1 Revision 2

2	
3	Synthesis of large wadsleyite single crystals by solid-state recrystallization
4	
5	
6	Takaaki Kawazoe ^{1*} (takaaki.kawazoe@uni-bayreuth.de),
7	Johannes Buchen ¹ (johannes.buchen@uni-bayreuth.de) and
8	Hauke Marquardt ¹ (hauke.marquardt@uni-bayreuth.de)
9	
10	¹ Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany
11	
12	
13	
14	* Corresponding author:
15	Takaaki Kawazoe
16	Tel: +49-921-55-3745
17	Fax: +49-921-55-3769

18

ABSTRACT

19	Single crystals of $(Mg_{0.89}Fe_{0.11})_2SiO_4$ wadsleyite with dimensions up to ~1 mm were
20	synthesized by solid-state recrystallization under high pressure. Synthesis experiments of the
21	wadsleyite single crystals were performed at 16 GPa and 1870 K for 1-3 h using a Kawai-type
22	multianvil apparatus. The wadsleyite crystals are virtually free of inclusions and cracks. Their
23	chemical compositions are homogeneous with Fe/(Mg + Fe) of 0.112(2). Unpolarized infrared
24	spectra indicate that the synthesized sample contains 0.15-0.30 wt% H_2O . The method of
25	synthesizing large, high-quality single crystals of wadsleyite will facilitate future measurements of
26	physical properties including elasticity and elastic anisotropy, electrical and thermal conductivities, atomic
27	diffusivity and creep strength, which will improve models of the composition and dynamics of the mantle
28	transition zone.
29	
30	Keywords: wadsleyite, single crystal, mantle transition zone, high-pressure synthesis,
31	Kawai-type multianvil apparatus

32

33

INTRODUCTION

34	Wadsleyite is expected to be the most dominant mineral at the upper part of the mantle
35	transition zone (MTZ) (e.g. Irifune and Isshiki 1998) and thereby controls the physical and
36	chemical properties of this region. Seismic observations have revealed anisotropic seismic wave
37	propagation within the upper MTZ (e.g. Visser et al. 2008). Global seismic anisotropy in the
38	upper MTZ has been attributed to a crystallographic preferred orientation (CPO) of wadsleyite
39	(e.g. Kawazoe et al. 2013). However, a quantitative evaluation of the seismic anisotropy observed
40	in the upper MTZ is difficult because the elastic stiffness constants C_{ijkl} of wadsleyite have not
41	been experimentally determined under simultaneous high pressure and high temperature (e.g.
42	Wang et al. 2014). Moreover, the wadsleyite CPO in the upper MTZ may cause anisotropy in
43	other physical properties such as viscosity; c.f. deformed olivine in the upper mantle (Hansen et
44	al. 2012). Consequently, a detailed understanding of the anisotropy of the physical properties of

wadsleyite is fundamental to model anisotropy of physical and chemical properties in the upperMTZ.

47 Many types of experiments to determine anisotropy in physical and chemical properties 48 of wadsleyite require single crystals of sufficient size and quality. In experiments with diamond 49 anvil cells (DAC), single crystals larger than 100 µm are useful for the preparation of 50 single-crystal samples with defined dimensions, shape and if needed crystallographic orientation

51	by the focused ion beam (FIB) technique (Marquardt and Marquardt 2012). In the case of
52	multianvil apparatuses, atomic diffusion and deformation experiments can be performed on
53	wadsleyite samples as small as 0.4-0.5 mm (Kawazoe et al. 2010; Shimojuku et al. 2004).
54	Therefore, wadsleyite single crystals larger than \sim 0.4 mm are ideal for a range of experiments to
55	determine the anisotropy of its physical properties under high pressure and temperature.
56	Previously, large wadsleyite single crystals were synthesized by solid-state
57	recrystallization using a Kawai-type multianvil apparatus (Sawamoto 1986). In these experiments,
58	wadsleyite single crystals with dimensions up to 0.5 mm were obtained near the
59	wadsleyite-ringwoodite phase boundary (19-21.5 GPa and 1940-2670 K). However, the
60	wadsleyite crystals contained inclusions and showed variation in Mg/(Mg + Fe) from crystal to
61	crystal (Sawamoto 1986). We note that in this previous study, temperature was overestimated
62	because it has been shown that Mg_2SiO_4 ringwoodite is unstable above ~2170 K (e.g. Fei et al.
63	2004). In another work, the temperature-gradient method was applied to single-crystal growth of
64	wadsleyite in carbonate solutions using a Kawai-type apparatus (Shatskiy et al. 2009). In these
65	experiments, wadsleyite single crystals with dimensions up to 1.0 mm were obtained in
66	co-existence with quenched melt. However, the carbonate flux method produced crystals with
67	inclusions of the solvent (Shatskiy et al. 2009).

68	In the present study, we synthesized high-quality single crystals of $(Mg_{0.89}Fe_{0.11})_2SiO_4$
69	wadsleyite with dimensions up to ~ 1 mm by solid-state recrystallization. We describe the method
70	and discuss sample characterization including evaluation of inclusions, cracks, chemical compositions
71	and water content. In addition, we outline potential applications for the synthesized crystals to
72	study the intrinsic anisotropy of wadsleyite to many physical and chemical properties.
73	
74	EXPERIMENTAL METHODS
75	
76	Synthesis experiments
77	The starting material was a powder of San Carlos olivine ((Mg _{0.9} Fe _{0.1}) ₂ SiO ₄). Olivine
78	single crystals with no visible inclusion were hand-picked under a stereomicroscope and ground
79	to a fine powder using a mortar. The starting powder was packed in a Re foil capsule (1.6-mm
80	outer diameter and 2.7-mm length). Neither solvent nor water was added to the starting material.
81	The high-pressure synthesis was performed using a 1000-ton Kawai-type multianvil
82	apparatus with split-sphere type guide blocks (Keppler and Frost 2005). The second-stage anvils
83	with an 8-mm truncation were made of tungsten carbide (ha-7%, hawedia). The capsule was
84	loaded into a ceramic octahedron with a 14-mm edge length made of semi-sintered Cr-doped

85	MgO. Pre-formed pyrophyllite gaskets were used. A stepped LaCrO ₃ furnace was adopted with a
86	ZrO ₂ thermal insulator. The ceramic parts of the cell assembly were fired at 1273 K for
87	dehydration. The sample was first compressed to 8.0 MN (815 tonf) at room temperature.
88	Temperature was then increased to 1870 K at rates of ~50-70 K/min. The generated temperature
89	was estimated based on relationships between temperature measured with a thermocouple and
90	electric power to the furnace in separate runs. The uncertainty in temperature is estimated to be
91	±50 K. The target temperature was held for 1 h (run H4015) or 3 h (run H4150) before rapid
92	quenching. The sample was subsequently decompressed at room temperature for 13-15 h.
93	
94	Sample analyses
95	Several crystals from both runs were examined using X-ray diffractometers with a CCD
96	area detector (Oxford Diffraction, Xcalibur2) and a point detector (Huber, SMC9000) operating
97	with Mo Ka radiation (40 kV and 20-30 mA) for phase identification, verification as singe crystal
98	and orientation. The quality of the crystals was evaluated based on the widths of X-ray diffraction
99	peaks in the final omega scans. Thin sections of the single crystals from run H4015 were

101	The chemical compositions of four crystals were measured using an electron microprobe
102	in wavelength-dispersive mode (JEOL, JXA-8200) operated at 15 kV and 15 nA. Infrared (IR)
103	absorption spectra of three crystals were obtained with a Fourier transform IR spectrometer
104	(Bruker, IFS-120 HR). The crystals were oriented parallel to the (243), (120) or (010) planes and
105	double-side polished to a thickness of $10-13(1) \ \mu m$ using $0.25-\mu m$ diamond powder. Unpolarized
106	IR absorption spectra were taken from 4-6 distinct positions on each sample with a spot diameter
107	of about 100 μ m. The water contents were determined according to the calibrations by Paterson
108	(1982), Libowitzky and Rossman (1997), and Deon et al. (2010). An orientation factor of 1/3 and
109	a density factor appropriate for Fe-bearing wadsleyite were used for the Paterson (1982)
110	calibration. The total integrated absorption coefficient was multiplied by 3 for the calibrations by
111	Libowitzky and Rossman (1997) and Deon et al. (2010).
112	
113	RESULTS AND DISCUSSION

High-quality single crystals of wadsleyite with dimensions up to ~1 mm were successfully synthesized at 16 GPa and 1870 K for 1 h (run H4015) or 3 h (run H4150) (Fig. 1). Some single crystals were broken due to cracks caused by decompression. The recovered crystals were identified as wadsleyite by X-ray diffraction. Most of the wadsleyite crystals were free of

118	inclusions and dispersed cracks (Fig. 1c). Uniform extinction upon sample rotation under
119	cross-polarized light further indicated that the crystals were single crystals.
120	The chemical compositions of the wadsleyite crystals are nearly homogeneous within
121	each crystal and among the crystals with $Fe/(Mg + Fe)$ of 0.112(2) (Table 1). The cations per 4
122	oxygens in Table 1 are upper bounds because ~10 % of Fe is expected to be Fe^{3+} in
123	$(Mg_{0.9}Fe_{0.1})_2SiO_4$ wadsleyite synthesized in the Re capsule (Frost and McCammon 2009). The
124	compositions are comparable to those expected in the upper MTZ (Irifune and Isshiki 1998).
125	The unit-cell parameters of wadsleyite from run H4015 were $a = 5.7070(9)$ and
126	5.7069(9) Å, $b = 11.4735(11)$ and $11.4735(10)$ Å, and $c = 8.2741(10)$ and $8.2740(10)$ Å when the
127	orthorhombic (the space groups Imma, Sawamoto and Horiuchi 1990) and monoclinic (the space
128	group $I2/m$, Smyth et al. 1997) symmetries were assumed, respectively. A β angle of 90.030(11)°
129	was obtained for the monoclinic case. These cell parameters lead to unit-cell volumes of
130	541.78(12) and 541.77(11) Å ³ , a density of 3.617(7) g/cm ³ , and b/a ratios of 2.0104(4) and
131	2.0105(3) for the orthorhombic and monoclinic symmetries, respectively. The average full-width
132	at half-maximum of the final omega scans was 0.082(13)° (Fig. 2) showing the high quality of
133	the crystals.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5400

134	The water contents of the wadsleyite crystals parallel to the (243), (120), and (010)
135	planes were in the ranges of $0.15(1)-0.20(1)$, $0.22(2)-0.28(1)$, and $0.25(1)-0.30(1)$ wt% H ₂ O,
136	respectively (Figs. 3 and 4 and Table 2). IR absorption at 3200-3650 cm ⁻¹ and the water contents
137	are consistent with the one (0.09-0.21 wt%) observed in wadsleyite synthesized from natural
138	olivine powder with no additional water in a previous study (Nishihara et al. 2006). The
139	uncertainty in the water contents given above corresponds to one standard deviation calculated
140	from measurements at 4-6 distinct locations in each single crystal, indicating the homogeneity of
141	the water content (Figs. 3 and 4). The uncertainty in absolute water content is larger than that
142	stated above and can be estimated based on the variation in water content arising from the use of
143	different calibrations (~30 %, Paterson 1982; 10-20 %, Libowitzky and Rossman 1997; 10 %,
144	Deon et al. 2010). The water was supposed to be supplied to the sample from the surrounding
145	ceramics which absorbed moisture from the air after the heating treatment (c.f. Nishihara et al.,
146	2006). This water content is comparable with that estimated for the MTZ (~0.1 wt%, Karato
147	2011).

Phase transformation kinetics from polycrystalline olivine to wadsleyite likely plays an important role in obtaining the large wadsleyite single crystals by solid-state recrystallization. The small effect of run duration on the maximum dimensions of the synthesized wadsleyite

151	crystals implies that the wadsleyite crystals primarily grew at the beginning of each run (within
152	less than 1 h). Nucleation and growth rates of wadsleyite in polycrystalline olivine significantly
153	decrease and increase with increasing temperature, respectively (Kubo et al. 2004). Therefore,
154	rapid growth of the wadsleyite crystals is expected during the olivine-wadsleyite transformation
155	because of the low nucleation density and high growth rate of wadsleyite in polycrystalline
156	olivine at high temperature.
157	
158	IMPLICATIONS
159	The large size of the wadsleyite single crystals allows for preparing several samples for
160	the DAC experiments from one single crystal. As an example, we outline the potential use of the
161	crystals to determine C_{ijkl} by Brillouin spectroscopy and single-crystal X-ray diffraction. Two
162	crystals were oriented parallel to the (120) and (243) planes and double-side polished to a
163	thickness of 10 μ m (Fig. 1c). Several half disks with a 110- μ m diameter were cut from the
164	platelets using a FIB machine (FEI, Scios) operated at 30 kV and 7-30 nA (Fig. 1d). Two half
165	disks with different orientations were loaded with ruby and Sm-doped Y ₃ Al ₅ O ₁₂ chips as pressure
166	calibrants in a sample chamber of a resistively heated DAC equipped with 400- μ m culet
167	diamonds. The combined measurement of acoustic velocity distribution in the two chosen

168	crystallographic planes along with the measurement of unit-cell volume by X-ray diffraction
169	allows for determining all the 9 C_{ijkl} of wadsleyite at the same pressure-temperature conditions
170	(Speziale et al. 2014). The measurement enables us to minimize uncertainties related to different
171	experimental runs, such as the determination of pressure and temperature.
172	In future studies, the large high-quality single crystals will allow for determining the
173	physical properties of wadsleyite such as sound velocity anisotropy, elasticity, electrical and
174	thermal conductivities, atomic diffusivity, and creep strength. Owing to potential CPO of
175	wadsleyite (e.g. Kawazoe et al. 2013), the upper MTZ can reflect the anisotropic behavior of this
176	phase if the anisotropy in its physical properties is large enough. Consequently, further
177	applications of the grown high-quality wadsleyite single crystals are expected to contribute to the
178	advancement of high-pressure mineralogy.
179	
180	ACKNOWLEDGMENTS
181	We are grateful to T. Boffa Ballaran, K. Marquardt, H. Schulze, D. Krauße, A. Potzel,
182	and H. Fischer for their supports for the X-ray diffraction, the FIB cutting, the sample polishing,
183	the chemical analysis and manufacturing the cell assembly parts, respectively. Part of this
184	research was supported through the project "GeoMaX", funded under the Emmy-Noether

Program of the German Science Foundation (MA4534/3-1). We thank A. Shatskiy and S.D.
Jacobsen for their constructive review comments.

187

188

REFERENCES CITED

- 189 Deon, F., Koch-Müller, M., Rhede, D., Gottschalk, M., Wirth, R., and Thomas, S.M. (2010)
- Location and quantification of hydroxyl in wadsleyite: New insights. American
 Mineralogist, 95, 312-322.
- 192 Fei, Y., Van Orman, J.A., Li, J., Van Westrenen, W., Sanloup, C., Minarik, W., Hirose, K.,
- Komabayashi, T., Walter, M.J., and Funakoshi, K. (2004) Experimentally determined postspinel transformation boundary in Mg_2SiO_4 using MgO as an internal pressure standard and its geophysical implications. Journal of Geophysical Research, 109,
- 196 10.1029/2003JB002562.
- 197 Frost, D.J., and McCammon, C.A. (2009) The effect of oxygen fugacity on the olivine to
- wadsleyite transformation: Implications for remote sensing of mantle redox state at the
 410 km seismic discontinuity. American Mineralogist, 94, 872-882.
- Hansen, L.N., Zimmerman, M.E., and Kohlstedt, D.L. (2012) Laboratory measurements of the
- viscous anisotropy of olivine aggregates. Nature, 492, 415-418.
- Irifune, T., and Isshiki, M. (1998) Iron partitioning in a pyrolite mantle and the nature of the
 410-km seismic discontinuity. Nature, 392, 702-705.
 - 12

- Karato, S.-i. (2011) Water distribution across the mantle transition zone and its implications for
 global material circulation. Earth and Planetary Science Letters, 301, 413-423.
- 206 Kawazoe, T., Nishiyama, N., Nishihara, Y., and Irifune, T. (2010) Deformation experiment at
- 207 *P-T* conditions of the mantle transition zone using D-DIA apparatus. Physics of the Earth 208 and Planetary Interiors, 183, 190-195.
- 209 Kawazoe, T., Ohuchi, T., Nishihara, Y., Nishiyama, N., Fujino, K., and Irifune, T. (2013)
- 210 Seismic anisotropy in the mantle transition zone induced by shear deformation of 211 wadsleyite. Physics of the Earth and Planetary Interiors, 216, 91-98.
- 212 Kubo, T., Ohtani, E., and Funakoshi, K. (2004) Nucleation and growth kinetics of the α - β
- transformation in Mg₂SiO₄ determined by in situ synchrotron powder X-ray diffraction.
- American Mineralogist, 89, 285-293.
- 215 Keppler, H., and Frost, D.J. (2005) Introduction to minerals under extreme conditions. In R.
- 216 Miletich, Ed. Mineral behaviour at extreme conditions, EMU notes in mineralogy, 7, p.
- 1-30. European Mineralogical Union.
- Libowitzky, E., and Rossman, G.R. (1997) An IR absorption calibration for water in minerals.
- American Mineralogist, 82, 1111-1115.
- 220 Marquardt, H., and Marquardt, K. (2012) Focused ion beam preparation and characterization of
- single-crystal samples for high-pressure experiments in the diamond-anvil cell. American
- 222 Mineralogist, 97, 299-304.

223	Nishihara, Y., Shinmei, T., and Karato, S. (2006) Grain-growth kinetics in wadsleyite: effects of
224	chemical environment. Physics of the Earth and Planetary Interiors, 154, 30-43.
225	Paterson, M.S. (1982) The determination of hydroxyl by infrared absorption in quartz, silicate
226	glass and similar materials. Bulletin de Minéralogie, 105, 20-29.
227	Sawamoto, H. (1986) Single crystal growth of the modified spinel (β) and spinel (γ) phases of
228	(Mg,Fe) ₂ SiO ₄ and some geophysical implications. Physics and Chemistry of Minerals, 13,
229	1-10.
230	Sawamoto, H., and Horiuchi, H. (1990) β (Mg _{0.9} , Fe _{0.1}) ₂ SiO ₄ : Single crystal structure, cation
231	distribution, and properties of coordination polyhedra. Physics and Chemistry of Minerals,
232	17, 293-300.
233	Shatskiy, A., Litasov, K.D., Matsuzaki, T., Shinoda, K., Yamazaki, D., Yoneda, A., Ito, E., and
234	Katsura, T. (2009) Single crystal growth of wadsleyite. American Mineralogist, 94,
235	1130-1136.
236	Shimojuku, A., Kubo, T., Ohtani, E., and Yurimoto, H. (2004) Silicon self-diffusion in
237	wadsleyite: Implication for rheology of the mantle transition zone and subducting slabs.
238	Geophysical Research Letters, 31, 10.1029/2004GL020002.
239	Smyth, J.R., Kawamoto, T., Jacobsen, S.B., Swope, R.J., and Hervig, R.L. (1997) Crystal
240	structure of monoclinic hydrous wadsleyite [β-(Mg,Fe) ₂ SiO ₄]. American Mineralogist, 82,
241	270-275.

242	Speziale, S., Marquardt, H., and Duffy, T.S. (2014) Brillouin Scattering and its Application in
243	Geosciences. In G.S. Henderson, D.R. Neuville, and R.T. Downs, Eds. Reviews in
244	Mineralogy and Geochemistry, 78, p. 543-603. Mineralogical Society of America,
245	Washington DC.
246	Visser, K., Trampert, J., Lebedev, S., and Kennett, B.L.N. (2008) Probability of radial anisotropy
247	in the deep mantle. Earth and Planetary Science Letters, 270, 241-250.
248	Wang, J., Bass, J.D., and Kastura, T. (2014) Elastic properties of iron-bearing wadsleyite to 17.7
249	GPa: Implications for mantle mineral models. Physics of the Earth and Planetary Interiors,
250	228, 92-96.
251	
252	FIGURE CAPTIONS
253	Figure 1. The $(Mg_{0.89}Fe_{0.11})_2SiO_4$ wadsleyite samples synthesized at 16 GPa and 1870 K. (a) The
254	sample inside the Re capsule (run H4150). The Re foil was partly removed to show the
255	crystals inside. Two single crystals were also removed at the right part of the sample, and
256	former grain boundaries can be seen as shiny surfaces. The rest of the sample is not shiny
257	because its surface is not smooth due to contact with the capsule wall. (b) Examples of the
258	single crystals (run H4150). The crystals look dark because they are thick. Round edges of
259	the crystals reflect the cylindrical shape of the capsule. (c) Photomicrograph of a thin section
260	of a single crystal parallel to the (120) plane (run H4015). A few small cracks are visible as
261	gray lines in the left part of the crystal. Note that the whole section does not contain any

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5400

262	large inclusions. (d) Backscattered electron image of FIB-cut thin section of the single
263	crystal shown in (c).
264	Figure 3. Unpolarized IR absorption spectra of a $(Mg_{0.89}Fe_{0.11})_2SiO_4$ wadsleyite single crystal
265	synthesized at 16 GPa and 1870 K for 1h (run H4015). The crystal platelet was oriented
266	parallel to the (243) plane. A water content of 0.15(1) wt% H ₂ O (25000(1000) H/10 ⁶ Si) was
267	deduced from 5 measurements at different locations on the same platelet using the Paterson
268	(1982) calibration. All 5 spectra are plotted in this figure to show homogeneity of the water
269	content in the crystal.
270	
271	
272	
273	
274	
275	
276	
277	
278	
279	
280	
281	

282

Figure 1c

