Temperature dependence of the velocity-density relation for liquid metals under 1 $\mathbf{2}$ high pressure: implications for the Earth's outer core 3 -REVISION 1-4 Tetsuya Komabayashi^{1,2,*}, Jinya Kato¹, Kei Hirose^{3,4}, Satoshi Tsutsui⁵, Saori Imada¹, $\mathbf{5}$ Yoichi Nakajima⁶ and Alfred Q. R. Baron^{5,6}. 6 $\overline{7}$ 8 ¹ Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 9 Ookayama, Meguro, Tokyo 152-8551, Japan 10 11 ² Now at School of GeoSciences and Centre for Science at Extreme Conditions, 12University of Edinburgh, Grant Institute, The King's Buildings, James Hutton Road, 13Edinburgh EH9 3FE, UK 1415³ Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, 16Meguro, Tokyo 152-8551, Japan 1718 ⁴ Laboratory of Ocean-Earth Life Evolution Research, Japan Agency for Marine-Earth 19Science and Technology, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan 2021⁵ SPring-8, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, 22Sayo-gun, Hyogo 679-5198, Japan 2324⁶ Material Dynamics Laboratory, RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, 25Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan 262728*corresponding author: Tetsuya Komabayashi 29School of GeoSciences and Centre for Science at Extreme Conditions. 30 31University of Edinburgh 32Edinburgh EH9 3FE, UK Tel: +44-(0)131-650-8518 Fax: +44-(0)131-650-7340 33 E-mail: tetsuya.komabayashi@ed.ac.uk 34

36

ABSTRACT

37	The relationship between the sound velocity, density, and temperature of liquid metals
38	is important when one tries to interpret the seismic velocity profile and infer the
39	chemical compositions of the Earth's outer core. We therefore, have experimentally
40	measured the longitudinal acoustic (LA) velocity of liquid indium under high P-T
41	conditions. Also, we examine a Hugoniot data of liquid iron by comparing with an
42	existing equation of state (EoS). The LA velocities of liquid and solid indium at
43	pressures up to 6.7 GPa and temperatures mostly at 710 K were measured using
44	inelastic X-ray scattering (IXS) to probe samples in an externally-heated diamond
45	anvil cell. A thermal EoS for liquid indium derived from existing literature was used to
46	calculate the density for the IXS measurements and to provide an independent check
47	on the sound velocities. The IXS data are consistent with the hydrodynamic LA
48	velocity derived from the liquid EoS, implying that the positive dispersion is minimal
49	in liquid indium. The velocity-density relation for liquid indium derived from the EoS
50	has temperature dependence, implying that Birch's law does not hold for the liquid
51	phase. Similarly we calculated the temperature-velocity-density relation of liquid iron
52	over the Earth's core range from a recently reported EoS. The resulting
53	velocity-density relation is also temperature dependent, indicating that liquid iron thus

54	does not follow Birch's law. The violation of Birch's law implies that the Hugoniot
55	data cannot be directly compared with seismological observations because of the
56	different temperature ranges. Formulation of the temperature-velocity-density of liquid
57	iron-alloys supported by experimental measurements provides better understanding of
58	the thermodynamic state of the Earth's core.

- 59
- 60

INTRODUCTION

The relationship between the sound velocity and the density and/or pressure 61 62 (P) of an Earth-forming material is important when one tries to interpret the seismic velocity profile and infer the chemical compositions of the deep Earth. Birch (1961) 63 empirically found that the longitudinal acoustic (LA) sound velocity of rock-forming 64 materials with the same mean atomic weight scales linearly with density, namely 6566 Birch's law. In other words, compression of a material would give a straight line in a 67 plot of velocity against density. The utility of Birch's law is that the effect of temperature (T) on the sound velocity of the material appears only through the density 68 (i.e., thermal expansion) and therefore, one is not required to examine the temperature 69 effect on the sound velocity of a material, or to consider the temperature in the deep 70 Earth, which is one of the least constrained properties. The applicability of Birch's law 71

72	has been relatively well investigated for solids, particularly iron-alloys, with
73	implications for the inner core (Fiquet et al., 2001; Badro et al., 2007; Antonangeli et
74	al., 2010; Shibazaki et al., 2012). The background physics for Birch's law which holds
75	for crystalline solids up to moderate temperatures, but not close to the melting point,
76	lies in the atomic dynamics which is described within a quasiharmonic approximation
77	(Chung, 1972; Antonangeli et al., 2012).
78	For liquid metals, the velocity-density relation has not been investigated as

much as for solids. Most reported data were obtained at 1 bar, or from shock wave 79 experiments. Recently Sakaiya et al. (2014) conducted a laser-pulse experiment on 80 liquid iron and demonstrated that the density-velocity data along a Hugoniot can be 81 expressed as a straight line, and they suggested that Birch's law might hold for liquid 82iron. They also suggested that Birch's law may apply to various metal liquids, from 83 84 existing Hugoniot data on other metals showing similar changes in the properties 85 between solid and liquid. However, the pressure and temperature simultaneously rise along the Hugoniot in the shock wave experiments, which makes it difficult to separate 86 87 the effects of the two parameters. As such, there remains the possibility that while the Hugoniot velocity-density path in Sakaiya et al. (2014) can be described as the straight 88 line, different Hugoniot paths (e.g., with a pre-heated starting material) may go through 89

90 different trajectories, and the material may not obey Birch's law.

91	Static experiments make it possible to collect data over a wide P-T range and
92	investigate pressure and temperature dependences separately. They are however, even
93	rarer since melting usually requires a high temperature. In addition to the difficulty of
94	attaining simultaneous high-P-T conditions, measuring the sound velocity of materials
95	at static high pressures is challenging. In the present study, we measured the LA
96	velocity of liquid indium under high pressures (to 6.7 GPa) mostly at 710 K, using
97	inelastic X-ray scattering (IXS) from a sample held in an externally resistively-heated
98	diamond anvil cell (DAC). Among metals, indium has been relatively well studied due
99	to its low melting temperature (Hill and Ruoff, 1965; Kamioka, 1983; Shen et al.,
100	2002ab; Alatas et al., 2008). Hill and Ruoff (1965) investigated the LA velocity of
101	liquid indium at atmospheric pressure from 440 to 618 K, using ultrasonic pulse
102	experiments, while IXS has previously been used to investigate sound velocities in
103	ambient conditions (Reichert et al., 2007) and under modest high-pressure conditions
104	(P = 1.7-4.0 GPa and T = 513-633 K) (Alatas et al., 2008). We expanded the <i>P</i> - <i>T</i> range
105	to investigate the temperature-pressure (density)-LA velocity relations, namely if
106	Birch's law is violated or not.

107

IXS has become an accepted technique to measure the sound velocity of

108	polycrystalline solids in a DAC. However interpretation of IXS measurements of
109	liquids can be complicated because many liquids, including metals, show an effect
110	called positive dispersion. This causes the LA velocities estimated from IXS at shorter
111	correlation lengths to exceed the hydrodynamic (long wavelength) sound velocity (e.g.,
112	Scopigno et al., 2005). Another way to derive the velocity-density relation for a liquid
113	is use of a thermal equation of state (EoS) which describes density (molar
114	volume)-pressure-temperature relation (e.g., Komabayashi, 2014). Such an EoS
115	provides the information necessary to calculate the LA velocity for liquids, in the long
116	wavelength limit, assuming the shear modulus is zero. We investigate the presence of
117	the positive dispersion by the comparison of the IXS velocity and the hydrodynamic
118	LA velocity derived from the EoS.
119	In the present work we experimentally measured the LA velocity of liquid
120	indium under high P-T conditions to better understand the temperature-pressure
121	(density)-velocity relation in liquid metals. We also took IXS data of the solid phase

122 for comparison. A thermal EoS for liquid indium was evaluated from existing literature

123 data to calculate the density and the hydrodynamic LA velocity of the liquid phase. On

124 the basis of these results, we discuss the presence of a positive dispersion and

125 temperature dependence of the velocity-density relation in liquid indium. Finally, we

126 examine a Hugoniot data of liquid iron by comparing with an existing EoS and discuss127 if Birch's law holds for liquid iron under terrestrial planetary core conditions.

128

129 EXPERIMENTAL PROCEDURE

130High-pressure and -temperature experiments were conducted in an externally-heated DAC (Noguchi et al., 2013). A pair of diamond anvils with 450-µm 131132culet and a rhenium gasket were used for high pressure generation. Heating was achieved by running a DC current through a platinum heating wire made just outside 133134the diamonds. The temperature was measured using a Pt-13%Rh (R-type) or Alumel-Chromel (K-type) thermocouple placed about 0.5 mm from the sample. The 135temperature uncertainty was less than 15 K at 710 K (Noguchi et al., 2013). Powdered 136indium (99.999% purity) was loaded into the 200-µm hole of the rhenium gasket and 137 138compressed between the diamond anvils. At room temperature, the pressure was determined off-line by the ruby fluorescence technique (Mao and Bell, 1986). At high 139temperature, however, it is necessary to consider the effect of thermal expansion of the 140pressure cell. This was done in two steps, with, first the melting point determined from 141 where the crystal X-ray diffraction (XRD) spots, as seen in an area detector, 142disappeared and instead, diffuse signals appeared. The known melting curve (Shen et 143

159	RESULTS
158	
157	He-filled bag or vacuum chamber in order to reduce background from air-scattering.
156	resolution of 0.45 nm ⁻¹ at FWHM. During measurements, the DAC was held in a
155	transfer Q was set in the range of 3.0-6.4 nm^{-1} (2.1-5.5 nm^{-1} in the sixth run) with a
154	photons were collected by twelve spherical silicon crystal analyzers. The momentum
153	focused to 80 -µm by 80 -µm in the full width at half maximum (FWHM). Scattered
152	error in energy scale is estimated to $\sim 0.5\%$ or better (Fukui et al., 2008). The beam was
151	provide an over-all energy resolution of about 3.0 meV at 17.794 keV. The systematic
150	in Japan. A backscattering geometry with the silicon (999) Bragg reflection was used to
149	IXS experiments were conducted at BL35XU (Baron et al., 2000) of SPring-8
148	where the IXS measurements were made (see Fig.1).
147	extrapolated the P-T trajectory within the liquid stability field to the temperatures
146	on the slope of the melting curve and the temperature uncertainty in the DAC. We then
145	uncertainty of 0.2-0.25 GPa (could be larger at $P > 6$ GPa as discussed later) depending
144	al., 2002a) then allows determination of the pressure at the melting point with the

Six sets of high-*P*-*T* IXS measurements were conducted. Experimental *P*-*T*conditions are shown in Fig. 1 and results are listed in Table 1. Typical XRD images

and IXS spectra are presented in Figs. 2 and 3 respectively.

163	In the first run, the IXS spectra of solid indium were collected at 1 GPa and
164	300 K. The sample was subsequently heated with the external heating system and the
165	melting of indium was observed, namely the solid XRD spots disappeared and diffuse
166	signals appears, at 514 K corresponding to 1.8 GPa based on the existing melting curve
167	(Shen et al., 2002a). We collected the IXS spectra of liquid indium at 1.8 GPa and 517
168	K. After quenching to room temperature, the sample was reheated and the melting took
169	place at 519 K and 1.8 GPa. The pressure at 300 K before the second heating cycle was
170	not measured and therefore assumed to be 1.0 ± 0.5 GPa. The uncertainty was reduced
171	with heating to the melting temperature at which the pressure was precisely known but
172	again increased with further heating. We collected the IXS spectra of liquid indium at
173	2.2 ± 0.2 GPa and 612 K. We further increased the temperature and collected the IXS
174	spectra of the liquid sample at 2.6 ± 0.5 GPa and 710 K. Typical data collection times
175	were about 5 to 6 hours for a measurement of one set of 12 spectra at one $P-T$
176	condition.
177	In the second to sixth runs, we only made a single heating cycle in each run

except for the third run which collected the IXS data only at 5 GPa and 300 K. Similar to the first run, we determined the experimental P-T trajectory from the pressures at

180	300 K and at the melting points in order to estimate the pressures at the IXS
181	measurements of the liquid state. In the fourth and fifth runs, we heated the sample
182	without collecting the data at 300 K and took the IXS spectra of the liquid at high
183	temperatures. In the sixth run the pressure before heating was 3.3 GPa but we observed
184	melting at 531 K corresponding to 2.3 GPa, which indicates the pressure was dropped
185	during heating. This makes it difficult to estimate the precise pressure upon further
186	heating in the liquid stability field because, in an external heating system, the pressure
187	would remarkably be reduced once it starts dropping. Hence the nominal pressures for
188	the sixth run listed in Table 1 and illustrated in Fig. 1 should be taken as the maximum
189	values.
190	Fig. 3 shows the IXS spectra of the fifth run at 6.5 GPa and 710 K. Analysis of
191	the data of the liquid phase was made with the damped harmonic oscillator (DHO)
192	model (Fåk and Dorner, 1997) convolved with the measured resolution function. The
193	peak at the zero-energy transfer corresponds to the quasi-elastic contribution whereas
194	the two smaller side peaks are the Stokes and anti-Stokes LA phonon signals of liquid
195	indium. These inelastic contributions shift toward higher energy transfer with

increasing *Q* value, so that the inelastic contribution from diamond moves out of the energy transfer window for Q > 4 nm⁻¹. Fig. 4 shows the phonon excitation energy (*E*) 198 as a function of Q (i.e., dispersion) for liquid indium at 710 K and different pressures.

199	In all cases, the phonon excitation energy was coincident with the peak of the
200	current-current correlation function calculated from the DHO model; a comparison is
201	shown in Fig. 5. Data analysis of the solid phase was made with a Pseudo-Voigt
202	function that reflects the resolution function.

203

The long-wavelength, $Q \rightarrow 0$ limit, LA velocity was derived from the fitting 204 of the Q-E dispersion data. We analyzed the IXS data of liquid indium with two fitting procedures. An example with the data at 2.6 GPa and 710 K (1st run) is described here 205and shown in Fig. 5. First, we fit only the $Q \sim 3 \text{ nm}^{-1}$ with a line through the origin. 206 The fitting yielded the LA velocity to be 2594 ± 44 m/s and the resulting dispersion 207208line is shown in Fig. 5. In order to understand the dispersion relations over the entire Q209ranges in the present IXS, the second fitting was based on a sine function in analogy to 210crystalline solids. We take ~

$$\omega(Q) = c_0 Q_{ZB} \sin\left[\frac{\pi}{2} \frac{Q}{Q_{ZB}}\right] (1 + f(Q))$$

where c_0 is the long-wavelength sound speed, Q_{ZB} is the position of the pseudo-zone 211212boundary (in this case a free fit parameter) and f(Q) gives the magnitude of the positive dispersion. f(Q) is then taken to have zero magnitude and derivative in the limit of Q 213 \rightarrow 0, returning c_0 as the required hydrodynamic limit. For the purposes of analysis of 214

the present data set, we assume that, over the range of momentum transfers and thermodynamic conditions measured here, the form of f(Q) is independent of the thermodynamic conditions, allowing us to make relative comparisons of the sound speed. Then our best estimate of the velocity, for the purposes of a relative comparison is given by

220
$$E [\text{meV}] = 4.192 \times 10^{-4} V_{\text{P}} [\text{m/s}] \times Q_{\text{ZB}} [\text{nm}^{-1}] \sin \left[\frac{\pi}{2} \frac{Q [\text{nm}^{-1}]}{Q_{\text{ZB}} [\text{nm}^{-1}]}\right]$$
(1)

where $V_{\rm P}$ is an experimental $Q \rightarrow 0$ limit of the IXS data, for LA velocity but does not necessarily coincide with c_0 for the liquid phase due to the possible presence of positive dispersion.

224Twelve spectra recorded at eight distinct momentum transfers have been used for the fitting to constrain $V_{\rm P}$ and $Q_{\rm ZB}$ for each set of thermodynamic conditions in 225most of the runs. The fitting of the IXS data at 2.6 GPa and 710 K yielded $V_{\rm P} = 2637 \pm$ 22622742 m/s which is slightly faster but fairly consistent with the result of the linear function fitting, suggesting our approximation of f(Q)-constant is reasonable for Q > 3 nm⁻¹. 228229The fitted dispersion curve is also shown in Fig. 5. Thus, we made these two fitting 230procedures on the IXS data at the other *P*-*T* conditions. For the sixth run, we collected IXS data at Q = 2.1-5.5 nm⁻¹. However, the data at Q ~2 nm⁻¹ were not well fitted and 231the phonon peaks were not resolved due to overlapping with the quasi-elastic peak. 232

233	Hence we used nine spectra at $Q = 3.2-5.5$ nm ⁻¹ for the fitting. Note that in the
234	following discussions, the IXS velocity for liquid indium is from the linear fitting.
235	For the solid phase, in contrast to the liquid phase, $V_{\rm P}$ in the equation (1)
236	corresponds to c_0 , and therefore the sine fit was employed to the <i>Q</i> - <i>E</i> dispersion data.
237	The LA wave velocities are summarized in Table 1.
238	Fig. 6 summarizes the LA velocity for both liquid and solid indium from IXS
239	against the pressure together with the previous IXS data (Alatas et al., 2008). Our
240	measurements are fairly consistent with the data of Alatas et al. (2008) confirming the
241	precision of both experimental works.
242	
243	DISCUSSION
244	Thermal equation of state for liquid indium
245	In order to discuss the velocity-density relation of liquid indium and to
246	calculate c_0 , within the thermodynamic framework, we derived a thermal EoS for
247	liquid indium based on existing literature. A Vinet EoS was employed,

248
$$P_{430} = 3K_{0,430} x^{-2} (1-x) \exp\left[\frac{3}{2} (K'-1)(1-x)\right]$$
(2)

249 where
$$\mathbf{x} \equiv (V_{P,430}/V_{0,430})^{1/3}$$
 and P_{430} , $V_{P,430}$, $K_{0,430}$, K' , and $V_{0,430}$ are the pressure at 430 K

that is the melting temperature at 1 bar, the molar volume at P_{430} , the isothermal bulk

251 modulus, its pressure derivative, and the molar volume at 1 bar and 430 K, respectively.

252 The molar volume at *P*-*T* of interest,
$$V_{P,T}$$
 is expressed as,

253
$$V_{P,T} = V_{P,430} \exp \int_{430}^{T} \alpha_P \, \mathrm{d}T$$
 (3)

where α_P is the thermal expansion coefficient at *P* of interest. We express α_P as a function of pressure in the framework of the Anderson-Grüneisen expression (Anderson

256 et al., 1992), described as,

257
$$\left(\frac{\alpha_P}{\alpha_0}\right) = \left(\frac{V_{P,430}}{V_{0,430}}\right)^{\delta_T}$$
 (4)

where α_0 is the thermal expansion coefficient at 1 bar. The parameter δ_T is so-called Anderson-Grüneisen parameter. δ_T may depend on the volume but is assumed to be constant in this study because the compression range studied here is small (to 13%) (Chopelas, 1990; Boehler et al., 1990).

262	Kamioka (1983) evaluated $V_{0,430}$, $K_{0,430}$, and α_0 to be 16.33 cm ³ mol ⁻¹ , 32.8
263	GPa, and $12*10^{-5}$ K ⁻¹ , respectively. He also derived the temperature dependence of the
264	bulk modulus (i.e., dK/dT) at 1 bar to be -0.018 GPa K ⁻¹ . We evaluated δ_T to be 5.5 ±
265	0.2 to yield this dK/dT value. The remaining parameter, K' for the liquid phase was
266	evaluated to be 5.5 ± 0.1 so that the molar volume and bulk modulus for liquid indium
267	at 300 K (i.e., hypothetical liquid) are larger and smaller respectively, than the solid
268	phase (Takemura, 1991) in the pressure range studied here. The compression curves for

269	liquid indium calculated from those parameters are drawn in Fig. 7 together with
270	experimental data for liquid and solid for comparison (Takemura, 1991; Shen et al.,
271	2002b). From an X-ray absorption method, Shen et al. (2002b) estimated the density of
272	liquid indium under high <i>P</i> - <i>T</i> conditions and reported its compression behavior at 710
273	K up to 8.5 GPa. Shen et al. (2002b)'s liquid data at 710 K however gives smaller
274	volumes than solid indium at 300 K at high pressures (Fig. 7), indicating that their data
275	did not well constrain the liquid volume. Using the newly constrained thermoelastic
276	parameters, we calculated the density of liquid indium at the IXS measurements.
277	Results are listed in Table 1.
278	From the EoS, we calculated c_0 of liquid indium from

$$279 c_0 = \sqrt{\frac{K_S}{\rho}} (5)$$

280where K_S and ρ are the adiabatic bulk modulus and density, respectively. Since the EoS 281yields the isothermal bulk modulus (K_T) , conversion of it to K_S is necessary which is 282expressed as,

$$283 K_S = K_T (1 + \underline{\alpha}_P) T) (6)$$

284where γ is the Grüneisen parameter. For liquid indium, γ is 2.5 at 430 K and 1 bar (Kamioka, 1983). As well as δ_T , we assumed the constant γ at any given *P*-*T* condition

286because of the low compression range studied here.

287

Temperature dependence of the velocity-density relation in liquid indium

289	Fig. 8 shows density-velocity relations for liquid indium with previously
290	published data of various measurements for comparison (Ultasonic: Hill and Ruoff,
291	1965; Kamioka, 1983; IXS: Alatas et al., 2008; this study). The liquid densities were
292	derived from the EoS constructed in this study. From the EoS parameters constructed
293	above, we also calculated c_0 for liquid indium at 500, 700, and 900 K (Fig. 8). The
294	calculated isothermal lines clearly indicate that the velocity-density relation is
295	temperature dependent, meaning that Birch's law does not hold; if Birch's law is
296	applicable, every isothermal line must be the same straight line.
297	The velocity obtained from the EoS is, in more detail, compared with that
298	from the IXS measurements in Fig. 9. The velocities from the IXS are fairly consistent
299	with the calculated results, i.e., c_0 . Note that the data of the sixth run can be more

300 consistent with c_0 since they could overestimate the pressure (and therefore density) as

301 stated above; if the pressure is lowered, the density will be accordingly lowered, and

the resulting velocity will be faster. The IXS data at 6.5 and 6.7 GPa show slightly

303 faster velocities than the calculations by 2.3-2.9% (considering the uncertainties).

304 Possible explanations for those deviations include (1) another source of uncertainty

305	which is in the existing melting curve (Shen et al., 2002a) and (2) positive dispersion
306	(Scopigno et al., 2005). (1) The melting curve of indium was not tightly constrained
307	above 6 GPa so that there might be an additional uncertainty in the determination of
308	the melting pressure in this study (Fig. 1). The pressure of the 6.7 GPa and 710 K data
309	could be 7.2 GPa when the additional uncertainty is considered, which reduces the
310	above deviation to 1.1%. (2) Liquid phases could behave like solids near the melting
311	points and such solid-like liquids often show the positive dispersion (Scopigno et al.,
312	2000). Nevertheless, the small deviation of the IXS velocity from c_0 implies the effect
313	of the positive dispersion is minimal. The overall agreement in Fig. 9 suggests that the
314	IXS data yield c_0 and that the temperature dependence shown by the EoS calculations
315	is validated by the IXS measurements.
316	

317 Velocity-density relation in liquid iron and the Earth's outer core

- We have demonstrated that the temperature dependent velocity-density relation for liquid indium derived from the EoS is supported by our IXS measurements. In this section, we will derive the velocity-density relation for liquid iron from an existing EoS and compare it with shock wave experimental data.
- 322 Komabayashi (2014) established a thermal EoS for liquid iron by constructing

323	a self-consistent thermodynamic database in the system Fe-FeO which reproduces the
324	latest static experimental data on solid phase relations, end-member melting
325	temperatures, binary melting relations, and EoS for solid phases. From the Gibbs free
326	energy calculations, he also obtained γ which is needed for converting K_T to K_S
327	(equation 6). As employed on liquid indium, we made velocity-density plots for liquid
328	iron at 136-350 GPa and 5000-7000 K from the database of Komabayashi (2014) (Fig.
329	10). Note that we ignored the stability of liquid in the calculations, namely the
330	properties were calculated partly in the solid iron stability as well. Existing shock wave
331	data for liquid iron are also plotted in Fig. 10 (Brown and McQueen, 1986; Sakaiya et
332	al., 2014). Same as for liquid indium, the calculated velocity-density relation for liquid
333	iron is temperature dependent, indicating that Birch's law does not hold. Moreover the
334	slopes of the isothermal line are different from that of the shock wave Hugoniot path.
335	Each Hugoniot data point however is consistent with the calculated velocity-density
336	lines at least up to 7228 K (Brown and McQueen, 1986) (Fig. 10). These comparisons
337	imply that the calculated isothermal lines are consistent with the shock wave data and
338	they clearly show that Birch's law does not hold for liquid iron. This suggests that
339	Sakaiya et al. (2014) would have misinterpreted the Hugoniot data and concluded that
340	the velocity-density relation for liquid iron would follow Birch's law. Along each

isothermal compression and each Hugoniot path, the velocity-density plot can be
expressed as a straight line, but this does not necessarily mean that the material follows
Birch's law.

344	Fig. 11 shows pressure-velocity relations of liquid iron over the outer core
345	pressure at different temperatures, which were calculated from the data in
346	Komabayashi (2014). The P - c_0 relation does not show temperature dependence, which
347	confirms the violation of Birch's law since the density changes as the temperature is
348	changed. The same results were obtained from a shock wave EoS (Anderson and
349	Ahrens, 1994) and first-principles calculations (Vočadlo et al., 2003). Note that the
350	negligible temperature dependence in the P - c_0 relation in pure iron would not be
351	relevant to all the metals. Indeed liquid indium shows temperature dependence in the
352	P - c_0 relation (Fig. 6).

Violation of Birch's law in liquid iron implies that the Hugoniot line cannot be directly compared with seismological data because the temperatures in the Hugoniot (6000-23000 K) were different from those in the core (~5000-6000 K). Contrary, the isothermal compression lines at 5000-7000 K can be compared with the seismological data such as the Preliminary Reference Earth Model (PREM) (Dziewonski and Anderson, 1981). Fig. 10 shows the Hugoniot data and calculated isothermal

359	compression lines for pure iron together with the outer core properties of the PREM.
360	The pure iron data are placed at the high density and low velocity side of the outer core
361	line, and this mismatch can be accounted for by the presence of light elements in the
362	core. However the Hugoniot line is steeper than the PREM while the isothermal lines
363	are gentler. Hence the choice of pure iron line significantly affects the resulting nature
364	of the light elements in the core.

- 365
- 366

IMPLICATIONS

The above discussions clearly indicate that Birch's law is not applicable for 367 liquid indium and iron. Many crystalline solids follow Birch's law because the atomic 368 369 dynamics can be described within the quasiharmonic approximation (Chung, 1972; Antonangeli et al., 2012). For liquids it would not be reasonable to assume the same 370371approximation, although detailed investigations of the atomic dynamics should be 372made in the future. As such, temperature dependent velocity-density relation should be a universal nature for the liquid metals. 373 374Assuming that light element-bearing iron alloys do not follow Birch's law either, the temperature effect on the velocity-density relation for those alloys should be 375

376 clarified. A potential approach is to evaluate a thermal EoS (+ γ) and test it with

377	experimental measurements such as the IXS, as was employed in this study. Recently,
378	Umemoto et al. (2014) conducted first-principles calculations on the sound velocity of
379	iron-sulfur alloys and tested it by comparing with high-P-T IXS measurements. For
380	extremely high-P-T conditions such as corresponding to the cores of super-Earths, EoS
381	can be tested with shock wave experimental data (e.g., Brown and McQueen, 1986;
382	Sakaiya et al., 2014). Formulation of the temperature-velocity-density of liquid
383	iron-alloys supported by experimental measurements as was shown in this study
384	provides better understanding of the thermodynamic state of the Earth's core.
385	
386	Acknowledgments
387	An anonymous reviewer is acknowledged for his/her constructive comments which
388	greatly improved the manuscript. The synchrotron IXS experiments were performed at
389	BL35XU, SPring-8 (Proposal No. 2011A1300 and 2011B1336). This research was
390	supported in part by the JSPS Grant-in-Aid for Scientific Research and in part by the

391 University of Edinburgh.

392 References

- Alatas, A., Sinn, H., Zhao, J.Y., Said, A.H., Leu, B.M., Sturhahn, W., Alp, E.E., Shen,
 G.Y., and Prakapenka, V.B. (2008) Experimental aspects of inelastic X-ray
 scattering studies on liquids under extreme conditions (P-T). High Pressure
 Research, 28, 175-183.
- Anderson, W.W., and Ahrens, T.J. (1994) An equation of state for liquid iron and
 implications for the Earth's core. Journal of Geophysical Research, 99,
 400 4273-4284.
- Anderson, O.L., Oda, H., and Isaak, D.G. (1992) A model for the computation of
 thermal expansivity at high compression and high temperatures: MgO as an
 example. Geophysical Research Letters, 19(19), 1987–1990,
 doi:10.1029/92GL02145.
- Antonangeli, D., Komabayashi, T., Occelli, F., Borissenko, E., Walters, A.C., Fiquet,
 G., and Fei, Y.W. (2012) Simultaneous sound velocity and density
 measurements of hcp iron up to 93 GPa and 1100 K: An experimental test of
 the Birch's law at high temperature. Earth and Planetary Science Letters, 331,
 210-214.
- Antonangeli, D., Siebert, J., Badro, J., Farber, D.L., Fiquet, G., Morard, G., and
 Ryerson, F.J. (2010) Composition of the Earth's inner core from high-pressure
 sound velocity measurements in Fe-Ni-Si alloys. Earth and Planetary Science
 Letters, 295, 292-296.
- Badro, J., Fiquet, G., Guyot, F., Gregoryanz, E., Occelli, F., Antonangeli, D., and
 Matteo, d.A. (2007) Effect of light elements on the sound velocities in solid
 iron: implications for the composition of Earth's core. Earth and Planetary
 Science Letters, 254, 233-238.
- Baron, A.Q.R., Tanaka, Y., Goto, S., Takeshita, K., Matsushita, T., and Ishikawa, T.
 (2000) An X-ray scattering beamline for studying dynamics. Journal of Physics
 and Chemistry of Solids, 61, 461-465.
- Birch, F. (1961) The velocity of compressional waves in rocks to 10 kilobars, part 2.
 Journal of Geophysical Research, 66, 2199-2224.
- Boehler, R., von Bargen, N., and Chopelas, A. (1990) Melting, thermal expansion, and
 phase transitions of iron at high pressures. Journal of Geophysical Research, 95,
 21731-21736.
- 426 Brown, M.J., and McQueen, R.G. (1986) Phase transitions, Grueneisen parameter, and

6/22

427	elasticity for shocked iron between 77 GPa and 400 GPa. Journal of							
428	Geophysical Research, 91, 7485-7494.							
429	Chopelas, A. (1990) Thermal expansion, heat capacity, and entropy of MgO at mantle							
430	pressures. Physics and Chemistry of Minerals, 17, 142-148.							
431	Chung, D.H. (1972) Birch's Law - Why is it so good. Science, 177, 261-263.							
432	Dziewonski, A.M., and Anderson, D.L. (1981) Preliminary reference Earth model.							
433	Physics of the Earth and Planetary Interiors, 25, 297–356.							
434	Fåk, B., and Dorner, B. (1997) Phonon line shapes and excitation energies. Physica B,							
435	234, 1107-1108.							
436	Fiquet, G., Badro, J., Guyot, F., Requardt, H., and Krisch, M. (2001) Sound velocities							
437	in iron to 110 gigapascals. Science, 291, 468-471.							
438	Fukui, H., Katsura, T., Kuribayashi, T., Matsuzaki, T., Yoneda, A., Ito, E., Kudoh, Y.,							
439	Tsutsui, S., and Baron, A.Q.R. (2008) Precise determination of elastic constants							
440	by high-resolution inelastic X-ray scattering. Journal of Synchrotron Radiation,							
441	15, 618-623.							
442	Hill, J.E., and Ruoff, A.L. (1965) Velocity of sound measurements in liquid metals.							
443	Review of Scientific Instruments, 36, 1465-1472.							
444	Kamioka, H. (1983) Change of ultrasonic wave velocity in indium near the melting							
445	point. Journal of the Physical Society of Japan, 52, 2784-2789.							
446	Komabayashi, T. (2014) Thermodynamics of melting relations in the system Fe-FeO at							
447	high pressure: Implications for oxygen in the Earth's core. Journal of							
448	Geophysical Research, 119, DOI: 10.1002/2014JB010980.							
449	Mao, H.K., and Bell, P.M. (1986) Calibration of the ruby pressure gauge to 800 kbar							
450	under quasi-hydrostatic conditions. Journal of Geophysical Research, 91,							
451	4673-4676.							
452	Noguchi, M., Komabayashi, T., Hirose, K., and Ohishi, Y. (2013) High-temperature							
453	compression of CaSiO ₃ perovskite to lowermost mantle conditions and its							
454	thermal equation of state. Physics and Chemistry of Minerals, 40,							
455	doi:10.1007/s00269-00012-00549-00261.							
456	Reichert, H., Bencivenga, F., Wehinger, B., Krisch, M., Sette, F., and Dosch, H. (2007)							
457	High-frequency subsurface and bulk dynamics of liquid indium. Physical							
458	Review Letters, 98, 096104.							
459	Sakaiya, T., Takahashi, H., Kondo, T., Kadono, T., Hironaka, Y., Irifune, T., and							
460	Shigemori, K. (2014) Sound velocity and density measurements of liquid iron							
461	up to 800 GPa: a universal relation between Birch's law coefficients for solid							
462	and liquid metals. Earth and Planetary Science Letters, 392, 80-85.							

463	Scopigno, T., Balucani, U., Ruocco, G., and Sette, F. (2000) Density fluctuations in							
464	molten lithium: inelastic x-ray scattering study. Journal of Physics: Condensed							
465	Matter, 12, 8009-8034.							
466	Scopigno, T., Ruocco, G., and Sette, F. (2005) Microscopic dynamics in liquid metals:							
467	The experimental point of view. Reviews of Modern Physics, 77, 881-933.							
468	Shen, G.Y., Sata, N., Taberlet, N., Newville, M., Rivers, M.L., and Sutton, S.R.							
469	(2002a) Melting studies of indium: determination of the structure and density							
470	of melts at high pressures and high temperatures. Journal of Physics:							
471	Condensed Matter, 14, 10533-10540.							
472	Shen, G.Y., Sata, N., Newville, M., Rivers, M.L., and Sutton, S.R. (2002b) Molar							
473	volumes of molten indium at high pressures measured in a diamond anvil cell.							
474	Applied Physics Letters, 81, 1411-1413.							
475	Shibazaki, Y., Ohtani, E., Fukui, H., Sakai, T., Kamada, S., Ishikawa, D., Tsutsui, S.,							
476	Baron, A.Q.R., Nishitani, N., Hirao, N., and Takemura, K. (2012) Sound							
477	velocity measurements in dhcp-FeH up to 70 GPa with inelastic X-ray							
478	scattering: Implications for the composition of the Earth's core. Earth and							
479	Planetary Science Letters, 313, 79-85.							
480	Takemura, K. (1991) Effect of pressure on the lattice distortion of indium to 56 GPa.							
481	Physical Review B, 44, 545-549.							
482	Umemoto, K., Hirose, K., Imada, S., Nakajima, Y., Komabayashi, T., Tsutsui, S., and							
483	Baron, A.Q.R. (2014) Liquid iron-sulfur alloys at outer core conditions by							
484	first-principles calculations. Geophysical Research Letters, 41,							
485	doi:10.1002/2014GL061233.							
486	Vočadlo, L., Alfe, D., Gillan, M. J., and Price, D. G. (2003) The properties of iron							
487	under core conditions from first principles calculations. Physics of the Earth							
488	and Planetary Interiors, 140, 101-125.							
489								
490								
491								
492								
493								

494 Figure captions

495

496	Figure 1. Experimental <i>P-T</i> conditions. The pressures were determined by the ruby
497	fluorescence at 300 K and estimated from melting point at high temperature. The
498	squares show the P - T conditions of the IXS measurements. The dashed line represents
499	the <i>P</i> - <i>T</i> trajectory in each run. Note that in the first run, we operated two heating cycles
500	and the error bars apply to the second cycle. In the sixth run, the nominal pressures for
501	the IXS measurements should be taken as the maximum because the pressures might
502	have been lower than the P - T path. The melting curve of indium is from Shen et al.
503	(2002a) (the error bar is applied above 6.5 GPa).
504	

Figure 2. A series of XRD images collected in the 2nd run. At 300 K, three diffraction rings (101, 002, and 110) from solid indium were observed. At 603 K, the solid rings became spotty due to grain growth. At 617 K, the major diffraction spots from solid indium disappeared and instead a clear diffuse signal appeared indicating presence of liquid. At 652 K, only the liquid diffuse signal was observed. Note that the thin diffraction rings were from instruments on the X-ray path, not from the sample. The contrast in each image was adjusted so that all the images would show similar 512 background-signal intensity ratios.

513

- 514 Figure 3. IXS spectra of liquid indium at 6.5 GPa and 710 K in the fifth run. The
- 515 momentum transfer (Q) values are indicated (in nm⁻¹). The peak at 22 meV and Q =

 $3nm^{-1}$ is the transverse acoustic (TA) mode from the diamond anvils.

517

- 518 **Figure 4.** *Q-E* plots of liquid indium at different pressures at 710 K (This study) and at
- 519 1 bar and 443 K (Reichert et al., 2007).

520

521 **Figure 5**. Dispersion relation of liquid indium at 2.6 GPa and 710 K. The IXS data was

analyzed by the DHO model and current-current correlation function, J(Q, E), model,

- which are consistent each other. The two solid lines are fitted results with a linear and
- 524 sine functions.

525

Figure 6. LA velocity of indium from the IXS together with the existing data (Alatas et al., 2008). The colored numbers are experimental temperatures. The open symbols are the IXS data in the sixth run in which the pressure should be considered to be the maximum estimate. Isothermal lines at 500, 700, and 900 K calculated from the EoS are also plotted.

531

532	Figure 7. Compression curves of liquid indium calculated from the EoS. Experimental
533	data are also plotted: symbol, liquid at 710 K (Shen et al., 2002b); dashed line, solid at
534	300 K (Takemura, 1991). Since Shen et al. (2002b)'s liquid data show smaller volumes
535	than the solid phase at high pressures, we do not use their data for the fitting of liquid
536	EoS.
537	
538	Figure 8. Velocity-density relations of liquid indium. Data sources are Hill and Ruoff
539	(1965), Alatas et al. (2008), Kamioka (1983), and this study. The experimental
540	temperatures are plotted (color). The open squares are the IXS data in the sixth run in
541	which the density should be considered to be the maximum estimate. Isothermal
542	velocities from the EoS in this study are also calculated at 500, 700, and 900 K.
543	

Figure 9. Comparison in LA velocity for liquid indium between the IXS measurements and calculations with the EoS (c_0). The numbers are experimental temperatures. The uncertainty attached to the symbols incudes those in the EoS and in the experiments. The open symbols are the IXS data in the sixth run in which the pressure should be the

548	maximum estimate; if the experimental pressures were lower, the density will be
549	smaller and hence, the velocity difference between the IXS and EoS will be smaller.
550	
551	Figure 10. Velocity-density relations of liquid iron. The calculated LA velocities (c_0)
552	at 136-350 GPa and 5000, 6000, and 7000 K (Komabayashi, 2014) are plotted together
553	with shock wave experimental data (Brown and McQueen, 1986; Sakaiya et al., 2014).
554	The numbers are the temperatures. The LA velocity from the EoS is consistent with the
555	shock wave data points to 7228 K (Brown and McQueen, 1986). The isothermal lines
556	clearly show the temperature dependent velocity-density relations. The outer core data
557	(PREM) is also plotted (Dziewonski and Anderson, 1981).
558	
559	Figure 11. Pressure-velocity relations for liquid iron. The data source is Komabayashi
560	(2014). The relations show no temperature dependence from 5000 to 7000 K, which
561	violates Birch's law.
562	
563	
564	

	Pressure	Temperature	Vp (IXS with	Vp (IXS with	Vp	Density	Phase
		remperature	sine fit)	linear fit)	(EoS) ^a	Density	1 mase
	GPa	K	m/s	m/s	m/s	g/cm ³	
1st run	1.0	300	2492 ± 38	-	-	7.46 ^b	solid
	1.8	517	2546 ± 43	2544 ± 46	2490	7.32	liquid
quench and							
reheat							
	2.2 ±	(12	0505 + 10	0.570 + 44	0.510	7.00	1 1
	0.2 ^c	612	2585 ± 42	$25/3 \pm 44$	2512	7.33	liquid
	2.6 ±		0/07 - 10			5.00	
	0.5 ^c	710	2637 ± 42	2594 ± 44	2529	7.33	lıquıd
2nd run	3.0	300	2706 ± 38	-	-	7.76 ^b	solid
	4.9	710	2800 ± 42	2766 ± 44	2743	7.70	liquid
	4.6	650	2833 ± 42	2765 ± 44	2732	7.70	liquid
3rd run	5.0	300	2946 ± 48	-	-	8.02 ^b	solid
4th run	6.7	710	3116 ± 67	3023 ± 34	2884	7.96	liquid
5th run	6.5	710	3078 ± 46	3040 ± 46	2873	7.94	liquid
		-	-	-			
6th run	2.1 ^d	573	2451 ± 58	2403 ± 41	2488	7.34	liquid
	1.6 ^d	673	2438 ± 58	2385 ± 41	2411	7.18	liquid
	1.2 ^d	773	2280 ± 57	2251 ± 41	2331	7.03	liquid
	0.5 ^d	923	2259 ± 57	2216 ± 41	2212	6.76	liquid

Table	1.	Experimental	conditions and	sound	velocity	and	density	of indiun	n.

^a The sound velocity was obtained from the equation of state for the liquid phase.

^b The solid density was derived from the equation of state by Takemura (1991).

^c Uncertainty is large because the pressure at 300 K is unknown.

^d Nominal pressure and density are maximum estimates.

figure 1

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5294

figure 4

figure 5

figure 6

figure 7

figure 8

figure 9

figure 10

figure 11