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Abstract 19 

Structural and energetic properties of the grossular-katoite solid solution are studied with a 20 

full ab initio quantum chemical approach. An all-electron basis set and the hybrid B3LYP 21 

functional are used. Calculations are performed within the primitive cell of cubic garnets. The 22 

hydrogarnet substitution, SiOସ ՞  HସOସ , yields 136 symmetry-independent configurations 23 

ranging from triclinic to cubic symmetry. All of them have been structurally optimized, the 24 

relaxed geometries being characterized by pseudo-cubic conventional cells. At the present 25 

level of approximation, the most stable configurations constitute by far the largest 26 

contributions to the system properties. Considering only the most stable configurations, 27 

average geometrical features of the actual solid solution are closely approximated. The excess 28 

volume displays a highly non-ideal behavior that is favorably compared with carefully 29 

analyzed and selected experimental data. The excess enthalpy deviates from the regular 30 

model; it draws an asymmetric function of composition with two minima that can be 31 

associated to structures or compositions observed in nature. Geometrical variations and 32 

distribution of the tetrahedra are analyzed. Calculations provide independent support to the 33 

use of a split-atom model for experimental refinements on these compounds. The asymmetry 34 

of the enthalpy of mixing can be associated with two distinct distribution patterns of the 35 

tetrahedra. Hydrogen interactions also contribute to the asymmetry of the excess enthalpy, as 36 

it turns out by comparison between compositions close to fully hydrated katoite and those 37 

close to grossular. Hydrogen interactions in Si-free katoite are found to be weak as suggested 38 

by dramatic changes in the H  environment associated with the introduction of SiOସ 39 

tetrahedra.  40 

Keywords: hydrogarnet, hydrogrossular, grossular, hibschite, katoite, solid solution, ab initio, 41 

Crystal code 42 
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INTRODUCTION 43 

Silicate garnets are nominally anhydrous minerals (NAMs) with stoichiometry 44 XଷYଶሺSiOସሻଷ , which, nonetheless, have been found to commonly contain hydrous 45 

components. Garnets characterized by a hydrous component fall under the general heading of 46 

hydrogarnets. They are crystalline solid solutions of general formula XଷYଶሺSiOସሻଷି௫ሺHସOସሻ௫, 47 

whose composition varies through an isomorphous series from ݔ ൌ 0 to ݔ ൌ 3.  48 

The main mechanism for hydrogen incorporation in silicate structures is through 49 

hydrogarnet substitution: Siସା ՞ 4Hା. That is, protons are arranged in connection with four 50 

oxygen anions surrounding tetrahedral Si-free vacancies. The replacement of H for Si atoms 51 

was originally observed by Cohen-Addad et al. (1963) via nuclear magnetic resonance and 52 

neutron diffraction experiments on the fully hydrated synthetic sample CaଷAlଶሺHସOସሻଷ. Af-53 

terwards, numerous experimental studies on other hydrogarnets have confirmed this process 54 

(Aines and Rossman 1984, Cohen-Addad et al. 1967, Foreman Jr. 1968, Lager et al. 1989).  55 

The incorporation of hydrous components into NAMs significantly affects their physical 56 

and chemical properties, thus modifying their technological applicability. Examples are the 57 

hydrolytic weakening of silicate materials for glass technologies (Griggs 1967), and the 58 

dielectric loss increase of ceramic substrates used as electronic packaging materials (Shannon 59 

et al. 1992). Changes in elasticity are also relevant to the properties of the Earth’s mantle 60 

where they can hold relatively large amounts of “water” (Knittle et al. 1992, Mackwell et al. 61 

1985, O’Neill et al. 1993).  62 

Apparently, the hydration capability of garnets is directly related to the Ca content in the 63 

dodecahedral sites (X). Indeed, natural occurrences show ugrandites, CaଷሺAl, Fe, CrሻଶሺSiOସሻଷ, 64 

featuring “water” contents up to about 20 wt% (Passaglia and Rinaldi 1984), while pyral-65 

spites, ሺMg, Fe, MnሻଷAlଶሺSiOସሻଷ , stand between 0.01 and 0.25 wt% (Aines and Rossman 66 

1984). The analysis of synthetic samples confirms such differences (Ackermann et al. 1983, 67 

Cohen-Addad et al. 1963, Geiger et al. 1991). The key to interpretation was given by 68 

Sacerdoti and Passaglia (1985) while analyzing the structural response of grossular, 69 CaଷAlଶሺSiOସሻଷ , to hydrogarnet substitution: a progressive shortening of the octahedral-70 

dodecahedral shared edge and a corresponding lengthening of the octahedral unshared edge 71 

was observed. This suggested a potential for substantial hydration only in those garnets 72 

whose anhydrous form displays a shared octahedral edge longer than the unshared one. By 73 

comparison between structures of various silicate garnet end-members previously 74 



 4

characterized (Novak and Gibbs 1971), they concluded that calcic garnets, i.e., garnets with 75 

ionic radius ݎሺXሻ ൐ 1 Å, are the only ones that comply with such a requirement. Lager et al. 76 

(1989) later corroborated Sacerdoti and Passaglia’s analysis with the results of distance-least-77 

squares simulations on the effect of the hydrogarnet substitution on grossular, andradite and 78 

pyrope structures. They reasoned on a presumable effect of repulsion below some lower limit 79 

distance between the oxygen atoms involved in the shared edge: the minimum O െ O distance 80 

would be approached further along the shared edge of the anhydrous structure, and this may 81 

explain the high-water content of Ca-bearing garnets relative to other garnets. In addition, a 82 

remark is made to the fact that the eight-coordinated site widens as a consequence of the 83 

hydrogarnet substitution. According to Zabinski (1966), this effect should be energetically 84 

promoted by an X cation as large as Caଶା , but rather hindered by smaller X cations, e.g., 85 Mgଶାin pyrope.  86 

A calcic hydrogarnet that occurs frequently in the literature is hydrogrossular, 87 CaଷAlଶሺSiOସሻଷି௫ሺHସOସሻ௫, whose first reports date back to the early 1900s. In 1906, Cornu 88 

introduced the name hibschite for a new silicate mineral found at Marienberg, Bohemia, 89 

which, more than 30 years later, turned out to be hydrogrossular of ideal composition 90 CaଷAlଶሺSiOସሻଶHସOସ (Belyankin and Petrov 1941). The same conclusion was drawn by Pabst 91 

(1937) with regard to plazolite, a mineral named by Foshag (1920) in the aftermath of its first 92 

occurrence at Crestmore, California. In fact, hibschite and plazolite coincide, as was 93 

demonstrated by Pabst himself shortly after (1942). Today, the name plazolite has been 94 

abandoned; the official nomenclature adopts the name hibschite for identifying terms of the 95 

hydrogrossular series with 0 ൏ ݔ ൑ 1.5. Hydrogrossular with 1.5 ൏ ݔ ൑ 3 is called katoite, 96 

by the name assigned to the first natural sample of water-rich member of the series, 97 CaଷAlଶሺSiOସሻሺHସOସሻଶ, found in Pietramassa, Italy (Passaglia and Rinaldi 1984). Figure 1 98 

reports a graphical representation of the structure of hydrogrossular as a function of the 99 

substitutional fraction ݔ of H for Si atoms.  100 

Crystal chemistry and physical properties of hydrogrossular have been widely investigated 101 

due to important scientific and technological implications. As a typical product of cement 102 

hydration, katoite is of special concern to cement and concrete research for materials 103 

engineering. Fully-hydrated katoite, CaଷAlଶሺHସOସሻଷ , is a recognized constituent of set 104 

Portland cement, and its composition often includes Si in mature cement pastes (Taylor and 105 

Newbury 1984). It is known that silica from various sources in cement can react with calcium 106 

and alumina ionic species to precipitate calcium aluminosilicate hydrates (Jappy and Glasser 107 
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1991). These are thermodynamically stable phases (Ackermann et al. 1983, Atkins et al. 108 

1992, Bennett et al. 1992, Dilnesa et al. 2014) affecting rheology, solubility and global 109 

endurance of the material. For example, Flint and Wells (1941) found that siliceous katoite 110 

displays far greater resistance to the attack by sulfate solutions than the Si-free isomorphous 111 

form. This is relevant not only for civil construction purposes, but also in view of the em-112 

ployment of cement-based materials for the immobilization and containment of toxic wastes, 113 

such as radioactive waste repositories (Atkins and Glasser 1992). Hydrogrossular is a poten-114 

tial host phase for various toxic metals and metalloids, like CrሺVIሻ. Evidence for chromate 115 

substitution in katoite, i.e., substitution of hydroxyl ሾHସOସሿସି tetrahedra by chromate 116 ሾCrOସሿଶିtetrahedra, has been provided (Hillier et al. 2007).  117 

In Earth science, hydrogrossular is regarded as a likely “water” carrier in eclogite regions 118 

of the upper mantle. Spectroscopic studies performed on hibschite, up to 25 GPa pressure, 119 

indicate that it is stable throughout the whole pressure range of the upper mantle (Knittle et 120 

al. 1992). Katoite, instead, undergoes phase transitions under increasing pressure. Single-121 

crystal X-ray diffraction (XRD) experiments by Lager et al. (2002) suggested a possible 122 

phase transition from 3ܽܫത݀  to 4ܫത3݀  symmetry, at about 5 GPa. A recent theoretical 123 

investigation by Erba et al. (2015) supported the thermodynamical instability of the 3ܽܫത݀ 124 

phase above 5 GPa, but found the 4ܫത3݀ phase to be stable only above 15 GPa; in the 5 െ 15 125 

GPa range both phases were described as unstable. O’Neill et al. (1993) investigated the 126 

elastic properties of natural hibschite hydrated to 42% and observed a compressibility about 127 40% higher than that of anhydrous grossular. An explanation was proposed, relying on the 128 

larger volume of the [HସOସ]4- tetrahedron compared with the smaller, more rigid [SiOସ]4- 129 

tetrahedron. By comparing isothermal densities calculated at 300  K for two chemically 130 

equivalent assemblages, one containing hibschite and the other containing grossular plus HଶO 131 

as separated phases, they found the former to be denser (and therefore thermodynamically 132 

more stable) within the pressure range of the Earth’s upper mantle.  133 

Natural occurrences of hydrogrossular, along with laboratory syntheses carried out at high 134 

temperatures (൐ 420 K) and pressures, suggest the existence of a continuous solid solution 135 

between the two end-members: grossular (ݔ ൌ 0) and Si-free katoite (ݔ ൌ 3). Numerous 136 

phases, scattered throughout the compositional range, were synthesized via hydrothermal 137 

treatment (Cheng et al. 1990, Cohen-Addad et al. 1967, Flint et al. 1941, Geiger et al. 2012, 138 

Lager et al. 1989). However, Jappy and Glasser (1991) showed that the mutual solubility of 139 

the end-members changes significantly at lower temperatures and pressures. Investigating 140 
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stability and solubility of solid solutions synthesized in the katoite range of composition at 141 370 K and 10ିସ  GPa pressure, they found a miscibility gap between compositions 142 CaଷAlଶሺSiOସሻ଴.ସଶሺHସOସሻଶ.ହ଼ and CaଷAlଶሺSiOସሻ଴.଻଺ሺHସOସሻଶ.ଶସ, and a maximum Si content at-143 

tainable of CaଷAlଶሺSiOସሻ଴.ଽଽሺHସOସሻଶ.଴ଵ. Results consistent with the existence of a miscibility 144 

gap occurred also in later works (Bennett et al. 1992, Dilnesa et al. 2014, Kyritsis et al. 145 

2009). This indicates that hydrogrossular is a non-ideal solid solution.  146 

In the present study, structural and energetic properties of the hydrogrossular series are 147 

investigated with ab initio simulations. The composition range from 0% to 100% grossular 148 

is explored, with reference to the 12 tetrahedral sites available for substitution in the end-149 

member primitive cell. This allows for explicitly considering compositions 150 ݔ ൌ 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3 . Each intermediate term is 151 

represented by a number of independent atomic configurations that were efficiently selected 152 

via symmetry-adapted Monte-Carlo (SA-MC) sampling, as recently proposed by Mustapha et 153 

al. (2013) and D’Arco et al. (2013). For all configurations, minimum energy structures have 154 

been calculated at the B3LYP level of theory, using all-electron Gaussian-type basis sets. 155 

Both SA-MC and geometry optimizations have been performed with the quantum-chemistry 156 

software package for periodic calculations CRYSTAL14 (Dovesi et al. 2014a,b). The same 157 

computational setup has already been successfully applied for studying structural, energetic, 158 

spectroscopic, elastic and optical properties of the end-members grossular and Si-free katoite 159 

(Erba et al. 2014a,b, 2015, Mahmoud et al. 2014, Orlando et al. 2006, Pascale et al. 2004), 160 

and of the grossular-andradite joint (De La Pierre et al. 2013, Lacivita et al. 2013, 2014).  161 

The results presented in the following provide new outlook on the relationship between 162 

excess mixing enthalpy and volume of the hydrogrossular solid solution. This is important 163 

information to accomplish production of densely packed and pressure-resistant concretes. In 164 

the same vein, one can infer valuable clues about the compositions that would be most 165 

favored under the pressure of the Earth’s mantle. Finally, some of the results can also be 166 

interesting to other minerals showing hydrogarnet-type substitutions, such as crystalline 167 

zircon ZrSiOସ (Balan et al. 2013, Botis et al. 2013).  168 

THEORETICAL METHOD 169 

Structural Model for Solid Solutions  170 

Garnet end-members have a cubic structure of space group ؠ ܩ 3ത݀ܽܫ , with|ܩ| ൌ 48 171 
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symmetry operators. Reference is here made to the primitive unit cell of grossular (Gro), 172 

which contains 80 atoms and counts 4 formula units. The structure displays dodecahedral 173 

(Ca), octahedral (Al) and tetrahedral (Si) crystallographic sites. There are 12 tetrahedral sites 174 

available for hydrogarnet substitution, Siସା ՞ 4Hା . Solid solutions are obtained by 175 

progressively replacing Si cations with 4 protons at a time. When the number n of Si cations 176 

is reduced to zero, the Si-free katoite (Kat) end-member is obtained. Apart from the end-177 

members Gro (n = 12) and Kat (n = 0), eleven intermediate compositions are explicitly 178 

considered: ݊ ൌ  1, 2 . . . 11.  179 

For each intermediate composition, 12!/ሾ݊! ሺ12 െ ݊ሻ!ሿ  substitutional atomic 180 

configurations can be defined, which sum up to 4096 over the whole range of compositions. 181 

This number can be significantly reduced following the symmetry analysis recently proposed 182 

by Mustapha et al. (2013). Configurations are naturally partitioned into symmetry-183 

independent classes (SICs), according to the operators retained after substitution. Given ܪ௟௡ 184 

the subgroup of symmetry associated to the l-th class of composition n, the number of 185 

configurations belonging to that SIC is  186 ܯ௟௡ ൌ  ௟௡ห (1)ܪห|ܩ|

Since all configurations of a given class are equivalent to each other, the number of calcu-187 

lations to be actually performed reduces to only one per SIC. ܯ௟௡ can then be interpreted as 188 

the multiplicity of class l. The macroscopic properties of the solid solution are calculated as 189 

Boltzmann averages over all SICs, where every class weighs in proportion to its own 190 

multiplicity ܯ௟௡. For example, the average volume is defined as 191 തܸሺ݊ሻ ൌ ෍ ௟ܲ௡௟ ௟ܸ௡ (2) 

where the sum runs over the SICs of composition n and  192 

௟ܲ௡ ൌ ∑௟௡eି∆ಶ೗೙ೖ್೅ܯ ௟௡eି∆ಶ೗೙ೖ್೅௟ܯ  (3) 

is the probability of finding the l-th SIC at temperature T. ∆ܧ௟௡ ൌ ௟௡ܧ െ ௠௜௡௡ܧ  is the difference 193 

between its energy ܧ௟௡ , and the energy of the most stable configuration with the same 194 

chemical composition, ܧ௠௜௡௡ . 195 
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For the present system, a total number of 136 SICs is expected on the basis of Pòlyà’s 196 

theorem (Pòlyà and Read 1987). These SICs are distributed over the composition range as 197 

outlined in Table I. Depending on the number n of Si atoms in the primitive cell, fractional 198 

composition x = 3(1 − n/12), number of SICs ௌܰூ஼, total number of atomic configurations 199 ஼ܰ௢௡௙ and minimum multiplicity ܯ௠௜௡ (corresponding to the maximum symmetry) of the 200 

respective classes are reported. At each composition, canonical representatives for the 201 

various SICs have been selected via uniform at random SA-MC sampling, as recently devised 202 

by D’Arco et al. (2013) and implemented in the CRYSTAL14 code (Dovesi et al. 2014a,b). 203 

The basics of the SA-MC method are provided as supplementary information, along with a 204 

brief outline of the practical procedure adopted to build the classes of configurations. We 205 

address the reader to (D’Arco et al. 2013) for a comprehensive theoretical treatment, and to 206 

(Dovesi et al. 2014b) for details about the mentioned computational options. 207 

A general concern about simulations of disordered crystalline materials and solid solutions 208 

is related to the size of the adopted structural model. Is it large enough? If large super-cells 209 

(multiples of the primitive one) seem preferable for comparison with real systems, one has to 210 

take into account practical feasibility aspects. The larger the super-cell, the more numerous 211 

the SICs, so as the number of calculations to be performed rapidly becomes prohibitive. It is 212 

necessary to find the right balance between accuracy and computational costs, by analyzing 213 

carefully every situation. For example, when dealing with dilute defects, large (to some 214 

extent) super-cells must be used in order to reduce the interactions between them. This is not 215 

a problem because the presence of a single defect in the cell corresponds to only one 216 

symmetry-independent configuration to be structurally optimized. Furthermore, for 217 

sufficiently low concentrations, calculations can be performed by freezing in some 218 

geometrical variables. In the case of concentrated solutions, as the ones studied in this work, 219 

no simple choice exists. The size of the unit cell must be large enough to allow access to 220 

different intermediate compositions and to account for eventual atomic clustering. In 221 

addition, one must bear in mind that the impact of the theoretical approximation might be 222 

property-dependent. As regards the average geometrical properties here calculated, we will 223 

show in the next section that a close comparison with experiments on the actual solid solution 224 

is achieved. This makes us confident on the accuracy of our results and, consequently, on the 225 

appropriateness of the model system chosen for the present work. 226 

Computational Details 227 



 9

All calculations have been performed with the CRYSTAL14 program (Dovesi et al. 228 

2014a,b). Minimum energy structures of all SICs were calculated at the B3LYP level of 229 

theory (Becke 1993), using all-electron atom-centered Gaussian-type basis sets. Oxygen, 230 

hydrogen, silicon, aluminum and calcium atoms were described by (8s)-(411sp)-(1d), (31s)-231 

(1p), (8s)-(6311sp)-(1d), (8s)-(611sp)-(1d) and (8s)-(6511sp)-(21d) contractions of primitive 232 

functions, respectively. 233 

In CRYSTAL14, density functional exchange-correlation contributions are evaluated by 234 

numerical integration over the cell volume: radial and angular points of the atomic grid are 235 

generated through Gauss-Legendre and Lebedev quadrature schemes. For the present 236 

calculations, an accurate predefined pruned grid was employed, corresponding to 99 radial 237 

and 1454 angular points. Hartree-Fock exchange contributions to the hybrid functional were 238 

calculated for atomic functions within a maximum distance of 59 direct lattice vectors Ԧ݃ from 239 

the origin. The reciprocal space was sampled according to a sub-lattice with shrinking factor 240 

3, which corresponds to a number of ሬ݇Ԧ-points in the irreducible first Brillouin zone between 4 241 

and 14, depending on the symmetry of the configuration. The convergence threshold on the 242 

self-consistent-field energy was set to 10ିଽ Ha. 243 

As regards geometry optimizations, CRYSTAL14 calculates analytical energy gradients 244 

with respect to both atomic coordinates and unit-cell parameters (Civalleri et al. 2001, Doll 245 

2001, Doll et al. 2001). A quasi-Newton optimization scheme is adopted in combination with 246 

the Broyden-Fletcher-Goldfarb-Shanno algorithm (Broyden 1970a,b, Fletcher 1970, Goldfarb 247 

1970, Shanno 1970) for Hessian updating. Convergence is checked on the root mean square 248 

of both gradient components and nuclear displacements, the corresponding tolerances being 249 

0.0003 a.u. and 0.0012 a.u., respectively. 250 

RESULTS AND DISCUSSION 251 

Lattice 252 

As previously recalled, the end-members of the hydrogrossular series belong to the cubic 253 

space group 3ܽܫത݀ . From a microscopic point of view, fractional occupancies of the 254 

tetrahedral sites at the intermediate compositions imply necessarily certain lowering of the 255 

local symmetry. Despite this, all 136 atomic configurations maintain a pseudo-cubic metric 256 

after geometry relaxation. Optimized structural parameters of all configurations can be found 257 

in the supplementary material. Here, for clarity sake, we explicitly discuss the case ݊ ൌ 6, 258 

that corresponds to the situation where half of the tetrahedral sites is occupied by Siସା and the 259 
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other half by 4Hା . This is the most illustrative composition as it provides the widest 260 

spectrum of symmetry-independent atomic distributions for the given number of 261 

substitutional sites. Table II reports lattice parameters ܽ, ܾ, ܿ  and angles ߙ, ,ߚ ߛ  for the 262 

representatives of the SICs proper of this composition. The SICs are listed in order of 263 

increasing energy, which varies by 51 mHa between ݈ ൌ 1 to ݈ ൌ 32. Multiplicities ܯ and 264 

lattice types (as deduced from the residual symmetry H) of the various SICs are indicated. 265 

We notice that only one SIC out of  32 maintains the cubic symmetry of the aristotype 266 

(except for the inversion center). That is class ݈ ൌ 32, with ܯ ൌ 2. Many SICs are triclinic, 267 

i.e., with multiplicity ܯ ൌ 48 ሺ݈ ൌ 4, 7, 10, 11, 13, 16, 17, 18, 19, 21, 25, 26, 30ሻ. According 268 

to Eq. (1), this means they are asymmetric, the unique operator in ܪ being the identity. Other 269 

SICs belong to monoclinic (݈ ൌ 5, 9, 12, 14, 15, 22, 23, 24, 28), orthorhombic ሺ݈ ൌ 1, 6, 8ሻ, 270 

tetragonal ሺ݈ ൌ 2, 3, 27, 29ሻ  and trigonal ሺ݈ ൌ  20, 31ሻ  crystal systems, with respective 271 

multiplicities ܯ ൌ 12 or 24, ܯ ൌ ܯ ,12 ൌ 6 or 12 and ܯ ൌ 8. 272 

Despite the differences in symmetry, all SICs are rather close to the cubic metric: cell 273 

edges differ from each other by 0.203 Å at most, and the angles depart from 90◦ by less than 274 

1.3◦. For statistical purposes, we may refer to the percentage difference ∆ with respect to the 275 

cubic average തܽ ൌ ሺܽ ൅ ܾ ൅ ܿሻ/3, or to the right angle. The average with sign, ∆ത, indicates 276 

that ܽ is slightly biased towards elongation, while ܿ tends to shorten. Apart from that, it is 277 

noteworthy that the absolute average difference, |∆ത|, is maintained well below 1%, and not 278 

even the largest absolute percentage deviations, max |∆|, come to exceed such a threshold 279 

(but for ߚ, where a slightly larger deviation of 1.43% is found). These findings are consistent 280 

with the picture arising from experimental studies, according to which hydrogrossular 281 

essentially retains the cubic structure of the end-members (Basso et al. 1983, Cheng et al. 282 

1990, Cohen-Addad et al. 1967, 1963, Ferro et al. 2003, Flint et al. 1941, Jappy and Glasser 283 

1991, Lager et al. 1989, Pabst 1937, 1942, Passaglia and Rinaldi 1984, Sacerdoti and 284 

Passaglia 1985). 285 

Excess Quantities 286 

Excess enthalpies, ∆ܪ , and volumes, ∆ܸ , are obtained as differences between the 287 

calculated values and the values expected for an ideal system, i.e., a system whose properties 288 

vary linearly with the composition. ∆ܪ and ∆ܸof the 136 configurations optimized along the 289 

Gro-Kat binary are shown in Figures 2 and 3, respectively. Each composition ݊ goes with its 290 

complementary, 12 െ ݊ , as regards number, multiplicity and symmetry of the respective 291 
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SICs (see Table I). However, the properties calculated at compositions ݊ and 12 െ ݊ may be 292 

quite different, as we shall discuss below. 293 

Enthalpy. In Figure 2, ∆ܪ represents the free energy of mixing at 0 K. This is found to be 294 

negative for all the SICs throughout the compositional range. At compositions from ݊ ൌ 2 to 295 ݊ ൌ 10, an energy range ሾmin ሺ݊ሻܪ∆ െ max  ሺ݊ሻሿ spreads between the most stable and 296ܪ∆

the least stable SICs. The width of the range is quite large ( ൎ 30  mHa on average), 297 

oscillating within a maximum of 51 mHa at ݊ ൌ 6, and a minimum of 11 mHa at ݊ ൌ 10. 298 

Apart from ݊ ൌ 3, configurations at the extremes of the energy range always display some 299 

symmetry ( ܯ ൏ 48 ). This is in line with a conjectured symmetry-energy relationship 300 

suggesting that the critical points of the potential energy surface should correspond to 301 

symmetric structures (Pauling 1929, Pickard and Needs 2011, Wales 1998). 302 

For most of the compositions here explored, the minimum enthalpy configuration is far 303 

more stable than the other SICs with the same composition: the Boltzmann distribution would 304 

leave the ground state only at temperatures above 700 K. The only exceptions, in this respect, 305 

are ݊ ൌ 2 and ݊ ൌ 7, where the difference between min  and the next SIC is just 0.05 306 ܪ∆

mHa (indistinguishable in Figure 2) and 0.8 mHa, respectively. 307 

Function min  ሺ݊ሻ is very asymmetric: it rapidly decreases upon substitution of 1 to 4 308ܪ∆

tetrahedral sites in Kat and then, as the silicon content increases further, it goes back to zero 309 

(Gro) less sharply. The global minimum is found at ݊ ൌ 4. In addition, a discontinuity is 310 

encountered between ݊ ൌ 7 and ݊ ൌ 8 that makes ݊ ൌ 8 a local minimum. The presence of 311 

two minima indicates that min  ሺ݊ሻ is not always concave upward but rather reverses its 312ܪ∆

curvature between these two points. This means that solid solutions in the range 4 ൏ ݊ ൏ 8 313 

exhibit a higher enthalpy than a mixture of two separate phases with respective compositions 314 ݊ ൌ 4 and ݊ ൌ 8. Outside this range, solid solutions are thermodynamically favored by the 315 

excess enthalpy. In particular, it turns out that min  ሺ݊ሻ assists the insertion of silicon into 316ܪ∆

Kat more than that of hydrogen into Gro. 317 

Finally, we note that the global minimum at ݊ ൌ 4 corresponds to a solid solution with 318 

stoichiometry CaଷAlଶሺSiOସሻሺHସOସሻଶ, that is the ideal formula assigned to the katoite mineral 319 

(Passaglia and Rinaldi 1984). Moreover, this is just about the upper limit observed by Jappy 320 

and Glasser (1991) for the substitution of Si into Kat at low temperature (95◦C) and under 321 

ambient pressure. As regards ݊ ൌ 8, instead, the ideal composition of the hibschite mineral is 322 

matched, namely CaଷAlଶሺSiOସሻ2HସOସ (Belyankin and Petrov 1941, Pabst 1937). 323 
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Volume. The excess volume, ∆ܸ, of the optimized SICs is represented in Figure 3. It is 324 

noteworthy that the most stable SICs at the various compositions correspond to high ∆ܸ 325 

values, if not directly to max ∆ܸ. In particular, the largest positive excess volume occurs at 326 ݊ ൌ 4, being associated with the global minimum of the enthalpy of mixing. In contrast, the 327 

least stable SICs show excess volumes among the most negative ones. 328 

At ambient temperature, ∆ തܸሺ݊ሻ describes a somehow sinusoidal pattern: it is negative for 329 0 ൏ ݊ ൏ 3, it becomes positive at ݊ ൌ 3, and negative again at about ݊ ൌ 8 up to ݊ ൌ 12. 330 

Positive ∆ܸ values occur precisely between the two minima of the excess enthalpy, located at 331 ݊ ൌ 4 and ݊ ൌ 8, namely where the concavity of the function min  ሺ݊ሻ turns downwards. 332ܪ∆

That is to say, if we had restricted our analysis to the range of composition 4 ൑ ݊ ൑ 8, we 333 

would have found a positive ∆ܪሺ݊ሻ function with respect to the extremes. In physical terms, 334 

this trend of ∆ തܸሺ݊ሻ means that the volume of mixing decreases for dilute solutions of either 335 

Gro into Kat or Kat into Gro, and conversely increases for solid solutions of intermediate 336 

compositions (4 ൑ ݊ ൏ 8). As a consequence, in this intermediate range, the solubility is 337 

expected to reduce with increasing pressure. 338 

Figure 4 (upper panel) shows the variation of the average volume തܸalong the Gro-Kat 339 

binary. The relevant information available in the literature is rich but quite heterogeneous. 340 

For the sake of comparison, we have selected a set of experimental data as consistent as 341 

possible. Solid solutions with significant amounts of impurities - mostly Feଷା, or with a sum 342 

of the stoichiometric fractions of Si and ଵସ H very different from 3, have been excluded. These 343 

include the synthetic terms 2-10, 13, 14 and 15-19 from the work of Flint et al. (1941). 344 

Synthetic samples by Jappy and Glasser (1991) with ݔ ൑ 2 were discarded as well, relying on 345 

the authors’ distrust for contamination by CaO െ SiOଶ െ HଶO gel phase. We also omitted 346 

“jade” samples (Frankel 1959, Tilley 1957) given the questionable reliability of their 347 

chemical analyses (Zabinski 1966). 348 

As regards the end-members (empty squares), we considered the average of the volumes 349 

measured by Cohen-Addad et al. (1963) and Lager et al. (1987a, 2002, 2005) for Kat; by 350 

Flint et al. (1941), Novak and Gibbs (1971), Lager et al. (1987b), Olijnyk et al. (1991), and 351 

Rode- horst et al. (2002) for Gro. Note that the linear sum of these volumes (solid red line) is 352 

perfectly parallel to the ideal trend obtained from our calculations (solid black line). Besides, 353 

a slight overestimation of the experimental data (about 2.5%) meets expectations on the 354 

performance of the B3LYP functional (Paier et al. 2007). 355 

Natural katoite is rather rare. Passaglia and Rinaldi (1984) resolved a cubic structure of 356 



 13

space group 3ܽܫത݀ and cell parameter ܽ ൌ 12.358 Å (empty triangle), while later refinements 357 

by Sacerdoti and Passaglia (1985) yielded ܽ ൌ 12.379 Å (full inverted triangle). Ferro et al. 358 

(2003) described a new sample with cubic cell parameter ܽ ൌ 12.286 Å (full pentagon). We 359 

notice that both natural katoite samples display stoichiometry close to CaଷAlଶSiOସሺHସOସሻଶ, 360 

which corresponds to the global minimum of the excess enthalpy here estimated at ݊ ൌ 4. 361 

This evidence further supports the thermodynamic stability of this composition. Figure 4 also 362 

reports volume values of some synthetic katoite samples: i) empty circles represent the 363 

hydrothermal members number 1 and 12 from Flint et al. (1941); ii) asterisks are samples by 364 

Jappy and Glasser (1991); iii) empty rhombi are taken from Pöllmann (2012). By inspection 365 

of the lower panel of Figure 4, it turns out that most of the above mentioned katoite samples 366 

display a negative excess volume. The only exceptions are the synthetic specimens from 367 

Pöllmann (2012), plus two other synthetic samples (Flint et al. 1941, Jappy and Glasser 1991) 368 

of composition very close to the pure Si-free compound. 369 

The three data points around ݊ ൌ 7 correspond to different experiments carried out on 370 

hibschite from Crestmore. Powder XRD analyses by Pabst (1937) provided a cubic structure 371 

with lattice constant ܽ ൌ 12.16 Å (solid rhombus). Afterwards, hibschite was subjected to 372 

single-crystal XRD by Basso et al. (1983), who obtained a lattice constant ܽ ൌ 12.174 Å 373 

(solid triangle). The authors relied on the chemical formula calculated from the structure 374 

refinement, namely CaଷAlଶሺSiOସሻଵ.ହଷሺHସOସሻଵ.ସ଻ , despite their own microprobe analysis 375 

revealing a distinctly higher Si content: Caଶ.ଽ଼Mg଴.଴ହFe଴.଴ଶAlଵ.ଽଷሺSiOସሻଵ.଻଻ሺHସOସሻଵ.ଶଷ . 376 

Indeed, in view of the remarkable agreement with the composition previously obtained by 377 

Pabst (1942), Caଷ.଴ଵAlଶ.ଵଵሺSiOସሻଵ.଼ଶሺHସOସሻଵ.ଵ଴, we assumed their microprobe analysis as the 378 

most representative. This choice is in line with the outcome of an independent electron 379 

microprobe analysis performed by O’Neill et al. (1993), which provided chemical 380 

composition Caଶ.଼ସMg଴.଴ସFe଴.଴ଷAlଵ.଼଻ሺSiOସሻଵ.଻ଶሺHସOସሻଵ.ଶ଼ . The corresponding lattice 381 

parameter, ܽ ൌ 12.183  Å (solid square), was measured via single-crystal XRD. It is 382 

noteworthy that all the experiments performed on hibschite from Crestmore provide a 383 

positive excess volume ∆ തܸ . 384 

Members in the range 8 ൑ ݊ ൑ 12  were synthesized by Cohen-Addad et al. (1967) 385 

(cross), by Lager et al. (1989) (plus), and by Cheng et al. (1990) (solid circles). The empty 386 

rhombus belongs to the set of synthetic hydrogrossular samples reported by Pöllmann (2012). 387 

All these points occur below the solid red line joining the two end-members. In particular, 388 

Cheng et al. (1990) carried out a thorough XRD and XPS (X-ray photoelectron spectroscopy) 389 
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investigation in order to define a quantitative relation between unit cell dimension and 390 

composition 0 ൑ ݔ ൑ 1. They found it to be nonlinear, with a negative volume of mixing 391 

describing an asymmetric pattern. 392 

Let us focus now on the lower panel of Figure 4. We notice that the collection of 393 

experimental excess volumes suggests a sinusoidal trend of the function ∆ തܸ , which is 394 

qualitatively very similar to that described by our calculated data. Indeed, ∆ തܸ  is generally 395 

negative for Kat-rich solid solutions ( ݊  up to 4 െ 5 ), it is positive at intermediate 396 

compositions (݊ ൎ 7), and finally returns negative for Gro-rich solid solutions (8 ൑ ݊ ൏ 12). 397 

The agreement between experimental and calculated data is satisfactory, apart from the latter 398 

suffering from a slight underestimation of the amplitude of the negative ∆ തܸ  values. On the 399 

hibschite side, the intersection with the zero axis occurs around ݊ ൌ 8 in both series. On the 400 

katoite side, instead, the present calculations seem somehow to anticipate (at ݊ ൌ 3) the sign 401 

reversal of ∆ തܸ  with respect to the experiments (about ݊ ൌ 4 െ 5). Nevertheless, it is also true 402 

that the measurements on katoite are rather dispersed in comparison with those on hibschite. 403 

At intermediate compositions ( 4 ൏ ݊ ൏ 8 ) we cannot compare precisely, because the 404 

available experimental data are scarce, and because those on hibschite from Crestmore are 405 

located right at the discontinuity of the calculated functions ∆ തܸሺ݊ሻ and ∆ܪഥሺ݊ሻ. We may just 406 

remark that samples reported by Pöllmann (2012) with positive excess volume lie very close 407 

to the corresponding calculated points. 408 

Octahedra 409 

Figure 5 shows the variation of the octahedral-dodecahedral shared, ܵ, and unshared, ܷ, 410 

edges with composition. The shared edge ܵ is represented in the upper panel. We notice that 411 

the three oxygen pairs are well distinguished, being always ܵሺOH െ OHሻ ൏ ܵሺO െ OHሻ ൏412 ܵሺO െ Oሻ. All three distances are shortened with the increase of the number ݊ of Si atoms in 413 

the primitive cell. Apart from the end-members Gro and Kat, hetero-pairs O െ OH are present 414 

along the entire compositional range. In contrast, the distribution of homo-pairs, OH െ OH 415 

and O െ O, is very asymmetrical: compositions with ݊ ൏ 5 are characterized by the exclusive 416 

presence of OH െ OH pairs, while those with ݊ ൐ 7 display only pairs of type O െ O. This 417 

may be related to the corresponding asymmetry of the excess enthalpy (Figure 2), so that the 418 

simultaneous presence of OH െ OH, O െ OH and O െ O shared edges, occurring just between 419 ݊ ൌ 5 and ݊ ൌ 7, may be related to the concavity change of the excess enthalpy in the same 420 

range of compositions. By plotting the weighted average ܵҧ with increasing ݊, we get an 421 
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upward linear (within the stripe width) trend that would indicate the elongation of the shared 422 

edge with the increase of Si atoms. In fact, despite the shortening of ܵ for each oxygen pair 423 

type, the progressive increase in weight of the O െ O pair determines the increase of ܵҧ. This 424 

result is in perfect agreement with the average structure view provided by experimental 425 

determinations (red asterisks). 426 

As regards the unshared edge ܷ (lower panel), the lengths associated to pairs OH െ OH, 427 O െ OH  and O െ O  are much closer to each other. All of them slightly decrease with 428 

increasing ݊, with a variation of just 0.12 Å over the whole composition range. In this case, 429 

the average function ഥܷ is consistent with the individual trends: it provides a linear (within the 430 

stripe width) shortening of the unshared edge with an increasing number of Si atoms. Again, 431 

the predicted average behavior conforms to the experiments (red asterisks). 432 

To recap, average ܵҧ  and ഥܷ  octahedral edge lengths are consistent with a macroscopic 433 

picture according to which the shared octahedral edge decreases in length while the unshared 434 

edge increases. They intersect at about ݊ ൌ 10 (vertical dashed line in Figure 5), that is very 435 

close to the crossing between the experimental curves (Lager et al. 1989). 436 

Tetrahedra Distribution and Structural Response to Hydrogarnet Substitution 437 

From the discussion addressed above (Section IIIB), one may deduce that, within the 438 

present model, the Gro-Kat solid solution at low temperature can essentially be represented 439 

by the most stable configurations at the various compositions. Therefore, unless otherwise 440 

stated, the following structure analysis will refer to configurations of minimal enthalpy (red 441 

points in Figure 2). In order to rationalize the effects of the hydrogarnet substitution, we will 442 

exploit the typical polyhedral interpretation of the garnet structure (Novak and Gibbs 1971). 443 

That is, hydrogrossular consists of a three-dimensional network of alternating, corner-sharing 444 SiOସ (or HସOସ ) tetrahedra and AlO଺  octahedra, in which triangular dodecahedral cavities 445 

accommodate Caଶା cations. 446 

Oxygens and Hydroxyls. Figure 6 shows δ െ O distances between the barycenter δ of the 447 

tetrahedra and the O atoms at their vertices, as a function of the composition. It turns out that 448 

both kinds of tetrahedra are rather insensitive to variations in composition, more so for the 449 SiOସ tetrahedra, where the presence of a central Si atom freezes the oxygens via covalent 450 

interactions. Protonated HସOସ tetrahedra lack such an internal constraint and thus display a 451 

wider dispersion of the δ െ O distances. To get a quantitative estimation of the tetrahedral 452 

distortion at intermediate compositions, we applied the iterative least-squares technique 453 
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proposed by Dollase (1974), and obtained maximum deformations of 4.5%  for SiOସ 454 

compared to Gro, and 5.2% for HସOସ compared to Kat. These deformation rates are rather 455 

low, which indicates both the tetrahedral sites to be fairly close to the respective “ideal” limit 456 

structures. 457 

According to our calculations, the oxygens of the solid solution are unambiguously split 458 

into Gro-like and Kat-like tetrahedral sites, whatever the composition. This picture is 459 

consistent with experimental refinements by Armbruster and Lager (1989) and by Lager et al. 460 

(1989), who successfully adopted the split-atom model to account for oxygen positional 461 

disorder in katoite and hibschite samples, i.e., oxygen sets on two different sites depending 462 

upon whether the tetrahedron is occupied by Si or protonated. They worked out, in this way, 463 

anomalously short O െ HሺDሻ bond distances (0.65 െ 0.74 Å) previously reported (Lager et 464 

al. 1987a, 1989, Sacerdoti and Passaglia 1985), as artifacts due to the use of standard ordered 465 

refinement models yielding a single average oxygen position rather than the two real ones. 466 

In fact, by considering a weighted mean of the calculated δ െ O  values for SiOସ and 467 HସOସtetrahedra, a linear function of composition is obtained (gray stripe in Figure 6), which 468 

decreases from 1.979 Å at ݊ ൌ 0 (Kat), to 1.662 Å at ݊ ൌ 12 (Gro). This coincides with the 469 

average picture provided by XRD experiments (red asterisks). 470 

Hydrogen interactions. Let us now analyze what happens to the hydrogen atoms. We are 471 

interested in investigating the possible existence and/or development of hydrogen interactions 472 

along the compositional series. In the absence of vibrational data on which to rely for 473 

evaluating presence and strength of possible H-bonds, we must refer to geometric criteria. As 474 

a guideline on the structural systematics of hydrogen bonding in inorganic compounds, we 475 

used the accurate compilations provided by Ceccarelli et al. (1981) and by Nyfeler and 476 

Armbruster (1998). Based on these works, one can deduce that the average O െ H distance 477 

generally settles around 0.969 Å, the H ൉൉൉ O bond lengths range within 1.75 െ 1.82 Å and 478 

the average O െ H ൉൉൉ O angle is about 167◦. Given the broad structural variety of crystalline 479 

solids, these values cannot be considered as real cutoffs, but rather as references for hydrogen 480 

interactions of significant strength: the further away from this model geometry, the weaker (if 481 

any) the interaction. 482 

We may start considering the HସOସtetrahedron in Kat (݊ ൌ 0). The optimized structure 483 

obtained in the present work compares well with experimental determinations. A distance 484 δ െ O of 1.979 Å is calculated, which is quite similar to both neutron and X-ray diffraction 485 

measurements, i.e., 1.950 Å and 1.962 Å, respectively (Lager et al. 1987a). Hydrogens are 486 
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located slightly outside the tetrahedron, the angle δ െ O െ H being 36°. Our computed O െ H 487 

bond length, i.e., 0.961 Å, is in line with previous calculations (Pascale et al. 2004) as well as 488 

with targeted structure refinements corrected for thermal motion effects, i.e., 0.95 Å (Lager 489 

et al. 2005). According to Lager et al. (2005) a bifurcated H-bond is formed with the oxygens 490 

located at the opposite vertices of the face, with the H atom lying approximately on the 491 

bisector plane. They collected time-of-flight neutron powder data on CaଷAlଶሺDସOସሻଷ , 492 

measuring two intra-tetrahedral D ൉൉൉ O  distances, D1 ൉൉൉ O3 ൌ 2.551  Å and D1 ൉൉൉ O3’ ൌ493 2.499  Å (notation as in Figure 7), and respective angles O1 െ D1 ൉൉൉ O3 ൌ 133.5°  and 494 O1 െ D1 ൉൉൉ O3’ ൌ 139.6° . In addition, they identified an inter-tetrahedral H-bond, D3 ൉൉൉495 O1’, as large as 2.606 Å, with an angle O3 െ D3 ൉൉൉ O1’ equal to 111.1°.† A clear divergence 496 

from the geometric H-bond requirements here adopted (Ceccarelli et al. 1981, Nyfeler and 497 

Armbruster 1998) is observed, which implies at least the classification into rather weak 498 

interactions. That said, our calculations define pretty much the same picture: i) the intra-499 

tetrahedral parameters are H1 ൉൉൉ O3 ൌ 2.564 Å, H1 ൉൉൉ O3’ ൌ 2.513 Å, O1 െ H1 ൉൉൉ O3 ൌ500 133.2°and O1 െ H1 ൉൉൉ O3’ ൌ 138.8° ; ii) the inter-tetrahedral parameters are H3 ൉൉൉ O1’ ൌ501 2.610 Å and O3 െ H3 ൉൉൉ O1’ ൌ 109◦. These values are reported in Table III and compared 502 

with selected distances and angles of minimum energy SICs calculated at different 503 

compositions ݊. 504 

When a silicon atom is introduced in the unit cell (݊ ൌ 1), one HସOସ  tetrahedron is 505 

replaced for SiOସ. This causes a drastic change in the geometry of the hydrogen interactions 506 

in the neighborhood. We focus on the first star of neighbors, i.e., four HସOସtetrahedra on 507 

which the perturbation is evenly distributed as each of them interacts with one oxygen of the 508 SiOସunit. Figure 7 shows the detail of the local rearrangement. H3 flips toward O1’ with a 509 

dramatic enlargement of the angle δ െ O3 െ H3  ( 65.5 ◦). The simultaneous gain in 510 

directionality of the inter-tetrahedral interaction ( O3 െ H3 ൉൉൉ O1’ ൌ 148.7 ◦) implies a 511 

strengthening of the latter, that is deduced from the increment of the O3 െ H3 bond length 512 

( 0.969  Å) and from the corresponding decrease of the H3 ൉൉൉ O1’  distance ( 2.077  Å). 513 

Meanwhile, the repulsion exerted by H3  on the other three hydrogens of the HସOସ 514 

tetrahedron fades, so that they can come closer to its center δ. H1 is particularly concerned: 515 

the angle δ-O1-H1 tightens to 24.21◦, and the intra-tetrahedral interaction with O3 intensifies 516 

                                                            
†We recall that, in cubic Si-free katoite, oxygen atoms, as well as hydrogen atoms, are all 

equivalent. The proposed labeling is a convenient way to discuss geometrical relations. 
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( H1 ൉൉൉ O3 ൌ 2.335  Å, O1 െ H1 ൉൉൉ O3’ ൌ 148.0° ) at the expense of the one with O3’ 517 

(H1 ൉൉൉ O3’ ൌ 2.593 Å, O1 െ H1 ൉൉൉ O3’ ൌ 134.4°). This suggests that the position of the H 518 

atoms is controlled by the electrostatic interactions between them, rather than by hydrogen 519 

interactions, and thus emphasizes the weakness of the latter. 520 

In the opposite situation, that is when all tetrahedra but one are occupied by Si (݊ ൌ 11), 521 

we obtain a fairly different arrangement of the hydrogen atoms (see Table III). This time, a 522 

single HସOସ tetrahedron is surrounded by four SiOସ  tetrahedra. Each hydrogen of HସOସ 523 

interacts with one SiOସ  tetrahedron at a distance H3 ൉൉൉ O1’  of 2.191  Å, forming angles 524 O3 െ H3 ൉൉൉ O1’ ൌ 127.1◦ and δ െ O3 െ H3 ൌ 45.52◦. By comparison with ݊ ൌ 1, we can 525 

infer that hydrogen interactions in this case are generally not as strong. A certain asymmetry 526 

emerges, which may be somehow reflected by the excess enthalpy represented in Figure 2: 527 ∆ܪ is about െ18 mHa at ݊ ൌ 1 and about െ7 mHa at ݊ ൌ 11. Besides, we should not expect 528 

otherwise given that the ratio of hydrogen donor-to-acceptor is necessarily different in the 529 

two cases. At ݊ ൌ 1 there are four HସOସ tetrahedra (donors) strongly engaged in as many 530 

hydrogen interactions with one SiOସ (acceptor). The latter acts as an attractive pole for the 531 

nearest hydrogen atoms, thus unbalancing the layout of the surroundings. At ݊ ൌ 11  it 532 

remains a single HସOସ tetrahedron (donor). Its hydrogens participate one-by-one in 533 

interactions with four neighboring SiOସ tetrahedra (acceptors) that are evenly spaced out. The 534 

result is an isotropic “strain” of the donor with respect to the reference Kat. 535 

At intermediate compositions, hydrogen interactions are far more complicated to 536 

rationalize. The parameters reported in Table III for ݊ ൌ 4, 6 suggest stronger interactions 537 

than in Kat, but their input to the stability of the system is blurred by new rising 538 

contributions. At ݊ ൌ 6 , for instance, the most stable and the least stable SICs exhibit 539 

hydrogen interactions of comparable strength, the difference being rather in their number. 540 

One would expect that the higher the number of interactions, the more stable the structure. In 541 

fact, we find the opposite situation: in the least stable SIC, which has cubic symmetry, each 542 

tetrahedron HସOସሺSiOସሻ interacts with four neighbors SiOସ(HସOସ); in the most stable SIC, 543 

instead, the inter-tetrahedral hydrogen interactions are halved. Indeed, we may conclude that 544 

the necessity to invoke “H-bonds” to understand the energetics of the system is not so 545 

obvious. It is to be recalled that such partitioning of the energy is nothing but the result of a 546 

rational process of interpretation, which can be useful to account for some properties but, 547 

still, is far from being fully comprehensive. 548 
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Tetrahedra Distribution. Figure 8 shows the distribution of the HସOସ and SiOସ tetrahedra 549 

in the pseudo-cubic cell of minimum energy configurations at different compositions n (the 550 

number of Si atoms refers to the primitive cell). Two distinct patterns of distribution can be 551 

recognized: one for ݊ ൑ 7 and another one for ݊ ൒ 7 (SICs with ݊ ൑ 3 and ݊ ൒ 11 are not 552 

shown in the figure as they are poorly illustrative). On the katoite side ( ݊ ൏ 7 ), the 553 SiOସ tetrahedra are progressively arranged in planes ሺ1 0 1ሻ, until a structure of alternate 554 

“layers” of Gro and Kat is finally obtained at n = 6. Hence, a tendency emerges towards some 555 

sort of separation between the two phases, which accounts for the positive excess volumes 556 

calculated at 4 ൑ ݊ ൑ 6 (Figures 3 and 4). Note that the plane of growth of the SiOସlayers 557 

coincides with the mirror planes for the pseudomerohedral twins inducing ferroelastic lattice 558 

strain in majorite (Heinemann et al. 1997). We may also remark that force-field calculations 559 

by Becker et al. (2000) and by Becker and Pollok (2002) provided a similar tendency to 560 

cation ordering in alternating layers for 1: 1 compositions of barite-celestite and grossular-561 

andradite solid solutions, respectively. On the hibschite side (݊ ൐ 7), a mixed distribution of 562 SiOସand HସOସ tetrahedra appears to be thermodynamically favored, which nicely correlates 563 

with the negative excess volumes of Figures 3 and 4. These two tetrahedra distribution 564 

patterns meet at ݊ ൌ 7, that is right at the discontinuity encountered on both the calculated 565 

enthalpy and volume of mixing (Figures 2 and 3). As previously discussed, composition 566 ݊ ൌ 7 features a small energy difference (about 0.8 mHa) between min  and the next SIC. 567 ܪ∆

Figure 8 shows the corresponding structures: the most stable at the bottom and the less stable 568 

at the top. The most stable configuration displays a tetrahedra arrangement consistent with 569 

the hibschite pattern, while the second is consistent with the katoite pattern. Plots of ∆ܪሺ݊ሻ 570 

(solid lines), represent the two series of configurations with different colors. Each color 571 

corresponds to a continuity region of the excess enthalpy function. This suggests that ∆ܪሺ݊ሻ 572 

is given by a superposition of two different curves with minima at ݊ ൌ 4  and ݊ ൌ 8 , 573 

respectively, that intersect at ݊ ൌ 7. In order to decipher the effective interactions that shape 574 

the ∆ܪሺ݊ሻ function, a classical “J-formalism” or cluster expansion (CE) may be applied. This 575 

method was adopted, for example, by Becker and Pollok (2002) to fit the energies of mixing 576 

of grossular-andradite solid solutions. In that case, the authors used a CE of pairwise cation 577 

interactions only, up to third nearest neighbors. However, for a non-regular system like the 578 

grossular-katoite binary, one should either extend the CE to at least three body interactions, 579 

or consider pairwise interactions as functions of composition (Vinograd et al. 2010). The 580 

application of such approach would be an interesting follow-up to this study. 581 
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Let us now have an insight on the tetrahedra distribution of the enthalpy local minimum at 582 ݊ ൌ 8, which corresponds to stoichiometry CaଷAlଶሺSiOସሻଶሺHସOସሻ. Figure 9 shows a perfect 583 

correspondence with the experimental structure of henritermierite (Armbruster et al. 2001), 584 

that is another mineral of the hydrogarnet group having formula CaଷMnଶሺSiOସሻଶሺHସOସሻ. 585 

Even the hydrogen positions in henritermierite resemble the arrangement provided by our 586 

calculation. Due to the Jahn-Teller distortion of octahedral Mn3+, henritermierite has a 587 

tetragonal lattice (space group 4ܫଵ/ܽܿ݀), with cell parameters ܽ ൌ 12.489 and ܿ ൌ 11.909 Å 588 

and a ratio ܽ/ܿ ൌ 1.049.  An Al-dominant analogue of average composition 589 CaଷሺAl଴.ଽ଺Mn଴.଺଼ଷା Fe଴.ଷ଻ଷା ሻሺSiOସሻଶሺHସOସሻ଴.ଽଽ, named holstamite, has also been reported with a 590 

slightly lower ratio: ܽ/ܿ ൌ 1.034, being ܽ ൌ 12.337 Å and ܿ ൌ 11.930 Å (Halenius et al. 591 

2005). Holstamite belongs to a solid solution between henritermierite and a hypothetical 592 

tetragonal end-member CaଷAlଶሺSiOସሻଶሺHସOସሻ, which, given the absence of Mnଷା, should be 593 

associated to the smallest ܽ/ܿ ratio along the series. In fact, the most stable configuration 594 

calculated at ݊ ൌ 8 does correspond to such a hypothetical end-member: it has the exact 595 

stoichiometry, a tetragonal symmetry and a pseudo-cubic unit cell with ratio ܽ/ܿ ൌ 1.023. 596 

IMPLICATIONS 597 

An ab initio quantum-mechanical approach has been adopted to analyze structure and 598 

energetics aspects of the grossular-katoite solid solution. Calculations have been performed 599 

within the primitive cell of cubic garnets, using all-electron Gaussian basis sets and the 600 

B3LYP hybrid functional. The results obtained at the present level of approximation can be 601 

summarized as follows: i) all the 136 SICs obtained by hydrogarnet substitution feature 602 

pseudo-cubic conventional cells after full geometry relaxation; ii) at low temperatures 603 

(approximately below 700 K), the properties of the system pertain essentially to the ground 604 

state; iii) the excess enthalpy describes an asymmetric function, with two minima that can be 605 

associated to natural minerals of stoichiometry CaଷAlଶSiOସሺHସOସሻଶ and CaଷAlଶሺSiOସሻ2HସOସ, 606 

respectively; iv) the asymmetry of the enthalpy of mixing can be related to two different 607 

distribution patterns of the tetrahedra HସOସand SiOସ , which intersect around composition 608 CaଷAlଶሺSiOସሻଵ.଻ହሺHସOସሻଵ.ଶହ (݊ ൌ 7); v) for lower amounts of grossular, the SiOସtetrahedra 609 

tend to cluster in ሺ1 0 1ሻ planes and, consequently, the excess volume becomes positive 610 

within the range 1 ൑ ݔ ൑ 1.5; vi) hydrogen interactions also contribute to the asymmetry of 611 

the excess enthalpy as those developed around one SiOସ in katoite ሺ݊ ൌ 1ሻ are stronger than 612 

those around one HସOସ in grossular ሺ݊ ൌ 11ሻ; vii) the oxygens are unambiguously split into 613 



 21

grossular-like and katoite-like tetrahedral sites, whatever the composition; viii) hydrogen 614 

interactions in fully-hydrated katoite are found to be weak as suggested by dramatic changes 615 

in the H environment associated with the introduction of SiOସ tetrahedra.  616 

Implications of this work can be envisaged at different levels. The immediate fallout is 617 

represented by the complement of knowledge and by the interpretive support that theoretical 618 

data provide to the experimental evidence. The atomistic approach of the simulation allowed 619 

us to deepen the structural analysis of hydrogrossular, establishing interesting correlations 620 

with the enthalpy of the solid solution. In fact, we have shown that the hydrogarnet 621 

substitution is driven by a strong enthalpy gain. All compositions are possible on the basis of 622 

the calculated excess enthalpy, meaning that the reported miscibility gap between 623 

compositions CaଷAlଶሺSiOସሻ଴.ସଶሺHସOସሻଶ.ହ଼  and CaଷAlଶሺSiOସሻ଴.଻଺ሺHସOସሻଶ.ଶସ  can be filled by 624 

varying temperature and pressure conditions. On a practical level, the relationship between 625 

stability and excess volume of hydrogrossular can serve the purpose of controlling the 626 

rheology of cement pastes and producing dense concrete structures. Also, the positive excess 627 

volumes calculated for 1 ൑ ݔ ൑ 1.5 indicate that solid solutions with these compositions are 628 

impeded by high pressures. The next step would be performing frequency calculations on the 629 

optimized structures in order to access entropic contributions to the thermodynamics of the 630 

system. 631 

Besides that, the present work may also have a strong methodology impact in the field of 632 

the theoretical study of solid solutions (and disordered crystals). In this regard, we have 633 

shown the SA-MC sampling of the configurational space as a valuable route to tackle these 634 

kinds of systems via first-principle simulations, and thus get accurate estimates of their 635 

average structure and energetic properties. We can expect that the same holds true for other 636 

properties (e.g., spectroscopic, dielectric, magnetic), but care must be taken when dealing 637 

with tensor quantities because Boltzmann averages are not straightforward. Further work is 638 

required in order to define an appropriate method for processing the calculated data in such 639 

cases. Finally, there are some issues that still remain open, for example understanding the 640 

relationship between symmetry and stability of the classes of configurations. We have found 641 

that minima and maxima of the calculated enthalpy of mixing correspond to symmetric 642 

configurations. If proven in general, this connection would be of great help in exploring 643 

configurational spaces, as it would bridge directly towards minima and maxima of the 644 

potential energy surface. The advantages, in terms of computational efficiency, would be 645 

proportional to the size of the system: the larger the unit cell, the lower the ratio between 646 
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symmetric and asymmetric classes of configurations. 647 
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 883 

Figure 2 (color online) Excess enthalpy ∆ܪ as a function of composition ݊, which stands for 884 

the number of Si atoms in the unit cell. Red and pink points are SICs with minimum and 885 

maximum excess enthalpy, respectively; blue points are the SICs with ∆ܪ  closest to the 886 

minimum; black points are SICs with intermediate excess enthalpy. Different symbols 887 

represent different SIC multiplicities ܯ: full square 1; half full circle 2; half full diamond 3; 888 

full up triangle 6; full down triangle 8; full diamond 12; full pentagon 16; circle with full 889 

quarter 24; small full circle 48. 890 
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 892 

Figure 3 (color online) Excess volume ∆ܸ as a function of composition ݊, which stands for 893 

the number of Si atoms in the unit cell. Different colors distinguish the SICs on the basis of 894 

the corresponding excess enthalpy, according to the scheme defined in Figure 2. The solid 895 

curve is an eye-guide approximating the average function ∆ തܸሺnሻ at 300 K. Different symbols 896 

represent different SIC multiplicities ܯ (see caption to Figure 2 for details). 897 
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(Å
3 )

n

Kat Gro



 34

 899 

Figure 4 (color online) Boltzmann average volume തܸ  (upper panel) and excess volume ∆ തܸ  900 

(lower panel) as functions of the composition ݊. Full black circles are calculated values at 901 

300 K. Red symbols are experimental data by Pabst (1937), solid rhombus; Flint et al. (1941), 902 

empty circles; Cohen-Addad et al. (1967, 1963), cross; Basso et al. (1983), full triangle; 903 

Passaglia and Rinaldi (1984), empty triangle; Sacerdoti and Passaglia (1985), full inverted 904 

triangle; Lager et al. (1989), plus; Cheng et al. (1990), solid circles; Jappy and Glasser 905 

(1991), asterisks; O’Neill et al. (1993), solid square; Ferro et al. (2003), solid pentagon; and 906 

Pöllmann (2012), empty rhombi. Empty squares are the end-members obtained as averages of 907 

various experiments (Cheng et al. 1990, Cohen-Addad et al. 1963, Flint et al. 1941, Lager et 908 

al. 1987a, 2005, 1987b, Novak and Gibbs 1971, Rodehorst et al. 2002). Solid straight lines in 909 

the upper panel connect the end-members. 910 
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3 )

Kat Gro



 35

 912 

Figure 5 (color online) Octahedral shared, ܵ, and unshared, ܷ, edge length (Å) as a function 913 

of composition ݊. Full symbols represent average values for oxygen pairs O െ O, O െ OH and 914 OH െ OH. Gray stripes include weighted means over the three oxygen pairs contributing to ܵ 915 

and ܷ at the various compositions. The vertical line indicates the composition at which the 916 

intersection between the two gray stripes occurs. Red asterisks are experimental data from 917 

Lager et al. (1987a), ݊ ൌ 0; Sacerdoti and Passaglia (1985), ݊ ൌ 2.56; Ferro et al. (2003), 918 ݊ ൌ 4.48; Basso et al. (1983), ݊ ൌ 7.08; and Novak and Gibbs (1971), ݊ ൌ 12. 919 
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 920 

Figure 6 (color online) Tetrahedral δ-O distance (between the barycenter δ and the oxygens 921 

at the vertices) as a function of composition ݊, that is the number of Si atoms in the primitive 922 

cell. Full circles and squares are average δ-O values for SiOସ and HସOସ tetrahedra, 923 

respectively. Error-bars range from the minimum to the maximum δ-O distance in each 924 

tetrahedron. The gray stripe represents average δ-O distances weighted over the SiOସ and the 925 HସOସtetrahedra at each composition. Red asterisks are experimental data from Lager et al. 926 

(1987a), ݊ ൌ 0; Sacerdoti and Passaglia (1985), ݊ ൌ 2.56; Ferro et al. (2003), ݊ ൌ 4.48; 927 

Basso et al. (1983), ݊ ൌ 7.08; and Novak and Gibbs (1971), ݊ ൌ 12. 928 
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 930 

Figure 7 Structure drawing of adjacent HସOସ and SiOସ tetrahedra with bridging CaO଼ 931 

dodecahedron at composition ݊ ൌ 1, where ݊ is the number of silicon atoms in the primitive 932 

cell. Hydrogen interactions with lengths ൏ 2.5 Å are shown as dashed lines. Atomic labeling 933 

notation as in (Novak and Gibbs 1971) and in (Lager et al. 2005). In (Lager et al. 2005) H is 934 

replaced by D. 935 
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 937 

Figure 8 (color online) D
istribution of  SiOସ  (blue) and Hସ Oସ

 (gray) tetrahedra in the pseudo-cubic cell of m
inim

um
 energy SIC

s. The num
ber ݊  

of Si  atom
s refers to the prim

itive cell. A
t ݊ൌ7 , tw

o stable SIC
s w

ith very sim
ilar energy are illustrated: the m

ost stable SIC
 at the bottom

, the 

next one at the top. Tw
o distribution trends are visible, one for ݊൑7  and one for ݊൒7 , in w

hich a structural continuity betw
een the SIC

s is 

recognized. Plots of ∆ܪሺ݊ሻ  (solid lines) feature the tw
o series of SIC

s in different colors: each color corresponds to a continuity region. ∆ܪሺ݊ሻ  
is likely a superposition of tw

o curves w
ith m

inim
a at ݊ൌ4  and ݊ൌ8 , intersecting at ݊ൌ7  (discontinuity point). D

ashed portions of these 

curves are draw
n as an eye guide. 
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 938 
Figure 9 (color online) The tetrahedra distribution of the minimum enthalpy configuration at 939 

composition ݊ ൌ 8  (left) is compared to that of henritermierite, CaଷMnଶሺSiOସሻଶሺHସOସሻ 940 

(right). SiOସ tetrahedra in blue; HସOସtetrahedra in gray. Yellow and brown spheres represent 941 

octahedral cations. Note the agreement between calculated and experimental orientation of 942 

the O െ H groups. 943 
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Table I Distribution of the SICs obtained by substitution of the tetrahedral sites in the garnet 947 

primitive cell. For different numbers ݊  of Si atoms, fractional composition ݔ ൌ 3ሺ1 െ948  ݊/12ሻ, number of SICs ௌܰூ஼, total number of atomic configurations ஼ܰ௢௡௙, and minimum 949 

multiplicity ܯ௠௜௡(corresponding to the maximum symmetry) of the respective classes are 950 

reported. 951 

 ௠௜௡ܯ ௌܰூ஼ ஼ܰ௢௡௙ ݔ ݊

0 3.00 1 1 1 

1 2.75 1 12 12 

2 2.50 5 66 6 

3 2.25 7 220 12 

4 2.00 18 495 3 

5 1.75 20 792 12 

6 1.50 32 924 2 

7 1.25 20 792 12 

8 1.00 18 495 3 

9 0.75 7 220 12 

10 0.50 5 66 6 

11 0.25 1 12 12 

12 0.00 1 1 1 

136 4096 
 952 

  953 
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Table II Lattice parameters ܽ, ܾ, ܿ (Å) and angles ߙ, ,ߚ ݊ of the SICs at composition 954 (degrees) ߛ ൌ 6, where ݊ is the number of ܵ݅ in the primitive cell. The classes are listed in order of 955 

increasing energy, the total variation being 51 mHa. Multiplicities ܯ and lattice types (Lat.), 956 

as deduced from the analysis of the residual symmetry group, are also reported: Cub = cubic, 957 

Tet = tetragonal, Trg = trigonal, Ort = orthorhombic, Mon = monoclinic, Trc = triclinic. 958 

Lattice types might not refer to the conventional definition. Percentage indices of the overall 959 

deviation from the ideal cubic structure are given at the bottom (see text for definitions). 960 

 .Lat ߛ ߚ ߙ ܿ ܾ ܽ ܯ ݈
1 12 12.324 12.349 12.349 90.00 91.29 90.00 Ort 
2 12 12.381 12.294 12.294 90.00 90.00 90.00 Tet 
3 6 12.319 12.319 12.320 90.00 90.00 90.00 Tet 
4 48 12.358 12.303 12.303 90.61 90.57 90.32 Trc 
5 24 12.360 12.360 12.208 89.67 90.33 90.01 Mon 
6 12 12.354 12.348 12.214 90.00 90.00 90.00 Ort 
7 48 12.339 12.276 12.295 90.46 90.03 89.79 Trc 
8 12 12.363 12.321 12.222 90.00 90.00 90.00 Ort 
9 24 12.332 12.332 12.204 90.07 89.93 90.05 Mon 
10 48 12.322 12.273 12.317 89.51 89.71 90.69 Trc 
11 48 12.322 12.310 12.285 89.78 89.29 90.04 Trc 
12 24 12.365 12.264 12.264 90.08 90.33 89.67 Mon 
13 48 12.324 12.296 12.273 89.71 89.98 90.46 Trc 
14 24 12.269 12.312 12.312 89.50 90.70 89.30 Mon 
15 12 12.374 12.298 12.171 90.00 90.48 90.00 Mon 
16 48 12.334 12.243 12.294 89.96 90.00 90.79 Trc 
17 48 12.315 12.314 12.227 90.19 90.29 90.30 Trc 
18 48 12.316 12.318 12.234 89.70 89.97 90.11 Trc 
19 48 12.313 12.238 12.302 89.92 90.37 90.12 Trc 
20 8 12.299 12.299 12.299 89.56 89.56 89.56 Trg 
21 48 12.307 12.295 12.256 89.48 90.35 89.90 Trc 
22 24 12.324 12.260 12.279 89.66 90.00 90.00 Mon 
23 24 12.341 12.242 12.242 89.63 90.03 89.97 Mon 
24 24 12.287 12.287 12.227 90.09 89.91 90.30 Mon 
25 48 12.315 12.286 12.205 89.78 90.41 89.81 Trc 
26 48 12.292 12.304 12.204 89.96 90.30 90.43 Trc 
27 12 12.240 12.240 12.287 90.00 90.00 90.00 Tet 
28 24 12.286 12.286 12.254 90.03 89.97 90.30 Mon 
29 12 12.293 12.225 12.225 90.00 90.00 90.00 Tet 
30 48 12.287 12.234 12.216 90.16 90.19 90.13 Trc 
31 8 12.243 12.243 12.243 90.39 90.39 90.39 Trg 
32 2 12.191 12.191 12.191 90.00 90.00 90.00 Cub 
 |∆ത| 0.27 0.18 0.28 0.22 0.27 0.22  
 ∆ത 0.24 0.00 -0.24 -0.07 0.15 0.08  
 max|∆| 0.76 0.41 0.90 0.68 1.43 0.88  

 961 
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 963 

 964 

Table III Selected distances (Å) and angles (degrees) involving the hydrogen atom at 965 

different compositions ݊. Minimum energy SICs are considered. Notation as in Figure 7. 966 ݊ 0 1 4 6 11 O1 െ H1 0.961 0.961 0.961 0.962 0.963 O3 െ H3 - 0.969 0.965 0.964 0.963 H1 ൉൉൉ O3 2.513 2.335 2.547 2.472 2.412 H1 ൉൉൉ O3Ԣ 2.564 2.593 2.553 2.590 2.677 H3 ൉൉൉ O1Ԣ 2.610 2.077 2.172 2.164 2.191 O1 െ H1 ൉൉൉ O3 138.8 148.0 147.0 137.7 142.6 O1 െ H1 ൉൉൉ O3Ԣ 133.2 134.4 133.4 141.5 117.1 O3 െ H3 ൉൉൉ O1Ԣ 109.0 148.7 132.0 135.9 127.1 δ െ O1 െ H1 36.26 24.21 27.88 28.55 45.52 δ െ O3 െ H3 - 65.46 52.17 53.93 45.52 
 967 
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