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ABSTRACT 10 

 First-row transition element (FRTE) concentrations in primitive mantle-derived melts 11 

have been used as direct indicators of mantle source mineralogy (e.g., Ti, Mn, Fe, Co, Ni, Zn) 12 

and as proxies to trace the oxidation state of the mantle (e.g., Sc, V Cu, Zn). Ga and Ge, which 13 

share chemical similarities with FRTEs, may also have the ability to trace mineralogical 14 

heterogeneities in the source of mantle-derived melts. Although the partitioning behaviors of 15 

most FRTEs are well constrained during mantle melting, partition coefficients of Cu, Ga, and Ge 16 

between mantle minerals and melt are still uncertain. Here we report new measurements that 17 

constrain partition coefficients of Cu, Ga, and Ge between olivine (Ol), orthopyroxene (Opx), 18 

clinopyroxene (Cpx), and basaltic melt from graphite capsule experiments carried out at 1.5-2 19 

GPa and 1290-1500 °C. We suggest that discrepancies between recent experimental studies on 20 

Cu partitioning reflect one or more of the following causes: compositional control on 21 

partitioning, the effect of oxygen fugacity, Cu loss, Fe loss, non-henrian behavior, and/or lack of 22 

complete chemical equilibrium. The partitioning values obtained from this study are 0.13 (± 23 
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0.06), 0.12 (±3), and 0.09 for ܦ஼௨ை௟/௠௘௟௧, ܦ஼௨ை௣௫/௠௘௟௧, and ܦ஼௨஼௣௫/௠௘௟௧, respectively. Using values 24 

from this study and from the literature, we show that melting of a sulfide-bearing peridotite 25 

source with an initial ܦ஼௨௣௘௥௜ௗ௢௧௜௧௘/௠௘௟௧ ranging from 0.49 to 0.60 can explain the Cu content of 26 

primitive MORBs. Here, we also support the hypothesis that Ga partitioning between pyroxenes 27 

and melt strongly depends on the Al2O3 content of pyroxenes. Using pyroxene compositions 28 

from experiments, and previous partition data from literature, we recommend ீܦ௔௉௫/௠௘௟௧ values 29 

for low-P (1.5 GPa) spinel peridotite melting (ீܦ௔ை௣௫/௠௘௟௧ = 0.23 and ீܦ௔஼௣௫/௠௘௟௧ = 0.28), 30 

intermediate-P (2.8 GPa) spinel peridotite melting (ீܦ௔ை௣௫/௠௘௟௧ = 0.42 and ீܦ௔஼௣௫/௠௘௟௧ = 0.40), 31 

high-P (3 GPa) garnet peridotite melting (ீܦ௔ை௣௫/௠௘௟௧ = 0.38 and ீܦ௔஼௣௫/௠௘௟௧ = 0.37), high-P (4 32 

GPa) garnet peridotite melting (ீܦ௔ை௣௫/௠௘௟௧ = 0.26 and ீܦ௔஼௣௫/௠௘௟௧ = 0.30), and MORB-like 33 

eclogite melting at 2-3 GPa (ீܦ௔஼௣௫/௠௘௟௧ = 0.78). Consistent with previous studies, we find that Ga 34 

is incompatible in olivine during low-P peridotite melting (ீܦ௔ை௟/௠௘௟௧ = 0.08). Using values from 35 

this study and from the literature, we support the hypothesis that the Ga, Ga/Sc, and Ti contents 36 

of most mantle-derived melts require garnet in their source, but that additional lithologies (e.g., 37 

metasomatic veins) may be necessary to explain the chemical variability of those melts. Here we 38 

also obtain Ge partition coefficients applicable to low-P peridotite melting of 0.67, 1.04, and 39 

1.12 for ீܦ௘ை௟/௠௘௟௧, ீܦ௘ை௣௫/௠௘௟௧, and ீܦ௘஼௣௫/௠௘௟௧, respectively. Lastly, in order to provide a 40 

comprehensive picture of FRTE, Ga, and Ge partitioning during mantle melting, we provide a 41 

complete set of recommended partitioning values, based on results from this study and from the 42 

literature, for all FRTEs, Ga, and Ge, relevant for partial melting of spinel and garnet peridotite, 43 

as well as for MORB-like eclogite. 44 

 45 
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INTRODUCTION 48 

 49 

Variations of elemental and isotopic compositions in primitive basalts reflect the 50 

presence of chemical heterogeneities in the mantle source beneath intraplate ocean islands, mid-51 

ocean ridges, and arcs (e.g., Zindler and Hart 1986; Hofmann 1997; Eiler et al. 2000; Hofmann 52 

2003; Herzberg 2006; Sobolev et al. 2007; Jackson and Dasgupta 2008; Mallik and Dasgupta 53 

2012). These chemical heterogeneities have also been linked to mineralogical variations in the 54 

source. In particular, first-row transition elements (FRTEs: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, 55 

and Zn) have been used to track the mineralogical composition of mantle sources because they 56 

are not as sensitive to melt extraction processes as highly incompatible elements and are less 57 

sensitive to crystal  fractionation than most major elements. Thus, their concentrations in mantle-58 

derived melts have been used as direct indicators of mantle source mineralogy (e.g., Humayun et 59 

al. 2004; Sobolev et al. 2005; Prytulak and Elliott 2007; Sobolev et al. 2007; Qin and Humayun 60 

2008; Le Roux et al. 2010; Herzberg 2011; Le Roux et al. 2011; Davis et al. 2013). Additionally, 61 

Cu, V/Sc, Fe3+/Fe2+, and Zn/Fe have been used to constrain the redox states of melts and oxygen 62 

fugacity in the source of mantle-derived melts (Carmichael 1991; Canil and O' Neill 1996; Lee et 63 

al. 2005; Kelley and Cottrell 2009; Mallmann and O' Neill 2009; Lee et al. 2010; Lee et al. 64 

2012). Davis et al. (2013) also showed that the combination of FRTEs with mildly incompatible 65 

to compatible elements such as Ga and Ge could help decipher mineralogical variations in the 66 

source of mantle-derived melts. For example, they showed that Ga and Sc are fractionated during 67 
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peridotite melting in the garnet field, and they suggested that high Ga/Sc in melts would reflect 68 

the presence of residual garnet in the source, which preferentially incorporates Sc over Ga.  69 

In parallel, variations of redox-sensitive elements such as V, Fe, and S, in basalts have 70 

been used to show that most arc magmas are more oxidized than MORBs (e.g., Carmichael 71 

1991; Ballhaus 1993; Canil 1999; Jugo 2009; Kelley and Cottrell 2009; Laubier et al. 2014; 72 

Richards 2014). Similarly, the concentration of Cu, which is a chalcophile element, in mantle-73 

derived melts has been used as a proxy to trace the presence of sulfides in the upper mantle (Lee 74 

et al. 2012), as sulfide stability and the presence of S2- (as opposed to S6+) in melt is a function of 75 

oxygen fugacity (e.g., Carroll and Rutherford 1987; Wallace and Carmichael 1994; Jugo et al. 76 

2005; Jugo et al. 2010; Jego and Dasgupta 2014). The oxygen fugacity of abyssal peridotites 77 

typically ranges from -2.5 to +0.5 log units relative to the quartz-fayalite-magnetite buffer 78 

(QFM) (Wood et al. 1990). Under these conditions, the dominant oxidation state of sulfur is S2- 79 

(sulfide). However, at higher ƒO2 (> QFM + 2), sulfides become unstable to form SO4
2- sulfates 80 

(Jugo et al. 2010; Jego and Dasgupta 2014). Thus, an oxidized mantle wedge should not be able 81 

to retain as much Cu as a sulfide-bearing MORB source, because Cu is highly incompatible in 82 

mantle silicates (Fellows and Canil 2012; Lee et al. 2012; Liu et al. 2014).  83 

Mineral/melt partition coefficients during mantle melting have been constrained through 84 

numerous studies for a number of FRTEs (e.g., Watson 1977; Hart and Davis 1978; Dunn 1987; 85 

Beattie et al. 1991; Ehlers et al. 1992; Kohn and Schofield 1994; Walter 1998; Pertermann et al. 86 

2004; Mysen 2007; Mallmann and O' Neill 2009; Le Roux et al. 2011; Davis et al. 2013). 87 

However, the partitioning behaviors of transition metal Cu, as well as post-transition metal Ga 88 

and metalloid Ge, are still uncertain. Here we provide new Cu partition coefficient values 89 

between mantle minerals and basaltic melts applicable to low-P peridotite melting (1.5 - 2 GPa) 90 
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measured in experiments of Le Roux et al. (2011), and we discuss possible reasons for 91 

discrepancies between recent studies (Fellows and Canil 2012; Lee et al. 2012; Yao et al. 2012; 92 

Liu et al. 2014). We also provide new Ga and Ge partition coefficient values, which have only 93 

been constrained in a limited number of studies (Malvin and Drake 1987; Davis et al. 2013). 94 

Combined with recent results for low-P (≤ 2 GPa) peridotite melting (Le Roux et al. 2011; 95 

Fellows and Canil 2012; Lee et al. 2012; Yao et al. 2012; Liu et al. 2014), high-P (≥ 3 GPa) 96 

peridotite melting (Davis et al. 2013; Liu et al. 2014), and MORB-like eclogite melting 97 

(Pertermann et al. 2004), results from this study provide estimates of appropriate olivine-melt, 98 

clinopyroxene-melt, and orthopyroxene-melt Ds for Cu, Ga, and Ge, and a more comprehensive 99 

picture of combined FRTE, Ga, and Ge partitioning during mantle melting. In a similar approach 100 

to combining rare earth elements to decipher melt processes in the mantle, the combination of 101 

FRTE, Ga, and Ge concentrations in mantle-derived melts can help decipher variations of source 102 

mineralogy in the mantle. 103 

STARTING MATERIAL AND ANALYTICAL PROCEDURES 104 

 105 

 The partitioning data reported here derive from the experiments described in Le Roux et 106 

al. (2011), where detailed procedures can be found. The experimental and analytical procedures 107 

used in that study are briefly mentioned here for completeness. Three different starting materials 108 

were doped with variable amount of Cu, Ga, and Ge. Mix1 is a mixture between natural mid-109 

Atlantic ridge (MAR) basalt (~70 %) and KLB-1 peridotite (~30 %) that contains 597 ppm Cu, 110 

1.3 ppm Ga, and 1380 ppm Ge. Mix2 is a MAR basalt that contains 1108 ppm Cu, 2200 ppm Ga, 111 

and 2750 ppm Ge. Mix3 is a synthetic basalt reconstructed using reagent grade oxide powders 112 

that contains 1172 ppm Cu, 1248 ppm Ga, and 1624 ppm Ge.  113 
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 Partitioning experiments were carried out using an end-loaded piston cylinder device at 114 

Rice University (USA), following the pressure-temperature calibration of Tsuno and Dasgupta 115 

(2011). Starting mixes were contained in graphite capsules at temperature and pressure 116 

conditions varied from 1290 °C to 1500 °C and 1.5 GPa to 2 GPa. The use of graphite capsules 117 

promotes reducing conditions where the dominant valence state of Cu, Ga, and Ge should be +1, 118 

+3, and +4, respectively (Capobianco et al. 1999; Liu et al. 2014).  119 

Copper, Ga, and Ge concentrations in olivine, orthopyroxene, clinopyroxene, and melt 120 

were measured using an electron probe micro-analyzer (EPMA) CAMECA SX-50 at Texas 121 

A&M University (USA). Cu, Ga, and Ge concentrations were measured by EPMA using an 122 

accelerating voltage of 20 kV, a beam current of 300 nA and 60 s peak counting time. The beam 123 

diameter used to measure silicates was 1–3 μm and ~20 μm for quenched melts. The detection 124 

limits were estimated to be 14, 23, and 31 µg.g-1 for Cu, Ga, and Ge, respectively, in olivine, and 125 

21, 33, 45 µg.g-1 for Cu, Ga, and Ge, respectively, in melts. All reported values have at least 126 

twice the detection limit values. The quality of EPMA data was tested by re-analyzing large 127 

grains and quenched melts using laser ablation inductively coupled plasma mass spectrometry 128 

(LA-ICP-MS) with a Thermo-Finnigan Element Sector ICP-MS coupled with a New Wave 213 129 

nm laser ablation system at Rice University (USA). 63Cu, 69Ga, 73Ge and 74Ge concentrations 130 

were measured by LA-ICP-MS in medium mass resolution mode (m/δm=3000). 73Ge and 74Ge 131 

gave similar results. We used a 100-μm laser spot to measure Cu, Ga, and Ge concentrations in 132 

experimental charges and a 55-μm laser spot in external standards. The energy density ranged 133 

between 15 and 20 J/cm2 and the repetition rate was 10 Hz. Sensitivity was estimated at about 134 

350,000 cps/ppm for La on a BHVO2 glass standard using a 55-μm laser beam at 10 Hz (15.6 135 

ppm of La; Gao et al. 2002). The external reproducibility and accuracy of the measurements 136 
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were checked using BHVO2G, BCR2G and NIST610 standards. Correlations between EPMA 137 

and LA-ICP-MS measurements are presented in Figure 1. EPMA data were used to calculate the 138 

partition coefficients presented in this study.  139 

 140 

RESULTS 141 

Phase assemblage and approach to equilibrium 142 

 Experiments from Le Roux et al. (2011) yielded mineral assemblages that contain the 143 

following phases: Melt ± Olivine (Ol) ± Orthopyroxene (Opx) ± Clinopyroxene (Cpx). Phase 144 

assemblages and major element compositions of minerals are reported in le Roux et al. (2011). 145 

The major element compositions of minerals fall within the range of previously reported 146 

compositions for mantle minerals in experiments performed at similar experimental conditions 147 

(e.g., Kinzler and Grove 1992; Kinzler 1997; Kogiso et al. 1998; Wasylenki et al. 2003; Falloon 148 

et al. 2008), although pyroxenes are richer in Al2O3 than in natural spinel peridotites (e.g., Le 149 

Roux et al. 2007). 150 

 Approach to equilibrium is supported by textural evidence such as relatively 151 

homogeneous olivine size (≤ 50–70 μm) and pyroxene size (≤ 30 μm) within individual 152 

experiments, and 120º angles identified at three-grain junctions. Approach to equilibrium is also 153 

supported by chemical evidence, such as analytical consistency between single grains in 154 

individual experiments, no discernible zoning on scanning electron microscope images, and  155 

exchange partition coefficient KD Fe/Mg between olivine and melt (= (Xol
Fe2+ / Xmelt

Fe2+) / ( XOl
Mg2+ 156 

/ Xmelt
Mg2+)) ranging from 0.33 to 0.35, which is in good agreement with previous values 157 

obtained in similar experimental conditions (Roeder and Emslie 1970; Kushiro and Walter 1998; 158 
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Walter 1998; Kushiro 2001; Toplis 2005). The measured KD Fe/Mg between orthopyroxene and 159 

basaltic melt range between 0.29 and 0.36, which is also consistent with previous experimental 160 

studies (e.g., Kinzler and Grove 1992; Walter 1998; Parman and Grove 2004). Finally, the 161 

residual squares of the mass balance (calculated by using the major element compositions of all 162 

phases and the modal proportions that give minimum residual squares) are consistent with a 163 

closed system in terms of major elements.  164 

 165 

Data quality 166 

 Measurements. Copper, gallium, and germanium concentrations were measured by both 167 

EPMA and LA-ICP-MS in six glasses and one clinopyroxene (Fig. 1). Our comparison was 168 

performed using mineral and glasses that have significant amounts of trace elements (> 500 169 

ppm), while some of our minerals have trace element concentrations below 100 ppm. We note 170 

that previous studies have reported large discrepancies between EPMA and LA-ICP-MS 171 

measurements at concentrations of 100 ppm of lower (Fellows and Canil 2012; Liu et al. 2014). 172 

However, previous studies used standard analytical settings such as lower currents of 10 to 40 173 

nA (instead of 300 nA) and shorter counting times of 20 to 40 s. (instead of 60 s.), which led to 174 

detection limits significantly higher than what we report here. For example, Cu detection limit is 175 

14 ppm in this study, and 380 ppm in Fellows and Canil (2012) study. Within analytical 176 

uncertainty, Cu measurements plot on a 1:1 correlation line. Gallium concentrations in two 177 

quenched melts and one clinopyroxene are higher, and lower, by EPMA than by LA-ICP-MS, 178 

respectively. Although the number of measurements is limited, this could indicate that Ga 179 

partition coefficients calculated with EPMA data are slightly under-estimated. Germanium 180 

concentrations are higher when measured with EPMA than with LA-ICP-MS. However, because 181 
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partition coefficients have been calculated from elemental concentrations in melts and minerals 182 

both obtained by EPMA, any discrepancy should be canceled out during partition coefficient 183 

calculations.  184 

Elemental losses. Cu loss has been associated with Fe loss in Pt and graphite-lined Pt 185 

capsule experiments (Fellows and Canil 2012), because Cu and Fe diffuse through the graphite 186 

capsule and alloy with the Pt outer capsule. Although we did not use Pt outer capsules in this 187 

study, we calculated Fe, Cu, Ga, and Ge losses by mass balance between concentrations in 188 

starting materials (bulk glass) and concentrations in run products multiplied by phase fractions 189 

(Le Roux et al. 2011), in experiments where all phases have been analyzed (Table 1). Ge 190 

concentrations in the bulk glass made of starting material Mix 1 were significantly lower than Ge 191 

concentrations obtained in minerals and melts, yielding inconsistent gains of > 400 % Ge. 192 

Because Ge may have been heterogeneously distributed in starting material Mix 1 as it was the 193 

last element added to the mixture, we calculated Ge loss/gain by using Ge concentrations of 194 

starting material Mix 1 obtained from weighing. 195 

 Two experiments have lost more than 50 % Cu, and six experiments have lost less than 196 

40 % Cu. Fe loss/gain is very limited (< 7 %) and there is no correlation between Fe loss and Cu 197 

loss. Kiseeva and Wood (2013) observed that graphite capsule experiments run for seven hours 198 

at 1400ºC and 1.5 GPa show less than 10 % Cu loss. Here, we observe a large range of Cu loss in 199 

experiments that run for 20 hours or more (- 13 % to – 73 %), but we do not observe systematic 200 

correlations between Cu loss and duration or temperature. We suggest that Cu loss occurred 201 

through formation of Cu-carbonyl complexes due to the presence of graphite. We also observe a 202 

positive correlation between ܦ஼௨ை௣௫/௠௘௟௧  and Cu loss (Fig. 2). As elements diffuse faster through 203 

melt than through minerals (Zhang 2010), diffusion of Cu from the melt to the graphite capsule 204 
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could lead to Cu depletion in the melt. This means that partition coefficients measured in 205 

experiments where large Cu losses occurred could be slightly over-estimated. On the other hand, 206 

Ga and Ge losses appear limited.  207 

 Henrian behavior. Similar to Fellows and Canil (2012) and Liu et al. (2014), our 208 

experiments were doped beyond typical Cu, Ga, and Ge concentrations in mantle minerals. The 209 

partitioning behavior of trace elements in natural minerals obeys Henry’s law, which means that 210 

the value of partition coefficient is independent of the element’s concentration in mineral or 211 

melt. If Henry’s law is obeyed, there is no correlation between partition coefficients and 212 

elemental concentrations in minerals or melts. In this study, we used different starting materials 213 

and ran the experiments over a range of P-T conditions, which will affect partition coefficient 214 

values. Thus, correlations between partition coefficients and elemental concentrations could 215 

reflect other factors than a non-henrian behavior. Although we do not observe correlations 216 

between partition coefficients of Ga and Ge against their concentrations in run products, 217 ܦ஼௨஼௣௫/௠௘௟௧ increases with increasing Cu content of clinopyroxene (Fig. 3a). A similar positive 218 

correlation is observed for the ‘MORB’ experiments reported in Liu et al. (2014), but the 219 

increase was attributed to the compositional dependence of ܦ஼௨஼௣௫/௠௘௟௧ on Na2O content of 220 

clinopyroxene (Fig. 3b). Below, we discuss the effects of temperature and mineral compositions 221 

on partitioning values, and the possibility of a non-henrian behavior of Cu during partitioning 222 

between clinopyroxene and melt. 223 

Effects of temperature and composition on partition coefficients 224 

Trace element partitioning between mantle silicates and melt may depend on pressure, 225 

temperature, composition of melt and minerals, and oxygen fugacity  (e.g., Wood and Blundy 226 

2003). Liu et al. (2014) have suggested that ƒO2, which should be the same in all of our 227 



11 
 

experiments, exerts the main control on ܦ஼௨ை௟/௠௘௟௧and ܦ஼௨ை௣௫/௠௘௟௧. Average partition coefficients 228 

from this study are reported in Table 2. We observe no correlation between ܦ஼௨ை௟/௠௘௟௧, ܦ஼௨ை௣௫/௠௘௟௧ 229 

and temperature or composition. Liu et al. (2014) suggested that ܦ஼௨஼௣௫/௠௘௟௧ is mostly controlled 230 

by Na2O content of clinopyroxene as Cu+ could substitute for Na+ in the crystal lattice. Here we 231 

observe a rough correlation between ܦ஼௨஼௣௫/௠௘௟௧ and Na2O content of clinopyroxene (Fig. 3b). It 232 

is unclear if the correlation reflects a non-henrian behavior, or the fact that clinopyroxene were 233 

produced with different starting materials than in Liu et al. (2014), producing a different slope 234 

for the correlation. Thus, we suggest that our lowest ܦ஼௨஼௣௫/௠௘௟௧ value (0.09) is more conservative 235 

than the average ܦ஼௨஼௣௫/௠௘௟௧  value to model mantle melting. 236 

It has been shown that ீܦ௔ை௟/௠௘௟௧, ீܦ௔ை௣௫/௠௘௟௧ , and ீܦ௔஼௣௫/௠௘௟௧ positively correlate with the 237 

Al2O3 content of olivine, orthopyroxene, and clinopyroxene, respectively. Davis et al. (2013) 238 

hypothesized that this correlation probably reflects the fact that Ga3+ and Al3+ have similar ionic 239 

radii in octahedral coordination (0.62Å and 0.535Å respectively). By combining our results with 240 

previous studies (Malvin and Drake 1987; Hart and Dunn 1993; Mallmann and O' Neill 2009; 241 

Davis et al. 2013), we observe a tight correlation between the Al2O3 content of orthopyroxene 242 

and clinopyroxene, and ீܦ௔ை௣௫/௠௘௟௧  and ீܦ௔஼௣௫/௠௘௟௧, respectively (Fig. 4). Lastly, we observe a 243 

moderate decrease of ீܦ௘ை௣௫/௠௘௟௧ with increasing temperature (Fig. 5).  244 

DISCUSSION 245 

 Comparison with previous studies 246 

Because Cu, Ga, and Ge concentrations in mantle-derived melts may trace igneous 247 

processes in the Earth’s mantle, it is critical to constrain their partitioning behaviors during 248 
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mantle melting, considering variations in source lithologies and ƒO2. However, Ga and Ge 249 

partition coefficients are only constrained by a limited number of studies (e.g., Davis et al. 2013), 250 

and in the case of Cu, data variability is complicated to interpret (Fellows and Canil 2012; Lee et 251 

al. 2012; Liu et al. 2014). Here we compare our results with previously published studies and, in 252 

the case of Cu, we discuss the reasons for partition coefficient variations between studies. 253 

Copper. Cu partition coefficients presented in previous studies (Fig. 6a) span a large 254 

range of values (Hart and Dunn 1993; Gaetani and Grove 1997; Fellows and Canil 2012; Lee et 255 

al. 2012; Yao et al. 2012; Liu et al. 2014). Two of our experiments yield low ܦ஼௨ை௟/௠௘௟௧ values (≤ 256 

0.09) that are consistent with recent studies (Fellows and Canil 2012; Lee et al. 2012; Liu et al. 257 

2014), however two other experiments yield high ܦ஼௨ை௟/௠௘௟௧ values (≥ 0.17). Similar to Liu et al. 258 

(2014), we observe no correlation between ܦ஼௨ை௟/௠௘௟௧ and olivine composition. We also observe 259 

no effect of temperature, pressure, or Cu loss. Although ƒO2 is probably the main parameter that 260 

controls ܦ஼௨ை௟/௠௘௟௧, Liu et al. (2014) reported variable ܦ஼௨ை௟/௠௘௟௧ values at high oxygen fugacities 261 

(> QFM + 3), from 0.074 to 0.143. Their lowest value obtained in oxidizing conditions (0.074) is 262 

very close to the average value of 0.05 obtained in reducing conditions (QFM ≤ + 1.2), which 263 

means that ƒO2 may not be the sole parameter that controls ܦ஼௨ை௟/௠௘௟௧. Compared to partition 264 

coefficients obtained between groundmass and minerals (Lee et al. 2012), experimental DCu are 265 

usually equivalent or higher (Gaetani and Grove 1997; Fellows and Canil 2012; Yao et al. 2012; 266 

Liu et al. 2014). In order to define a maximum value for ܦ஼௨ை௟/௠௘௟௧ applicable to low-P peridotite 267 

melting in relatively reducing conditions, we consider an olivine in equilibrium with a MORB 268 

that contains 80 ppm Cu (Lee et al. 2012). As measured in Lee et al. (2012), olivine could 269 

contain as much as ~11-12 ppm Cu, although most olivines contained less than 4 ppm Cu. Thus, 270 
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 ஼௨ை௟/௠௘௟௧ of 0.15 would be an absolute upper value to model low-P peridotite melting in 271ܦ

relatively reducing conditions (QFM < 1.5). ܦ஼௨ை௣௫/௠௘௟௧ from this study are within the range of 272 

values reported in previous studies, but higher than ܦ஼௨ை௣௫/௠௘௟௧ in Lee et al. (2012), Yao et al. 273 

(2012) and Liu et al. (2014), and lower than ܦ஼௨ை௣௫/௠௘௟௧  in Fellows and Canil (2012). However, 274 ܦ஼௨ை௣௫/௠௘௟௧  of 0.15 used in Fellows and Canil (2012) has been obtained with analyses that were 275 

reported by the authors to be below detection limits (experiment P386), thus it is unclear how 276 

appropriate this value is. Given the same assumptions about Cu content in the MORB source and 277 

using inter-mineral partition coefficients (Fig. 7a), an absolute upper value for ܦ஼௨ை௣௫/௠௘௟௧ 278 

applicable to mantle melting in relatively reducing conditions is 0.13 (= max. ܦ஼௨ை௟/௠௘௟௧ × CuOpx / 279 

CuOl), which is just above the value that we obtain here. ܦ஼௨஼௣௫/௠௘௟௧ also spans a large range of 280 

values, which may be attributed to a dependence of ܦ஼௨஼௣௫/௠௘௟௧ on Na2O clinopyroxene content 281 

and/or a non-henrian behavior (Fig. 3), as suggested by Liu et al. (2014). The preferred value for 282 ܦ஼௨஼௣௫/௠௘௟௧ (0.06) obtained in reducing conditions in Liu et al. (2014) had been calculated from 283 

experiment ‘komatiite-L4’ that had the lowest amount of Na2O in clinopyroxene. The average 284 ܦ஼௨஼௣௫/௠௘௟௧  for all experiments performed in reducing conditions in Liu et al. (2014) is 0.09±0.04. 285 

Using inter-mineral partition coefficients (Fig. 7b), we calculate that an absolute upper value for 286 ܦ஼௨஼௣௫/௠௘௟௧ applicable to low-P peridotite melting would be 0.16. In Table 3, we report 287 ܦ஼௨ெ௜௡௘௥௔௟/௠௘௟௧ from this study and from the literature. Our ܦ஼௨ெ௜௡௘௥௔௟/௠௘௟௧ values are within error 288 

of, and on average higher than, values reported in previous studies for olivine (Fellows and Canil 289 

2012; Lee et al. 2012; Liu et al. 2014) and clinopyroxene (Lee et al. 2012; Liu et al. 2014). For 290 

comparison with our data, we have reported in Table 3 the lower range of ܦ஼௨ெ௜௡௘௥௔௟/௠௘௟௧ from 291 
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recent studies, suitable to model low-P peridotite melting at QFM < 1.5. The reason for 292 

differences between studies is a combination of compositional control on partitioning (e.g. Na2O 293 

in clinopyroxene), effect of oxygen fugacity, and may also be linked to some elemental loss, 294 

non-henrian behavior for experiments with high trace element concentrations, and/or incomplete 295 

chemical equilibrium.  296 

Gallium. Our results confirm that Ga is incompatible in olivine and moderately 297 

incompatible to compatible in pyroxenes (Malvin and Drake 1987; Mallmann and O' Neill 2009; 298 

Davis et al. 2013). Because Al-content of pyroxenes exert the strongest control on ீܦ௔௉௫/௠௘௟௧ 299 

(Davis et al. 2013), using data from this study and those from previous studies over a range of P-300 

T conditions (Malvin and Drake 1987; Hart and Dunn 1993; Mallmann and O' Neill 2009; Davis 301 

et al. 2013), we derive parameterizations to predict ீܦ௔௉௫/௠௘௟௧ as a function of pyroxene 302 

compositions for both peridotitic and eclogitic systems (Fig. 4). We find that ீܦ௔஼௣௫/௠௘௟௧ = 303 

0.002x2 + 0.014x + 0.202, and ீܦ௔ை௣௫/௠௘௟௧ = 0.0016x2 + 0.039x + 0.0563, where x is Al2O3 wt. % 304 

in clinopyroxene and orthopyroxene, respectively. The Al content of peridotitic pyroxene 305 

strongly depends on P. It increases steadily up to 2.8 GPa, where it starts decreasing owing to the 306 

stability of garnet (e.g., Hirschmann et al. 2009). Our parameterizations cover Al2O3 content 307 

between ~2 and ~14 wt.% for Cpx and ~1 and ~9 wt.% for Opx. This allows us to use ீܦ௔௉௫/௠௘௟௧ 308 

values that are appropriate for lithology of interest (pyroxenes in high-alumina lithology such as 309 

eclogite and pyroxenes in low-alumina lithology such as peridotite) and P-T conditions of 310 

interest (low-P versus high-P) that, in turn, influences pyroxene compositions. We use the 311 

parameterization of Hirschmann et al. (2009) to derive representative Al2O3 content of peridotitic 312 

pyroxenes at 1.5 GPa (3.8 wt. %), 2.8 GPa (7.3 wt. %) and 4 GPa (4.4 wt. %). We assume that 313 

Cpx and Opx have similar Al content (Hirschmann et al. 2009). For pyroxenitic clinopyroxenes, 314 
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we use the average Al2O3 content of clinopyroxenes from Pertermann and Hirschmann (2003a), 315 

i.e. 14.4 wt. %. Using our parameterization (Fig. 4), we suggest that appropriate ீܦ௔ை௣௫/௠௘௟௧ for 316 

low-P spinel peridotite melting (1.5 GPa), intermediate-P spinel peridotite (2.8 GPa), high-P 317 

garnet peridotite melting (3 GPa), and high-P garnet peridotite melting (4 GPa) are 0.23, 0.42, 318 

0.38, and 0.26, respectively. Similarly, we suggest that appropriate ீܦ௔஼௣௫/௠௘௟௧ for low-P spinel 319 

peridotite melting (1.5 GPa), intermediate-P spinel peridotite (2.8 GPa), high-P garnet peridotite 320 

melting (3 GPa), high-P garnet peridotite melting (4 GPa), and MORB-like eclogite melting (2-3 321 

GPa) are 0.28, 0.40, 0.37, 0.30, and 0.78, respectively. 322 

Germanium. Within uncertainty, ீܦ௘ை௣௫/௠௘௟௧ and ீܦ௘஼௣௫/௠௘௟௧ from Davis et al. (2013) 323 

overlap with our data, but their average values are slightly lower (Fig. 6). ீܦ௘ை௣௫/௠௘௟௧ obtained in 324 

this study show a positive correlation with TiO2 content of orthopyroxene (not shown). However, 325 

the correlation is not observed in Davis et al. (2013). Although various starting materials have 326 

been used, we also observe a moderate decrease of ீܦ௘ை௣௫/௠௘௟௧ with increasing temperature (Fig. 327 

5). Average ீܦ௘ை௟/௠௘௟௧ from Davis et al. (2013) is also lower than our average value. Experiments 328 

in Davis et al. (2013) were conducted at higher pressure (3 GPa), while Malvin and Drake (1987) 329 

study was performed at atmospheric pressure. The variability of ீܦ௘஼௣௫/௠௘௟௧ may thus reflect an 330 

effect of pressure on Ge partitioning. We did not observe any dependence of ீܦ௘஼௣௫/௠௘௟௧ and 331 ீܦ௘ை௟/௠௘௟௧ on temperature or mineral composition.  332 
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IMPLICATIONS 333 

Cu partitioning in the mantle and Cu content of MORB 334 

Partition coefficients from this study confirm that Cu is highly incompatible in mantle 335 

minerals and is mostly controlled by sulfides during MORB melting (Lee et al. 2012; Liu et al. 336 

2014). To illustrate this, we calculate the Cu content of peridotite-derived melts using partition 337 

coefficients from this study (Table 3) and from the literature (Fig. 8). During near-fractional 338 

melting in the MORB source, batch melts are removed at small increments and the composition 339 

of the peridotite residue is updated accordingly. The aggregated melt composition is reported. 340 

We assume that the DMM source contains 30 µg/g Cu (Sun 1982; Salters and Stracke 2004) and 341 

~ 200 µg/g S (Chaussidon et al. 1989; Lorand 1991; O'Neill 1991; Lee et al. 2012; Nielsen et al. 342 

2014),  and that MORB melts correspond to a mean extent of melting of ~ 5 to 15 % of DMM 343 

(Johnson et al. 1990; Kinzler and Grove 1992; Langmuir et al. 1992; Workman and Hart 2005). 344 

The assumed mineralogy of the sulfide-free source is 57 % olivine, 28 % orthopyroxene, 13 % 345 

clinopyroxene, 2 % spinel (Workman and Hart 2005) and the assumed mineralogy of the sulfide-346 

bearing source is 56.97 % olivine, 27.98 % orthopyroxene, 12.99 % clinopyroxene, 2 % spinel 347 

and 0.06 % sulfides (Lee et al. 2012). In Figure 8a, where initial ܦ௣௘௥௜ௗ௢௧௜௧௘/௠௘௟௧  varies from 348 

0.12 (this study) to 0.05 (Lee et al. 2012; Liu et al. 2014), a sulfide-free peridotite source cannot 349 

reproduce the Cu content of primitive MORBs. On the other hand, the Cu content of primitive 350 

MORBs can be reproduced by melting of a sulfide-bearing peridotite source (Fig. 8b) using 351 

initial ܦ௣௘௥௜ௗ௢௧௜௧௘/௠௘௟௧  ranging from ~0.60 (this study) to ~0.5 (Lee et al. 2012). We assume 352 ܦ஼௨௦௙/௠௘௟௧ = 800, which means that Cu is moderately incompatible at the beginning of melting but 353 

becomes highly incompatible as progressive melting leads to the depletion of S (and sulfide) in 354 

the peridotite residue (Ripley et al. 2002). The rate of S depletion in the residue depends on the 355 
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solubility of S in the melt, which increases with increasing T and decreasing P. Details of 356 

melting calculations for sulfides are provided in the supplementary material of Lee et al. (2012). 357 

 358 

Garnet in the mantle source and its effect on the Ga content of mantle-derived melts  359 

Davis et al. (2013) suggested that high Ga /Sc contents of mantle-derived melts reflect 360 

the presence of garnet in their source because Ga is strongly compatible in spinel but 361 

incompatible in garnet, whereas Sc is strongly compatible in garnet but incompatible in spinel 362 

(see summary of Davis et al. 2013 values in Table 3). Also, Prytulak and Elliott (2007) have 363 

suggested that elevated Ti in mantle-derived melts could not be produced by a source solely 364 

composed of peridotite. Here we compare the Ga, Ti, and Ga/Sc contents of primitive mantle-365 

derived melts (MgO > 8 wt. %) with the composition of model melts produced by near fractional 366 

melting of various mantle sources using recommended Ga values from this study, which takes 367 

into account the dependence of Ga partitioning between pyroxenes and melt on the Al2O3 content 368 

of pyroxenes (Fig. 4; Table 3). To model low-P near-fractional melting of spinel peridotite (1-2 369 

GPa), high-P near-fractional melting of garnet peridotite (3-4 GPa), and MORB-like eclogite 370 

melting (2-3 GPa) we assume that the starting mineralogy is 57 % Ol, 28 % Opx, 13 % Cpx and 371 

2 % Sp (Workman and Hart 2005), 60 % Ol, 16 % Opx, 13 % Cpx and 11 % Gt (Ionov 2004), 372 

and 80 % Cpx and 20 % Gt (Pertermann and Hirschmann 2003b), respectively. We use the 373 

melting reaction of Wasylenki et al. (2003) to model spinel peridotite melting (0.571 Opx + 374 

0.735 Cpx + 0.041 Sp = 0.347 Ol + 1 liquid), the melting reaction of Walter (1998) to model 375 

garnet peridotite melting (0.08 Ol + 0.81 Cpx + 0.3 Gt = 0.19 Opx + 1 liquid), and the melting 376 

reaction of Pertermann and Hirschmann (2003a) to model MORB-like eclogite melting (0.84 377 

Cpx + 0.16 Gt = 1 liquid). We assume that the peridotite source contains 798 µg/g Ti, 3.2 µg/g 378 
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Ga, and 16.3 µg/g Sc (Salters and Stracke 2004), and that the pyroxenite source contains 8500 379 

µg/g Ti, 21 µg/g Ga, and 36.8 µg/g Sc (Arevalo and McDonough 2010). In Figure 9, we show 380 

that the Ga, Ti, and Ga/Sc contents of mantle-derived melt increase with increasing garnet 381 

content of the source. The trend supports the hypothesis that garnet is likely present in the source 382 

of a number of intraplate and ocean island melts, as well as in MORB (e.g., Salters and Hart 383 

1989; McKenzie and O'Nions 1995; Bourdon et al. 1996; Hirschmann and Stolper 1996; Eiler et 384 

al. 2000; Prytulak and Elliott 2007; Elkins et al. 2008). However, Ga, Ti, and Ga/Sc variations in 385 

mantle-derived melts cannot be solely explained by melting of a peridotite source, or mixing 386 

between peridotite and eclogite-derived melts. For example, we show that the elevated Ti content 387 

of some intraplate volcanics and ocean island basalts is associated with lower Ga content than 388 

what would be produced by melting of MORB-like eclogite. Thus, additional lithologies must be 389 

present in the source to explain the Ga, Ti, and Ga/Sc systematics of Ti-enriched melts. Although 390 

partition coefficients for sediment/melt or metasomatic veins /melt are not available for elements 391 

like Ga or Ge, we suggest that exotic lithologies may affect the Ga, Ge, and Ga/Sc of mantle-392 

derived melts. For example, Ge/Si ratios may experience strong fractionations during 393 

weathering, biogenic precipitation of silica, or hydrothermal alteration (e.g., Kurtz et al. 2002; 394 

Shen et al. 2011). However, these predictions cannot be tested at this point, due to the lack of 395 

partition coefficients and the scarcity of Ge measurements in mantle-derived melts. 396 

FRTEs, Ga and Ge during mantle melting  397 

This study provides additional constraints for the partitioning behavior of Cu, Ga, and Ge 398 

during mantle melting. Using results from this study and the literature, we use a set of 399 

partitioning values for all FRTEs, Ga, and Ge, during peridotite and MORB-like eclogite melting 400 

(Table 3) that allows us to place those elements with respect to other FRTEs (Fig. 10). Table 3 401 
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preferentially reports studies performed at experimental conditions applicable to peridotite 402 

melting in relatively reducing conditions (QFM < 1.5), where partition coefficients have been 403 

obtained for multiple elements, in order to ease comparison between partition coefficients. 404 

Similar to REE patterns, the full spectrum of elements can be used to fingerprint the source of 405 

basalts, with the difference that FRTEs, Ga, and Ge are more sensitive to source mineralogy, 406 

unlike highly incompatible elements, which are sensitive to degree of melting and melt or fluid 407 

metasomatism. Thus, the full spectrum of FRTEs, Ga, and Ge partition coefficients allows 408 

identification of elements most likely to trace pyroxene-dominated melting, or the presence of 409 

garnet in the source. For example, by comparing ܦ௦௣ ௣௘௥௜ௗ௢௧௜௧௘/௠௘௟௧  and ܦ௚௧ ௣௘௥௜ௗ௢௧௜௧௘/௠௘௟௧ , one 410 

can anticipate that ratios of elements that negatively correlate with the garnet content of the 411 

source (e.g., Ga/Sc, Ti/Sc, Ga/Cr etc.) may be more likely to be elevated in mantle melts derived 412 

from a garnet-bearing peridotite compared to spinel-bearing peridotite. Depending on the 413 

concentrations of these elements in the source, the melting degree of the source, and the 414 

difference in partition coefficients between peridotite and pyroxenite, one can use those values to 415 

predict preferential enrichment or depletion throughout the entire set of elements presented here. 416 
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Table Captions 681 

 682 

TABLE 1. Cu, Ga and Ge concentrations of olivine, orthopyroxene, clinopyroxene, melt and 683 

starting materials (in µg/g). Errors are given in µg/g in parentheses and represent one sigma 684 

standard deviations with respect to the mean value calculated based on ~3-5 replicate analyses of 685 

mineral and melt phases. Cu, Fe, Ga, and Ge loss or gain are reported in % change (gain is 686 

positive, loss is negative) in experiments where all identified phases have been analyzed. 687 

Calculations are based on estimates of modal proportions by mass balance between trace element 688 

concentrations in bulk starting materials, minerals and quenched melts. *, ** and *** indicates 689 

that Mix 1, Mix 2 and Mix 3 have been used for the experiment, respectively. 690 

 691 

TABLE 2. Average partition coefficients of Cu, Ga, and Ge between olivine, orthopyroxene, 692 

clinopyroxene, and melt from this study. Errors in parentheses are on the last digit(s), and 693 

correspond to propagated errors. *, ** and *** indicates that Mix 1, Mix 2 and Mix 3 have been 694 

used for the experiment, respectively. # Different from recommended value. 695 

 696 

TABLE 3. a Liu et al. (2014), b Davis et al. (2013), c McDade et al. (2003), d Mallmann and 697 

O’Neill (2009), e Pertermann et al. (2004), f Le Roux et al. (2011), g Righter et al. (2006), h Lee 698 

et al. (2012), i Fellows and Canil (2012), j Yao et al. (2012), k Canil and Fedortchouk (2000), l 699 

Canil and Fedortchouk (2001). ܦ஼௨ௌ௣/௠௘௟௧ from Liu et al. (2014) is only available from 700 

experiments performed in oxidizing conditions. ܦ௏ெ௜௡௘௥௔௟/௠௘௟௧ and ܦௌ௖ெ௜௡௘௥௔௟/௠௘௟௧ values from 701 

Mallmann and O’Neill (2009) were taken from experiments performed at 1 atm and QFM ~ 0. 702 

Values without annotations indicate that partition coefficients are from this study. Errors for our 703 
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study correspond to standard deviations of averages in Table 2. If no error is reported, the 704 

recommended value has been calculated. For example, ீܦ௔௉௫/௠௘௟௧ at 3 GPa has been calculated 705 

from our parametrization with an Al2O3 content of pyroxene of 6.5 wt.% (based on the 706 

parametrization of Hirschman et al. 2009). Errors for other studies are reported, when available, 707 

on the last digit(s) and represent the standard deviations of averages of all referenced studies. 708 ܦ஼௨ ௟௢௪௘௥ ௥௔௡௚௘ line provides minimum values for Cu partition coefficients. Values in italics 709 

indicate that Ds are estimated from mineral compositions appropriate for other lithologies and 710 

therefore may not be as accurate as other values (e.g., ீܦ௘஼௣௫/௠௘௟௧ in MORB-like eclogite is taken 711 

from ீܦ௘஼௣௫/௠௘௟௧ in garnet peridotite).  712 

  713 
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Figure Captions 714 

FIGURE 1. Cu (a), Ga (b) and Ge (c) concentrations (in µg/g) obtained by EPMA and LA-ICP-715 

MS in six quenched glasses and one clinopyroxene. Quenched glasses are from experiments 716 

G81, G84, G92, G94, G99, and G100, and clinopyroxene is from experiment G110. Error bars 717 

correspond to the one sigma standard deviation based on replicate concentration measurements. 718 

When the error bar is not visible, the symbol is larger than the standard deviation. 719 

 720 

FIGURE 2. Cu partition coefficients between olivine, orthopyroxene, clinopyroxene and melt 721 

derived from this study plotted against Cu in % change. Negative values indicate Cu loss, 722 

positive values indicate Cu gain. Error bars correspond to the standard deviation of averaged 723 

partition coefficients. Error bars correspond to the one sigma standard deviation of averaged 724 

partition coefficients. 725 

 726 

FIGURE 3. Cu partition coefficients between clinopyroxene and melt versus (a) Cu 727 

concentrations in clinopyroxene (in µg/g) and (b) Na2O content in clinopyroxene (in wt. %). 728 

Horizontal and vertical error bars correspond to the one sigma standard deviation based on 729 

replicate measurements and the one sigma standard deviation of averaged partition coefficients 730 

from this study, respectively. The dashed line in (a) illustrates how the increase in Cu partition 731 

coefficients may be partly due to a non-henrian behavior. The two dashed lines in (b) illustrate 732 

how the increase in Cu partition coefficients is also strongly correlated with the Na2O content of 733 

Cpx. Variations in (a) and (b) are also controlled by variations in starting materials and P-T 734 

conditions. 735 

 736 
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 737 

FIGURE 4. Ga partition coefficients between (a) clinopyroxene and melt versus Al2O3 content 738 

(in wt. %) in clinopyroxene and (b) between orthopyroxene and melt versus Al2O3 content (in 739 

wt. %) in orthopyroxene. Vertical error bars correspond to the one sigma standard deviation with 740 

respect to the mean partition coefficients derived from this study. The equations are obtained by 741 

fitting data from this study and previous experimental data (Malvin and Drake 1987; Hart and 742 

Dunn 1993; Mallmann and O' Neill 2009; Davis et al. 2013). The dashed lines correspond to 743 

representative pyroxene compositions calculated from Hirschmann et al. (2009) for low-P spinel 744 

peridotite (1.5 GPa), intermediate-P spinel peridotite (2.8 GPa), high-P garnet peridotite (3 GPa), 745 

and high-P garnet peridotite (4 GPa), and representative pyroxene compositions taken from 746 

Pertermann and Hirschmann et al. (2003a) in MORB-like eclogite (2-3 GPa).  747 

 748 

FIGURE 5. Ge partition coefficients between orthopyroxene and melt versus temperature 749 

compared to data from Davis et al. (2013). The equation is obtained by fitting data from this 750 

study and previous experimental data.  751 

 752 

FIGURE 6. Cu (a), Ga (b) and Ge (c) partition coefficients between olivine, orthopyroxene, 753 

clinopyroxene and melt derived from this study and partition coefficients from the literature.  754 

Malvin and Drake, 1987 (1 atm / 1300 °C / MORB-like melt);  Hart and Dunn 1993 (3 GPa / 755 

1380 °C / alkali basalt);   Gaetani and Grove 1997 (1 atm / 1350 °C / silicate melt with 51-56 756 

wt. % SiO2);  Mallmann and O' Neill, 2009 (1 atm-3 GPa / 1300-1450 °C / MORB-like melt); 757 

 Fellows and Canil, 2012 (1 GPa / 1250-1525 °C / basaltic melt);   Lee et al., 2012 (natural 758 

phenocryst-groundmass pairs);  Yao et al. 2012 (2 GPa / 1380-1425 °C / basaltic andesite);   759 



30 
 

Davis et al. 2013 (3GPa / 1460-1475 °C / MORB-like melt);  Liu et al., 2014 (all data. 1-3 760 

GPa/ 1150-1300 °C/ hydrous silicate melt);   Liu et al. 2014 (subset. ‘MORB’ starting material 761 

only, Cpx have higher Na2O content);  Liu et al. 2014 (subset. ‘oxidized’ experiments only, > 762 

QFM + 3). Error bars are only reported for this study and correspond to the one sigma standard 763 

deviation with respect to the mean partition coefficients.  764 

 765 

 766 

FIGURE 7. Cu concentrations (in µg/g) in (a) orthopyroxene and olivine, and (b) in 767 

clinopyroxene and olivine from this study, compared with experimental (Fellows and Canil 768 

2012; Liu et al. 2014) and natural (Lee et al. 2012) data. Only data obtained in reducing 769 

conditions in Liu et al. (2014), and with concentrations lower than 100 ppm, are presented. Data 770 

from Fellows and Canil (2012) are only presented for comparison and not included in the 771 

regression, as the data were reported to be below detection limit. The range of natural data is 772 

detailed in the insets. Trendlines are forced to go through the origin and slopes correspond to 773 

intermineral partition coefficients. Trendlines in the insets are the same as in the main figure to 774 

show the fit with natural data. Error bars correspond to the one sigma standard deviation based 775 

on replicate concentration measurements. If no error bar is reported, error is smaller than the 776 

symbol. 777 

 778 

FIGURE 8. (a) Cu content of peridotite-derived  aggregate melts (in µg/g) produced by near 779 

fractional melting of a sulfide-free source, calculated using partition coefficients from this study 780 

 ௣௘௥௜ௗ௢௧௜௧௘/௠௘௟௧   ~ 781ܦ) and Lee et al. (2012) and Liu et al. (2014) studies ,(௣௘௥௜ௗ௢௧௜௧௘/௠௘௟௧   ~ 0.12ܦ)

0.05). We assume that the source contains 30 µg/g Cu (Sun 1982; Salters and Stracke 2004) and 782 
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~ 200 µg/g S (Chaussidon et al. 1989; Lorand 1991; O'Neill 1991; Lee et al. 2012; Nielsen et al. 783 

2014). Mean F is the melt fraction. The MORB field is from Lee et al. (2012) (b) Same 784 

parameters as (a), assuming a source that contains 0.06 wt. % sulfides. ܦ௣௘௥௜ௗ௢௧௜௧௘/௠௘௟௧  ranges 785 

from 0.49 (Lee et al. 2012) to 0.60 (this study). 786 

 787 

FIGURE 9. (a) Ga concentration (in µg/g) versus TiO2 (wt. %) in melts with > 8 wt. % MgO 788 

from various tectonic environments. MORB data are from Jenner and O’Neill (2012), other data 789 

have been compiled from georoc (http://georoc.mpch-mainz.gwdg.de/georoc/) and include a 790 

number of previously published studies (West et al. 1992; Trua et al. 1998; Barrie et al. 1999; 791 

Briand et al. 2002; Ntaflos and Richter 2003; Hartlaub et al. 2004; Greene et al. 2009; Ma et al. 792 

2011). 793 

 794 

 Partial melting trends have been calculated using recommended Ds from this study and from the 795 

literature (Table 3). Melting degrees are reported next to melting trends. 796 

  797 

FIGURE 10. FRTE, Ga, and Ge partition coefficients between (a) olivine and melt, (b) 798 

orthopyroxene and melt, and (c) clinopyroxene and melt in spinel peridotite, garnet peridotite 799 

and MORB-like eclogite. (d) FRTE, Ga, and Ge bulk partition coefficients between spinel 800 

peridotite, garnet peridotite, MORB-like eclogite and melt. All partitioning data and uncertainties 801 

are from Table 3. Bulk Ds were calculated using the same modal compositions as in melting 802 

models (see text). If no error bar is visible, uncertainty reported in Table 3 is smaller than the 803 

symbol. 804 

 805 
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TABLE 1. Cu, Ga, and Ge concentrations in mantle minerals and melt (in µg/g) and elemental losses (in % change)

Olivine Orthopyroxene Clinopyroxene

Cu Ga Ge Cu Ga Ge Cu Ga Ge

G81* 73 (15) - 1060 (44) 94 (33) - 1566 (219) - - -

G83* - - - 55 (7) - 1850 (462) - - -

G84* 112 (15) - 958 (52) 64 (17) - 1460 (138) - - -

G90* - - - 85 (6) - 1675 (70) - - -

G92* - - - 57 (11) - 1617 (40) - - -

G93** - - - - - - 240 (20) 1556 (129)3804 (169)

G94** - - - - - - 214 (27) 1768 (37) 3056 (193)

G107*** 50 (11) 136 (21) 1202 (95) 80 (11) 846 (126) 1912 (284) 52 (13) 810 (79) 1644 (166)

G109*** 70 (12) 113 (59) 1280 (105) 58 (16) 754 (163) 1766 (88) - - -

G110*** - - - 80 (8) 1042 (103) 1858 (90) 95 (40) 904 (68) 1866 (84)

Melt

Cu Ga Ge Cu % change Fe % change Ga % change Ge % change

G81* 1113 (421) - 1697 (60) 15.5 3.7 - 18.7

G83* 475 (33) - 1578 (95) -54.4 7.1 - 23.9

G84* 650 (150) - 1702 (57) -24.2 -1.8 - 17.2

G90* 885 (31) - 1592 (54) -13.5 -1.7 - 18.1

G92* 605 (10) - 1630 (47) -32.8 -1.1 - 17.8

G93** 1036 (42) 2470 (115)2954 (112) -24.7 1.0 1.8 15.2

G94** 1010 (83) 2620 (74) 2790 (89) -37.6 -4.4 3.6 5.3

G107*** 552 (62) 1652 (54) 1682 (24) -73.2 6.5 -6.2 -0.6

G109*** 358 (48) 1583 (26) 1617 (55) - - - -

G110*** 634 (80) 1840 (33) 1686 (63) - - - -



3804 (169)

3056 (193)

1644 (166)



TABLE 2. Partition coefficients of Cu, Ga, and Ge between mantle minerals and melt

DCu DGa DGe

P (Gpa) T (°C) Ol/melt Opx/melt Cpx/melt Ol/melt Opx/melt Cpx/melt Ol/melt Opx/melt Cpx/melt

G109*** 1.5 1300 0.20 (6) 0.16 (7) - 0.07 (4) 0.48 (11) - 0.79 (9) 1.09 (9) -

G110*** 1.5 1310 - 0.13 (3) 0.15 (8) - 0.57 (7) 0.49 (5) - 1.10 (9) 1.11 (9)

G107*** 1.5 1325 0.09 (3) 0.14 (4) 0.09 (3) 0.08 (2) 0.51 (9) 0.49 (6) 0.71 (7) 1.14 (19) 0.98 (11)

G90* 1.5 1375 - 0.10 (1) - - - - - 1.05 (8) -

G94** 2 1290 - - 0.21 (4) - - 0.67 (3) - - 1.10 (10)

G93** 2 1320 - - 0.23 (3) - - 0.63 (8) - - 1.29 (11)

G83* 2 1400 - 0.12 (2) - - - - - 1.17 (36) -

G92* 2 1425 - 0.09 (2) - - - - - 0.99 (5) -

G81* 2 1450 0.07 (4) 0.08 (6) - - - - 0.62 (5) 0.92 (16) -

G84* 2 1500 0.17 (6) 0.10 (5) - - - - 0.56 (5) 0.86 (11) -

average 0.13 (6) 0.12 (3) 0.17 (6)
#

0.08 (1) 0.52 (5)
#

0.57 (10)
#

0.67 (10) 1.04 (11) 1.12 (13)



TABLE 3.FRTE, Ga, and Ge partition coefficients suitable to model mantle melting at QFM < 1.5

Low-P  (<2 GPa) spinel peridotite melting High-P (3GPa) garnet peridotite melting MORB-like eclogite melting (2-3 GPa)

Ol/melt Opx/melt Cpx/melt Sp/melt Ol/melt Opx/melt Cpx/melt Gt/melt Cpx/melt Gt/melt

DCu 0.13 (6) 0.12 (3) 0.09 0.25 (8)
a

0.13 (6) 0.12 (3) 0.09 0.042 (6)
a

0.19 (6)
a

0.042 (6)
a

DGa 0.08 (1) 0.23 0.28 6.50 (5)
b

0.026 (1)
b

0.38 0.37 0.390 (7) 
b

0.78 0.39(7) 
b

DGe 0.67 (10) 1.04 (11) 1.12 (13) 0.40 (4)
b

0.43 (1)
b

0.87 (2)
b

0.87 (3)
b

1.51 (3)
b

0.87 (3)
b

1.51(3)
b

DCu lower range
0.06 (1)

a,h,i
0.04 (1)

a,h,j
0.06 (3)

a,h

DTi
0.01

c
0.24 (3)

c
0.34 (7)

c
0.084 (8)

b
0.0080 (7)

b
0.0656 (18)

b
0.124 (6)

b
0.262 (4)

b
0.45 (9)

e
0.39 (11)

e

DSc
0.20 (7)

d
0.35 (2)

d
1.51 (13)

d
0.058 (8)

b
0.150 (3)

b
0.495 (11)

b
0.84 (4)

b
5.98 (11)

b
1.90 (24)

e
8 (2)

e

DV
0.10 (3)

d,l
0.30

d
0.8 (1)

d,k
2.75 (19)

b
0.140 (3)

b
1.06 (3)

b
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