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Abstract 16 

Merrillite, ideally Ca9NaMg(PO4)7, is an important accessory phosphate mineral in 17 

many different groups of meteorites, including Martian meteorites, and a major carrier of 18 

rare earth elements (REE) in lunar rocks. By means of electron microprobe analysis, 19 

single-crystal X-ray diffraction, and Raman spectroscopy, we present the first structure 20 

determination of merrillite with a nearly ideal chemical composition, 21 

Ca9.00Na0.98(Mg0.95Fe0.06)Σ=1.01(P1.00O4)7, from the Suizhou meteorite, a 22 

shock-metamorphosed L6-chondrite. Suizhou merrillite is trigonal with space group R3c 23 

and unit-cell parameters a = 10.3444(3), c= 37.0182(11) Å, V = 3430.5(2) Å3. Its crystal 24 

structure, refined to R1 = 0.032, is characterized by a structural unit consisting of a 25 

[(Mg,Fe)(PO4)6]16– complex anion that forms a “bracelet-and-pinwheel” arrangement. 26 

Such structural units are linked by interstitial complexes with a formula of 27 

[Ca9Na(PO4)]16+, which differs from that of [Ca9(PO3[OH])]16+, [Ca9(PO3F)]16+,  28 

[Ca9(Ca0.5 0.5)(PO4)]16+, or [(Ca9-xREE)x(Na1-x x)(PO4)]16+ in terrestrial whitlockite, 29 

terrestrial/extraterrestrial bobdownsite, meteoritic Ca-rich merrillite, or lunar REE-rich 30 

merrillite, respectively. The Suizhou merrillite is found to transform to tuite at high 31 

pressures, pointing to the likelihood of finding REE-bearing tuite on the Moon as a result 32 

of shock events on REE-merrillite.  33 
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INTRODUCTION 38 

     Merrillite, ideally Ca9NaMg(PO4)7, is a primary accessory mineral in many 39 

different groups of meteorites, including Martian meteorites, and a major storage of rare 40 

earth elements (REE) in lunar rocks (e.g., Jolliff et al., 1993, McSween et al., 1996; Xie 41 

et al., 2002; Terada et al. 2003; Shearer et al. 2011, 2015; Adcock et al. 2014). It is 42 

considered to be an important phase in exploring the differences in petrogenesis, mantle 43 

evolution, and other geologic processes among Earth, Mars, and other planetary bodies 44 

(McSween et al, 1996; Treiman 2003; Shearer et al. 2015). Merrillite was originally 45 

proposed by Wherry (1917) in honor of George P. Merrill, who first described this 46 

mineral from four meteorites (Merrill 1915). However, owing to the chemical and 47 

structural similarities between merrillite and terrestrial whitlockite, ideally 48 

Ca9Mg(PO4)6(PO3OH), there has been a considerable overlap in the use of these two 49 

mineral names in the literature. Fuchs (1962) noted the strong resemblances in powder 50 

X-ray diffraction data among merrillite, whitlockite, and synthetic β-Ca3(PO4)2, leading 51 

him to argue that these three phases were actually the same and the term “merrillite” 52 

should be abandoned in favor of “whitlockite”. Subsequent investigations, nevertheless, 53 

demonstrated that the structures of merrillite and synthetic β-Ca3(PO4)2 are similar, but 54 

not identical to that of terrestrial whitlockite, especially in terms of their lack of an 55 

essential hydrogen component that is found in whitlockite (Gopal and Calvo 1972; Calvo 56 

and Gopal 1975; Prewitt and Rothbard 1975; Dowty 1977). Early work on lunar samples 57 

also suggested that “lunar whitlockite” is actually more similar in structure to meteoritic 58 

merrillite than to terrestrial whitlockite (Gay et al. 1970; Fuchs 1971). Thus, Dowty 59 

(1977) recommended “merrillite” for the H-free form found in meteorites and 60 

“whitlockite” for the terrestrial form. However, because of the lack of definitive 61 

structural data for merrillite due to its small crystal size in meteorites, the term 62 

“whitlockite” continues to occasionally be used synonymously or interchangeably when 63 

describing extraterrestrial merrillite (e.g., Ruszala and Kostiner 1980; Jolliff et al. 1993; 64 



 

 

McSween et al. 1996; Xie et al. 2001, 2002, 2003, 2013; Terada et al. 2003; Orlova et al. 65 

2009). 66 

Another confusion about merrillite arises from its chemical variations. In addition to 67 

the ideal chemical formula approved by the Commission on New Minerals, 68 

Nomenclature and Classification of the International Mineralogical Association 69 

(IMA), there are also two other ideal endmembers commonly found in meteorites and 70 

lunar rocks: a Na-free but Ca-excess form, Ca9(Ca0.5 0.5)(Mg,Fe2+)(PO4)7 and a Na-free 71 

but REE-bearing form, (Ca8REE) (Mg,Fe2+)(PO4)7 (e.g., Dowty 1977; Jolliff et al. 1993, 72 

2006; Shearer et al. 2015). These two phases are isostructural with merrillite, but have no 73 

official names approved by IMA. To facilitate the following discussion, we will 74 

temporarily follow the proposal by Jolliff et al. (2006), whenever it is necessary, by 75 

calling the three forms Ca9NaMg(PO4)7, Ca9(Ca0.5 0.5)(Mg,Fe2+)(PO4)7, and 76 

(Ca8REE) (Mg,Fe2+)(PO4)7 as Na-, Ca-, and REE-merrillites, respectively. 77 

Although there have been a number of structure determinations on synthetic or 78 

heat-treated merrillites (e.g., Malozov et al. 1997; Hughes et al. 2008; Adcock et al. 79 

2014), the first high-quality single-crystal X-ray structural refinement from a natural 80 

sample was only conducted recently by Hughes et al. (2006) using a REE-rich but 81 

Na-poor lunar merrillite with the chemistry 82 

(Ca8.42REE0.69)Σ9.11Na0.20(Mg0.72Fe2+
0.31Mn2+

0.01)Σ1.04(P0.99O4)7. Based on this study, 83 

Hughes et al. (2006) illustrated the detailed structural differences among lunar merrillite, 84 

merrillite reported from meteorites, and terrestrial whitlockite. Jolliff et al. (2006) further 85 

suggested that significant structural differences between terrestrial whitlockite and lunar 86 

(and meteoritic) varieties warrant the use of “merrillite” for the H-free extraterrestrial 87 

material, and the systematic enrichment of REE in lunar merrillite warrants the use of 88 

“REE-merrillite”. Yet, there has been no crystal structure report on any, natural or 89 

synthetic, Na-rich merrillite to date. This paper presents the first single-crystal X-ray 90 

diffraction and Raman spectroscopic study on a natural merrillite with nearly ideal 91 

chemistry, Ca9.00Na0.98(Mg0.95Fe0.06)Σ=1.01(P1.00O4)7, from the Suizhou meteorite. 92 

The Suizhou meteorite is a shock-metamorphosed L6-chondrite, with an estimated 93 
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Single-crystal X-ray diffraction data of merrillite were collected from a nearly 123 

equidimensional crystal (0.06 x 0.07 x 0.07 mm) on a Bruker X8 APEX2 CCD X-ray 124 

diffractometer equipped with graphite-monochromatized MoKα radiation with frame 125 

widths of 0.5° in ω and 30 s counting time per frame. All reflections were indexed on 126 

the basis of a hexagonal unit-cell (Table 1). The intensity data were corrected for 127 

X-ray absorption using the Bruker program SADABS. The systematic absences of 128 

reflections suggest possible space group R3c or R-3c. The crystal structure was solved 129 

and refined using SHELX97 (Sheldrick 2008) based on space group R3c, because it 130 

produced the better refinement statistics in terms of bond lengths and angles, atomic 131 

displacement parameters, and R factors. The positions of all atoms were refined with 132 

the full occupancies and anisotropic displacement parameters. The ratio of Mg vs. Fe 133 

at the M site was also refined, yielding Mg = 0.95 and Fe = 0.05, matching that 134 

measured from the chemical composition analysis. Final coordinates and 135 

displacement parameters of atoms in merrillite are listed in Table 2, and selected 136 

bond-distances in Table 3.  137 

 138 

RESULTS AND DISCUSSION 139 

Crystal Structure 140 

The crystal structure of merrillite from the Suizhou meteorite is directly comparable 141 

with that reported by Hughes et al. (2006) for the REE-rich merrillite from the Apollo 14 142 

lunar rocks. It is characterized by a structural unit consisting of a [(Mg,Fe)(PO4)6]16– 143 

complex anion that forms a “bracelet-and-pinwheel” arrangement (Moore 1973) (Fig. 2). 144 

The central octahedral cation and the six coordinating phosphate tetrahedra form a 145 

pinwheel, which is characteristic of whitlockite-type compounds. Such structural units 146 

are linked by interstitial complexes with a formula of [Ca9Na(PO4)]16+. The major 147 

structural difference between the Suizhou merrillite and the lunar REE-rich merrillite is 148 

that, due to the coupled substitution of (REE3+ + ) ↔ (Ca2+ + Na+), the Na site in lunar 149 

REE-merrillite is only about 20% occupied, resulting in an average Na-O bond distance 150 

(2.71 Å) slightly longer than that (2.625 Å) in the Suizhou merrillite. According to 151 



 

 

Hughes et al. (2006, 2008) and Jolliff et al. (2006), the Na site in the interstitial complex 152 

unit plays a critical role in maintaining the charge balance in various merrillites. In 153 

Ca-merrillite (Calvo and Gopal 1975; Prewitt and Rothbard 1975; Dowty 1977), this site 154 

is occupied by (0.5Ca + 0.5 ). In other words, it is the configuration and the chemistry of 155 

the interstitial complex that defines the differences between whitlockite and merrillite, as 156 

well as among Na-, Ca-, and REE-merrilites. The chemical formulas of the interstitial 157 

complex units are [Ca9(PO3[OH])]16+, [Ca9(Ca0.5 0.5)(PO4)]16+, and 158 

[(Ca9-xREE)x(Na1-x x)(PO4)]16+ in whitlockite, Ca-merrillite, and REE-merrillite, 159 

respectively.  160 

The chief structural difference between merrillite-type and whitlockite-type 161 

compounds consists in the configuration of the phosphate tetrahedron in the interstitial 162 

complex unit. In whitlockite-type minerals, one of the O2- anions in the phosphate group 163 

is substituted by OH- in whitlockite or F- in bobdownsite (the F-analogue of whitlockite) 164 

and the PO3(OH) or PO3F group exhibits an inversed configuration with respect to that in 165 

merrillite (e.g., Hughes et al. 2008; Tait et al. 2011). Interestingly, the PO3(OH) or PO3F 166 

tetrahedron in natural whitlockite or bobdownsite, respectively, is found to be disordered 167 

between the two opposite orientations (with the O-H or P-F bond pointing to either +c or 168 

–c) and the smaller portion of it apparently possesses the same configuration as that in 169 

merrillite.  170 

 171 

Raman spectroscopy 172 

There have been several investigations on merrillite with Raman spectroscopy  173 

and the detailed assignments of major Raman bands have been proposed (e.g., Chen et al., 174 

1995; Jolliff et al. 1996, 2006; Cooney et al. 1999; Wang et al. 2004; Xie and Chen 175 

2008). The Raman spectrum of the Suizhou merrillite is displayed in Figure 3, which 176 

resembles that of weakly- to moderately-shocked merrillite in the Sixiangkou meteorite 177 

(Chen et al., 1995; Xie and Chen 2008), merrillite from Martian meteorites (Wang et al. 178 

2004), and synthetic REE-poor merrillite (Jolliff et al., 2006). The spectrum of the 179 

Suizhou merrillite contains a well-resolved strong doublet at 960 and 976 cm-1, which are 180 



 

 

attributable to the ν1 symmetric stretching vibrations of the P-O bonds within the PO4 181 

tetrahedra. The weak bands between 1018 and 1106 cm-1 correspond to ν3 asymmetric 182 

stretching vibrations of the PO4 groups. The bands ranging from 561 to 524 cm-1 are due 183 

to the O-P-O bending modes within the PO4 tetrahedra and those below 479 cm-1 to the 184 

lattice mode (Jolliff et al., 1996). 185 

The Raman spectrum of the Suizhou merrillite is, however, obviously different 186 

from that of the REE-rich merrillite, natural or synthetic, which exhibits an asymmetric 187 

single peak or a very poorly resolved doublet (Jolliff et al., 2006). The Raman spectrum 188 

of terrestrial whitlockite is similar to that of the REE-rich merrillite, but exhibits an 189 

additional weak peak at ~924 cm-1 (Fig. 3) that is not observed in the spectra of the 190 

H-free merrillite. This peak, according to Jolliff et al. (2006), is attributable to the ν1 191 

symmetric stretching vibrations of the PO3(OH) group.  192 

 193 

IMPLICATIONS 194 

The Suizhou merrillite has a rather simple composition with 0.98 Na apfu. This value 195 

is much higher than that (0.05-0.20 Na apfu) in lunar merrillites (Hughes et al. 2006; 196 

Jolliff et al. 2006), most of which exhibit characteristic enrichment in REE. In 197 

comparison, on the one hand, Martian merrillite contains significantly higher Na 198 

concentrations (up to 0.86 apfu) and much lower REE concentrations (Shearer et al. 2015 199 

and references therein). On the other hand, meteoritic merrillite has relatively low REE 200 

contents, but exists in both Ca-rich and Na-rich varieties. Clearly, the simple chemical 201 

formula for merrillite, Ca9NaMg(PO4)7, approved by IMA is insufficient and inadequate 202 

to describe various merrillites documented thus far. Accordingly, Jolliff et al. (2006) 203 

proposed three merrillite endmember compositions: Ca-merrillite 204 

Ca9(Ca0.5 0.5)Mg(PO4)7, Na-merrillite Ca9NaMg(PO4)7, and REE-merrillite 205 

[Ca8(REE)] Mg(PO4)7. These merrillite endmembers are linked by coupled substitutions: 206 

(0.5CaNa-site + 0.5 Na-site) ⇔ NaNa-site, CaCa-site + 0.5CaNa-site ⇔ REECa-site + 0.5 Na-site, and 207 

0.5CaCa-site + 0.5NaNa-site ⇔ 0.5REECa-site + 0.5 Na-site. The nomenclature proposed by 208 

Jolliff et al. (2006) for various merrillites appears to have its merits, as it reflects their 209 



 

 

chemical differences and provides considerable conveniences in their descriptions. 210 

Tuite, ideally Ca3(PO4)2, was first discovered from the Suizhou meteorite as the 211 

high-pressure polymorph of merrillite (Xie et al. 2002) or the high-pressure 212 

decomposition product of chlorapatite (Xie et al. 2013). It is stable at Earth’s mantle 213 

temperature-pressure conditions and is proposed to be a potential host for REE and 214 

incompatible elements, such as Na, Sr and Ba (Murayama et al. 1986; Xie et al. 2002). 215 

Based on chemical analyses of numerous tuite grains from the Suizhou meteorite, Xie et 216 

al. (2013) noticed that tuite converted from merrillite retains similar amounts of MgO and 217 

Na2O as merrillite, whereas that formed through the decomposition of chlorapatite 218 

contains little MgO or Na2O, but significant Cl, suggesting that the Na2O, MgO, and Cl 219 

contents in natural tuite may serve as good indicators for distinguishing its precursor 220 

phosphate mineral, merrillite or chlorapatite. It thus begs the question whether 221 

REE-bearing tuite could be found on the Moon as a consequence of the REE-merrillite 222 

transformation under impacts, as only lunar merrillite exhibits high REE concentrations 223 

of all extraterrestrial merrillites documented thus far.     224 
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Figure 1. Back-scattered electron image showing a large merrillite (Mer) grain in the 338 

Suizhou meteorite. Ol = olivine, Pyx = Low Ca-pyroxene, Mas = maskelynite, 339 
M = FeNi metal. 340 

 341 
Figure 2. The arrangement of the bracelet-and-pinwheel structural units in Suizhou 342 

merrillite. A [(Mg,Fe)(PO4)6]16- structure unit is indicated separately at the 343 
lower-right corner.  344 

Figure 3. Raman spectrum of Suizhou merrillite, along with that of whitlockite for 345 
comparison. 346 
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Table 1. Comparison of crystallographic data for various merrillite 
======================================================================================= 
 Merrillite REE-Merrillite Ca-Merrillite        
======================================================================================= 
Sample source Suizhou meteorite Apollo 14 lunar rocks Angra dos Reis achondrite 
Ideal chemical formula            Ca9NaMg(PO4)7    (Ca8REE) (Mg,Fe2+)(PO4)7   Ca9(Ca0.5 0.5)(Mg,Fe2+)(PO4)7 
Space group R3c                R3c          R3c   
a(Å) 10.3444(3) 10.2909(10) 10.362(1)            
c(Å) 37.0182(11) 36.8746(68)             37.106(5) 
V(Å3)  3430.5(2) 3381.9              3450.3 
Z                                     6                              6                    6 
ρcal(g/cm3) 3.121 3.058 3.104 
λ (Å)   0.71073 0.71073 0.7107 
μ (mm-1) 2.776  2.85 
2θ range for data collection ≤65.16 ≤57  
No. of reflections collected 13704 10015 2401 
No. of independent reflections 2781 1103  
No. of reflections with I > 2σ(I) 2279 922 1972 
No. of parameters refined 142 147  
R(int) 0.046 0.051  
Final R1, wR2 factors [I > 2σ(I)] 0.032, 0.054 0.045, 0.113 0.041 
Final R1, wR2 factors (all data) 0.050, 0.059 0.063  
Goodness-of-fit 1.010 1.055  
 
Reference                    This work Hughes et al. (2006) Dowty (1977)  
======================================================================================= 
 



Table 2. Coordinates and displacement parameters of atoms in merrillite 
==================================================================================================== 
Atom           x                    y                     z                 Ueq                U11                U22                U33                U23                U13                U12        
==================================================================================================== 
Ca1   0.26876(7)    0.14531(7)    0.67512(2)   0.0138(1)  0.0157(3)   0.0137(3)   0.0130(3)   -0.0026(3)   -0.0012(2)  0.0083(3) 
Ca2   0.27190(7)    0.14172(7)    0.56756(1)   0.0121(1)  0.0127(3)   0.0133(3)   0.0107(2)   -0.0009(2)   -0.0002(2)  0.0069(3) 
Ca3   0.38354(7)    0.17613(7)    0.76894(1)   0.0122(1)  0.0131(3)   0.0126(3)   0.0103(2)   -0.0002(3)   -0.0013(2)  0.0060(3) 
Na    0    0    0.81343(7)   0.0278(6)  0.0267(9)   0.0267(9)   0.0300(16)  0    0   0.0134(5) 
M    0    0    -0.00066(5)  0.0108(5)  0.0113(6)   0.0113(6)   0.0100(7)   0    0   0.0056(3) 
P1    0    0    0.73382(3)   0.0113(3)  0.0110(4)   0.0110(4)   0.0120(5)    0   0   0.0055(2) 
P2    0.31245(9)    0.13793(9)  0.86509(2)   0.0108(2)  0.0107(3)   0.0115(4)   0.0103(3)   0.0007(3)    0.0000(3)   0.0055(3) 
P3    0.34393(10)  0.15077(9)    0.96893(2)   0.0104(2)  0.0104(4)   0.0110(4)   0.0096(3)   0.0006(3)    0.0002(3)   0.0051(3) 
O1    0    0   0.6928(1)  0.0139(8)  0.0148(12)  0.0148(12)  0.0120(17)  0    0   0.0074(6) 
O2    -0.0040(3)  0.1384(2)  0.7475(1)   0.0166(4)  0.0165(10)  0.0137(12)  0.0223(10)  -0.0017(10)  0.0044(8)   0.0094(10) 
O3    0.2576(3)  0.0803(3)  0.8265(1)   0.0156(5)  0.0165(11)  0.0171(11)  0.0111(10)  -0.0006(8)   0.0005(9)   0.0067(10) 
O4    0.2421(3)  0.2273(3)  0.8792(1)   0.0164(5)  0.0186(12)  0.0202(12)  0.0142(10)  0.0028(9)    0.0038(9)   0.0125(10) 
O5    0.2767(2) -0.0008(2)  0.8880(1)   0.0126(4)  0.0132(10)  0.0119(10)  0.0111(9)   0.0017(8)    0.0009(8)   0.0052(9) 
O6    0.4851(2) 0.2392(2)  0.8672(1)   0.0124(4)  0.0117(10)  0.0118(11)  0.0126(9)   0.0008(9)    0.0008(8)   0.0051(10) 
O7    0.3784(2)  0.1809(2)  0.0092(1)   0.0127(4)  0.0123(10)  0.0157(11)  0.0092(8)   -0.0007(8)   -0.0022(8)  0.0063(9) 
O8    0.3969(3)  0.0427(2)  0.9565(1)   0.0153(5)  0.0162(11)  0.0182(12)  0.0134(10)  -0.0026(9)  -0.0005(9)  0.0102(10) 
O9    0.4208(3)  0.2997(3)  0.9488(1)   0.0164(5)  0.0175(11)  0.0143(11)  0.0133(10)  0.0026(9)    0.0003(9)   0.0047(9) 
O10   0.1741(2)  0.0767(3)  0.9619(1)   0.0119(4)  0.0101(10)  0.0142 (11)  0.0104(9)   -0.0006(9)   -0.0016(8)  0.0053(10) 
===================================================================================================== 
Note: (1) The M site is occupied by (0.95 Mg + 0.05 Fe). 
          (2) The labeling scheme of the atomic sites given by Hughes et al. (2006) is adopted here to facilitate a better comparison  
                with the REE-rich merrillite. 



Table 3. Selected interatomic distances (A) in the Suizhou merrillite 
==================================================================== 
Ca1--O8    2.386(2)          Ca2--O9    2.313(2)                Ca3--O2     2.363(2)    
      --O5    2.413(2)                        --O7   2.361(2)                --O5    2.373(2)    
      --O7    2.472(2)              --O2   2.450(3)                --O10  2.418(2)   
      --O1    2.497(1)              --O8   2.467(2)                --O10  2.431(2)   
      --O4    2.517(2)              --O5   2.477(2)                --O3    2.436(2)   
      --O7    2.531(2)                        --O6   2.479(2)                --O4    2.443(2)    
      --O3    2.626(2)                        --O6   2.489(2)                --O8    2.634(2)   
      --O9    2.628(2)              --O4   2.833(3)                --O9    2.689(2)   
Ave.          2.509                                       2.434                                        2.473 
 
Na--O3    2.411(2)   ×3             Mg--O6    2.070(2)   ×3 
     --O2    2.839(3)   ×3                  --O10  2.089(2)   ×3   
Ave.         2.625                                         2.080 
 
 
P1--O1    1.520(4)                      P2--O4    1.527(2)                    P3--O9    1.529(2)   
    --O2    1.5385(2)              --O3    1.541(2)                --O7    1.529(2)   
    --O2    1.5385(2)              --O5    1.545(2)                        --O8    1.541(2)   
    --O2    1.539(2)                --O6    1.556(2)                --O10  1.547(2) 
Ave.        1.534                                           1.542                                        1.536 
===================================================================== 
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