This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5148

1	Revision 4
2	A Possible New Al-bearing Hydrous Mg-silicate (23 Å phase) in
3	the Deep Upper Mantle
4	Nao CAI ^{1*} , Toru INOUE ¹ , Kiyoshi FUJINO ¹ , Hiroaki OHFUJI ¹ ,
5	Hisayoshi YURIMOTO ²
6	
7	¹ Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan
8	² Natural History Sciences, Hokkaido University, Sapporo 060-0810, Japan
9	
10	
11	*Corresponding author
12	Nao Cai
13	E-mail: nao@sci.ehime-u.ac.jp
14	

Abstract

16	A new Al-bearing hydrous Mg-silicate which we named as 23 Å phase was synthesized at 10 GPa
17	and 1000°C, while also coexisting with diaspore and pyrope in the following system: phase A
18	$(Mg_7Si_2O_8(OH)_6) + Al_2O_3 + H_2O$. The chemical composition of this new 23 Å phase is
19	Mg ₁₁ Al ₂ Si ₄ O ₁₆ (OH) ₁₂ , and it contains about 12.1 wt% water. Powder X-ray diffraction and electron
20	diffraction patterns show that this new 23 Å phase has a hexagonal structure, with $a = 5.1972(2)$ Å, $c =$
21	22.991(4) Å, and $V = 537.8(2)$ Å ³ , and the possible space group is $P\overline{6}c2$, $P6_3cm$, or $P6_3/mcm$. The
22	calculated density is 2.761 g/cm ³ accordingly, which was determined by assuming that the formula unit
23	per cell (Z) is 1. This crystal structure is quite unique among mantle minerals in having an
24	extraordinarily long c axis. Several experiments revealed that its stability region is very similar to that of
25	phase A. We further confirmed that this new 23 Å phase was stable in the chlorite composition at 10 GPa
26	and 1000°C. The present results indicate that this new 23 Å hydrous phase will form in an Al-bearing
27	subducting slab, and transport water together with Al into the deep upper mantle or even into the upper
28	part of the transition zone.

30

29

Keywords: New hydrous Mg-silicate, 23 Å phase, phase A, chlorite, subduction zone, upper mantle.

31	Introduction
32	Water plays an important role in the deep mantle, as it influences the melting temperature (e.g., Inoue,
33	1994), nature of seismic discontinuities (e.g., Higo et al., 2001; Chen et al., 2002; Chen et al., 2011),
34	mineral composition of the mantle (e.g., Kanzaki, 1991; Ohtani et al., 1995; Frost and Fei, 1998), etc. A
35	recently reported study has shown that, despite the dry upper mantle (Saal et al., 2002), the mantle
36	transition zone is indeed hydrous, with a water content of about 1.5 weight percent in ringwoodite
37	(Pearson et al., 2014). Water may be transported into the mantle transition zone or deeper by subducted
38	slabs in the form of dense hydrous magnesium silicates (DHMS) (Ohtani et al., 2001), as well as
39	nominally anhydrous phases, such as pyroxene, olivine, and garnet.
40	Nowadays the MgO-SiO ₂ -H ₂ O (MSH) system is well defined, and it derives several hydrous
41	minerals such as the alphabet phases A, B, superhydrous B (C), D (F, G), H (Ringwood and Major, 1967;
42	Yamamoto and Akimoto, 1974; Akaogi and Akimoto, 1980; Liu, 1987; Kanzaki, 1991; Gasparik, 1993;
43	Kudoh et al., 1993; Ohtani et al., 1997; Nishi et al., 2014), 10 Å phase, chondrodite, humite (Yamamoto
44	and Akimoto, 1977), hydrous wadsleyite, and ringwoodite (Inoue et al., 1995, Inoue et al., 1998). These
45	phases can be formed by the decomposition of antigorite (Irifune et al., 1998; Komabayashi et al., 2005)
46	as the cold slab descends, which provides a way for water to enter into the deep Earth. Furthermore, in
47	the sediment and mid-ocean ridge basalt compositions several hydrous phases like phase egg (Eggleton

48 et al., 1978), δ-AlOOH (Suzuki et al., 2000), topaz-OH (e.g. Wunder et al., 1993), lawsonite (e.g. Pawley

- 49 et al., 1994; Okamoto and Maruyama, 1999), zoisite (e.g. Schmidt and Poli, 1994), and phengite (e.g.
- 50 Domanik and Holloway, 1996) are also well recognized.
- 51 However, few researches have been done to clarify the phase relations in the MgO-Al₂O₃-SiO₂-H₂O
- 52 (MASH) system, which should also be an important system for the deep Earth. The hydrous minerals
- 53 involving the MASH composition include mhlorite, MgMgAl-pumpellyite (Fockenberg, 1998; Artioli et
- al., 1999), later identified as Mg-sursassite (Bromiley and Pawley, 2002; Gottschalk et al., 2000),
- 55 Mg-chloritoid, and Mg-carpholite (Chopin and Schreyer, 1983), a recently reported hydrous Al-bearing
- 56 pyroxene (HAPY, Gemmi et al., 2011), etc.
- 57 Previous studies (e.g. Rauch and Keppler, 2002; Litasov et al., 2007; Mierdel et al., 2007; Sakurai et
- al., 2014) have shown that Al can be incorporated into the structures of some hydrous and anhydrous
- 59 phases, which, for example, can be expressed as $2Mg^{2+} = Al^{3+} + H^+$ or $Si^{4+} = Al^{3+} + H^+$. The water
- 60 content increases with increasing Al in the structures.

61 In the present study, we conducted experiments on the Al incorporation into phase A, where Mg is

- 62 6-coordinated and Si is 4-coordinated (Horiuchi, et al., 1983). By trying to increase the water content
- 63 through the substitution of Al^{3+} and H^+ for Si^{4+} and/or $2Mg^{2+}$ in phase A, we encountered a new hydrous
- 64 phase with a significant amount of Al, which has an unknown X-ray powder diffraction pattern. We

65 successfully obtained the cell parameters and chemical composition of this new phase by means of X-ray 66 diffraction (XRD), transmission electron microscopy (TEM), electron probe microanalysis (EPMA) 67 (energy or wavelength dispersive X-ray spectroscopy (EDS or WDS)), and secondary ion mass 68 spectrometry (SIMS). The phase transformations of chlorite have also been studied, in order to clarify 69 the existence of this new phase in the Al bearing composition along subducting slabs. **Experimental procedure** 7071High pressure and high temperature experiments were conducted using a Kawai type 2000 ton 72multi-anvil apparatus established at the Geodynamic Research Center (GRC) of Ehime University. 73Tungsten carbide cubes with a truncated edge length of 8 mm and Co doped MgO octahedron with an 74edge length of 14 mm were adopted as the second stage anvils and pressure medium, respectively. A 75cylindrical graphite sleeve was used as a heater, and the temperature was monitored using a 76 W3%Re-W25%Re thermocouple. The cell assembly is shown in Fig. 1. 77For Al incorporation experiments, two starting materials were prepared, and they are called S1 and 78S2 throughout this paper. S1 was the mixture of Al(OH)₃, Al₂O₃, and synthesized phase A 79 $(Mg_7Si_2O_8(OH)_6)$ with the molar ratio 1:1:1, and S2 was the mixture of MgO, Mg(OH)₂, SiO₂, Al₂O₃, 80 and Al(OH)₃ with the same chemical composition to S1. Both mixtures were crushed to less than $\sim 1 \,\mu m$ 81 grain size and preserved in a drying oven. In a typical run under 10 GPa and 1000°C, two Au or Pt

82	capsules with two mixtures were loaded into the MgO sleeve, which was surrounded by the graphite
83	heater. We prepared one more starting material named Syn for the synthesis experiment of this new
84	hydrous phase, which has a composition of Mg _{5.7} AlSi _{1.9} O ₈ (OH) ₆ . The decomposition experiments on
85	natural chlorite were also carried out at the same P-T condition.
86	The recovered run products were sliced, polished, and then carbon coated to perform the chemical
87	composition measurement, using EPMA (JEOL JSM-6510LV for EDS or JEOL 8800 for WDS) for
88	MgO-Al ₂ O ₃ -SiO ₂ components at Ehime University. The water content was measured by a SIMS
89	(CAMECA IMS-6f) installed at Hokkaido University, using a natural amphibole crystal as a standard
90	(1.66 wt% of H_2O . Miyagi and Yurimoto, 1995). In addition, San Carlos olivine was used for the
91	background H intensities, due to its low H concentration (10-60 ppm. Kurosawa et al., 1997).
92	The X-ray diffraction patterns of this new phase were obtained using a Micro-focused diffractometer
93	(Rigaku MicroMax-007HF) and a powder X-ray diffractometer (Rigaku UltimaIV/DD).
94	Monochromatized CuK α 1 radiation was employed. For the TEM analysis, the recovered samples were
95	Ar ion-thinned by an Ion Slicer (JEOL EM-09100 IS) at 3–5.5 kV, 7–20 μ A, and glancing angle of 0–5°.
96	These thin specimens were observed by TEM (JEOL JEM-2010) operating at 200 kV at the GRC, Ehime
97	University. A two axis-tilting holder was used to obtain the selected-area-electron-diffraction (SAED)
98	patterns and the transmitted images. The SAED patterns and the transmitted images were recorded by a

99 CCD detector.

100	Results and discussion
101	The new hydrous Mg-silicate was observed to coexist with pyrope (Mg ₃ Al ₂ Si ₃ O ₁₂) and diaspore
102	(AlOOH) in the phase A $(Mg_7Si_2O_8(OH)_6) + Al_2O_3 + H_2O$ system. In sample S1 a small amount of phase
103	A $(Mg_7Si_2O_8(OH)_6)$ and spinel $(MgAl_2O_4)$ existed in the low temperature zone. This may be due to a
104	temperature gradient. In sample S2 no phase A or spinel was observed. In both samples there were some
105	minor phases (<5% in volume) such as brucite (Mg(OH) ₂) and gibbsite (Al(OH) ₃) in the low temperature
106	zone, and we regarded these phases as disequilibrium products. The chemical compositions of the new
107	phase and its coexisting phases, which were measured by EPMA (EDS) and SIMS, are listed in Table 1
108	and shown in the ternary diagram in Fig. 2. For the EPMA measurements we noticed that the pyrope had
109	a slightly high Mg content and low Si content compared with Mg ₃ Al ₂ Si ₃ O ₁₂ . The Mg/Si ratios of pyrope
110	in sample S1 and S2 equal to 1.08(1) and 1.05(1), respectively. While we have carefully checked the
111	standards (e.g. En and Ky in Table 1) before measuring our samples, the composition deviation may be
112	caused by the OH component in the pyrope structure, with a possible substitution of $4H^+$ for Si ⁴⁺ . The
113	chemical composition of the new phase was estimated to be Mg _{5.7} AlSi _{1.9} O ₈ (OH) ₆ . Due to the poor
114	crystal qualities of new phase and diaspore, their compositions may be a little different from the
115	stoichiometry.

116	Almost pure sample of the new phase with relatively high crystal quality was successfully
117	synthesized in subsequent experiment under 10 GPa and 1000°C, using Mg _{5.7} AlSi _{1.9} O ₈ (OH) ₆ as the
118	starting composition. A small amount of pyrope existed in the high temperature zone in the run product.
119	The chemical compositions of both the new phase and pyrope were analyzed by EPMA (WDS) and
120	SIMS and are listed in Table 1, which reveals that this new hydrous Mg-silicate has a chemical
121	composition close to $Mg_{11}Al_2Si_4O_{16}(OH)_{12}$. The calculated ideal water content for this composition is
122	12.1%, which is very close to that of phase A (11.8%). Under the microscope this new phase had a
123	plate-like shape, with the thickness of several micrometers. This crystal shape may have some effects on
124	measuring the composition. Actually we have conducted several experiments on different pressure and
125	temperature (i.e. 6 - 12 GPa, 700 - 1000°C) conditions to confirm this composition. No clear
126	dependences on pressure and/or temperature were observed in the composition of this new phase. The
127	measured compositions were slightly scattering, with the Mg/Si ratios changing from 2.65 to 2.80, and
128	Al/Si ratios from 0.49 to 0.51. The composition deviates may be due to the cracks, grain boundaries, or
129	the measurement error. Thus we assume that this new phase has an ideal chemical composition given by
130	$Mg_{11}Al_2Si_4O_{16}(OH)_{12}$, which has the Mg/Si and Al/Si ratios equal to 2.75 and 0.5, respectively.
131	The XRD pattern (Fig. 3) for this new phase is very different from those of phase A and any other

132 hydrous or anhydrous phases. In order to derive its structure information, several electron diffraction

133 patterns were obtained using TEM (Fig. 4).

134	Fig. 4a illustrates the SAED pattern of the new hydrous phase showing that this reciprocal lattice
135	plane has hexagonal symmetry, and the other SAED patterns (Fig. 4b&e) show that the reciprocal lattice
136	of this new phase has spots with a very short distance perpendicular to the plane of hexagonal symmetry.
137	Further SAED patterns of the new hydrous phase reveal that all the diffraction spots can be indexed by
138	the hexagonal lattice with the cell parameters $a = 5.23(6)$ Å, $c = 23.2(2)$ Å. At this stage, there still
139	remains a possibility that this lattice may be hexagonal or trigonal. However, existence of the mirror
140	planes perpendicular to both [100]* and [110]* (Fig. 4c and d) excludes the possibility of a trigonal
141	system because in the trigonal system mirror planes perpendicular to both [100]* and [110]* are not
142	possible. Besides, these diffraction spots have the extinction rule that $l = 2n + 1$ (n = integer) is extinct
143	only for h0l (equivalent to $h\bar{h}l$) spots (Fig. 4b and e). Based on this extinction rule, the possible space
144	group of the new hydrous phase is constrained to be $P\overline{6}c2$, $P6_3cm$, or $P6_3/mcm$ in hexagonal
145	structures. The <i>h0l</i> spots with $h = 3n + 1$ and $3n + 2$ (n = integer) are characterized by strong diffuseness
146	(Fig. 4e), indicating some defects in the structure, which will be discussed in a separate paper.
147	According to the above information the powder diffraction pattern was successfully indexed with the
148	lattice parameters $a = 5.1972(2)$ Å, $c = 22.991(4)$ Å, and $V = 537.8(2)$ Å ³ . The result is shown in Figure
149	3, and the observed and calculated d-spacings for this new phase are listed in Table 2. This \sim 23 Å

150	elongated c-axis is characteristic in this phase, so here we name this new hydrous phase as "23 Å phase".
151	There are some weak peaks representing 1 0 7, 1 0 9 and 2 0 7 of the new 23 Å phase, which should be
152	extinct by the extinction rules. Since in electron diffraction patterns $h0l$ spots (h \neq 3n) always show
153	heavy streaking (Fig. 4e), this may also reflect in the powder diffraction, and hence cause the existence
154	of h0l (h \neq 3n, l = 2n + 1) peaks. There are still some unidentified peaks at 20 of about 20.83°, 26.67°
155	and 32.72°, we consider that those peaks do not belong to the new 23 Å phase, as there are no such
156	peaks in the micro-focus X-ray diffraction patterns. We are now conducting the single crystal X-ray
157	diffraction measurement. The result will be discussed in a separate paper.
158	If we assume that the formula unit per cell (Z) equals 1, the calculated density for this new 23 Å
159	phase (12.1 wt% H ₂ O, 2.761 g/cm ³) is similar or slightly higher than those of clinochlore (12 wt% H ₂ O,
160	2.65 g/cm ³), talc (4.7 wt% H ₂ O, 2.75 g/cm ³), and phase E (16.9 wt% H ₂ O, 2.88 g/cm ³) considering the
161	water contents. However, compared to the other dense hydrous magnesium silicates, such as phase A
162	(11.8 wt% H ₂ O, 2.96 g/cm ³), phase B (2.4 wt% H ₂ O, 3.37 g/cm ³), superhydrous phase B (5.8 wt% H ₂ O,
163	3.33 g/cm ³), and phase D (17.6 wt% H ₂ O, 3.50 g/cm ³), the density of this new 23 Å phase is slightly
164	lower. It is also lower than that of phase HAPY (7 wt% H_2O , 3.14 g/cm ³).
165	Several experiments have been conducted in order to identify the stability region of this new 23 Å

166 Mg-silicate. As shown in Fig. 5, this new 23 Å phase is stable up to 12 GPa and 1000°C, which is very

similar to the P, T stability region of phase A (Wunder, 1998), and along the cold slab condition, it can survive until it reaches the transition zone. At higher pressures it breaks down into Al-bearing superhydrous phase B ($(Mg_{9.6}Al_{0.4})(Si_{2.6}Al_{0.4})O_{14}(OH)_4$), Al-bearing phase E (Nonstoichiometric, confirmed by XRD), pyrope, and fluid, while at lower pressures it breaks down into chondrodite, pyrope, forsterite, and fluid. This means that this new **23** Å phase can transport H₂O into the deep upper mantle, even into the upper part of the transition zone.

173 Implications

174In the Mg-end antigorite composition $(Mg_3Si_2O_5(OH)_4)$, along the cold slab condition, phase A is 175possibly the dominant hydrous phase in the whole upper mantle (Irifune et al., 1998; Komabayashi et al., 1762005). Since a significant amount of aluminum also exists in a real subduction environment, it is 177reasonable to suppose that aluminum bearing hydrous minerals will form during the metamorphism of 178minerals such as chlorite [(Mg₅Al)(AlSi₃)O₁₀(OH)₈]]. In such an Al-bearing situation we predict that this new 23 Å phase will form and become the dominant hydrous phase beyond the stability region of 179180chlorite along the subducting slab, as the present study shows that phase A can easily react with Al^{3+} and produce this new 23 Å phase. Thus, it is necessary to clarify the stability of this new 23 Å phase in 181 182something related to a real mantle composition, such as chlorite. Accordingly, a decomposition 183experiment on natural chlorite, an important constituent of a metamorphosed mantle in an Al-bearing

184	system, was conducted at 10 GPa and 1000°C to confirm the appearance of the 23 Å phase. The result
185	showed that the chlorite decomposes into pyrope, chondrodite, the new 23 Å phase, phase A, and fluids
186	(Fig. 6), suggesting that along the cold slab the 23 Å phase can coexist with phase A in an Al-bearing
187	mantle composition. Thus, this new Al-bearing hydrous 23 Å phase should be an important hydrous
188	phase together with phase A to transport water into the deep Earth. The present result of the coexisting
189	new 23 Å phase and phase A shows that the amounts of these phases in the upper mantle depend on the
190	bulk Al ₂ O ₃ and H ₂ O contents.
191	Recently, phase HAPY was reported in the MASH system at 5.4 GPa and 720°C (Gemini et al.,
192	2011), but no phase HAPY was observed at 10 GPa and 1000°C in the chlorite composition. We are
193	further investigating the stability of this new 23 Å phase in the chlorite composition, especially just
194	beyond the stability region of chlorite (Staudigel and Schreyer, 1977; Fockenberg, 1995). The results
195	will be reported in a separate paper in the near future.
196	The discovery of this new hydrous 23 Å phase extends the stability region of the hydrous phase in
197	the MASH system along the subduction zone. The stability region of this new 23 Å phase is similar to
198	that of phase A. Thus, in the Al-bearing mantle composition, this new hydrous 23 Å phase should be an
199	important water reservoir to transport water together with Al into the deep upper mantle, even into the
200	transition zone.

201	Acknowledgements
202	This work was conducted as a part of a Ph. D. thesis of N. Cai at Ehime University. The authors
203	would like to thank T. Shinmei for his great help in high-pressure experiments and electron microprobe
204	observations. We also appreciate N. Sakamoto for the assistance in SIMS measurements at Hokkaido
205	University, and Prof. T. Kuribayashi at Tohoku University for his great comments on this project. The
206	research was supported by a Grant-in-Aid for Scientific Research (A) [KAKENHI] from the Japan

207 Society for the Promotion of Science (JSPS) given to T. Inoue (No. 26247073).

References

- 209 Akaogi, M., and Akimoto, S-I. (1980) High-pressure stability of a dense hydrous magnesium silicate
- 210 Mg₂₃Si₈O₄₂H₆ and some geophysical implications. Journal of geophysical research, 85,

6944–6948.

- Angel, R.J., Frost, D.J., Ross, N.L., and Hemley, R. (2001) Stabilities and equations of state of dense
 hydrous magnesium silicates. Physics of the Earth and Planetary Interiors, 127, 181–196.
- Artioli, G., Fumagalli, P., and Poli, S. (1999) The crystal structure of Mg₈(Mg₂Al₂)Al₈Si₁₂(O,OH)₅₆

pumpellyite and its relevance in ultramafic systems at high pressure. American Mineralogist, 84,
1906–1914.

- 217 Bromiley, G.D., and Pawley, A.R. (2002) The high-pressure stability of Mg-sursassite in a model
- 218 hydrous peridotite: a possible mechanism for the deep subduction of significant volumes of H₂O.
- 219 Contributions to Mineralogy and Petrology, 142, 714–723.
- Chen, J., Inoue, T., Yurimoto, H., and Weidner, D.J. (2002) Effect of water on olivine-wadsleyite phase
 boundary in the (Mg,Fe)₂SiO₄ system. Geophysical Research Letters, 29, 1875.
- 222 Chen, J., Liu, H., and Girard, J. (2011) Comparative in situ X-ray diffraction study of San Carlos olivine:
- Influence of water on the 410 km seismic velocity jump in Earth's mantle. American Mineralogist,
 96, 697-702.
- 225 Chopin, C., and Schreyer, W. (1983) Magnesiocarpholite and magnesiochloritoid: two index minerals of

226	pelitic	blueschists	and	their	preliminary	phase	relations	in	the	model	system
227	MgO–A	l ₂ O ₃ –SiO ₂ –H ₂	20. An	nerican	Journal of Scie	ence, 283	, 72–96.				

- Domanik, K.J., and Holloway, J.R. (1996) The stability and composition of phengitic muscovite and
 associated phases from 5.5 to 11 GPa: Implications for deeply subducted sediments. Geochimica et
 Cosmochimica Acta, 60, 4133–4150.
- Eggleton, R.A., Boland, J.N., and Ringwood, A.E. (1978) High pressure synthesis of a new aluminium
 silicate: Al₅Si₅O₁₇(OH). Geochemical Journal, 12, 191–194.
- Fockenberg, T. (1998) An experimental study of the pressure-temperature stability of
 MgMgAl-pumpellyite in the system MgO-Al₂O₃-SiO₂-H₂O. American Mineralogist, 83, 220–227.
- Frost, D.J., and Fei, Y. (1998) Stability of phase D at high pressure and high temperature. Journal of
 Geophysical Research: Solid Earth, 103, 7463–7474.
- Gasparik, T. (1993) The role of volatiles in the transition zone. Journal of Geophysical Research: Solid
 Earth, 98, 4287–4299.
- Gemmi, M., Fischer, J., Merlini, M., Poli, S., Fumagalli, P., Mugnaioli, E., and Kolb, U. (2011) A new
 hydrous Al-bearing pyroxene as a water carrier in subduction zones. Earth and Planetary Science
 Letters, 310, 422–428.
- 242 Gottschalk, M., Fockenberg, T., Grevel, K.-D., Wunder, B., Wirth, R., Schreyer, W., and Maresch, W.V.
- 243 (2000) Crystal structure of the high-pressure phase $Mg_4(MgAl)Al_4[Si_6O_{21}(OH)_7]$: an analogue of

sursassite. European Journal of Mineralogy, 12, 935-945.

- Higo, Y., Inoue, T., Irifune, T., and Yurimoto, H. (2001) Effect of water on the spinel-postspinel
 transformation in Mg₂SiO₄. Geophysical Research Letters, 28, 3505–3508.
- 247 Horiuchi, H., Morimoto, N., Yamamoto, K., and Akimoto, S. (1979) Crystal structure of
- 248 $2Mg_2SiO_4 \cdot 3Mg(OH)_2$, a new high-pressure structure type. American Mineralogist, 64, 593–598.
- Inoue, T. (1994) Effect of water on melting phase relations and melt composition in the system Mg₂SiO₄-MgSiO₃-H₂O up to 15 GPa. Physics of the Earth and Planetary Interiors, 85, 237–263.
- Inoue, T., Yurimoto, H., and Kudoh, Y. (1995) Hydrous modified spinel, Mg_{1.75}SiH_{0.5}O₄: A new water

reservoir in the mantle transition region. Geophysical Research Letters, 22, 117–120.

- Inoue, T., Weidner, D.J., Northrup, P.A., and Parise, J.B. (1998) Elastic properties of hydrous ringwoodite (γ -phase) in Mg₂SiO₄. Earth and Planetary Science Letters, 160, 107–113.
- 255 Irifune, T., Kubo, N., Isshiki, M., and Yamasaki, Y. (1998) Phase transformations in serpentine and
- transportation of water into the lower mantle. Geophysical Research Letters, 25, 203–206.
- Kanzaki, M. (1991) Stability of hydrous magnesium silicates in the mantle transition zone. Physics of
 the Earth and Planetary Interiors, 66, 307–312.
- Kirby, S.H., Stein, S., Okal, E.A., and Rubie, D.C. (1996) Metastable mantle phase transformations and
 deep earthquakes in subducting oceanic lithosphere. Reviews of Geophysics, 34, 261–306.
- 261 Komabayashi, T., and Omori, S. (2006) Internally consistent thermodynamic data set for dense hydrous
- 262 magnesium silicates up to 35 GPa, 1600 °C: Implications for water circulation in the Earth's deep

263 mantle. Physics of the Earth and Planetary Interiors, 156, 89–107.

- Komabayashi, T., Hirose, K., Funakoshi, K., and Takafuji, N. (2005) Stability of phase A in antigorite
 (serpentine) composition determined by in situ X-ray pressure observations. Physics of the Earth
 and Planetary Interiors, 151, 276–289.
- Kudoh, Y., Finger, L.W., Hazen, R.M., Prewitt, C.T., Kanzaki, M., and Veblen, D.R. (1993) Phase E: A
 high pressure hydrous silicate with unique crystal chemistry. Physics and Chemistry of Minerals,
 19, 357–360.
- Kurosawa, M., Yurimoto, H., and Sueno, S. (1997) Patterns in the hydrogen and trace element
 compositions of mantle olivines. Physics and Chemistry of Minerals, 24, 385–395.
- Litasov, K.D., Kagi, H., Shatskiy, A., Ohtani, E., Lakshtanov, D.L., Bass, J.D., and Ito, E. (2007) High
 hydrogen solubility in Al-rich stishovite and water transport in the lower mantle. Earth and
 Planetary Science Letters, 262, 620–634.
- Liu, L. (1987) Effects of H₂O on the phase behaviour of the forsterite-enstatite system at high pressures
 and temperatures and implications for the Earth. Physics of the Earth and Planetary Interiors, 49,
 142–167.
- Mierdel, K., Keppler, H., Smyth, J.R., and Langenhorst, F. (2007) Water solubility in aluminous
 orthopyroxene and the origin of Earth's asthenosphere. Science, 315, 364.
- 280 Miyagi, I., and Yurimoto, H. (1995) Water Content of Melt Inclusions in Phenocrysts Using Secondary

- Ion Mass Spectrometer. Bulletin of the Volcanological Society of Japan, 40, 349–355.
- Nishi, M., Irifune, T., Tsuchiya, J., Tange, Y., Nishihara, Y., Fujino, K., and Higo, Y. (2014) Stability of
 hydrous silicate at high pressures and water transport to the deep lower mantle. Nature Geosci, 7,
 224–227.
- Ohtani, E., Shibata, T., Kubo, T., and Kato, T. (1995) Stability of hydrous phases in the transition zone
 and the upper most part of the lower mantle. Geophysical Research Letters, 22, 2553–2556.
- 287 Ohtani, E., Mizobata, H., Kudoh, Y., Nagase, T., Arashi, H., Yurimoto, H., and Miyagi, I. (1997) A new
- hydrous silicate, a water reservoir, in the upper part of the lower mantle. Geophysical Research
 Letters, 24, 1047–1050.
- Ohtani, E., Toma, M., Litasov, K., Kubo, T., and Suzuki, a (2001) Stability of dense hydrous magnesium
 silicate phases and water storage capacity in the transition zone and lower mantle. Physics of the
 Earth and Planetary Interiors, 124, 105–117.
- Okamoto, K., and Maruyama, S. (1999) The high-pressure synthesis of lawsonite in the MORB+H₂O
 system. American Mineralogist, 84, 362–373.
- Pawley, A. (1994) The pressure and temperature stability limits of lawsonite: implications for H₂O
 recycling in subduction zones. Contributions to Mineralogy and Petrology, 118, 99–108.
- 297 Peacock (1990) Fluid processes in subduction zone. Science, 248, 329–337.
- 298 Pearson, D.G., Brenker, F.E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M.T., Matveev, S., Mather,

- K., Silversmit, G., Schmitz, S., and others (2014) Hydrous mantle transition zone indicated by
 ringwoodite included within diamond. Nature, 507, 221–4.
- Rauch, M., and Keppler, H. (2002) Water solubility in orthopyroxene. Contributions to Mineralogy and
 Petrology, 143, 525–536.
- Ringwood, A.E., and Major, A. (1967) High-pressure reconnaissance investigations in the system
 Mg₂SiO₄-MgO-H₂O. Earth and Planetary Science Letters, 2, 130–133.
- 305 Sakurai, M., Tsujino, N., Sakuma, H., Kawamura, K., and Takahashi, E. (2014) Effects of Al content on

water partitioning between orthopyroxene and olivine: Implications for lithosphere–asthenosphere
 boundary. Earth and Planetary Science Letters, 400, 284–291.

308 Saal, A.E., Hauri, E.H., Langmuir, C.H., and Perfit, M.R. (2002) Vapour undersaturation in primitive

309 mid-ocean-ridge basalt and the volatile content of Earth's upper mantle. Nature, 419, 451–5.

- 310 Schmidt, M.W., and Poli, S. (1994) The stability of lawsonite and zoisite at high pressures: Experiments
- 311 in CASH to 92 kbar and implications for the presence of hydrous phases in subducted lithosphere.
- Earth and Planetary Science Letters, 124, 105–118.
- Staudigel, H., and Schreyer, W. (1977) The upper thermal stability of clinochlore,
 Mg₅Al[AlSi₃O₁₀](OH)₈, at 10–35 kb P_{H2O}. Contributions to Mineralogy and Petrology, 61,
 187–198.
- 316 Suzuki, A., Ohtani, E., and Kamada, T. (2000) A new hydrous phase δ-AlOOH synthesized at 21 GPa
 317 and 1000 °C. Physics and Chemistry of Minerals, 27, 689–693.

5/6

318	Wunder, B. (1998) Equ	uilibrium experiments	in the system Mg	O-SiO ₂ -H ₂ O (MSH)	stabil	ity fields	of		
319	clinohumite-OH	$[Mg_9Si_4O_{16}(OH)_2],$	chondrodite-OH	$[Mg_5Si_2O_8(OH)_2]$	and	phase	А		
320	(Mg ₇ Si ₂ O ₈ (OH) ₆). Contributions to Mineralogy and Petrology, 132, 111–120.								

- Wunder, B., Rubie, D.C., Ross, C.R., Medenbach, O., Seifert, F., and Schreyer, W. (1993) Synthesis, 322stability, and properties of Al₂SiO₄(OH)₂: a fully dehydrated analogue of topaz. American 323Mineralogist, 78, 285–297.
- 324 Yagi, T., and Akimoto, S. (1976) Direct determination of coesite-stishovite transition by in-situ X-ray 325measurements. Tectonophysics, 35, 259-270.
- 326 Yamamoto, K., and Akimoto, S. (1974) High-pressure and high-temperature investigation in the system

327 MgO-SiO₂-H₂O. Journal of Solid State Chemistry, 9, 187-195.

- 328 Yamamoto, K., and Akimoto, S. (1977) The system MgO–SiO₂–H₂O at high pressure and temperatures.
- 329 Stability field of hydroxyl-chondrodite, hydroxyl-clinohumite and 10 Å phase. American Journal
- 330 of Science, 277, 288-312.

331

332 Figure captions

- 333 Figure 1. Cell assembly for high pressure and high temperature experiments. W3%Re-W25%Re
- thermocouple was used to monitor the temperature.
- Figure 2. The chemical composition of the new 23 Å phase in the MAS (+H₂O) ternary diagram. The
- 336 coexisting phases (pyrope and diaspore, open circles) were also plotted. A: phase A; B: hydrous phase B,
- super hydrous phase B, anhydrous phase B; D: phase D; E: phase E; Fo: forsterite; Egg: phase egg; Top:
- topaz-OH; Sp: spinel; Dia: diaspore; Chon: chondrodite; Atg: antigorite; Phg: phengite; Py: pyrope; Chl:
- 339 Mg-chlorite; Sur: Mg-sursassite; Ctd: chloritoid; Sta: staurolite; Spr: sapphirine; HAPY: hydrous
- Al-bearing pyroxene; 23 Å: new 23 Å phase in this study.
- **Fig. 3** Powder X-ray diffraction pattern of the new **23** Å phase Mg₁₁Al₂Si₄O₁₆(OH)₁₂. The refined lattice
- 342 parameters: a = 5.1972(2) Å, c = 22.991(4) Å, and V = 537.8(2) Å³. A: phase A; Br: brucite; Py: pyrope.
- 343 The solid triangles mark those peaks (at 2θ of about 20.83°, 26.67° and 32.72°) that we cannot identify
- 344 yet.
- Figure 4. The selected-area-electron-diffraction (SAED) patterns (a–e) and transmission electron image
- 346 (f) of the new 23 Å phase. The SAED patterns were obtained from different grains except for c and d.
- 347 The broken lines in **c** and **d** with m indicate a mirror plane perpendicular to the page. **f** shows the
- 348 stacking fault-like defects.

349	Figure 5. Stability region of the new 23 Å phase determined in this study. Solid circles represent the
350	presence of the new 23 Å phase, while open circles represent the absence of it. The synthesis condition
351	for HAPY phase (Gemmi et al., 2011) is also shown in solid diamond. The reaction on line (1): New 23
352	Å phase = Chon + Py + Fo + F; The reaction on line (2): New 23 Å phase = Al-shB + Py + F. The thin
353	dotted line shows the lower pressure limit of phase A (Wunder, 1998), while the thick dotted line
354	indicates the boundary between Chon + Py + Fo + F and Al-shB + Py + F. The phase boundary of
355	coesite-stishovite is from Yagi and Akimoto (1976). The average mantle geotherm (Brown and
356	Shankland, 1981) and the hypothetical P-T paths for the slabs (Kirby et al., 1996; Peacock, 1990) are
357	also shown.
358	Figure 6. The back-scattered electron image (BEI) of the dehydration products of natural chlorite under

- 359 10 GPa and 1000°C. The new 23 Å phase coexists with pyrope, chondrodite, and phase A. Py, pyrope;
- 360 phA, phase A; 23 Å, new 23 Å phase in this study; Chon, Chondrodite.

362 Table 1 Chemical compositions of the new 23 Å phase and coexisting phases analyzed by EPMA (EDS

		S1 ^a			S2 ^a		Sy	n ^b	Sto	l ^b
	Ру	Dia	New	Ру	Dia	23 Å	Ру	23 Å	En	Ky
Weight percent										
MgO	31.5(4)	1.0(1)	48.9(7)	31.2(4)	2.0(6)	49.8(9)	30.1(2)	47.4(5)	40.1(5)	0
Al_2O_3	25.6(6)	80.1(9)	11.1(4)	24.9(4)	77.7(6)	11.0(3)	24.2(3)	10.6(2)	0	61.8(4)
SiO_2	43.7(5)	1.0(1)	24.7(4)	44.3(4)	1.5(4)	25.1(4)	44.5(4)	25.7(2)	60.1(9)	37.4(1)
Total	100.8(8)	82.0(9)	84.7(12)	100.4(10)	81.2(9)	85.9(15)	98.8(6)	83.7(4)	100.3(15)	99.2(4)
H_2O^c	0.26(4)	-	11.2(2)	0.27(4)	-	11.4(2)	-	11.6(2)	-	-
Atomic ratio										
Mg	3.14(3)	0.015(2)	5.65(3)	3.12(2)	0.031(9)	5.68(2)	3.05(3)	5.52(4)	1.00(1)	0
Al	2.02(5)	0.976(3)	1.01(3)	1.96(2)	0.959(10)	0.99(2)	1.94(2)	0.97(2)	0	1.98(1)
Si	2.92(2)	0.010(1)	1.92(2)	2.97(2)	0.015(4)	1.92(2)	3.02(1)	2.01(1)	1.00(1)	1.01(1)
Н	0	1	6	0	1	6	0	6	-	-
0	12	2	14	12	2	14	12	14	3	5

363 or WDS). The compositions of selected standards are also listed.

Measured by: a, EDS at Ehime University; b, WDS at Ehime University; c, SIMS at Hokkaido University.

Not determined; Std, standard measurements at the same condition with Syn; Py, pyrope; Dia, diaspore; 23 Å, new
23 Å hydrous phase; En, MgSiO₃-enstatite; Ky, kyanite.

364

5/6

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5148

365 Tabel 2 The refined X-ray diffraction data of the new 23 Å phase $Mg_{11}Al_2Si_4O_{16}(OH)_{12}$. Main peaks are

366	listed.
300	fisted.

hkl	dobs	$d_{\rm calc}$	I/I_0
002	11.4782	11.4862	5
004	5.7368	5.7431	5
006	3.8259	3.8287	100
104	3.5358	3.5419	5
008	2.8696	2.8715	17
111	2.5797	2.5813	65
112	2.5323	2.5337	22
113	2.4589	2.4600	63
108	2.4205	2.4206	4
0 0 10	2.2969	2.2972	14
116	2.1488	2.1496	55
117	2.0364	2.0368	52
118	1.9265	1.9264	40
119	1.8205	1.8207	3
208	1.7707	1.7709	4
210	1.7003	1.7006	8
211	1.6969	1.6960	5
214	1.6303	1.6306	13
1 1 11	1.6278	1.6276	10
1 0 14	1.5420	1.5416	14
300	1.5006	1.4998	95
306	1.3964	1.3965	12
1 1 14	1.3880	1.3873	18
1 1 15	1.3198	1.3193	7

367

368

- **Fig. 1** Cell assembly for high pressure and high temperature experiments. W3%Re-W25%Re
- thermocouple was used to monitor the temperature.
- 372
- Fig. 2 The chemical composition of the new 23 Å phase in the MAS ($+H_2O$) ternary diagram. The
- 374 coexisting phases (pyrope and diaspore, open circles) were also plotted. A: phase A; B: hydrous phase B,
- 375 super hydrous phase B, anhydrous phase B; D: phase D; E: phase E; Fo: forsterite; Egg: phase egg; Top:
- topaz-OH; Sp: spinel; Dia: diaspore; Chon: chondrodite; Atg: antigorite; Phg: phengite; Py: pyrope; Chl:
- 377 Mg-chlorite; Sur: Mg-sursassite; Ctd: chloritoid; Sta: staurolite; Spr: sapphirine; HAPY: hydrous
- Al-bearing pyroxene; 23 Å: new 23 Å phase in this study.
- 379
- 380 Fig. 3. Powder X-ray diffraction pattern of the new 23Å phase Mg11Al2Si4O16(OH)12. The refined

lattice parameters: a = 5.1972(2) Å, c = 22.991(4) Å, and V = 537.8(2) Å³. A: phase A; Br: brucite; Py:

- 382 pyrope. The solid triangles mark those peaks (at 2 of about 20.83°, 26.67° and 32.72°) that we cannot
- identify yet.
- 384
- Fig. 4 The selected-area-electron-diffraction (SAED) patterns (a–e) and transmission electron image (f)
 of the new 23 Å phase. The SAED patterns were obtained from different grains except for c and d. The

broken lines in c and d with m indicate a mirror plane perpendicular to the page. f shows the stacking
fault-like defects.

389

390	Fig. 5 Stability region of the new 23 Å phase determined in this study. Solid circles represent the
391	presence of the new 23 Å phase, while open circles represent the absence of it. The synthesis condition
392	for HAPY phase (Gemmi et al., 2011) is also shown in solid diamond. The reaction on line (1): New 23
393	Å phase = Chon + Py + Fo + F; The reaction on line (2): New 23 Å phase = Al-shB + Py + F. The thin
394	dotted line shows the lower pressure limit of phase A (Wunder, 1998), while the thick dotted line
395	indicates the boundary between Chon + Py + Fo + F and Al-shB + Py + F. The phase boundary of
396	coesite-stishovite is from Yagi and Akimoto (1976). The average mantle geotherm (Brown and
397	Shankland, 1981) and the hypothetical P-T paths for the slabs (Kirby et al., 1996; Peacock, 1990) are
398	also shown.

- 401 GPa and 1000 °C. The new 23 Å phase coexists with pyrope, chondrodite, and phase A. Py, pyrope; phA,
- 402 phase A; 23 Å, new 23 Å phase in this study; Chon, chondrodite.

⁴⁰⁰ Fig. 6 The back-scattered electron image (BEI) of the dehydration products of natural chlorite under 10

370 Fig. 1 Cell assembly for high pressure and high temperature experiments. W3%Re-W25%Re

371 thermocouple was used to monitor the temperature.

Fig. 2 The chemical composition of the new phase in the MAS (+H₂O) ternary diagram.
The coexisting phases (pyrope and diaspore, open circles) were also plotted. A: phase A; B:
hydrous phase B, super hydrous phase B, anhydrous phase B; D: phase D; E: phase E; Fo:
forsterite; Egg: phase egg; Top: topaz-OH; Sp: spinel; Dia: diaspore; Chon: chondrodite;
Atg: antigorite; Phg: phengite; Py: pyrope; Chl: Mg-chlorite; Sur: Mg-sursassite; Ctd:
chloritoid; Sta: staurolite; Spr: sapphirine; HAPY: hydrous Al-bearing pyroxene; 23 Å: new
23 Å phase in this study.

Fig. 3 Powder X-ray diffraction pattern of the new **23** Å phase Mg₁₁Al₂Si₄O₁₆(OH)₁₂. The refined lattice

382 parameters: a = 5.1972(2) Å, c = 22.991(4) Å, and V = 537.8(2) Å³. A: phase A; Br: brucite; Py: pyrope.

383 The solid triangles mark those peaks (at 2 θ of about 20.83°, 26.67° and 32.72°) that we cannot identify

384 yet.

Fig. 4 The selected-area-electron-diffraction (SAED) patterns (a–e) and transmission electron image (f)
of the new 23 Å phase. The SAED patterns were obtained from different grains except for c and d. The
broken lines in c and d with m indicate a mirror plane perpendicular to the page. f shows the stacking
fault-like defects.

391 Fig. 5 Stability region of the new 23 Å phase determined in this study. Solid circles represent the 392presence of the new 23 Å phase, while open circles represent the absence of it. The synthesis condition 393 for HAPY phase (Gemmi et al., 2011) is also shown in solid diamond. The reaction on line (1): New 23 Å phase = Chon + Py + Fo + F; The reaction on line (2): New 23 Å phase = Al-shB + Py + F. The thin 394395dotted line shows the lower pressure limit of phase A (Wunder, 1998), while the thick dotted line 396 indicates the boundary between Chon + Py + Fo + F and Al-shB + Py + F. The phase boundary of 397 coesite-stishovite is from Yagi and Akimoto (1976). The average mantle geotherm (Brown and 398 Shankland, 1981) and the hypothetical P-T paths for the slabs (Kirby et al., 1996; Peacock, 1990) are 409also shown.

Fig. 6 The back-scattered electron image (BEI) of the dehydration products of natural chlorite under 10

408 GPa and 1000 °C. The new 23 Å phase coexists with pyrope, chondrodite, and phase A. Py, pyrope; phA,

409 phase A; 23 Å, new 23 Å phase in this study; Chon, chondrodite.