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ABSTRACT 13 

The transformation from a tetrahedral four-component system to an XYZ-orthogonal 14 

coordinate axis system has been solved using the geometry of a tetrahedron. If a four 15 

component mixing ratio is described as t, l, r, and f (here, t + l + r + f = 1), the 16 

transforming equations can be written as, x = (r + 1 - l) / 2, ݕ ൌ  √ଷଶ ݐ  √ଷ ݂, and 17 

ݖ ൌ  √ଷ ݂. A tetrahedral plot diagram can be easily constructed using the algorithms 18 
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described in this paper. We present an implementation of these algorithms in a 19 

custom-designed Microsoft Excel spreadsheet, including adjustable viewing angles for 20 

the tetrahedral plot. This will be of general utility for petrological or mineralogical 21 

studies of quaternary systems.  22 

Keywords: Tetrahedral diagram, triangular diagram, quaternary systems, phase 23 

diagram, three-dimension, trilinear coordinates, tetrahedron 24 
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INTRODUCTION 26 

Tetrahedral diagrams are commonly used in petrology and mineralogy, for example, 27 

the Di-Fo-Ne-Qz diagram for basaltic rocks (Yoder and Tilley 1962), the An-Ab-Or-Qz 28 

diagram for granitic rocks (Winkler 1979), and four-component metamorphic phase 29 

diagrams (e.g., Thompson 1957; Spear 1993). The algorithm of transformation from a 30 

tetrahedral four-component system to an XYZ-orthogonal coordinate system has been 31 

addressed by several studies (e.g., Korzhinskii 1959; Mertie 1964; Arem 1971; Spear 32 

1980; Armienti 1986; Maaløe et al. 2005; Armienti and Longo 2011). These authors 33 

solved the transformation by vector and/or linear algebra using computer programs. 34 

Computer applications for tetrahedral plots have also been presented by many authors 35 

(e.g., Spear et al. 1982; Armienti 1986; Torres-Roldan et al. 2000; Ho et al. 2006; 36 

Armienti and Longo 2011). Such applications are run on programing language 37 

platforms such as FORTRAN, BASIC, and JAVA. 38 

This paper describes a different solution of transformation from a tetrahedral to an 39 

orthogonal coordinate system. It has been solved using the geometry of a tetrahedron, 40 

and by combining three simple equations. By this method, a tetrahedral diagram can be 41 

easily constructed, and without programing language; it can be designed with a spread 42 

sheet application (e.g. Microsoft Excel). 43 
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 44 

COORDINATE TRANSFORMATION 45 

Ternary system to orthogonal coordinate system 46 

Although the main theme of this paper concerns tetrahedral diagrams, it is first 47 

necessary to explain a triangular diagram. The three components named here are Top 48 

(T), Left (L), and Right (R), respectively. The point of interest is referred to as P (Fig. 1), 49 

where the mixing ratios corresponding to P are expressed as t, l, and r (here, t + l + r = 50 

1). The side length of the equilateral triangle is set to 1. The apex L conforms to the 51 

origin of the X-Y orthogonal coordinate system. In this case, the coordinates (x, y) of 52 

vertices T, L, and R are (0.5，√ଷଶ  ), (0, 0), and (0, 1), respectively. 53 

Since the x-coordinate of P is a center between L’ and R’ in Figure 1, then, 54 

x = (r + 1 - l) / 2 (1a) 55 

The y-coordinate of P can be calculated by the height ratio of the equilateral triangle, 56 

namely; 57 

ݕ ൌ √ଷଶ  58 (1b)  ݐ

The triangular diagram can be constructed using a frame line (0.5，√ଷଶ  ) - (0, 0) - (0, 1) 59 

and plot data (x, y). According to equations 1a and 1b, if the t + l + r = 1 condition is 60 

met, a negative component is also allowable. For example (t, l, r) = (-0.1, 0.5, 0.6) is 61 
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also true. In this case, the point plots outside of the triangle. For example, in AFM 62 

diagram (Thompson 1957), the composition of biotite, projected from muscovite, plots 63 

outside the triangle. 64 

An example of a triangular diagram constructed using Microsoft Excel can be 65 

downloaded as a supplementary electronic file1. 66 

 67 

Quaternary system to orthogonal coordinate system 68 

The Z-axis extends from the origin of the X-Y orthogonal coordinate system (Fig. 2). 69 

The four components are named here as Top (T), Left (L), Right (R), and Front (F), 70 

respectively. Let TLRF be a regular tetrahedron. The base triangle TLR is same as that 71 

of the triangular diagram (Fig. 1). The point of interest is again named P, where the 72 

mixing ratio of P is described as t, l, r, and f (here, t + l + r +f = 1). The side length of 73 

the equilateral triangle is set to 1. The apex L conforms to the origin of the X-Y-Z 74 

orthogonal coordinate system. The coordinates (x, y, z) of vertices T, L, R, and F are（0.5, 75 

√ଷଶ , 0），（0, 0, 0），（1, 0, 0），（0.5, √ଷ , √ଷ  ）, respectively, as dictated by the geometrical 76 

feature of a regular tetrahedron (Fig. 2; see also Fig. A1 of appendix1). 77 

First, the relationship between the coordinate x and the components L and R is 78 

illustrated. P lies on the line F’T’, which is the intersection of the r and l isopleth 79 
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surfaces. Since the spatial figure T’L’R’F’ is also a regular tetrahedron, the line F’T’ is 80 

parallel to the YZ-plane. Because the x coordinate of P is the same as T’, x is given by 81 

equation 1a, 82 

x = (r + 1 - l) / 2 (2a) 83 

The second consideration concerns the relation of y and T. The surface FLR, which is 84 

the t = 0 plane, is not parallel with XZ-plane. Since the y-coordinate of apex F is √ଷ , the 85 

y-coordinate of P is, adding √ଷ ݂ to equation 1b, gives -  86 

ݕ ൌ √ଷଶ ݐ   √ଷ ݂  (2b) 87 

The third consideration is the relationship between z and F. The f = 0 plane is same as 88 

the XY-plane. Since the height of a regular tetrahedron is √ଷ  , then 89 

ൌ ݖ √ଷ ݂  (2c) 90 

In the XYZ orthogonal coordinate system, the tetrahedron frame can be constructed 91 

using a line (0.5, √ଷଶ , 0) - (0, 0, 0) - (1, 0, 0) - (0.5, √ଷ , √ଷ  ). The plot data (x, y, z) can be 92 

calculated by equations 2a, 2b, and 2c (Fig. 2). According to these equations, the same 93 

as described for the triangle diagram, if the t + l + r +f = 1 condition is met, a negative 94 

component is also allowable. For example (t, l, r, f) = (-0.1, 0.5, 0.6, 0) is also true. In 95 

this case, the point plots outside of the tetrahedron. 96 

 97 
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IMPLICATIONS 98 

A tetrahedral diagram to enable visualization of four component systems can be 99 

easily constructed using the algorithms described in this paper. After the transformation 100 

from a tetrahedral to an orthogonal coordinate system, the tetrahedral diagram can be 101 

rotated in 3D space using Euler angle equations. Both parallel and perspective 102 

projections from 3D to 2D can be calculated. These projections, and tetrahedral 103 

diagrams with user-specified viewing angles, can be drawn using a spreadsheet 104 

application (e.g. Microsoft Excel), without the need for specialized programming 105 

language. An example Microsoft Excel file is available as a supplemental electronic 106 

file1. Additional information concerning the derivation and rotation of tetrahedral 107 

diagrams using the approach described above is presented in an appendix1. 108 
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Footnote to tetrahedral plot diagram 152 

1 Deposit item AM-XX-XXX, an Appendix and a Microsoft Excel file. Deposit items 153 

are stored on the MSA web site and available via the American Mineralogist Table of 154 

Contents. Locate the article in the table of contents at GSW 155 

(ammin.geoscienceworld.org) or MSA (www.minsocam.org), and then click on the link 156 

to the Deposit Item. 157 

 158 

Figure Captions 159 

Figure 1. Geometrical relationships between the ternary system (triangular diagram) and 160 

the XY-orthogonal coordinate axis system. 161 

 162 

Figure 2. Geometrical relationships between the quaternary system (tetrahedral 163 

diagram) and the XYZ-orthogonal coordinate axis system. 164 
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