1	Revision 1
2 3 4	Chemical composition and crystal structure of merrillite from the Suizbou meteorite
4	Suizhoù meteorre
5 6 7	XIANDE XIE ^{1, 4} , HEXIONG YANG ² *, XIANGPING GU ³ and ROBERT T. DOWNS ²
8 9 10 11 12 13	¹ Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Guangzhou, 510640, China ² Department of Geosciences, University of Arizona, 1040 E. 4 th Street, Tucson, AZ 85721-0077, USA ³ School of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410083, China ⁴ Guangdong Key Laboratory of Mineral Physics and Materials, Guangzhou, 510640 China
14	*E-mail: hyang@email.arizona.edu
15 16	Abstract
17	Merrillite, ideally Ca ₉ NaMg(PO ₄) ₇ , is an important accessory phosphate mineral in
18	many different groups of meteorites, including Martian meteorites, and a major carrier of
19	rare earth elements (REE) in lunar rocks. By means of electron microprobe analysis,
20	single-crystal X-ray diffraction, and Raman spectroscopy, we present the first structure
21	determination of merrillite with a nearly ideal chemical composition,
22	$Ca_{9.00}Na_{0.98}(Mg_{0.95}Fe_{0.06})_{\Sigma=1.01}(P_{1.00}O_4)_7$, from the Suizhou meteorite, a
23	shock-metamorphosed L6-chondrite. Suizhou merrillite is trigonal with space group $R3c$
24	and unit-cell parameters $a = 10.3444(3)$, $c = 37.0182(11)$ Å, $V = 3430.5(2)$ Å ³ . Its crystal
25	structure, refined to $R_1 = 0.032$, is characterized by a structural unit consisting of a
26	$[(Mg,Fe)(PO_4)_6]^{16-}$ complex anion that forms a "bracelet-and-pinwheel" arrangement.
27	Such structural units are linked by interstitial complexes with a formula of
28	$[Ca_9Na(PO_4)]^{16+}$, which differs from that of $[Ca_9(PO_3[OH])]^{16+}$, $[Ca_9(PO_3F)]^{16+}$,
29	$[Ca_9(Ca_{0.5}\square_{0.5})(PO_4)]^{16+}$, or $[(Ca_{9-x}REE)_x(Na_{1-x}\square_x)(PO_4)]^{16+}$ in terrestrial whitlockite,
30	terrestrial/extraterrestrial bobdownsite, meteoritic Ca-rich merrillite, or lunar REE-rich
31	merrillite, respectively. The Suizhou merrillite is found to transform to tuite at high
32	pressures, pointing to the likelihood of finding REE-bearing tuite on the Moon as a result
33	of shock events on REE-merrillite.
34	

35 **Key words:** Merrillite, whitlockite, Suizhou meteorite, crystal structure, Raman

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

8/12

36 spectroscopy

37	
38	INTRODUCTION
39	Merrillite, ideally Ca ₉ NaMg(PO ₄) ₇ , is a primary accessory mineral in many
40	different groups of meteorites, including Martian meteorites, and a major storage of rare
41	earth elements (REE) in lunar rocks (e.g., Jolliff et al., 1993, McSween et al., 1996; Xie
42	et al., 2002; Terada et al. 2003; Shearer et al. 2011, 2015; Adcock et al. 2014). It is
43	considered to be an important phase in exploring the differences in petrogenesis, mantle
44	evolution, and other geologic processes among Earth, Mars, and other planetary bodies
45	(McSween et al, 1996; Treiman 2003; Shearer et al. 2015). Merrillite was originally
46	proposed by Wherry (1917) in honor of George P. Merrill, who first described this
47	mineral from four meteorites (Merrill 1915). However, owing to the chemical and
48	structural similarities between merrillite and terrestrial whitlockite, ideally
49	$Ca_9Mg(PO_4)_6(PO_3OH)$, there has been a considerable overlap in the use of these two
50	mineral names in the literature. Fuchs (1962) noted the strong resemblances in powder
51	X-ray diffraction data among merrillite, whitlockite, and synthetic β -Ca ₃ (PO ₄) ₂ , leading
52	him to argue that these three phases were actually the same and the term "merrillite"
53	should be abandoned in favor of "whitlockite". Subsequent investigations, nevertheless,
54	demonstrated that the structures of merrillite and synthetic β -Ca ₃ (PO ₄) ₂ are similar, but
55	not identical to that of terrestrial whitlockite, especially in terms of their lack of an
56	essential hydrogen component that is found in whitlockite (Gopal and Calvo 1972; Calvo
57	and Gopal 1975; Prewitt and Rothbard 1975; Dowty 1977). Early work on lunar samples
58	also suggested that "lunar whitlockite" is actually more similar in structure to meteoritic
59	merrillite than to terrestrial whitlockite (Gay et al. 1970; Fuchs 1971). Thus, Dowty
60	(1977) recommended "merrillite" for the H-free form found in meteorites and
61	"whitlockite" for the terrestrial form. However, because of the lack of definitive
62	structural data for merrillite due to its small crystal size in meteorites, the term
63	"whitlockite" continues to occasionally be used synonymously or interchangeably when
64	describing extraterrestrial merrillite (e.g., Ruszala and Kostiner 1980; Jolliff et al. 1993;

McSween et al. 1996; Xie et al. 2001, 2002, 2003, 2013; Terada et al. 2003; Orlova et al.
2009).

67 Another confusion about merrillite arises from its chemical variations. In addition to 68 the ideal chemical formula approved by the Commission on New Minerals, 69 Nomenclature and Classification of the International Mineralogical Association 70 (IMA), there are also two other ideal endmembers commonly found in meteorites and lunar rocks: a Na-free but Ca-excess form, $Ca_9(Ca_{0.5}\square_{0.5})(Mg,Fe^{2+})(PO_4)_7$ and a Na-free 71 but REE-bearing form, $(Ca_{\$}REE) \square (Mg,Fe^{2+})(PO_4)_7$ (e.g., Dowty 1977; Jolliff et al. 1993, 72 73 2006; Shearer et al. 2015). These two phases are isostructural with merrillite, but have no 74 official names approved by IMA. To facilitate the following discussion, we will temporarily follow the proposal by Jolliff et al. (2006), whenever it is necessary, by 75 calling the three forms Ca₉NaMg(PO₄)₇, Ca₉(Ca_{0.5} $\Box_{0.5}$)(Mg,Fe²⁺)(PO₄)₇, and 76 $(Ca_8REE) \square (Mg, Fe^{2+})(PO_4)_7$ as Na-, Ca-, and REE-merrillites, respectively. 77 78 Although there have been a number of structure determinations on synthetic or 79 heat-treated merrillites (e.g., Malozov et al. 1997; Hughes et al. 2008; Adcock et al. 80 2014), the first high-quality single-crystal X-ray structural refinement from a natural 81 sample was only conducted recently by Hughes et al. (2006) using a REE-rich but 82 Na-poor lunar merrillite with the chemistry $(Ca_{8,42}REE_{0,69})_{\Sigma_{9,11}}Na_{0,20}(Mg_{0,72}Fe^{2+}_{0,31}Mn^{2+}_{0,01})_{\Sigma_{1,04}}(P_{0,99}O_{4})_{7}$. Based on this study, 83 Hughes et al. (2006) illustrated the detailed structural differences among lunar merrillite, 84 85 merrillite reported from meteorites, and terrestrial whitlockite. Jolliff et al. (2006) further suggested that significant structural differences between terrestrial whitlockite and lunar 86 (and meteoritic) varieties warrant the use of "merrillite" for the H-free extraterrestrial 87 material, and the systematic enrichment of REE in lunar merrillite warrants the use of 88 89 "REE-merrillite". Yet, there has been no crystal structure report on any, natural or 90 synthetic, Na-rich merrillite to date. This paper presents the first single-crystal X-ray 91 diffraction and Raman spectroscopic study on a natural merrillite with nearly ideal 92 chemistry, $Ca_{9.00}Na_{0.98}(Mg_{0.95}Fe_{0.06})_{\Sigma=1.01}(P_{1.00}O_4)_7$, from the Suizhou meteorite.

The Suizhou meteorite is a shock-metamorphosed L6-chondrite, with an estimated

104 shock stage S5 (Xie et al. 2001, 2011). The meteorite contains shock-produced melt veins 105 ranging from 20 to 200 µm in width with a bulk chondritic composition. Major 106 rock-forming minerals in the host meteorite are olivine, pyroxene, plagioclase, kamacite, 107 taenite, and troilite. Accessory minerals include chromite, ilmenite, merrillite, and apatite. 108 Both olivine and pyroxene display moderate mosaic texture, and most of the 109 plagioclase grains were shock-melted and quenched to maskelynite. The shock veins 110 contain abundant high-pressure minerals (e.g., ringwoodite, majorite, akimotoite, vitrified 111 perovskite, lingunite, tuite, xieite, CF-phase, magnesiowüstite, majorite-pyrope garnet 112 solid solution), for which the shock-produced pressure and temperature of 24 GPa and 1,900~2,000 °C is inferred (Xie et al. 2011). 113

- 105
- 106

EXPERIMENTAL METHODS

119 Merrillite in the Suizhou meteorite makes up about 2 volume % of the chondritic 120 portions (Xie et al. 2002). It occurs as single grains of irregular shape up to 0.5 mm in 121 length (Fig.1). The grains of merrillite are heavily fractured by shock. The merrillite 122 sample used in this study was selected from a polished section of the shock vein-bearing 123 fragment, which was deposited in the RRUFF Project with the deposition number 124 R150063 (http://rruff.info/R150063). Its chemical composition was determined with a 125 Shimadzu 1720 electron microprobe operated at 15 kV and 10 nA with the beam 126 diameter of 1 µm. The standards include albite for Na, MgO for Mg, CaSiO₃ for Ca, 127 Fe_2O_3 for Fe, fluorapatite for P. The average composition (wt. %) of 16 analysis points on 10 different grains is CaO 46.76(49), Na₂O 2.82(17), MgO 3.53(15), FeO 0.40(29), and 128 129 P_2O_5 46.06(43), with a total of 99.62(40), yielding an empirical chemical formula 130 $Ca_{9.00}Na_{0.98}(Mg_{0.95}Fe_{0.06})_{\Sigma=1.01}(P_{1.00}O_4)_7$ on the basis of 28 O atoms, in remarkable 131 agreement with the ideal formula $Ca_9MgNa(PO_4)_7$. 123 The Raman spectrum of merrillite was collected from a randomly oriented 124 crystal on a Thermo Almega microRaman system, using a 532-nm solid-state laser with a thermoelectric cooled CCD detector. The laser is partially polarized with 4 cm⁻¹ 125

126 resolution and a spot size of $1 \mu m$.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5488

123	Single-crystal X-ray diffraction data of merrillite were collected from a nearly
124	equidimensional crystal (0.06 x 0.07 x 0.07 mm) on a Bruker X8 APEX2 CCD X-ray
125	diffractometer equipped with graphite-monochromatized MoK_{α} radiation with frame
126	widths of 0.5° in ω and 30 s counting time per frame. All reflections were indexed on
127	the basis of a hexagonal unit-cell (Table 1). The intensity data were corrected for
128	X-ray absorption using the Bruker program SADABS. The systematic absences of
129	reflections suggest possible space group R3c or R-3c. The crystal structure was solved
130	and refined using SHELX97 (Sheldrick 2008) based on space group R3c, because it
131	produced the better refinement statistics in terms of bond lengths and angles, atomic
132	displacement parameters, and R factors. The positions of all atoms were refined with
133	the full occupancies and anisotropic displacement parameters. The ratio of Mg vs. Fe
134	at the M site was also refined, yielding $Mg = 0.95$ and $Fe = 0.05$, matching that
135	measured from the chemical composition analysis. Final coordinates and
136	displacement parameters of atoms in merrillite are listed in Table 2, and selected
137	bond-distances in Table 3.

- 138
- 139

RESULTS AND DISCUSSION

140 Crystal Structure

141 The crystal structure of merrillite from the Suizhou meteorite is directly comparable with that reported by Hughes et al. (2006) for the REE-rich merrillite from the Apollo 14 142 lunar rocks. It is characterized by a structural unit consisting of a $[(Mg,Fe)(PO_4)_6]^{16-1}$ 143 complex anion that forms a "bracelet-and-pinwheel" arrangement (Moore 1973) (Fig. 2). 144 145 The central octahedral cation and the six coordinating phosphate tetrahedra form a pinwheel, which is characteristic of whitlockite-type compounds. Such structural units 146 are linked by interstitial complexes with a formula of $[Ca_9Na(PO_4)]^{16^+}$. The major 147 structural difference between the Suizhou merrillite and the lunar REE-rich merrillite is 148 that, due to the coupled substitution of $(REE^{3+} + \Box) \leftrightarrow (Ca^{2+} + Na^{+})$, the Na site in lunar 149 150 REE-merrillite is only about 20% occupied, resulting in an average Na-O bond distance (2.71 Å) slightly longer than that (2.625 Å) in the Suizhou merrillite. According to 151

152	Hughes et al. (2006, 2008) and Jolliff et al. (2006), the Na site in the interstitial complex
153	unit plays a critical role in maintaining the charge balance in various merrillites. In
154	Ca-merrillite (Calvo and Gopal 1975; Prewitt and Rothbard 1975; Dowty 1977), this site
155	is occupied by $(0.5Ca + 0.5\Box)$. In other words, it is the configuration and the chemistry of
156	the interstitial complex that defines the differences between whitlockite and merrillite, as
157	well as among Na-, Ca-, and REE-merrilites. The chemical formulas of the interstitial
158	complex units are $[Ca_9(PO_3[OH])]^{16+}$, $[Ca_9(Ca_{0.5}\Box_{0.5})(PO_4)]^{16+}$, and
159	$[(Ca_{9-x}REE)_x(Na_{1-x}\Box_x)(PO_4)]^{16+}$ in whitlockite, Ca-merrillite, and REE-merrillite,
160	respectively.
161	The chief structural difference between merrillite-type and whitlockite-type
162	compounds consists in the configuration of the phosphate tetrahedron in the interstitial
163	complex unit. In whitlockite-type minerals, one of the O ²⁻ anions in the phosphate group
164	is substituted by OH ⁻ in whitlockite or F ⁻ in bobdownsite (the F-analogue of whitlockite)
165	and the PO ₃ (OH) or PO ₃ F group exhibits an inversed configuration with respect to that in
166	merrillite (e.g., Hughes et al. 2008; Tait et al. 2011). Interestingly, the PO ₃ (OH) or PO ₃ F
167	tetrahedron in natural whitlockite or bobdownsite, respectively, is found to be disordered
168	between the two opposite orientations (with the O-H or P-F bond pointing to either $+c$ or
169	-c) and the smaller portion of it apparently possesses the same configuration as that in
170	merrillite.

171

172 Raman spectroscopy

173 There have been several investigations on merrillite with Raman spectroscopy 174 and the detailed assignments of major Raman bands have been proposed (e.g., Chen et al., 1995; Jolliff et al. 1996, 2006; Cooney et al. 1999; Wang et al. 2004; Xie and Chen 175 2008). The Raman spectrum of the Suizhou merrillite is displayed in Figure 3, which 176 177 resembles that of weakly- to moderately-shocked merrillite in the Sixiangkou meteorite (Chen et al., 1995; Xie and Chen 2008), merrillite from Martian meteorites (Wang et al. 178 179 2004), and synthetic REE-poor merrillite (Jolliff et al., 2006). The spectrum of the 180 Suizhou merrillite contains a well-resolved strong doublet at 960 and 976 cm⁻¹, which are

attributable to the v_1 symmetric stretching vibrations of the P-O bonds within the PO₄ 181 tetrahedra. The weak bands between 1018 and 1106 cm⁻¹ correspond to v_3 asymmetric 182 stretching vibrations of the PO₄ groups. The bands ranging from 561 to 524 cm⁻¹ are due 183 to the O-P-O bending modes within the PO₄ tetrahedra and those below 479 cm⁻¹ to the 184 185 lattice mode (Jolliff et al., 1996). The Raman spectrum of the Suizhou merrillite is, however, obviously different 186 187 from that of the REE-rich merrillite, natural or synthetic, which exhibits an asymmetric 188 single peak or a very poorly resolved doublet (Jolliff et al., 2006). The Raman spectrum 189 of terrestrial whitlockite is similar to that of the REE-rich merrillite, but exhibits an additional weak peak at \sim 924 cm⁻¹ (Fig. 3) that is not observed in the spectra of the 190 H-free merrillite. This peak, according to Jolliff et al. (2006), is attributable to the v_1 191 192 symmetric stretching vibrations of the PO₃(OH) group. 193 194 **IMPLICATIONS** 195 The Suizhou merrillite has a rather simple composition with 0.98 Na apfu. This value 196 is much higher than that (0.05-0.20 Na apfu) in lunar merrillites (Hughes et al. 2006; 197 Jolliff et al. 2006), most of which exhibit characteristic enrichment in REE. In 198 comparison, on the one hand, Martian merrillite contains significantly higher Na 199 concentrations (up to 0.86 apfu) and much lower REE concentrations (Shearer et al. 2015) 200 and references therein). On the other hand, meteoritic merrillite has relatively low REE 201 contents, but exists in both Ca-rich and Na-rich varieties. Clearly, the simple chemical 202 formula for merrillite, Ca₉NaMg(PO₄)₇, approved by IMA is insufficient and inadequate 203 to describe various merrillites documented thus far. Accordingly, Jolliff et al. (2006) 204 proposed three merrillite endmember compositions: Ca-merrillite $Ca_{9}(Ca_{0.5}\square_{0.5})Mg(PO_{4})_{7}$, Na-merrillite $Ca_{9}NaMg(PO_{4})_{7}$, and REE-merrillite 205 206 $[Ca_8(REE)] \square Mg(PO_4)_7$. These merrillite endmembers are linked by coupled substitutions: 207 $(0.5Ca_{Na-site} + 0.5\Box_{Na-site}) \Leftrightarrow Na_{Na-site}, Ca_{Ca-site} + 0.5Ca_{Na-site} \Leftrightarrow REE_{Ca-site} + 0.5\Box_{Na-site}, and$ $0.5Ca_{Ca-site} + 0.5Na_{Na-site} \Leftrightarrow 0.5REE_{Ca-site} + 0.5\Box_{Na-site}$. The nomenclature proposed by 208

Jolliff et al. (2006) for various merrillites appears to have its merits, as it reflects their

210	chemical differences and provides considerable conveniences in their descriptions.
211	Tuite, ideally Ca ₃ (PO ₄) ₂ , was first discovered from the Suizhou meteorite as the
212	high-pressure polymorph of merrillite (Xie et al. 2002) or the high-pressure
213	decomposition product of chlorapatite (Xie et al. 2013). It is stable at Earth's mantle
214	temperature-pressure conditions and is proposed to be a potential host for REE and
215	incompatible elements, such as Na, Sr and Ba (Murayama et al. 1986; Xie et al. 2002).
216	Based on chemical analyses of numerous tuite grains from the Suizhou meteorite, Xie et
217	al. (2013) noticed that tuite converted from merrillite retains similar amounts of MgO and
218	Na ₂ O as merrillite, whereas that formed through the decomposition of chlorapatite
219	contains little MgO or Na ₂ O, but significant Cl, suggesting that the Na ₂ O, MgO, and Cl
220	contents in natural tuite may serve as good indicators for distinguishing its precursor
221	phosphate mineral, merrillite or chlorapatite. It thus begs the question whether
222	REE-bearing tuite could be found on the Moon as a consequence of the REE-merrillite
223	transformation under impacts, as only lunar merrillite exhibits high REE concentrations
224	of all extraterrestrial merrillites documented thus far.
225	
226	ACKNOWLEDGEMENTS
227	We gratefully acknowledge the funding support from the National Natural Science
228	Foundation of China (Grant No. 41172046 to X.X.) and the Science Foundation Arizona.
229	
230	REFENRECES CITED
231	Adcock, C.T., Hausrath, E.M., Forster, P.M., Tschauner, O., and Sefein, K. J. (2014) Synthesis
232	and characterization of the Mars-relevant phosphate minerals Fe- and Mg-whitlockite and
233	merrillite and a possible mechanism that maintains charge balance during whitlockite to
234	merrillite transformation. American Mineralogist, 99, 1221–1232.
235	Calvo, C. and Gopal, R. (1975) The crystal structure of whitlockite from the Palermo Quarry.
236	American. Mineralogist, 60, 120-135.
237	chlorapatite in the shocked Siviangkou (16) shondrite. Lunar and Planetary Science, XXVI
230	237-238
240	Cooney T.F. Scott E.R.D. Krot A.N. Sharma S.K. and Yamaguchi A. (1999) Vibrational
241	spectroscopic study of minerals in the Martian meteorite ALH84001. American
242	Mineralogist, 84, 1569-1576.
243	Dowty, E. (1977) Phosphate in Angra dos Reis: structure and composition of the Ca ₃ (PO ₄)

244	minerals. Earth and Planetary Science Letters, 35, 347-351.
245	Fuchs, L.H. (1962) Occurrence of whitlockite in chondritic meteorites. Science, 137, 425-426.
246	Fuchs, L.H. (1971) Orthopyroxene and orthopyroxene-bearing rock fragments rich in K, REE,
247	and P in Apollo 14 soil sample 14163. Earth and Planetary Science Letters, 12, 170-174.
248	Gopal, R. and Calvo, C. (1972) Structure relationship of whitlockite and β-Ca ₃ (PO ₄). Nature
249	Physical Sciences, 237, 30-32.
250	Jolliff, B.L., Haskin, L.A., Colson, R.O., and Wadhwa, M. (1993) Partitioning in REE-
251	saturating minerals: Theory, experiment, and modeling of whitlockite, apatite, and
252	evolution of lunar residual magmas. Geochimica et Cosmochimica Acta, 57, 4069-4094.
253	Jolliff, B.L., Freeman, J.J., Wopenka, B. (1996) Structural comparison lunar, terrestrial, and
254	synthetic whitlockite using laser Raman microprobe spectroscopy. Lunar and Planetary
255	Science, XXII, 613-614 (Abstract).
256	Jolliff, B.L., Hughes, J.M., Freeman, J.J., and Zeigler, R.A. (2006) Crystal chemistry of lunar
257	merrillite and comparison to other meteoritic and planetary suites of whitlockite and merrillite.
258	American Mineralogist, 91, 1583–1595.
259	Malozov, V.A., Presnyakov, I.A., Belik, A.A., Khasarov, S.S., and Lazoryak, B.I. (1997) Crystal
260	structure of calcium, magnesium and alkali metal phosphates Ca ₉ MgM(PO ₄) ₇ (M = Li, Na, K).
261	Krystallografiya, 42, 825-836.
262	McSween, H.Y., Eisenhour, D.D., Taylor, L.A., Wadhwa, M., and Crozaz, G. (1996) QUE94201
263	shergottite: Crystallization of a Martian basaltic magma. Geochimica et Cosmochimica Acta,
264	60, 4563–4569.
265	Merrill, G.P. (1915) On the monticellite-like mineral in meteorites and on oldhamite as a
266	meteoritic constituent. Proceedings of the Natural Academy of Science, 1, 302-308.
267	Moore, P.B. (1973) Bracelets and pinwheels: a topological-geometric approach to the calcium
268	orthosilicates and alkali sulfate structures. American Mineralogist, 58, 32-42.
269	Murayama, J.K., Nakai, S., Kato, M., and Kumazawa, M. (1986) A dense polymorph of
270	Ca ₃ (PO ₄) ₂ : A high pressure phase of apatite decomposition and its geochemical significance.
271	The Physics of the Earth and Planetary Interiors, 44, 293–303.
272	Orlova, A.I., Khainakov, S., Loginova, E., Oleneva, T., Granda, S.G., and Kurazhkovskaya, V.S.
273	(2009) Calcium thorium phosphate (whitlockite-type mineral). Synthesis and structure
274	refinement. Crystallography Reports, 54, 591–597.
275	Prewitt, C.T. and Rothbard, D.R. (1975) Crystal structures of meteoritic and lunar whitlockites
276	(abstract). Lunar and Planetary. Science, VI, 646-648.
277	Ruszala, F., and Kostiner, E. (1980) The hydrothermal synthesis and crystal growth of various
278	whitlockites and a manganese containing graftonite. Journal of Crystal Growth, 48, 473–474.
279	Shearer, C., Papike, J., Burger, P., Sutton, S., McCubbin, F., and Newville, M. (2011) Direct
280	determination of europium valence state by XANES in extraterrestrial merrillite: Implications
281	for REE crystal chemistry and martian magmatism. American Mineralogist, 96, 1418–1421.
282	Shearer, C.K., Burger, P.V., Papike, J.J., McCubbin, F.M., and Bell, A.S. (2015) Crystal chemistry
283	of merrillite from Martian meteorites: Mineralogical recorders of magmatic processes and
284	planetary differentiation. Meteoretics & Planetary Science, 50, 649-673.
285	Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica, A64, 112-122.
286	Tait, K.T., Barkley, M.C., Thompson, R.M., Origlieri, M.J., Evans, S.H., Prewitt, C.T., Yang, H.
287	(2011) Bobdownsite, a new mineral species from Big Fish River, Yukon, Canada, and its

288	structural relationship with whitlockite-type compounds. The Canadian Mineralogist, 49,
209	Toroda K. Manda T. and Sana V. (2002) Ian miarannaha U.Th. Dh. dating af nhaenhatag in
290 291	martian meteorite ALH 84001. Meteoritics & Planetary Science, 38, 1697–1703.
292	Treiman, A.H. (2003) Chemical compositions of martian basalts (shergottites): Some inferences
293	on basalt formation, mantle metasomatism, and differentiation on Mars. Meteoritics and
294	Planetary Science, 38, 1849–1864.
295	Wang, A., Kuebler, K., Jolliff, B., and Haskin, L.A. (2004) Mineralogy of a Martian meteorite as
296	determined by Raman spectroscopy. Journal of Raman Spectroscopy, 35, 504-514.
297	Wherry, E.T. (1917) Merrillite, meteoritic calcium phosphate. American Mineralogist, 2, 119.
298	Xie, X., Chen, M., Wang, D. (2001) Shock-related mineralogical features and P-T history of the
299	Suizhou L6 chondrite. European Journal of Mineralogy, 13, 1177-1190.
300	Xie, X., Minitti, M.E., Chen, M., Mao, H.K., Wang, D., Shu, J., Fei, Y. (2002) Natural
301	high-pressure polymorph of merrillite in the shock vein of the Suizhou meteorite. Geochimica
302	et Cosmochimica Acta, 66, 2439-2444.
303	Xie, X., Minitti, M. E., Chen, M., Wang, D., Mao, H. K., Shu, J., and Fei, Y. W. (2003) Tuite,
304	γ -Ca3(PO4)2, a new phosphate mineral from the Suizhou L6 chondrite. European Journal of
305	Mineralogy, 15, 1001–1005.
306	Xie, X., and Chen. M. (2008) Formation conditions of tuite. Geochimica (Beijing) 37, 297–303.
307	In Chinese with English abstract.
308	Xie, X., Sun, Z., and Chen, M. (2011) The distinct morphological and petrological features of
309	shock melt veins in the Suizhou L6 chondrite. Meteoritics and Planetary Science, 6, 459-469.
310	Xie, X., Zhai, S., Chen, M., and Yang, H. (2013) Tuite, γ-Ca ₃ (PO ₄) ₂ , formed from chlorapatite
311	decomposition in the shock vein of the Suizhou L6 chondrite. Meteoritics and Planetary
312	Science, 48, 1515–1523.
313	
314	
315	
316	
317	
218	
510	
319	
220	
320	
321	

322	
323	
324	
325	
326	
327	List of Tables
328	
329	Table 1. Comparison of crystallographic data for various merrilite
330	
331	Table 2. Coordinates and displacement parameters of atoms in Suizhou merrillite
332 333	Table 3 Selected interatomic distances (A) in Suizhou merrillite
333	Table 5. Selected interatorine distances (A) in Suizhoù merrinne
335	
336	List of Figure Captions
337	
338	Figure 1. Back-scattered electron image showing a large merrillite (Mer) grain in the
339	Suizhou meteorite. Ol = olivine, Pyx = Low Ca-pyroxene, Mas = maskelynite,
340	M = FeNi metal.
341	
342	Figure 2. The arrangement of the bracelet-and-pinwheel structural units in Suizhou
343	merrillite. A $[(Mg,Fe)(PO_4)_6]^{10}$ structure unit is indicated separately at the
344	lower-right corner.
345	Figure 3. Raman spectrum of Suizhou merrillite, along with that of whitlockite for
340 347	comparison.
547	
348	
349	
250	
350	
351	
551	

Figure 2

	Merrillite	REE-Merrillite	Ca-Merrillite
Sample source	Suizhou meteorite	Apollo 14 lunar rocks	Angra dos Reis achondrite
Ideal chemical formula	$Ca_9NaMg(PO_4)_7$	$(Ca_8REE)\Box(Mg,Fe^{2+})(PO_4)_7$	$Ca_9(Ca_{0.5}\Box_{0.5})(Mg,Fe^{2+})(PO_4)_7$
Space group	R3c	R3c	R3c
a(Å)	10.3444(3)	10.2909(10)	10.362(1)
c(Å)	37.0182(11)	36.8746(68)	37.106(5)
$V(Å^3)$	3430.5(2)	3381.9	3450.3
Z	6	6	6
$\rho_{cal}(g/cm^3)$	3.121	3.058	3.104
λ (Å)	0.71073	0.71073	0.7107
μ (mm ⁻¹)	2.776		2.85
2θ range for data collection	≤65.16	≤57	
No. of reflections collected	13704	10015	2401
No. of independent reflections	2781	1103	
No. of reflections with $I > 2\sigma(I)$	2279	922	1972
No. of parameters refined	142	147	
R(int)	0.046	0.051	
Final R_1 , wR_2 factors $[I > 2\sigma(I)]$	0.032, 0.054	0.045, 0.113	0.041
Final R_1 , wR_2 factors (all data)	0.050, 0.059	0.063	
Goodness-of-fit	1.010	1.055	
Reference	This work	Hughes et al. (2006)	Dowty (1977)

Table 1. Comparison of crystallographic data for various merrillite

Table 2. Coordinates and displacement parameters of atoms in merrill	lite
--	------

Atom	x	у	Z.	U _{eq}	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cal	0.26876(7)	0.14531(7)	0.67512(2)	0.0138(1)	0.0157(3)	0.0137(3)	0.0130(3)	-0.0026(3)	-0.0012(2)	0.0083(3)
Ca2	0.27190(7)	0.14172(7)	0.56756(1)	0.0121(1)	0.0127(3)	0.0133(3)	0.0107(2)	-0.0009(2)	-0.0002(2)	0.0069(3)
Ca3	0.38354(7)	0.17613(7)	0.76894(1)	0.0122(1)	0.0131(3)	0.0126(3)	0.0103(2)	-0.0002(3)	-0.0013(2)	0.0060(3)
Na	0	0	0.81343(7)	0.0278(6)	0.0267(9)	0.0267(9)	0.0300(16)	0	0	0.0134(5)
Μ	0	0	-0.00066(5)	0.0108(5)	0.0113(6)	0.0113(6)	0.0100(7)	0	0	0.0056(3)
P1	0	0	0.73382(3)	0.0113(3)	0.0110(4)	0.0110(4)	0.0120(5)	0	0	0.0055(2)
P2	0.31245(9)	0.13793(9)	0.86509(2)	0.0108(2)	0.0107(3)	0.0115(4)	0.0103(3)	0.0007(3)	0.0000(3)	0.0055(3)
P3	0.34393(10)	0.15077(9)	0.96893(2)	0.0104(2)	0.0104(4)	0.0110(4)	0.0096(3)	0.0006(3)	0.0002(3)	0.0051(3)
01	0	0	0.6928(1)	0.0139(8)	0.0148(12)	0.0148(12)	0.0120(17)	0	0	0.0074(6)
O2	-0.0040(3)	0.1384(2)	0.7475(1)	0.0166(4)	0.0165(10)	0.0137(12)	0.0223(10)	-0.0017(10)	0.0044(8)	0.0094(10)
03	0.2576(3)	0.0803(3)	0.8265(1)	0.0156(5)	0.0165(11)	0.0171(11)	0.0111(10)	-0.0006(8)	0.0005(9)	0.0067(10)
O4	0.2421(3)	0.2273(3)	0.8792(1)	0.0164(5)	0.0186(12)	0.0202(12)	0.0142(10)	0.0028(9)	0.0038(9)	0.0125(10)
05	0.2767(2)	-0.0008(2)	0.8880(1)	0.0126(4)	0.0132(10)	0.0119(10)	0.0111(9)	0.0017(8)	0.0009(8)	0.0052(9)
06	0.4851(2)	0.2392(2)	0.8672(1)	0.0124(4)	0.0117(10)	0.0118(11)	0.0126(9)	0.0008(9)	0.0008(8)	0.0051(10)
O7	0.3784(2)	0.1809(2)	0.0092(1)	0.0127(4)	0.0123(10)	0.0157(11)	0.0092(8)	-0.0007(8)	-0.0022(8)	0.0063(9)
08	0.3969(3)	0.0427(2)	0.9565(1)	0.0153(5)	0.0162(11)	0.0182(12)	0.0134(10)	-0.0026(9)	-0.0005(9)	0.0102(10)
09	0.4208(3)	0.2997(3)	0.9488(1)	0.0164(5)	0.0175(11)	0.0143(11)	0.0133(10)	0.0026(9)	0.0003(9)	0.0047(9)
O10	0.1741(2)	0.0767(3)	0.9619(1)	0.0119(4)	0.0101(10)	0.0142 (11)	0.0104(9)	-0.0006(9)	-0.0016(8)	0.0053(10)

Note: (1) The M site is occupied by (0.95 Mg + 0.05 Fe).
(2) The labeling scheme of the atomic sites given by Hughes et al. (2006) is adopted here to facilitate a better comparison with the REE-rich merrillite.

Ca1O8	2.386(2)	Ca2O9	2.313(2)		Ca3O2	2.363(2)	
05	2.413(2)	07	2.361(2)		05	2.373(2)	
O 7	2.472(2)	O2	2.450(3)		O10	2.418(2)	
01	2.497(1)	08	2.467(2)		O10	2.431(2)	
04	2.517(2)	05	2.477(2)		O3	2.436(2)	
O 7	2.531(2)	06	2.479(2)		04	2.443(2)	
03	2.626(2)	06	2.489(2)		08	2.634(2)	
09	2.628(2)	O4	2.833(3)		09	2.689(2)	
Ave.	2.509		2.434			2.473	
NaO3	2.411(2)	×3 MgO6	2.070(2)	$\times 3$			
O2	2.839(3)	×3O10	2.089(2)	$\times 3$			
Ave.	2.625		2.080				
P1O1	1.520(4)	P2O4	1.527(2)		P3O9	1.529(2)	
O2	1.5385(2)	03	1.541(2)		07	1.529(2)	
 O2	1.5385(2)	05	1.545(2)		08	1.541(2)	
 O2	1.539(2)	06	1.556(2)		010) 1.547(2)	
Ave.	1.534		1.542			1.536	

Table 3. Selected interatomic distances (A) in the Suizhou merrillite