. 4d). 178 

The third unreported CAS phase has a Ca3-x(Al,Si)6+xO14 composition. This phase also 179 

bears BaO, SrO, SO2 and Ce2O3 (Table 1), and shows main Raman modes at 351, 553 and 613 180 

cm-1 (Fig. 4e). 181 

The fourth phase, included as single grain within a moissanite crystal, is an Al-silicate; 182 

SiO2 averages 65.9 wt%, while Al2O3 averages 17.4 wt%; the phase also contains 3 wt% alkalis, 183 

6 wt% BaO, 2 wt% SO2, less than 2 wt% CaO+MgO, almost 0.9 wt% ZrO2 and up to 0.53 wt% 184 

LREE (Table 1). This phase shows main Raman modes at 147, 216, 283, 314, 461, 535, 576, 671, 185 

984, 1136, 1450 and 1524 cm-1 (Fig. 4f), with the strongest peak at 461 cm-1, close to that of 186 

quartz. Oleynikov et al. (1987, Table 2, p.158) reported Mg-free alumina-silicate phase with a 187 

very similar composition, namely (microprobe data) SiO2 78.80-93.17wt%, Al2O3 3.05-188 
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11.26wt%, K2O 0.77-5.15wt%, Na2O 0.48-1.98wt%, CaO 0.19-0.41wt%, FeO 0.21-0.74wt% and 189 

TiO2 0.09-0.35wt%. This hundred µm-sized, tabular phase, along with silicides, was found 190 

included in moissanite from heavy-mineral separates from mafic rocks from Russia. 191 

In summary, the tabular, xenomorphic, or drop-shaped, hundred-µm sized CAS and AS 192 

inclusions in moissanite show exsolution lamellae of the following types: 1) dmisteinbergite 193 

(hexagonal modification of CaAl2Si2O8; n=15), in association with either Cax(Al,Si)1-xO3 (n=8) 194 

or Ca1-x(Al,Si)2+xO5 (n=4), or even dmisteinbergite alone; 2) gehlenite (n=3); (simplified) CaAl4-195 

xSixO7 (n=1); Ca1-x(Al,Si)3+xO6 (n=5); Ca3-x(Al,Si)6+xO14 (n=3) and Al-bearing SiO2 (n=1), mainly 196 

as single minerals, either included in, or rimming moissanite crystals. All CAS phases are 197 

variably enriched in Ba, Sr, S, LREE and Zr (Table 1), and most of them show distinctive Raman 198 

modes and spectra.  199 

MgO and FeO contents are in all analyzed CAS phases at or below the detection limit, 200 

with maximum MgO contents of 0.75 wt% in one analysis of dmisteinbergite, and maximum FeO 201 

content of 0.39 wt% in another dmisteinbergite analysis. This is coherent with literature data 202 

predicting iron-free silicates in equilibrium with SiC (Mathez et al. 1995; Ulmer et al. 1998). 203 

 204 

DISCUSSION 205 

 206 

The data demonstrate that the CaAl-silicates inclusions hosted in moissanite crystals 207 

cannot be synthetic because of the thermodynamic incompatibility between the α-modification of 208 

SiC, above 1900° C, and condensation temperatures of potentially present CAS phase, below 209 

1500° C (Zhou and Telle 2010). Moreover, most of the analyzed CAS phases included in 210 

moissanite are LREE-bearing, in some cases also fluorine-bearing. This is definitely not 211 
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compatible with the Acheson synthesis conditions. One particular phase, containing >66 wt% 212 

SiO2 and showing a close-to-quartz Raman spectrum (Fig. 4f), might have existed in the Acheson 213 

mixture at room conditions, but could not have survived as inclusion within SiC without having 214 

been reduced to carbide or silicide. As already stated, neither CAS nor any kind of oxides is 215 

reported from the synthetic SiC literature. The only phases reported in synthetic material are 216 

silicides, boron-carbides and amorphous carbon precipitates (e.g., More et al. 1986; Backhaus-217 

Ricoult et al. 1993; Munro 1997). 218 

The association of CAS phases as inclusions in moissanite opens new questions about the 219 

P-T conditions of formation. Given that our moissanite occurrence is comparable to occurrences 220 

in kimberlites and other diamond-bearing assemblages (see introduction), it is obvious to claim 221 

pressure as the stabilizer “ingredient” of the observed CAS association. We will therefore review 222 

whether the here-reported CAS phases are ultrahigh-pressure phases. 223 

 224 

The CaO – Al2O3 – SiO2 system 225 

The liquidus surface of the well-studied ternary CaO-Al2O3-SiO2 system (e.g., Osborn and 226 

Muan 1960; Mao et al. 2006) at ambient-pressure is shown in figure 5. The plotted points are 227 

analyses of CAS phases found in this study, in wt%. Coexisting phases are connected with tie 228 

lines. 229 

Gehlenite analyses plot in the stability field of gehlenite and dmisteinbergite in the 230 

stability field of anorthite, while all the other compositions do not fit any of the ambient pressure 231 

stability fields. These latter are therefore either quenched melt inclusion, or they represent high-232 

pressure (HP) phases that may have crystallized from melt inclusions. The former option can be 233 

discarded because Cax(Al,Si)1-xO3, Ca1-x(Al,Si)3+xO6, Ca3-x(Al,Si)6+xO14 and the Al-bearing SiO2 234 
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phases show active Raman modes with sharp peaks (Fig. 4), indicative of crystallinity. However, 235 

not all Raman spectra (Fig. 4) do fit known phases in the CAS system. 236 

Dmisteinbergite was found in pyrometamorphic rocks from the Chelyabinsk coal basin, 237 

Southern Urals (Sokol et al. 1998), in pseudotachylyte from the Gole Larghe Fault, Italian Alps 238 

(Nestola et al. 2010), and very-recently also from the Allende meteorite (Ma et al. 2013). 239 

Dmisteinbergite crystallizes from a rapidly quenched silicate melt at ambient pressure at 1200-240 

1400°C instead of anorthite (Abe et al. 1991; Daniel et al. 1995). It is not clear whether very-low 241 

oxygen-fugacity conditions help stabilizing the meta-stable hexagonal and orthorhombic 242 

CaAl2Si2O8 polymorphs (Sokol et al. 1998, and reference therein). The upper P stability limit of 243 

dmisteinbergite is not reported in the literature.  244 

Anorthite has been used as starting material in numerous HT-HP experiments aimed at 245 

characterizing Ca-Al-silicate stability in the upper mantle (see below). Anorthite remains stable 246 

up to 17.5 GPa and 1500° C (Gautron and Madon 1994), above which it decomposes to an 247 

assemblage of “distorted” anorthite with an hollandite-type HP structure, Al-rich CaSiO3 with a 248 

perovskite-structure and kyanite, according to the following reaction: 249 

CaAl2Si2O8 → Ca1.33Al1.33Si2.33O8 + (Ca0.80,Al0.20)(Si0.80,Al0.20)O3 + Al2SiO5  [1] 250 

Gehlenite is a highly refractory mineral occurring in HT metamorphic peralumineous 251 

rocks that underwent calcium metasomatism and HT contact aureoles in impure limestone. The 252 

nearly pure, Fe- and Mg-free end-member has mainly been reported from carbonaceous 253 

chondrites (e.g., Zhang and Hsu 2009; Simon and Grossman 2011). Experimental work has 254 

shown that the assemblage gehlenite, anorthite and liquid, is stable up to 2.5 GPa and 1400° C, 255 

above which it breaks down to grossular, Ca3Al2Si3O12 (Surkov and Doroshev 1998). 256 

Grossular has been also extensively used as a starting material in HP-HT experiments, 257 

recently reviewed by Kawai and Tsuchiya (2012), to constrain stability fields of Ca- and Al- 258 
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hosting silicates in subducted sediments and continental rocks down to upper mantle and greater 259 

depths. Ahmed-Zaïd and Madon (1995) used a diamond anvil cell (DAC) and transmission 260 

electron microscopy (TEM) to study the breakdown of pure, natural grossular at 40 and 50 GPa 261 

according to the reaction: 262 

Ca3Al2Si3O12 → 2(Ca0.92,Al0.08)(Si0.92,Al0.08)O3 + CaAl2SiO6  [2] 263 

Experiments were conducted at temperatures above 1100° ± 400° K. The 8 mol% Al2O3-bearing 264 

CaSiO3 phase was found to be amorphous, while CaAl2SiO6 was crystalline, but did not show the 265 

Ca-Tschermakite pyroxene structure. At estimated temperatures of 2200° ± 800° K, they reported 266 

the following reaction: 267 

Ca3Al2Si3O12 → 2CaSiO3 (Al-rich) + Al2SiO5 + CaO     [3] 268 

In these experiments, the 9 mol% Al2O3-bearing CaSiO3 phase was amorphous, while Al2SiO5 269 

was a new polymorph with titanite structure, along with crystalline CaO. 270 

Yusa et al. (1995) conducted DAC experiments at 30.2 GPa and 1000-1500° C and 271 

reported the appearance of a new, unquenchable garnet polymorph of grossular composition, but 272 

in-situ X-ray diffraction showed that the phase has a Pbnm orthorhombic symmetry comparable 273 

to MgSiO3 perovskite. 274 

Takafuji et al. (2002) used a multi-anvil press (MAP) coupled to synchrotron µ-XRD and 275 

analytical TEM to study in-situ and quenched reaction products of synthetic grossular at 23-25 276 

GPa and 1000-1600° K. In the quenched experiments, they found different associations of 8-25 277 

mol% of an Al2O3-bearing CaSiO3 phase alternating with lamellae of amorphous material and a 278 

“LiNbO3-type” perovskite-structured phase. The authors noted that the Al solubility in CaSiO3-279 

perovskite decreased with increasing temperature (see also Kurashina et al. 2004; Komabayashi 280 

et al. 2007), and suggested that under unquenched conditions the amorphous phase had cubic 281 

symmetry, while the “LiNbO3-type” was orthorhombic. 282 
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By studying the potential incorporation of uranium and thorium in silicates at mantle P-T 283 

conditions and using glass of grossular composition as starting material, Gréaux et al. (2009; 284 

2011a; 2012) carried out DAC and MAP experiments at 19-26 GPa and 700-2000° K. Run 285 

products were characterized either in-situ by µ-XRD or in quenched experiments by TEM. 286 

Gréaux and co-workers produced Al-rich CaSiO3 perovskite containing 10.6-24.2 wt% Al2O3. In 287 

their runs, excess alumina was accommodated in the CAS-phase CaAl4Si2O11. 288 

CaAl4Si2O11 was first reported by Irifune et al. (1994) while studying the decomposition 289 

of continental sediments at P-T conditions of the Transition Zone. Hirose et al. (1999) found as a 290 

liquidus phase of mid-ocean ridge basalt (MORB) exposed to 26-27 GPa and approximately 291 

2500° K, respectively. A related Na-bearing CAS-phase, (CaxNa1-x)Al3+xSi3-xO11, was also 292 

reported as natural mineral occurring in melt pockets of the heavily shocked Martian meteorite 293 

NWA 856 (Beck et al. 2004). Zhai and Ito (2008) studied the P-T stability of this CAS-phase at 294 

10-23 GPa and 1000-1600° C. CaAl4Si2O11 was found stable above 10 GPa and 1500° C, with 295 

the boundary of its breakdown products grossular + corundum + stishovite showing a negative 296 

dP/dT slope. The upper stability of CaAl4Si2O11 lies at approximately 30 GPa and 2000° K, 297 

where it dissociates to an assemblage of Al-rich CaSiO3 with perovskite structure, corundum and 298 

stishovite (Ishibashi et al. 2008; Gréaux et al. 2011b). Gautron et al. (1999) refined the structure 299 

of their CAS-phase as CaAl4Si2O11 and found it isostructural with BaFe4Ti2O11. 300 

Another important HP-HT CAS-phase is CaAl12Si4O27, experimentally synthetized at 14 301 

GPa and 1550° C by Grey et al. (2000). Grey et al. (2000) considered their CAS-phase 302 

CaAl12Si4O27 to be isostructural with BaFe11Ti3O23. These latter authors suggested that the BaO-303 

Fe2O3-TiO2 ambient pressure system might be an analogue to the CaO-Al2O3-SiO2 high-pressure 304 

one, where the silicon is six-fold coordinated in a rutile-type structure. Given the complexity of 305 

the BaO-Fe2O3-TiO2 system with at least seventeen known phases (Vanderah et al. 1996, and 306 



31/05/2015  Revision 1 

14 
 

reference therein), there is still a high probability to find additional new phases in the HP CaO-307 

Al2O3-SiO2 system (Gautron et al. 1999; Grey et al. 2000). 308 

The Al-poor HP-HT CaSiO3 system is rather well constrained too (Kanzaki et al. 1991; 309 

Wang and Weidner 1994; Gasparik et al. 1994; Swamy and Dubrovinsky 1997; Shim et al. 2000; 310 

Akaogi et al. 2004; Komabayashi et al. 2007). LP-HT wollastonite, CaSiO3, and its HT 311 

polymorph pseudo-wollastonite, Ca3Si3O9, (Seryotkin et al. 2012) undergo displacive phase 312 

transition to Ca3Si3O9 with walstromite-structure at around 3-4 GPa (Joswig et al. 2003; Barkley 313 

et al. 2011; Liu et al. 2012). With increasing pressure, walstromite-structured Ca3Si3O9 314 

dissociates at 9-11 GPa to larnite, ß-Ca2SiO4, and titanite-structured CaSi2O5 (Angel et al. 1996; 315 

Angel 1997; Kudo and Kanzaki 1998; Angel et al. 1999; Stebbins and Poe 1999; Schoenitz et al. 316 

2001; Sueda et al. 2006). Larnite and CaSi2O5 are thought to be important REE-carriers at mantle 317 

depths (Wang et al. 2000; Dörsam et al. 2009). Experimental work also confirmed the 318 

assemblage walstromite-structured Ca3Si3O9, β-larnite + titanite-structured CaSi2O5 in natural 319 

diamonds from Guinea (Joswig et al. 1999; Stachel 2001; Nasdala et al. 2003; Brenker et al. 320 

2005). Above 14-15 GPa and 1600° C, this assemblage further recomposes to more compact 321 

CaSiO3 with perovskite-structure. 322 

At even higher P and by adding alumina to the system, the CaSiO3 perovskite-structured 323 

phase is replaced by a rhombohedral Ca2AlSiO5.5 phase that possesses ordered oxygen defects. It 324 

is stable at 16 GPa and 1973° K (Bläss et al. 2007; Kojitani et al. 2009). 325 

By increasing the Al2O3/CaO ratio, kushiroite, CaAl2SiO6, a Mg- and Fe-bearing 326 

pyroxene containing up to 88 mol% of Ca-tschermakite becomes stable. The Ca-tschermakite 327 

end-member P-T stability field has been constrained experimentally above 1.8 GPa and 1300° C 328 

(Okamura et al. 1974; Ahmed-Zaïd and Madon 1995; Surkov and Doroshev 1998). Kushiroite 329 
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was found in the meteorites ALH 85085 (Kimura et al. 2009), Allende, Murray and other 330 

carbonaceous chondrites (Ma et al. 2009) that did not undergo high-pressure metamorphism.  331 

 332 

The Raman spectra of dmisteinbergite and gehlenite fit those of literature (Nestola et al. 333 

2010; Bouhifd et al. 2002). However, a direct link between X-ray characterized HP-HT CAS 334 

phases and our Raman-constrained data is not yet made. The collected Raman spectra of Ca1-335 

x(Al,Si)3+xO6 (Fig. 4d) do not fit that of kushiroite (Kimura et al. 2009) nor Ca-tschermakite 336 

(Sharma et al. 1983). Similarly, the CaAl4-xSixO7 Raman spectra do not fit grossite, CaAl4O7 337 

(Hofmeister et al. 2004).  338 

Based on their compositions, however, there are striking analogies between the here-339 

reported CaAl-silicates and the above-reported HP-HT phases from the literature. For instance, 340 

the Cax(Al,Si)1-xO3 phase reported here contains up to 25 mol% of Al2O3 (Table 1), which 341 

corresponds to the maximum solubility of alumina within the perovskite-structured CaSiO3 of 342 

Takafuji et al. (2002) or Gréaux et al. (2009; 2011a-b). Ca1-x(Al,Si)3+xO6 compositions reported in 343 

Table 1 are closely stoichiometric Ca-tschermakite. The Ca1-x(Al,Si)2+xO5 phase, which contain up 344 

to 2 wt% REE, ~3% BaO and ~4 wt% F, >1.7 wt% SO2 and 0.34 wt% ZrO2 is comparable to the 345 

data and predictions of Dörsam et al. (2009) suggesting that these phase can be the mantle 346 

depository for large ion lithophile elements (LILE) and LREE. Our Ca3-x(Al,Si)6+xO14 phase, 347 

furthermore, written with its actual stoichiometry derived from its microprobe analysis (Table 1, 348 

#65), namely Ca2,55Al2,60Si3,74O14, might recall closely phase Ba3Fe2Ti4O14 reported by Vanderah 349 

et al. (1996) and refined in the C2/m space group, with which it might be iso-structural. Likewise 350 

the HP phases CaAl12Si4O27 of Grey et al. (2000) is isostructural with BaFe11Ti3O23, and 351 

CaAl4Si2O11 of  Gautron et al. (1999) is isostructural with BaFe4Ti2O11 (see previous discussion).  352 
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The short review provided above considered single, stoichiometric, either quenched or in-353 

situ equilibrated minerals. We recall that the here-reported CAS inclusions in moissanite mainly 354 

consist of two phases, where one phase forms exsolution lamellae in a second. In the literature 355 

(i.e., Takafuji et al. 2002; Yamamoto et al. 2009; Gréaux et al. 2011a-b; Nishi et al. 2011) such a 356 

textural relationship is interpreted as retrograde transformation in association with volumetric 357 

changes occurring during upwelling and decompression (e.g., Alifirova et al. 2012, and reference 358 

therein). 359 

This, in turn, means that the parental minerals which transformed to the here observed 360 

associations (modal abundance in brackets): (a) dmisteinbergite (~50 vol.%) + Cax(Al,Si)1-xO3  361 

(~50 vol.%; Fig. 2), (b) or dmisteinbergite  (~50 vol.%)  + Ca1-x(Al,Si)2+xO5 (~50 vol.%: Fig. 3)  362 

should have been even denser phases, whose stoichiometry might be found within the HP-HT 363 

CaO-Al2O3-SiO2 system.  364 

Further combined structural and Raman studies of the presented phases, as well as 365 

experimental work on hypothetical compositions are strongly needed in order to explore the CaO-366 

Al2O3-SiO2 system at high pressures. 367 

 368 

Hypotheses on moissanite and CAS origins 369 

Several findings of moissanite have been reported, either as genetically linked to sub-370 

surface phenomena, such as impact craters (i.e., Moissan 1905; Hough et al. 1995) or forest fires 371 

(Sameshima and Rodgers 1990), or predicted as a thermodynamically stable phase growing 372 

during lightning strikes (Essene and Fisher 1986). Most moissanite occurrences, however, have 373 

been reported from rocks of deep-mantle provenance, such as kimberlites, lamproites and 374 

peridotites (ophiolites), and their narrow association with diamonds has been unambiguously 375 

proved (Mathez et al. 1995; Trumbull et al. 2009; Shiryaev et al. 2011, and references therein). 376 
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Although authors often speculate about the enigmatic and unsolved origin of natural, 377 

terrestrial silicon-carbide, there is a general strong consensus on two points: 378 

(1) Moissanite stability is restricted to extremely low oxygen fugacity (fO2) conditions, 379 

computed or experimentally determined at five to six log units below the iron-wüstite (IW) 380 

oxygen buffer (Essene and Fisher 1986; Mathez et al. 1995; Ulmer et al. 1998; Dobrizhinetskaya 381 

and Green II 2007; Takahashi et al. 2013; Shiryaev and Gaillard 2014; Schmidt et al, 2014). 382 

(2) Moissanite shows strongly depleted δ13C values, ranging from -18 to -35‰ for 383 

ophiolite suites, from -21 to -31‰ for the Turkish pebble suite (Trumbull et al. 2009), and from -384 

22 to -30‰ for the kimberlitic suites of Marshintsev (1990), Leung et al. (1990) and Mathez et al. 385 

(1995). These values are in strong contrast with δ13C values of peridotitic and the large majority 386 

of eclogitic diamond suites (Shirey et al. 2013), plotting around -5‰ and considered as the 387 

“normal” mantle range. The moissanite values, instead, better fit the δ13C values of diamonds 388 

from ophiolites, ranging -18 to -28‰ (Yang et al., 2014). These diamonds, very-often associated 389 

to moissanite, are interpreted as originated from the Transition Zone (Yang et al., 2014). 390 

Based on these facts, a number of hypotheses for a deep-mantle origin of moissanite and 391 

hence also the CAS and AS inclusions in moissanite they contain is proposed. Mathez et al. 392 

(1995) proposed that moissanite might have an upper mantle origin, where it might be confined 393 

to microenvironments with fO2 conditions lower than IW values. They also proposed that the 394 

origin of moissanite might be genetically linked to subduction of biogenic carbon. This scenario 395 

would be consistent with the C and N isotopes signature, while reducing conditions necessary for 396 

SiC formation would be provided by serpentinization processes (Mathez et al. 1995; Ulmer et al. 397 

1998). 398 
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Moissanite with CAS inclusions could have a pristine origin from primordial Earth and 399 

would be located mostly in the Lower Mantle. This hypothesis was first raised by Mathez et al. 400 

(1995) based on the assumptions that Earth Core formation required lower-than-IW fO2 401 

conditions (see also Hin et al., 2014), that current fO2 conditions of the lower mantle are not well-402 

known, and that H- and L-ordinary chondrites and achondrites show δ13C values of -20 to -32‰. 403 

The pristine moissanite origin hypothesis has been also suggested by Hugh Rollinson (pers. 404 

comm. 2009, in Trumbull et al. 2009), based on analogy of δ13C values of 12 Martian meteorites 405 

of -20 ± 4‰ (Grady et al. 2004) and the average values of terrestrial moissanite. This scenario 406 

was recently supported by Horita and Polyakov (2015) using carbon budget modeling.  407 

More recently, Hazen et al. (2013) proposed that moissanite might have formed during the 408 

giant impact formation of the Earth’s Moon since mantle material was exposed to vacuum of 409 

space, simultaneously to very HT regimes. 410 

Even though we still miss many experimental data to constrain with certainty the high-411 

pressure origin of the moissanite-bearing phases studied here, Ca-Al-silicates found as inclusions 412 

in SiC described in this study are a unique proxy to tentatively explain a possible origin. We 413 

speculated about their HP-HT origin already, but there is another striking feature that 414 

characterizes the association of CAS-phases with SiC. All analyzed phases are unexpectedly Mg-415 

free. Moissanite, silicon metal and iron-silicides previously characterized in the same sample (Di 416 

Pierro et al. 2003) are all also Mg-free. This strongly contrasts with the surrounding brucite-417 

dominated groundmass of the sample, crowded with MgFe-silicates and chromian spinel. This 418 

would suggest that the reduced phases, moissanite, silicon and silicides, and associated Mg-free 419 

CaAl-silicates form a separate paragenesis, possibly not in equilibrium with the surrounding 420 

ultramafic matrix. 421 
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Dmisteinbergeite (Ma et al. 2013), kushiroite (Kimura et al. 2009), and ghelenite (Nomura 422 

and Miyamoto 1998; Krot et al. 2004; Zhang and Hsu 2009; Simon and Grossman 2011), have all 423 

been extensively reported from Ca-Al-inclusions (CAIs) in chondrites, and were interpreted as 424 

pristine minerals witnessing the early stages of formation of the Solar System. Moreover, traces 425 

of µm-sized, cubic silicon-carbide grains of presolar origin have been extensively reported from 426 

carbonaceous chondrites as well (see Daulton et al., 2002, for a review). One could therefore 427 

speculate that during the early accretion steps of our planet, significant traces of refractory 428 

moissanite and CaAl-silicates might have coexisted (Hazen et al. 2008; Marakushev et al. 2013) 429 

and become commonly scattered at different mantle depths. Kimberlite-like volcanism might 430 

have ultimately brought up to surface these double, composite parageneses. This scenario would 431 

fit simultaneously the previously listed constraints such as the-lower-than-IW fO2 conditions, the 432 

strongly depleted δ13C values not fitting the mantle values of peridotitic and most of eclogitic 433 

diamonds but those of pristine meteorites. However, moissanite grains are only known from 434 

unequilibrated primitive chondrites but not from higher grade metamorphic, equilibrated 435 

chondrites (Brearley and Jones 1998). For this reason, it seems thermodynamically impossible 436 

that such tiny moissanite grains of meteoritic origin could have survived in the hot terrestrial 437 

mantle. 438 

The Si isotope distribution between moissanite, silicon metal and silicides, and of course 439 

CAS phases, would be helpful to discern between a common origin or not for this association, 440 

and REE pattern of the CaAl-silicates could be helpful to support such a scenario (Shiryaev et al. 441 

2011). 442 

 443 

IMPLICATIONS 444 
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Hundred-µm sized grains consisting of crystalline Ca-Al-silicates and Al-silicates have been 445 

found as inclusions in moissanite that has lower mantle δ13C isotopic signature (Trumbull et al. 446 

2009; Horita and Polyakov, 2015), providing an additional criterion to distinguish natural 447 

moissanite from synthetic SiC.  448 

A deep-mantle origin is supported by the fact that together with dmisteinbergite and gehlenite, 449 

the unreported phases Cax(Al,Si)1-xO3, Ca1-x(Al,Si)3+xO6, Ca1-x(Al,Si)2+xO5, CaAl4-xSixO7, Ca3-450 

x(Al,Si)6+xO14 and Al-bearing SiO2 are found. The exsolution relationship, moreover, indicates 451 

that the parental minerals might have been even denser phases of the CAS system. Moreover, 452 

there are striking analogies between the CAS inclusions and HP-HT CAS phases reported in the 453 

literature. Whereas significant amounts of Ba, S, LREE, and in some of them also F, Cl, alkalies 454 

and Zr, may have stabilized the CAS-phases to lower pressure conditions, they confirm 455 

predictions of Dörsam et al. (2009) that such minerals could be important sinks for LREE and 456 

LILE in the deep mantle. 457 

Several high-pressure phases of the CaO-Al2O3-SiO2 system are isostructural (e.g., Grey et al. 458 

2000) with one of the seventeen known members of the low-pressure BaO-Fe2O3-TiO2 system 459 

(e.g., Vanderah et al. 1996). Considering that in the studied sample alone five unknown minerals 460 

of the CaO-Al2O3-SiO2 system are present, it seems likely that exploration of the CaO-Al2O3-461 

SiO2 at high pressure will lead to the discovery of additional CAS phases. 462 
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 841 

 842 

Figure captions 843 

FIGURE 1. Thin section photos (reflected light) of Ca-Al-silicates (CAS) in contact or forming 844 

inclusions in moissanite crystals. (a) SiC #78: system of multiple inclusions. CAS are in grey, 845 

metallic Si in white. The grey crystal growing on the left rim is gehlenite (Ghl: analyses 21-24 in 846 

Table 1). The crystal above is Dmisteinbergite (Dms: analysis 17 in Table 1). The CAS crystal to 847 

the right has Ca1-x(Al,Si)3+xO6 composition. (b) SiC #199: the two grey inclusions of CAS are 848 

arrowed. Details of the larger CAS inclusion, along with the EDS X-ray mapping, are presented 849 

in figure 2. (c) SiC #85 containing two grey inclusions of CAS. (d) SiC #244 with a CAS crystal 850 

(arrowed: analyses 2-4, and 10-11 in Table 1) on the surface, and associated with a TiN grain, in 851 

white. Details of this grain, along with the EDS X-ray mapping, are presented in figure 3. 852 

 853 

FIGURE 2. X-Ray mapping of CAS inclusion in SiC #199. Dark lamellae in the BSE image are 854 

dmisteinbergite, while bright areas have a Cax(Al,Si)1-xO3 composition. 855 

 856 

FIGURE 3. X-Ray mapping of CAS inclusion in SiC #244. Dark lamellae in BSE image are 857 

Dmisteinbergite (Table 1, analyses 10 and 11), while bright areas have a Ca1-x(Al,Si)2+xO5 858 

composition (Table 1,  analyses 2 to 4). 859 

 860 
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FIGURE 4. Raman spectra of Ca-Al-rich phases. (a) Spectra of dmisteinbergite inclusions (Dms), 861 

along with that of hosting 4H-SiC. Blue: Pure dmisteinbergite in grain #244; red: 862 

dminsteinbergite in association with SiC-4H in grain #85. (b) Mixed spectra of Cax(Al,Si)1-xO3, 863 

along with that of hosting phase 4H-SiC. Blue: Spectrum obtained in grain #85; red: spectrum 864 

obtained in grain #78. (c) Two pure spectra of gehlenite (Ghl) in grain #78 (both, blue and red). 865 

(d) Spectrum of Ca1-x(Al,Si)3+xO6. (e) Spectra of Ca3-x(Al,Si)6+xO14 phase, along with that of 866 

hosting SiC (grain #27). Green: Spectrum displaying a strong moissanite peak and a weaker Ca3-867 

x(Al,Si)6+xO14 peak; red: spectrum showing strong peak of Ca3-x(Al,Si)6+xO14 and weak 868 

moissanite peak; blue: spectrum showing only weak Ca3-x(Al,Si)6+xO14 peak. (f) Spectra of Al-869 

silica in grain #220. Blue: Spectrum displaying mainly the strongest peaks at 461 cm-1; red: more 870 

detailed spectrum showing additional peaks and one pronounced at 1524 cm-1. 871 

 872 

FIGURE 5. Ternary plot of the CAS analyses, in wt%, highlighting the presence of eight different 873 

compositions. In the background, the liquidus surface of SiO2-CaO-Al2O3 system at ambient 874 

pressure (Osborne and Muan 1960) is shown. The arrows indicate the direction of downward 875 

temperature gradient. In the cement chemistry jargon, “C” stands for CaO, “A” for Al2O3 and “S” 876 

for SiO2 (example: CAS2 = CaO + Al2O3 + 2SiO2 = CaAl2Si2O8 = anorthite). 877 

 878 

TABLE 1. Microprobe analyses of CAS phases.  879 

bd : below detection ; na : not analyzed. 880 
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inclusions in moissanite crystals. (a) SiC #78: system of multiple inclusions. CAS are in grey, 

metallic Si in white. The grey crystal growing on the left rim is gehlenite (Ghl: analyses 21-24 

in Table 1). The crystal above is Dmisteinbergite (Dms: analysis 17 in Table 1). The CAS 

crystal to the right has Ca1-x(Al,Si)3+xO6 composition. (b) SiC #199: the two grey inclusions of 

CAS are arrowed. Details of the larger CAS inclusion, along with the EDS X-ray mapping, 

are presented in figure 2. (c) SiC #85 containing two grey inclusions of CAS. (d) SiC #244 

with a CAS crystal (arrowed: analyses 2-4, and 10-11 in Table 1) on the surface, and 
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associated with a TiN grain, in white. Details of this grain, along with the EDS X-ray 

mapping, are presented in figure 3 



FIGURE 2. X-Ray mapping of CAS inclusion in SiC #199. Dark lamellae in the BSE image 

are dmisteinbergite, while bright areas have a Cax(Al,Si)1-xO3 composition. 
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FIGURE 3. X-Ray mapping of CAS inclusion in SiC #244. Dark lamellae in BSE image are 

Dmisteinbergite (Table 1, analyses 10 and 11), while bright areas have a Ca1-x(Al,Si)2+xO5

composition (Table 1, analyses 2 to 4). 
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FIGURE 5. SiO2-CaO-Al2O3 ternary plot of all the EMPA analyses, in wt%, highlighting the 

presence of eight different compositions. In the background, the CAS system at ambient 

pressure (Osborne and Muan 1960). In the cement chemistry jargon, “C” stands for CaO, “A” 

for Al2O3 and “S” for SiO2 (example: CAS2 = CaO + Al2O3 + 2SiO2 = CaAl2Si2O8 = 

anorthite). 



Table 1 – microprobe analyses of CAS       Revision 1 

Table 1. Microprobe analyses of CAS phases 

# hosting SiC 13 78 273  29 29 78 78 78 250 250 250 250 49 49
# µ-probe #1 #18 #46  #59 #60 #10 #11 #12 #33 #35 #36 #38 #62 #63

 Ca1-x(Al,Si)3+xO6  CaAl4-xSixO7  Cax(Al,Si)1-xO3 
SiO2 18.01 20.87 28.16  5.66 4.72 37.77 34.37 32.59 37.08 37.99 37.21 37.56 36.92 36.25
TiO2 bd bd bd  bd bd bd bd bd bd bd bd bd bd bd
ZrO2 bd bd bd  bd bd bd bd bd bd bd bd bd bd bd
Al2O3 58.73 64.01 56.86  75.06 76.15 39.02 39.62 40.18 35.22 35.52 35.29 35.01 26.11 28.29
Y2O3 0.14 bd bd  bd bd bd bd bd bd bd 0.07 0.07 bd bd
La2O3 bd bd bd  bd bd bd 0.08 bd bd bd bd 0.13 bd bd
Ce2O3 bd bd bd  0.09 bd bd bd bd bd bd bd 0.13 bd bd
FeO bd bd 0.09  bd bd 0.15 bd bd bd bd bd bd bd bd
MnO bd bd bd  bd bd bd bd 0.08 bd bd bd bd bd bd
MgO 0.11 0.22 bd  bd bd 0.13 0.08 0.07 0.14 0.05 0.04 0.09 0.16 0.23
CaO 25.02 15.10 13.49  21.24 21.51 22.52 25.61 27.09 27.16 26.74 24.22 25.91 36.27 35.31
SrO 0.07 bd 0.08  0.16 0.22 0.12 0.08 bd bd 0.11 bd 0.09 0.40 0.45
BaO 0.21 0.14 0.33  0.22 0.06 0.62 1.07 0.93 1.04 0.59 1.25 1.05 0.82 0.23
Na2O bd bd 0.09  bd bd 0.08 0.11 0.14 0.04 0.05 0.04 0.07 0.33 0.34
K2O bd 0.03 0.06  bd bd 0.06 0.12 0.14 0.03 bd bd 0.06 0.03 bd
SO2 0.37 0.17 0.47  0.14 bd 0.34 0.57 0.62 0.34 0.79 0.98 0.37 0.16 bd

      
Total 102.66 100.54 99.65  102.57 102.66 100.81 101.71 101.84 101.05 101.84 99.10 100.54 101.20 101.10

      
Si 0.65 0.73 0.99  0.24 0.20 0.67 0.62 0.59 0.67 0.68 0.69 0.68 0.69 0.68
Ti 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Zr 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Al 2.49 2.64 2.34  3.71 3.76 0.82 0.84 0.86 0.75 0.75 0.77 0.75 0.58 0.62
Y 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
La 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ce 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fe 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mn 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mg 0.01 0.01 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Ca 0.96 0.57 0.51  0.96 0.97 0.43 0.49 0.53 0.53 0.51 0.48 0.50 0.73 0.70
Sr 0.00 0.00 0.00  0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ba 0.00 0.00 0.00  0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00
Na 0.00 0.00 0.01  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
K 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S 0.01 0.01 0.02  0.01 0.00 0.01 0.01 0.01 0.01 0.01 bd 0.01 0.00 0.00
      

∑ cations 4.13 3.96 3.87  4.92 4.93 1.94 1.98 2.00 1.97 1.96 1.96 1.96 2.04 2.03
      

N. Oxygen 6 6 6  7 7 3 3 3 3 3 3 3 3 3

 



Table 1 – microprobe analyses of CAS       Revision 1 

 

# hosting SiC 78 78 78 78 78 78 78 250 272 273 273 175 175 175 175 175 244 244
# µ-probe #5 #8 #21 #22 #23 #24 #17 #37 #39 #44 #45 #51 #52 #54 #55 #56 #10 #11

 Ca2Al2SiO7 - Ghelenite CaAl2Si2O8 - Dmisteinbergite 
SiO2 23.48 22.62 25.43 21.98 24.73 25.06 40.41 40.37 40.52 44.53 43.87 40.69 42.48 44.06 41.61 43.83 44.06 40.59
TiO2 bd bd bd bd bd bd bd bd bd 0.06 0.08 bd bd bd bd bd bd bd
ZrO2 bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd
Al2O3 37.01 38.44 36.84 45.17 38.61 39.10 38.37 36.92 36.01 35.54 34.16 36.16 36.17 34.93 37.49 36.53 36.12 38.57
Y2O3 bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd bd
La2O3 bd 0.09 bd bd bd bd bd bd bd bd bd bd bd bd bd bd 0.10 0.09
Ce2O3 bd bd bd bd bd bd bd bd bd bd bd bd bd 0.14 bd bd 0.19 bd
FeO bd bd bd bd bd bd bd bd bd 0.39 0.29 bd bd 0.27 0.13 0.11 bd 0.08
MnO bd bd bd bd bd bd bd bd bd bd bd bd bd 0.03 0.02 bd bd bd
MgO bd bd bd bd bd bd 0.11 bd 0.06 bd 0.75 0.09 bd 0.08 0.05 bd bd 0.05
CaO 40.09 38.21 38.10 32.91 36.38 36.49 20.20 20.43 21.94 18.07 18.16 20.89 19.47 19.85 20.63 19.62 19.67 19.52
SrO bd 0.17 0.09 0.10 bd 0.08 0.08 0.09 0.09 0.15 0.08 0.06 0.12 bd 0.08 bd bd bd
BaO bd 0.32 0.18 0.33 0.33 0.16 0.79 1.33 1.33 0.54 0.58 0.99 0.79 1.75 1.07 0.82 0.44 0.49
Na2O bd bd 0.06 0.04 bd bd bd bd 0.05 0.19 0.16 0.04 bd bd 0.04 bd 0.08 0.09
K2O bd bd bd bd bd bd 0.07 bd 0.05 0.12 0.11 0.03 bd 0.03 0.03 bd 0.05 0.07
SO2 0.07 0.19 0.21 0.51 0.18 0.11 0.13 0.19 0.10 1.76 1.20 0.69 bd 0.21 0.25 bd 0.03 bd

       
Total 100.65 100.04 100.91 101.04 100.23 101.00 100.16 99.33 100.15 101.35 99.44 99.64 99.03 101.35 101.40 100.91 100.74 99.55

      
Si 1.06 1.03 1.13 0.97 1.10 1.11 1.90 1.92 1.92 2.07 2.07 1.94 2.00 2.05 1.94 2.02 2.03 1.90
Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Zr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Al 1.96 2.06 1.94 2.34 2.03 2.04 2.12 2.07 2.02 1.95 1.90 2.03 2.01 1.92 2.06 1.99 1.97 2.13
Y 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
La 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ce 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00
Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.05 0.01 0.00 0.01 0.00 0.00 0.00 0.00
Ca 1.93 1.86 1.82 1.55 1.74 1.73 1.02 1.04 1.12 0.90 0.92 1.07 0.98 0.99 1.03 0.97 0.97 0.98
Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ba 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.02 0.02 0.01 0.01 0.02 0.01 0.03 0.02 0.01 0.01 0.01
Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01
K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
S 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.08 0.05 0.03 0.00 0.01 0.01 0.00 0.00 0.00
      

∑ cations 4.97 4.96 4.90 4.87 4.89 4.88 5.07 5.08 5.10 5.06 5.05 5.10 5.01 5.03 5.07 5.00 5.00 5.05
       

N. Oxygen 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8

 



Table 1 – microprobe analyses of CAS       Revision 1 

 

# hosting SiC 244 244 244 272 272 272 220 220 49  
# µ-probe #2 #3 #4 #40 #41 #42 #13 #14 #65  

 Ca1-x(Al.Si)2+xO5  Al-bearing SiO2 Ca3-x(Al.Si)6+xO14 
SiO2 56.75 49.40 51.59 61.88 59.03 62.31 65.39 66.39 43.04  
TiO2 bd bd bd bd bd bd bd bd bd  
ZrO2 0.21 0.34 0.34 bd bd bd 0.90 0.86 bd  
Al2O3 15.45 14.97 14.85 20.10 21.84 20.01 17.65 17.22 25.38  
Y2O3 0.52 1.05 0.98 bd 0.11 bd bd bd bd  
La2O3 0.14 0.18 0.36 bd bd bd bd bd bd  
Ce2O3 0.36 0.76 0.72 0.08 0.09 bd 0.37 0.44 0.11  
FeO bd bd bd bd bd bd bd bd bd  
MnO bd 0.11 0.10 bd bd bd bd bd bd  
MgO 0.33 0.45 0.48 0.06 0.10 0.07 0.14 0.17 0.43  
CaO 19.49 23.08 23.07 14.43 16.12 14.08 1.67 1.70 27.37  
SrO bd bd bd 0.07 bd bd bd bd 0.81  
BaO 2.94 2.77 2.94 1.24 1.19 1.19 5.97 6.04 1.00  
Na2O bd 0.09 0.12 0.20 0.19 0.20 0.81 0.71 0.28  
K2O 0.46 0.28 0.24 0.20 0.17 0.20 2.01 2.21 0.06  
SO2 0.88 1.59 1.55 1.72 1.61 1.60 2.42 2.33 0.17  

F 1.60 3.91 3.80 na na na na na na  
Cl 0.04 0.05 bd na na na na na na  

Total 99.17 99.03 101.14 99.98 100.45 99.66 97.33 98.07 98.65  
      

Si 1.75 1.64 1.66 1.77 1.69 1.77 3.15 3.17 3.74  
Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
Zr 0.00 0.01 0.01 0.00 0.00 0.00 0.02 0.02 0.00  
Al 0.56 0.58 0.56 0.68 0.74 0.67 1.00 0.97 2.60  
Y 0.01 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00  
La 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
Ce 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00  
Fe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  
Mg 0.02 0.02 0.02 0.00 0.00 0.00 0.01 0.01 0.06  
Ca 0.64 0.82 0.80 0.44 0.50 0.43 0.09 0.09 2.55  
Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04  
Ba 0.04 0.04 0.04 0.01 0.01 0.01 0.11 0.11 0.03  
Na 0.00 0.01 0.01 0.01 0.01 0.01 0.08 0.07 0.05  
K 0.02 0.01 0.01 0.01 0.01 0.01 0.12 0.13 0.01  
S 0.03 0.05 0.05 0.05 0.04 0.04 0.11 0.10 0.01  
      

∑ cations 3.06 3.20 3.18 2.97 2.95 2.95 4.70 4.69 9.09  
       

N. Oxygen 5 5 5 5 5 5 8 8 14  

bd : below detection ; na : not analyzed 
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