1	Revision 1
2	
3	Decagonite, Al ₇₁ Ni ₂₄ Fe ₅ , a quasicrystal with decagonal symmetry from the
4	Khatyrka CV3 carbonaceous chondrite
5	
6	LUCA BINDI ¹ *, NAN YAO ² , CHANEY LIN ³ , LINCOLN S. HOLLISTER ⁴ , CHRISTOPHER L. ANDRONICOS ⁵ ,
7	VADIM V. DISTLER ⁶ , MICHAEL P. EDDY ⁷ , ALEXANDER KOSTIN ⁸ , VALERY KRYACHKO ⁶ , GLENN J.
8	MACPHERSON ⁹ , WILLIAM M. STEINHARDT ¹⁰ , MARINA YUDOVSKAYA ⁶ and PAUL J. STEINHARDT ^{3,11}
9	
10	¹ Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, I-50121 Florence, Italy
11	² Princeton Institute for the Science and Technology of Materials, Bowen Hall, Princeton University, Princeton, NJ
12	08544, USA
13	³ Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544, USA
14	⁴ Department of Geosciences, Princeton University, Guyot Hall, Princeton, NJ 08544, USA
15	⁵ Division of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907, USA
16	⁶ Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of
17	Sciences, Staromonetny per. 35, Moscow, 119017 Russia
18	⁷ Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA
19	02139, USA
20	⁸ Geoscience Technology, BHP Billiton, Houston, TX 77056, USA
21	⁹ Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington DC,
22	20560, USA
23	¹⁰ Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA
24	¹¹ Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544 USA
25	
26	*E-mail: <u>luca.bindi@unifi.it</u>
27	
28	
29	Abstract
30	Decagonite is the second natural quasicrystal, after icosahedrite (Al ₆₃ Cu ₂₄ Fe ₁₃), and the first
31	to exhibit the crystallographically forbidden decagonal symmetry. It was found as rare fragments up
32	to ~60 μm across in one of the grains (labeled number 126) of the Khatyrka meteorite, a CV3
33	carbonaceous chondrite. The meteoritic grain contains evidence of a heterogeneous distribution of
34	pressures and temperatures that occurred during impact shock, in which some portions of the
35	meteorite reached at least 5 GPa and 1200 °C. Decagonite is associated with Al-bearing trevorite,
36	diopside, forsterite, ahrensite, clinoenstatite, nepheline, coesite, pentlandite, Cu-bearing troilite,
37	icosahedrite, khatyrkite, taenite, Al-bearing taenite and steinhardtite. Given the exceedingly small

38 size of decagonite, it was not possible to determine most of the physical properties for the mineral. A mean of 7 electron microprobe analyses (obtained from three different fragments) gave the 39 formula Al_{70.2(3)}Ni_{24.5(4)}Fe_{5.3(2)}, on the basis of 100 atoms. A combined TEM and single-crystal X-40 ray diffraction study revealed the unmistakable signature of a decagonal quasicrystal: a pattern of 41 sharp peaks arranged in straight lines with ten-fold symmetry together with periodic patterns taken 42 perpendicular to the ten-fold direction. For quasicrystals, by definition, the structure is not reducible 43 to a single three-dimensional unit cell, so neither cell parameters nor Z can be given. The likely 44 space group is P10₅/mmc, as is the case for synthetic Al₇₁Ni₂₄Fe₅. The five strongest powder-45 diffraction lines [d in Å (I/I_0)] are: 2.024 (100), 3.765 (50), 2.051 (45), 3.405 (40), 1.9799 (40). The 46 new mineral has been approved by the IMA-NMNC Commission (IMA2015-017) and named 47 decagonite for the ten-fold symmetry of its structure. The finding of a second natural quasicrystal 48 informs the longstanding debate about the stability and robustness of quasicrystals among 49 50 condensed matter physicists and demonstrates that mineralogy can continue to surprise us and have a strong impact on other disciplines. 51

Keywords: quasicrystal, aluminum, meteorite, chemical composition, TEM, X-ray diffraction, new
 mineral, decagonite.

54

55

INTRODUCTION

56 Quasicrystals, solids with quasiperiodic atomic arrangements that violate the mathematical constraints of conventional crystallography, exhibit rotational symmetry forbidden to crystals, such 57 as five-fold, seven-fold and higher-order symmetry axes (Levine and Steinhardt 1984; Shechtman et 58 al. 1984). The first occurrence of a quasicrystalline phase in nature, icosahedrite Al₆₃Cu₂₄Fe₁₃ 59 (Bindi et al. 2009, 2011), displayed a five-fold symmetry in two dimensions and icosahedral 60 61 symmetry in three dimensions and was found in the Khatyrka meteorite, a CV3 carbonaceous chondrite (Steinhardt and Bindi 2012; MacPherson et al. 2013; Bindi and Steinhardt 2014). The 62 discovery represents a breakthrough in mineralogy and in condensed matter physics. The intriguing 63 discovery in Grain 126 of the Khatyrka meteorite (Bindi et al. 2014, 2015) of steinhardtite grains 64 with composition Al_{0.38-0.50}Ni_{0.32-0.40}Fe_{0.10-0.30}, and the fact that decagonal quasicrystals have been 65 reported in the Al-Ni-Fe system (Tsai et al. 1989), stimulated us to continue the search for other 66 quasicrystals. 67

Here we report the description of the second natural quasicrystal and the first with decagonal symmetry, which is named decagonite for the ten-fold symmetry of its structure. The mineral and its name have been approved by the IMA Commission on New Minerals, Nomenclature and Classification (IMA2015–017). The holotype material is deposited in the mineralogical collections 74

OCCURRENCE

Decagonite was found in Grain 126, one of the meteoritic fragments (Fig. 1; see Hollister et al. 2014 for more details) found during an expedition to the Koryak Mountains in far eastern Russia in 2011 (Steinhardt and Bindi 2012; Bindi and Steinhardt 2014) as a result of a search for material that would provide information on the origin of icosahedrite (Bindi et al. 2009, 2011, 2012; MacPherson et al. 2013; Hollister et al. 2014).

of the Museo di Storia Naturale, Università di Firenze (Italy), under catalogue number 3146/I.

In the meteoritic fragments, which present a range of evidence indicating that an impact shock 80 generated a heterogeneous distribution of pressures and temperatures in which some portions of the 81 meteorite reached at least 5 GPa and 1200 °C, decagonite occurs as small grains, one of which is in 82 contact with a (Fe,Mg)₂SiO₄ phase (marked "Ol" in the bottom panel of Fig. 1). This is either an 83 84 intermediate composition olivine similar to the Fo₄₅₋₅₀ found in Grain 125 or the high-pressure polymorph ahrensite, which was also observed in Grain 125 (Hollister et al. 2014). Other minerals 85 identified in the Khatyrka meteorite fragments include trevorite, diopside, forsterite, ahrensite, 86 clinoenstatite, nepheline, coesite, stishovite, pentlandite, Cu-bearing troilite, icosahedrite, 87 khatyrkite, cupalite, taenite, Al-bearing taenite, Ni-Al-Mg-Fe spinels, magnetite, aluminum, 88 steinhardtite and an unnamed spinelloid with composition Fe_{3-x}Si_xO₄ ($x \approx 0.4$). 89

The three identified fragments of decagonite are generally anhedral, up to 60 μ m across, and do not contain inclusions or intergrowths of other minerals. Decagonite is metallic, grey to black in color. It is not possible to calculate the density because, as noted below, there does not exist a threedimensional unit cell or a value of *Z* for a quasicrystal. Moreover, the density was not measured owing to the very small size of the fragments.

95

96 97

EXPERIMENTAL METHODS

98 X-ray diffraction

99 Two decagonite fragments were mounted on two different 0.005 mm diameter carbon fibers (which were, in turn, attached to glass rods) and checked on both a CCD-equipped Oxford 100 101 Diffraction X calibur 3 single-crystal diffractometer, operating with MoKa radiation ($\lambda = 0.71073$) Å), and an Oxford Diffraction X calibur PX Ultra diffractometer equipped with a 165 mm diagonal 102 Onyx CCD detector at 2.5:1 demagnification operating with CuK α radiation ($\lambda = 1.5406$ Å). One of 103 104 the fragments consisted of many tiny grains and thus a powder diffraction pattern was collected (Table 1). The pattern matched precisely that reported for the synthetic decagonal Al₇₁Ni₂₄Fe₅ 105 quasicrystal (Tsai et al. 1989). The diffraction analysis of a second fragment revealed the 106

unmistakable signature of a decagonal quasicrystal: a pattern of sharp peaks arranged in straight lines with ten-fold symmetry together with periodic patterns taken perpendicular to the ten-fold direction (as illustrated in Fig. 2). The likely space group of decagonite is $P10_5/mmc$, as is the case for synthetic Al₇₁Ni₂₄Fe₅ (Tsai et al. 1989).

111 Chemical analyses

Three decagonite fragments were analyzed via wavelength dispersive spectroscopy (WDS) 112 using a JEOL JXA-8600 electron microprobe at 15 kV, 20 nA beam current, and 1 µm beam 113 diameter. Variable counting times were used: 30 s for Al, Ni and Fe, and 60 s for the minor 114 elements Mg, Si, Cr, P, Co, Cu, Cl, Ca, Zn, and S. Replicate analyses of synthetic Al₅₃Ni₄₂Fe₅ were 115 116 used to check accuracy and precision. The crystal fragments were found to be homogeneous within analytical error. The standards used were: Al metal, synthetic Ni₃P (Ni, P), synthetic FeS (Fe), Mg 117 metal, Si metal, Cr metal, Co metal, Cu metal, synthetic CaCl₂ (Ca, Cl) and synthetic ZnS (Zn, S). 118 119 Magnesium, Si, Cr, P, Co, Cu, Cl, Ca, Zn, and S were found to be equal to or below the limit of detection (0.01 wt%). 120

121 Seven point analyses on different spots were performed on the three samples. Table 2 reports 122 the chemical analyses (in wt% of elements), standard deviations, and atomic ratios calculated on 123 100 atoms per formula unit.

124 Transmission electron microscopy

125 Because of the small size of the grains, the single-crystal X-ray investigation was combined with a structural study done by transmission electron microscopy. The Philips CM200-FEG TEM 126 was operated at 200 KeV with an electron beam size ranging from 30 nm to 0.2 µm. The sample 127 was placed on a Cu mesh TEM grid (300 mesh, 3mm in diameter) that was previously covered by a 128 thin carbon layer (support film). Energy Dispersive (EDS) data were obtained using Evex 129 130 NanoAnalysis System IV attached to the Philips CM200-FEG TEM. A small probe diameter of 20-100 nm was used, with a count rate of 100-300 cps and an average collection time of 180 s. The 131 quantitative analyses were taken at 200 kV and are based on using pure elements and the NIST 132 2063a standard sample as a reference under the identical TEM operating conditions. 133

- 134
- 135

RESULTS AND DISCUSSION

The TEM study of one of the three studied fragments of decagonite revealed that, at the submicron length scale, the particles are homogeneous. Selected area electron diffraction patterns (Fig. 3) consist of sharp peaks arranged either in a lattice with ten-fold symmetry and periodic patterns perpendicular to the ten-fold direction. This pattern is characteristic of a decagonal quasicrystal. The high-resolution transmission electron microscopy image in Figure 3 shows that the real space structure consists of a homogeneous, quasiperiodic and ten-fold symmetric pattern. Collectively,
TEM (Fig. 3) and single-crystal X-ray data (Fig. 2) provide conclusive evidence of
crystallographically forbidden decagonal symmetry in a naturally occurring phase.

As already observed for icosahedrite (Bindi et al. 2009, 2011), decagonite exhibits a high degree of structural perfection, particularly the absence of significant phason strains (Levine et al. 1985; Lubensky et al. 1986). This is unusual because this high degree of perfection occurs in a quasicrystal intergrown with other phases under conditions far from equilibrium, and not under controlled laboratory conditions. We think that either the mineral samples formed without phason strain in the first place, or subsequent annealing was sufficient for phason strains to relax away.

Figure 4 is a ternary diagram showing the compositions (WDS and EDS data) of all the AlNiFe fragments we analyzed from Grain 126, plotted in terms of atomic percent Al–Ni–Fe. The compositions of steinhardtite (red open circles and black open squares) are approximately collinear with decagonite (green open triangles) and taenite (light blue open diamonds). This suggests a reaction relation amongst these phases. That is, steinhardtite could break down to decagonite and taenite, or taenite plus decagonite could react to produce steinhardtite.

The Al–Ni–Fe of the projected composition of the Al-bearing trevorite spinel plots very close to that of steinhardtite in Figure 4. As documented by Hollister et al. (2015), shock can reduce iron, with the oxygen going into the vapor. Similarly, steinhardtite could form as a result of shock of preexisting Al-bearing trevorite.

- 160
- 161

IMPLICATIONS

The discovery of two different types of quasicrystals in a meteorite has implications for other scientific disciplines. From the perspective of condensed matter physics, the fact that these phases formed under astrophysical conditions constitutes significant new support for the original proposal (Levine and Steinhardt 1984) that quasicrystals can be energetically stable states of matter, on the same footing as crystals. The fact that both icosahedrite and decagonite contain metallic aluminum represents a challenge to geochemistry, given the strong affinity of Al for oxygen.

Conceivably, the Al–Ni–Fe phases might have also formed in the highly reducing conditions near the core-mantle boundary, as we speculated during the early stages of our investigation (Steinhardt and Bindi 2012). This opportunity seems worthy of exploring since it may give us new insights on core composition and properties. However, the origin of the occurrence of Cu with the Al compounds remains elusive.

Finally, our discoveries should motivate the re-examination of other terrestrial and extraterrestrial minerals in search of different quasicrystals. We believe that mineralogy can continue to surprise us and have an impact on other disciplines, including cosmochemistry,

176	condensed matter physics, and materials engineering.
177	
178	ACKNOWLEDGMENTS
179	The paper has benefited by the official reviews made by Anthony Kampf, Stuart Mills and
180	Peter Williams. We also thank Editor Ian Swainson for his efficient handling of the manuscript. The
181	research was supported by "progetto di Ateneo 2013, University of Firenze" to LB, and by C.N.R.,
182	Istituto di Geoscienze e Georisorse sezione di Firenze, Italy. This work was also supported in part
183	by the National Science Foundation-MRSEC program through the Princeton Center for Complex
184	Materials (DMR-0819860; NY).
185	
186	
187	R EFERENCES CITED
188	Bindi, L., Eiler, J., Guan, Y., Hollister, L.S., MacPherson, G.J., Steinhardt, P.J., and Yao, N. (2012)
189	Evidence for the extra-terrestrial origin of a natural quasicrystal. Proceedings of the US National
190	Academy of Sciences, 109, 1396-1401.
191	Bindi, L., and Steinhardt, P.J. (2014) The quest for forbidden crystals. Mineralogical Magazine, 78,
192	467-482.
193	Bindi, L., Steinhardt, P.J., Yao, N., and Lu, P.J. (2009) Natural Quasicrystals. Science, 324, 1306-
194	1309.
195	Bindi, L., Steinhardt, P.J., Yao, N., and Lu, P.J. (2011) Icosahedrite, Al ₆₃ Cu ₂₄ Fe ₁₃ , the first natural
196	quasicrystal. American Mineralogist, 96, 928-931.
197	Bindi, L., Yao, N., Lin, C., Hollister, L.S., Andronicos, C.L., Distler, V.V., Eddy, M.P., Kostin, A.,
198	Kryachko, V., MacPherson, G.J., Steinhardt, W.M., Yudovskaya, M., and Steinhardt, P.J.
199	(2015) Natural quasicrystal with decagonal symmetry. Scientific Reports, 5, 9111.
200	Bindi, L., Yao, N., Lin, C., Hollister, L.S., Poirier, G.R., Andronicos, C.L., MacPherson, G.J.,
201	Distler, V.V., Eddy, M.P., Kostin, A., Kryachko, V., Steinhardt, W.M., and Yudovskaya, M.
202	(2014) Steinhardtite, a new body-centered-cubic allotropic form of aluminum from the Khatyrka
203	CV3 carbonaceous chondrite. American Mineralogist, 99, 2433-2436.
204	Hollister, L.S., Bindi, L., Yao, N., Poirier, G.R., Andronicos, C.L., MacPherson, G.J., Lin, C.,
205	Distler, V.V., Eddy, M.P., Kostin, A., Kryachko, V., Steinhardt, W.M., Yudovskaya, M., Eiler,
206	J.M., Guan, Y., Clarke, J.J., and Steinhardt, P.J. (2014) Impact-induced shock and the formation
207	of natural quasicrystals in the early solar system. Nature Communications, 5:3040
208	doi:10.1038/ncomms5040.

- Hollister, L.S., MacPherson, G.J., Bindi, L., Lin, C., Guan, Y., Yao, N., Eiler, J.M., and
 Steinhardt, P.J. (2015) Redox reactions between Cu-Al metal and silicates in the Khatyrka
 meteorite. 46th Lunar and Planetary Science Conference, 1832, 2394.
- Levine, D., and Steinhardt, P.J. (1984) Quasicrystals: a new class of ordered structures. Physical
 Review Letters, 53, 2477-2480.
- Levine, D., Lubensky, T.C., Ostlund, S., Ramaswamy, A., and Steinhardt, P.J. (1985) Elasticity and defects in pentagonal and icosahedral quasicrystals. Physical Review Letters, 54, 1520-1523.
- Lubensky, T.C., Socolar, J.E.S., Steinhardt, P.J., Bancel, P.A., and Heiney, P.A. (1986) Distortion
- and peak broadening in quasicrystal diffraction patterns. Physical Review Letters, 57, 14401443.
- 219 MacPherson, G.J., Andronicos, C.L., Bindi, L., Distler, V.V., Eddy, M.P., Eiler, J.M., Guan, Y.,

220 Hollister, L.S., Kostin, A., Kryachko, V., Steinhardt, W.M., Yudovskaya, M., and Steinhardt,

- P.J. (2013) Khatyrka, a new CV3 find from the Koryak Mountains, Eastern Russia. Meteoritics
- and Planetary Science, 48, 1499-1514.
- Shechtman, D., Blech, I., Gratias, D., and Cahn J.W. (1984) Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 53, 1951-1953.
- Steinhardt, P.J., and Bindi, L. (2012) In search of natural quasicrystals. Reports on Progress in
 Physics, 75, 092601-092611.
- Tsai, A.P., Inoue, A., and Masumoto, T. (1989) New decagonal Al-Ni-Fe and Al-Ni-Co alloys
 prepared by liquid quenching. Materials Transactions JIM, 30,150-154.
- 229 230

248	FIGURE CAPTIONS
249	Figure 1. The top panel shows micro CT-SCAN 3D-images (at different rotations) of the whole
250	Grain 126. The brighter and the darker regions are Cu-Al metals and meteoritic silicates,
251	respectively. The bottom panel shows a SEM-BSE image of decagonite (DEC) in
252	apparent growth contact with "olivine" ("OL"). See text for discussion of the "olivine"
253	composition. The image also contains sodalite (SOD).
254	Figure 2. Reconstructed precession images along the ten-fold symmetry axis (a) and perpendicular
255	to the ten-fold direction (b , c) obtained using the collected single-crystal X-ray data set
256	(Mo $K\alpha$ radiation) from decagonite.
257	Figure 3. The top panel is a high-resolution transmission electron microscopy (HRTEM) image
258	showing that the real space structure of decagonite consists of a homogeneous,
259	quasiperiodic and ten-fold symmetric pattern. The bottom panel reports two selected
260	area electron diffraction patterns collected down the ten-fold axis (left) and along an axis
261	out of the ten-fold plane (right). The combination of quasiperiodicity (ten-fold
262	symmetry) in one plane and periodicity along the third dimension is characteristic of
263	decagonal symmetry.
264	FIGURE 4. Ternary Al-Ni-Fe diagram reporting all the chemical data we obtained on minerals
265	belonging to Grain 126. The cloud of data in the steinhardtite region (blue downward
266	triangles) lies between decagonite and FeNi solid solution.
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281	

2θ (°)	<i>d</i> (Å)	$I_{\rm rel}$
23.61	3.765	50
26.15	3.405	40
38.58	2.332	25
44.12	2.051	45
44.75	2.024	100
45.79	1.9799	40
50.63	1.8014	30
65.60	1.4219	35
78.03	1.2235	25

TABLE 1. Measured X-ray powder-diffraction data for decagonite (Cu*K*α radiation).

	1		2		3			mean
	а	b	а	b	а	b	С	
Al	52.23(60)	51.74(64)	52.01(71)	51.60(66)	52.10(44)	52.64(40)	53.01(46)	52.19
Ni	39.85(51)	38.92(49)	40.45(53)	39.41(55)	40.01(34)	39.23(39)	39.01(37)	39.55
Fe	8.02(10)	8.74(12)	7.55(14)	8.23(15)	8.10(9)	8.16(12)	8.47(11)	8.18
Total	100.10	99.40	100.01	99.24	100.21	100.03	100.49	99.92
Al	70.18	70.06	70.05	70.02	70.03	70.55	70.65	70.22
Ni	24.61	24.22	25.04	24.59	24.71	24.17	23.90	24.46
Fe	5.21	5.72	4.91	5.39	5.26	5.28	5.45	5.32

TABLE 2. Electron microprobe analyses (values and standard deviations in wt% of elements) and atomic ratios (on the basis of 100 atoms) for three fragments of decagonite.

DEC

SOD

500 nm

