This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5018

5/6

1	
2	Revision 1 #5018
3	
4	Oriented Multiphase Needles in Garnet from Ultrahigh-Temperature Granulites,
5	Connecticut, USA
6	
7	
8	
9	
10	
11	Jennifer A. Axler ¹ and Jay J. Ague ^{1,2}
12	
13	¹ Department of Geology and Geophysics
14	Yale University
15	P.O. Box 208109
16	New Haven, CT 06520-8109 USA
17	jennifer.axler@yale.edu and jay.ague@yale.edu
18	
19	² Peabody Museum of Natural History
20	Yale University
21	New Haven, CT 06511 USA
22	
23	

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5018

24

Abstract

This study investigates distinctive oriented, needle-shaped multiphase inclusions found 25 26 within cores of garnets from felsic granulites of the Upper Member of the Bigelow Brook Formation and the Brimfield Schist (northeastern Connecticut, USA). The rocks crop out in the 27 southern end of the Central Maine Terrane and thus are a part of the Acadian/Neoacadian 28 29 Orogen. The typical mineral assemblage is: garnet + sillimanite + K-feldspar + plagioclase + quartz + cordierite + biotite±spinel. The sillimanite is commonly pseudomorphous after kyanite. 30 The multiphase needle inclusions and associated exsolved needles of rutile and ilmenite 31 32 are mostly oriented parallel to <111> of garnet. The multiphase needles contain various combinations of quartz, micas, chlorite, rutile, graphite, a siliceous compositionally variable 33 phase ("Phase-CV"), Zn-spinel, apatite, zircon, and rare ilmenite. We hypothesize that they 34 represent inclusions of fluid that adhered to exsolving Ti±Fe oxide needles (mostly rutile) or 35 extended along zones of weakness in garnet. This requires that multiphase needle formation 36 37 occurred in response to cooling and/or decompression. The needles ultimately decrepitated during retrogression. We note that micaceous needle-shaped multiphase inclusions are rarely 38 described; the closest analogs of which we are aware are found in UHP garnets of the Erzgebirge 39 (Perchuk 2008). 40

The Brimfield Schist in this area underwent ultrahigh-temperature metamorphism
(UHTM) of ~1000 °C at a minimum pressure of ~1 GPa (Ague et al. 2013). Here we provide
new temperature estimates for the adjacent Upper Member of the Bigelow Brook Formation.
Ternary feldspar reintegration using the activity model of Benisek et al. (2004) and Zr-in-rutile
thermometry (Tomkins et al. 2007) give average temperatures of ~990 °C and ~1010 °C,
respectively, at 1 GPa for this unit. Therefore, the recently discovered UHT zone in the Brimfield

Schist of northeastern Connecticut extends to the east to include the Upper Member of the
Bigelow Brook Formation. Consequently, the first confirmed regional UHT locality in the
United States is larger than initially recognized, and is at least 25 km long and 5–10 km wide.
The oriented, elongate multiphase inclusions and petrographically-obvious oriented Ti±Fe oxide
needles may be useful indicators of extreme temperature and/or pressure rocks in other field
areas.

53

Introduction

Garnets and other refractory minerals in mantle rocks, ultra-high pressure (UHP) rocks, 54 55 and high-grade gneisses may contain multiphase solid inclusions that are relicts of fluids entrapped during garnet growth (e.g., Stöckhert et al. 2001; van Roermund et al. 2002; Carswell 56 and van Roermund 2005; Ferrando et al. 2005; Malaspina et al. 2006; Frezzotti et al. 2007; 57 Perchuk 2008; Mposkos et al. 2009; Ferrero et al. 2012; Hermann et al. 2013). Common 58 inclusion phases are quartz/coesite, feldspars, micas, chlorite, carbonates, apatite, rutile, graphite, 59 60 and zircon. Microdiamond can also be found within these inclusions and by itself in garnet. A growing number of multiphase inclusion localities have been recognized worldwide, 61 but thus far none are in North America. Three examples are given here. (1) Multiphase 62 63 inclusions ranging from ~ 5 to $\sim 150 \,\mu\text{m}$ in diameter have been reported in garnet, orthopyroxene, and clinopyroxene from mantle-derived websterite in Fjørtoft, Norway (Carswell and van 64 65 Roermund 2005). The inclusions generally contain Ti-phlogopite, kalsilite, Cr-spinel, magnesite, 66 dolomite, Ba-Mg carbonate, Fe-Ni sulfide, Cl-apatite, rutile, zircon, and monazite; graphite or microdiamond are also found. The inclusions are interpreted to have formed from metasomatic 67 fluids that infiltrated the peridotite. (2) Multiphase inclusions in garnets from UHP phengite-68 69 garnet-kyanite saidenbachite lenses of the Saxonian Erzgebirge (Bohemian Massif) are

70 composed mostly of phlogopite, quartz, paragonite, phengite, apatite, and rutile. In addition, graphite or microdiamond are common (Stöckhert et al. 2001, 2009). The inclusions record the 71 72 presence of dense, alkali- and silica-bearing C-O-H fluids in deeply buried crust. (3) Multiphase inclusions in garnets within ultrahigh-temperature (UHT) granulites of the Barun Gneiss 73 (Himalayas, Nepal) contain mostly quartz, biotite, muscovite, and plagioclase, together with 74 75 accessory minerals such as zircon (Ferrero et al. 2012). The inclusions are crystallized anatectic 76 melt trapped within the garnet host; similar inclusions from other localities may even preserve glassy quenched melt (Ferrero et al. 2012). 77 78 Rutile and ilmenite needles dominantly parallel to garnet <111> may accompany multiphase inclusions in garnet (Figs. 1 and 2). They are found predominantly in UHP rocks 79 (e.g., Zhang and Liou 1999; Mposkos and Kostopoulos 2001; Zhang et al. 2003), >900 °C 80 granulites (e.g., Snoeyenbos et al. 1995; O'Brien et al. 1997; Ague et al. 2013), and mantle rocks 81 (e.g., Obata 1994; van Roermund and Drury 1998; Wang et al. 1999; van Roermund et al. 2000). 82 83 The rutile needles have anomalous (non-parallel) extinction (Griffin et al. 1971). This reflects 84 single or multiple definite crystallographic orientation relationships (COR) between rutile and 85 host garnet that are now well characterized by electron backscatter diffraction and transmission 86 electron microscope studies (Proyer et al. 2013; Hwang et al. 2014). The concentration of Ti in aluminous garnet is generally higher at higher pressures (P)87 and/or higher temperatures (T), although there is considerable variation and Ti-P-T relationships 88

are complicated (e.g., Khomenko et al. 1994; Ono 1998; Massonne and Brandelik 1998; Zhang

and Liou 2003; Zhang et al. 2003; Kawasaki and Motoyoshi 2007; Hermann and Spandler 2008;

91 Konzett and Frost 2009; Auzanneau et al. 2010; Proyer et al. 2013). Ti generally is thought to go

92	into the octahedral site of garnet, but can also enter the tetrahedral site (e.g., Malitesta et al.
93	1995, Massonne and Brandelik 1998; Ackerson et al. 2013; Proyer et al. 2013).
94	The conventional interpretation of the oriented Ti±Fe oxide inclusions is that during
95	cooling and exhumation the Ti is no longer stable in the garnet structure and thus it exsolves
96	(precipitates) out along a preferred crystallographic direction(s) (e.g., Haggerty 1991; Zhang and
97	Liou 1999; Ye et al. 2000; van Roermund et al. 2000; Snoeyenbos and Koziol 2008; Ague and
98	Eckert 2012). For example, Proyer et al. (2013) concluded that the complex but definite COR
99	between oriented rutile needles and garnet host from UHP metapelite (Greek Rhodope) reflected
100	a precipitation origin. Ague and Eckert (2012) documented Ti-depleted haloes in garnet
101	surrounding Ti±Fe oxide crystals in 1000 °C granulites from the field area studied herein, thus
102	confirming a precipitation origin for these particular rocks. We note in this context that the lack
103	of local Ti depletion halos in garnet is not a refutation of precipitation hypotheses as it may
104	simply mean that garnet lost most of its Ti due to extensive needle formation. In addition, halos
105	could be obscured if, subsequent to precipitation, there was continued Ti diffusion in garnet or
106	recrystallization of garnet.
107	Other needle formation processes could potentially operate (see review in Proyer et al.
108	2013). For example, unusual Idaho "star" garnets (Guinel and Norton 2005), well known among
109	mineral and gem enthusiasts for their four-star or six-star asterism, have rutile needle inclusions
110	that may have formed by precipitation from garnet or co-precipitation of rutile and garnet
111	(Hwang et al. 2014). Star garnets are rare. They are known from only a handful of localities
112	worldwide—most famously Idaho and India—but also Madagascar, Sri Lanka, Tanzania, and
113	North Carolina (Schmetzer et al. 2002). Star garnets are not considered further herein given their

114 unusual nature and because of uncertainties regarding peak metamorphic *P*-*T* conditions.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5018

115	The shapes of multiphase inclusions vary. They are commonly rounded, "boxy", or have
116	a negative crystal shape. In addition, the oriented multiphase needle is a rarely-described
117	inclusion type that is typically associated with $Ti \pm Fe$ oxide needles in UHP rocks. For example,
118	Ye et al. (2000) describe composite rutile-apatite needles in garnet from eclogite within the Sulu
119	UHP metamorphic belt (China). Ruiz-Cruz and de Galdeano (2013) report multiphase rutile-
120	apatite needles and rutile-silicate rods in garnet from UHP granulites (Ceuta, northern Africa).
121	The only reported occurrence of oriented multiphase needles that contain micas of which we are
122	aware is in the diamondiferous Erzgebirge rocks (Perchuk 2008).
123	We report on a newly-discovered locality for oriented multiphase needles in garnet
124	(northeastern Connecticut, USA; Fig. 3). They are found parallel to <111> in garnet and are
125	associated with, and parallel to, oriented rutile and ilmenite needles (Figs. 1 and 2). They
126	generally contain phlogopite, quartz, and rutile; other phases that may be found include: graphite,
127	phengite-muscovite, ilmenite, apatite, monazite, Zn-spinel, zircon, and a siliceous,
128	compositionally variable phase (herein termed Phase-CV to denote compositional variability).
129	The advent of field emission gun electron probe microanalyzer (FEG-EPMA) technology
130	facilitates quantitative analysis of oxide needles and tiny inclusion phases impossible with
131	standard EPMA methods. The high Zr contents of the rutile needles, together with ternary
132	feldspar compositions from nearby localities, unequivocally indicate ultrahigh-temperature
133	metamorphism (UHTM). This finding expands the newly-discovered UHT area of northeastern
134	Connecticut (Ague et al. 2013) to the north and east. Our results document textural relationships
135	that bear on deep metamorphic processes and that may be useful in identifying extreme T and/or
136	<i>P</i> rocks in other field areas.

137

Geology

138	The oriented rutile, ilmenite, and multiphase inclusions were discovered in garnets from
139	sillimanite-rich metapelitic gneisses within the Brimfield Schist and the Upper Member of the
140	Bigelow Brook Formation (UM-BBF) of the southern end of the Central Maine Terrane (CMT;
141	Fig. 3). The UM-BBF consists predominantly of sulfidic rusty-weathering gneiss and schist. The
142	lenses of sillimanite-rich rock occur throughout and typically contain: garnet + sillimanite + K-
143	feldspar + plagioclase + quartz + cordierite + biotite. Rutile, ilmenite, graphite, apatite, monazite,
144	zircon, rare spinel, and pyrrhotite are accessory phases. These rocks are discernible from the
145	surrounding schist and gneiss as they form small ridges and contain megacryst pseudomorphs of
146	sillimanite after kyanite up to 10 cm long (Fig. 4a, Peper and Pease 1975). The Brimfield Schist
147	is similar and consists mostly of metapelitic and quartzofeldspathic gneisses, but also includes
148	pods and layers of calc-silicates and metamorphosed mafic and ultramafic rocks (Ague et al.
149	2013). Probable sillimanite pseudomorphs after kyanite are present but less obvious, perhaps due
150	to stronger deformation and recrystallization.
151	The early history of the northern domain of the CMT in New Hampshire, Maine, and
152	Massachusetts differs from that of the southernmost domain in Connecticut (CT). The northern
153	domain records sillimanite pseudomorphs after andalusite (Chamberlain and Lyons 1983;
154	Thomson 2001), whereas the southern domain contains sillimanite pseudomorphs after kyanite
155	(Fig. 4a; Peper and Pease 1975; Fahey and Pease 1977). Thus, the first preserved prograde
156	metamorphism occurred at different conditions within the CMT.
157	UHTM conditions for the Brimfield Schist (Fig. 3) were at least ~1000 °C and ~1 GPa
158	(see Ague et al. 2013 for pseudosection, P-T estimates, and path). The kyanite pseudomorphs
159	could be evidence of either high pressures at high temperatures (≥~1.4 GPa; 1000 °C) or growth

160 at moderate crustal pressures in the amphibolite facies followed by heating to UHT conditions.

161	Pseudosection analysis gives the minimum P of ~ 1 GPa for the quartz-absent assemblage garnet
162	+ K-feldspar + Al ₂ SiO ₅ + rutile + melt at 1000 °C. If quartz was present then the minimum P
163	estimate is ~1.4 GPa, consistent with kyanite stability at these temperatures. The P - T path
164	subsequent to UHTM involved: cooling to around 800 °C at 0.5–0.6 GPa, followed by reburial
165	which brought the rocks back into the kyanite stability field at 0.8–0.9 GPa and \sim 600 °C. The
166	reburial is evidenced in the field area by variably-developed overprinting of the Brimfield Schist
167	with kyanite (e.g., Ague 1995; Thomson 2001); overprint kyanite has yet to be recognized in the
168	UM-BBF.
169	The field area is cut by a series of westward dipping faults that are generally interpreted
170	to be thrusts (Fig. 3; Peper and Pease 1975; Fahey and Pease 1977; Rodgers 1981). The
171	easternmost of these (Eastford fault) cuts the 379 Ma Canterbury Gneiss, thus establishing a
172	maximum age for fault movement (U-Pb zircon dating of Wintsch et al. 2007). The CMT of
173	northeastern CT underwent high-grade metamorphism during Acadian/Neoacadian orogenesis
174	(Devonian; Rodgers 1981; Robinson and Tucker 1982; Schumacher et al. 1989; Armstrong et al.
175	1992; Wintsch et al. 1992; Robinson et al. 1998; Thomson 2001; Wintsch et al. 2009); however,
176	the precise timing of events awaits future geochronological studies.
177	Methods
178	Wavelength-dispersive spectrometer (WDS) analyses, energy-dispersive spectrometer
179	(EDS) analyses, and backscattered electron (BSE) images were acquired using the JEOL JXA-
180	8530F field emission gun electron probe microanalyzer (FEG-EPMA) and Probe for EPMA
181	software at Yale University. Natural and synthetic standards were used together with $\phi - \rho - z$
182	matrix corrections. Off-peak background corrections were used for most phases. In addition, the
183	mean atomic number (MAN) background correction procedure was used for several mica and

Phase-CV analyses to reduce exposure time and therefore reduce beam damage (e.g., Donovanand Tingle 1996).

186 Quantitative analyses of oxides and hydrous phases were done at 10 kV. The low kV reduces beam damage of hydrous phases, and allows quantitative analysis of small ($<2-10 \mu m$) 187 oxide grains due to the small activation volume of $\sim 1 \,\mu m^3$. The beam was focused for oxides, 188 189 and defocused to as much as 20 µm for hydrous phases and feldspars. 15 kV was used for garnet and feldspars. The current of the electron beam depended on the beam sensitivity of the mineral 190 being analyzed; 150 nA for oxides and garnet and 2.5–10 nA for micas, Phase-CV, and 191 192 feldspars. Major elements were counted for 10-40 s on peak; key trace elements were counted for long times (100–200 s on peak) to optimize counting statistics. A high-reflectivity PETL 193 crystal was used to gather Ti (in garnet) and Zr (in rutile) counts. Analytical uncertainties are 194 discussed in Ague and Eckert (2012). 195 Chemical mapping of phosphorus in garnet was done using WDS at 15 kV and 150 nA 196 197 with a 150 ms dwell time. Maps of the acicular multiphase inclusions were made using EDS (Si 198 in Fig. 7d) or WDS (all others) at 10 kV and 15 nA with dwell times ranging from 30 to 50 ms. Temperatures (*T*) were estimated using Zr-in-rutile thermometry and ternary feldspar 199 200 thermometry. We used the Zr-in-rutile thermometer calibration of Tomkins et al. (2007) (Table 1). For ternary feldspar thermometry, antiperthite compositions were reintegrated following 201 202 Ague et al. (2013); the T estimates used the feldspar activity models of Benisek et al. (2004, 203 2010). The method estimates the *minimum* T for the crystallization of homogeneous ternary 204 feldspar.

To estimate the original bulk Ti content of a garnet containing oriented rutile and ilmenite
 needles (section JAQ124A-6), a grid of 25 μm diameter spot analyses was done in a rutile and

207	ilmenite needle-rich region of its core following the method outlined in Ague and Eckert (2012).
208	As the oxides are precipitates out of the garnet, a wide beam was used to combine the Ti content
209	of the oxide needles with the Ti content remaining in the garnet to determine the garnet's original
210	composition before oxide precipitation. Four adjacent domains were selected to evaluate the
211	variability of the garnet Ti content; they contained 94, 143, 59, and 160 spot analysis points.
212	Electron backscatter diffraction (EBSD) work was done using an XL-30 ESEM-FEG
213	operating at 20 kV and 3 nA. The Kikuchi patterns were indexed using Channel 5 software by
214	Oxford Instruments HKL. The crystallographic orientation of garnet was determined to verify
215	the shape preferred orientation of oxide and multiphase needles along garnet <111> (Fig. 2).
216	Petrographic Relationships
217	The multiphase-needle-bearing garnets are typically about 0.25 to 1 cm in diameter. They
218	are rich in pyrope (25–30%) and almandine, but poor in grossular and spessartine (Table 2). The
219	multiphase-needles and Ti±Fe oxide-needles mostly lie parallel to <111> (as verified by EBSD;
220	Fig. 2), and occupy domains within garnet cores (Figs. 1, 4c, and 5). Needle lengths range from
221	about 10 to 125 μ m. The rutile needles are the thinnest and are typically 0.5 to 3 μ m in diameter.
222	The ilmenite needles tend to be thicker (~6 μ m diameter). The multiphase-needles are
223	distinguished by their translucence and rough outlines (Figs. 1b and 2).
224	The garnet cores are surrounded by rims that lack oriented needles but that commonly
225	contain sillimanite inclusions (Fig. 5a). Core-rim boundaries range from diffuse to sharp; sharp
226	boundaries are quite common (Figs. 4c and 5). At most localities, sillimanite inclusions in garnet
227	rims are roughly parallel to the surrounding foliation (see Ague and Eckert 2012; Ague et al.
228	2013). However, at and around site 124 the sillimanite prisms are arranged in a roughly radial

way around sharply-defined garnet cores (Fig. 5a), whereas matrix sillimanite is parallel to thefoliation and defines a lineation.

231 Most of the multiphase needles have cracks radiating out of their corners (Fig. 6); these cracks produce the rough outlines observed petrographically (Fig. 2). The lengths of the radiating 232 cracks can exceed the diameter of the inclusion from which they originated. The cracks are 233 234 generally filled with hydrous minerals such as chlorite or phlogopite. Depending on orientation, 235 the needles may intersect the garnet surface at a point if they are nearly perpendicular to the plane of the thin section (e.g., Figs. 6a–6g), or be more elongate if they lie sub-parallel to the 236 237 plane (e.g., Figs 6h, 6i, 7a, and 7b). The multiphase inclusions generally have a near-hexagonal, "negative" crystal shape in cross section when viewed perpendicular to the elongation direction 238 (e.g., Figs 6a-6d, 6f, 6g, 7c, and 7d). 239

Phlogopite + quartz \pm rutile are the most abundant minerals in the multiphase inclusions. 240 Muscovite/phengite is less abundant but is still widely observed. Multiple mica phases are 241 242 commonly intergrown (Figs. 6 and 7b; see below). Rare chlorite may be present together with 243 the micas or in cracks. Graphite plates and rods that give pure carbon EDS spectra are common (Fig. 6c); isolated graphite inclusions can also be found throughout garnet. "Phase-CV" is silica-244 245 rich and compositionally variable. It is likely composed of amorphous material or nanocrystalline minerals too small for separate analyses. Other minerals found in the multiphase 246 247 inclusions are: apatite, monazite, Zn-spinel, zircon and ilmenite. The long axis of rutile and the 248 cleavage trace of phlogopite are commonly parallel to the elongation direction of the entire 249 inclusion, although this isn't always the case (Figs. 6 and 7). The kyanite pseudomorphs are blue-gray, prismatic, and predominantly oriented within 250 251 the foliation. Rare spinel is found as inclusions in the pseudomorphs in several samples from the

252	124 sample area (Fig. 4b). This spinel has an unusual "wormy" appearance in some ways similar
253	to myrmekite; however the long axes of the spinel blebs are usually aligned with the long-
254	direction of the sillimanite. The spinel inclusions are most elongate in the central parts of the
255	inclusion clusters, and become more equant on the margins (Fig. 4b). Ilmenite inclusions are also
256	found with spinel. The texture of the spinel inclusions does not suggest overgrowth by
257	sillimanite, but rather some other mechanism associated with the conversion of kyanite to
258	sillimanite. One possibility is that the oxide phases were produced from impurities originally
259	present in the kyanite that crystallized when the pseudomorphs formed.
260	Mineral Chemistry
261	Garnet
262	The major elements show relatively little zonation due to diffusive smoothing at granulite
263	facies conditions (Figs. 8a-c; e.g., Kohn 2014), although retrograde drops in Mg/Fe were noted at
264	contacts with biotite or cordierite. In general, Ca preserves the greatest degree of internal
265	zonation for major elements; however, the variations are relatively small, ranging from about
266	0.11 to 0.16 atoms per formula unit (afu per 12 O) Ca (Fig. 8c).
267	The trace elements Ti, P, Y, and Na record distinct zonation within the garnets. For
268	example, in Figure 8d, the Ti content of the garnet drops and flattens as the profile crosses into
269	the oxide needle-rich core. This is likely due to Ti diffusing out of the garnet to form the rutile
270	and ilmenite needles in the core region (e.g., Ague and Eckert 2012; see below). Phosphorus is
271	elevated within needle-rich garnet cores with an average of ~0.004 afu P. (Figs. 8e, 9b, and 9c).
272	Core-rim boundaries are typically marked by a drop in P content; P may then increase toward the
273	rim but concentrations do not reach core values. Notably, the phosphorus preserves overprint
274	zonation (e.g., Ague and Carlson 2013), easily seen in a chemical map of garnet, but also shown

in garnet profiles as steep drops in concentration (Figs. 9b and 9c). The preservation of sharp 275 gradients in P concentrations demonstrates that much of the original chemical growth zonation is 276 277 retained even at UHT conditions, and has not been erased by diffusion, recrystallization, or 278 dissolution-reprecipitation. Yttrium contents are typically largest in garnet cores ($\sim 0.004-0.006$ afu Y) and decrease toward rims. This trend can be seen in the garnet profile of Figure 8f. Some 279 280 garnets have measureable zoning in Na, with the largest concentrations in garnet cores (Fig. 9a). 281 In summary, the largest concentrations of most trace elements are found in the garnet cores, especially in the areas which contain multiphase and oxide needles. 282 283 The oriented Ti±Fe oxide needles almost certainly precipitated from Ti-bearing garnet (e.g., Ague and Eckert 2012; Prover et al. 2013). Therefore, the combined Ti content of the 284 Ti±Fe oxide needles and the garnet likely reflects the Ti content of the garnet immediately prior 285 286 to Ti \pm Fe oxide precipitation. To measure the bulk Ti content, wide-beam (25 µm) spot analyses were spread over a grid in the needle-rich core of JAQ 124A as described in the Methods section. 287 288 The four analyzed domains contain average TiO_2 concentrations of 0.193 (n=94), 0.091 (n=143), 0.111 (n=59), and 0.129 (n=160) wt. %; the average of all 408 spot analyses is 0.13 wt. %. It is 289 290 unclear if these values reflect the maximum garnet Ti content at peak conditions, because Ti can 291 diffuse through garnet at extreme temperatures (Ague and Eckert 2012). Thus, the original Ti distribution could have been diffusionally modified to some extent prior to needle precipitation. 292 293 The garnet within the analyzed grid domains also contains appreciable amounts of P_2O_5 (~0.07) 294 wt. %) and ZrO_2 (~150 ppm).

295 **Rutile**

Rutile needles in garnet and rutile grains from the matrix were analyzed from the 124
sample locality (Table 1). Rutile needle chemistry is independent of distance from quartz

inclusions or whether or not the needle is within a multiphase inclusion. The rutile needles in garnet cores are remarkably Zr rich, containing ~ 1.1 wt. % ZrO₂ on average. In contrast, matrix rutile grains have an average of ~ 580 ppm ZrO₂. Rutile also contains variable amounts of minor and trace elements including Fe, V, Ta, Nb, and Cr. Fe concentrations tend to be greater in Zrrich rutile crystals.

303 Sheet silicates

Representative analyses of micas within the oriented multiphase inclusions are given in

Table 3. Phlogopite has relatively low Ti contents and is quite Mg-rich (Mg/[Mg+Fe²⁺] ~ 0.8).

306 This may reflect low-*T* re-equilibration, as biotite Fe/Mg and Ti contents generally decrease with

307 decreasing *T*. One very unusual characteristic of some phlogopites are high Ni contents in excess

308 of 2.5 wt. %. High-Ni phlogopites also have significantly higher concentrations of Cr, Ca, and

309 Ba than low-Ni grains. These cannot be analytical artifacts due to some sort of unrecognized

beam overlap onto other phases because there are no Ni-, Cr-, or Ba-rich phases in the

inclusions, and Ca-rich silicates are rare. The needles lost fluid when they decrepitated (see

below), so phlogopite halogen contents were likely reset. Nonetheless, one analyzed phlogopite

313 (Phl-3) retains ~1.3 wt. % F; such elevated concentrations probably act to stabilize mica at UHT

conditions (Kelsey and Hand 2014). The percentages of Na on the interlayer sites of the analyzed

white micas is considerable ($\sim 25-50 \mod \%$). The phengite component can exceed 3.2 Si per 11

316 O. White mica Mg/[Mg+Fe²⁺] ~ 0.5 is significantly less than that for phlogopite.

The micas are commonly either too fine grained or too intergrown to get an individual analysis. The structural formulas for intergrown micas in Table 3 obviously do not represent a single phase. However, they illustrate that the sums of tetrahedral, octahedral, and interlayer sites are consistent with micas and, thus, other phases are unlikely in the composite analyses.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5018

5/6

321 Phase-CV

322	Phase-CV is generally found in patches $<10 \ \mu m$ in diameter (Figs. 7c and 7d). It is rich in
323	Si and, in most cases, Al but the amounts of K, Na, and Ca relative to Si and Al are too low for
324	feldspar (Table 4). A hydrous volatile component is almost certainly present as most totals are
325	<99 wt. %. Phase-CV may originally have had a larger water content that was lost through
326	decrepitation, H ₂ diffusion through garnet, reactions to produce hydrous inclusion sheet silicates,
327	or leakage via dislocations (Frezzotti et al. 2007). Concentrations of Fe, Mg, Mn, and Ni are low
328	and variable. Chemical mapping demonstrates that patches of Phase-CV can be remarkably
329	compositionally heterogeneous on micron/submicron scales (Figs. 7c and 7d).
330	Spinel and ilmenite
331	Spinel and ilmenite are found together in sillimanite (Fig. 4b); representative chemical
332	analyses are given in Table 5. The spinel is dominated by hercynite, but also contains significant
333	Mg-spinel (~30%) and ghanite components (~15%). Ilmenite is relatively pure although
334	structural formula calculations indicate the presence of some Fe ³⁺ .
335	Thermometry and UHTM
336	Zr-in-rutile thermometry
337	Using the Zr-in-rutile thermometer of Tomkins et al. (2007), we estimated the
338	equilibration temperature of rutile assuming equilibrium with quartz and zircon (Table 1). Small
339	zircon inclusions are widespread throughout the garnets. We note that if there was any degree of
340	zircon undersaturation, then the resulting temperature estimates would be minima. There was no
341	variation in Zr content with proximity to quartz. Quartz is an abundant inclusion within garnet
342	and its activity should not vary significantly throughout the garnet to affect the temperature
343	estimates.

344	The average <i>T</i> estimate for rutile needles within garnet cores for site 124 in the UM-BBF
345	is 1008 °C ± 11 (2 σ) assuming a pressure (<i>P</i>) of 1.0 GPa as given by the <i>P</i> - <i>T</i> history of the
346	Brimfield Schist determined in Ague et al. (2013). The mean temperature estimate of ~1010 $^{\circ}$ C
347	is unequivocally UHT; varying <i>P</i> by ± 0.4 GPa changes the value by only ± 27 °C. In addition,
348	this estimate would be a minimum if some degree of cooling was required to precipitate the
349	Ti±Fe oxides. We note that the rutile needle with the highest Zr content and therefore the highest
350	temperature estimate (~1.3 wt. % ZrO ₂ ; ~1030 °C) was found in an oriented-multiphase
351	inclusion coexisting with quartz (Fig. 6b). This is strong evidence that multiphase needle
352	formation took place at ultrahigh temperatures.
353	The average Zr content of matrix rutile is much lower than that of rutile needles in garnet
354	cores, likely due to re-equilibration during cooling (e.g., Luvizotto and Zack 2009; Jiao et al.
355	2011; Ague et al. 2013; Ewing et al. 2013). Pressures were probably in the range 0.5–1.0 GPa
356	(Ague et al. 2013). The low Zr contents require equilibration under sub-UHT conditions; average
357	values of 680 °C to 705 °C are obtained for the analyses in Table 1 at representative pressures of
358	0.5 and 1.0 GPa, respectively.
359	Ternary feldspar thermometry
360	Rutile needles in garnet are too thin for quantitative analysis at sites 167 and 172, but
361	rocks from both localities contain antiperthite suitable for ternary feldspar thermometry (Fig. 4d).

362 The temperature estimates for antiperthites from samples 167 and 172 range from 921 - 1005 °C

using the feldspar activity models of Benisek et al. (2004, 2010). The antiperthites record UHT

364 conditions regardless of the feldspar activity model used (Table 6). Thus, evidence for UHTM is

365 preserved at multiple localities within the UM-BBF.

366

Comparison to Other Multiphase Inclusions

Multiphase inclusions in the UHP diamond-bearing saidenbachite of the Erzgebirge, 367 Germany, have some features that are similar to the multiphase needle inclusions found in 368 369 Connecticut (CT). For example, Stöckhert et al. (2001, 2009) describe multiphase inclusions with radiating cracks and hexagonal negative crystal garnet shapes that resemble the cross-370 section of the CT inclusions perpendicular to their elongation direction (e.g., Figs. 6a-g). The 371 372 cracks are considered a result of brittle failure of the garnet host due to internal fluid 373 overpressure generated within the inclusions during exhumation. Both localities' inclusions contain quartz, phlogopite, white mica, rutile, chlorite, apatite, zircon, and graphite (see Fig. 3 of 374 375 Stöckhert et al. 2001). Microdiamond and paragonite are present in the Erzgebirge inclusions, whereas the CT inclusions contain graphite and phengite-muscovite with as much as 50% 376 paragonite component (Table 3). A critical difference is that the CT inclusions are acicular and 377 oriented along garnet <111>, whereas the Erzgebirge inclusions of Stöckhert et al. (2001, 2009) 378 are roughly equant. 379

Oriented multiphase needles *are* found, however, in the sample of diamondiferous 380 Erzgebirge saidenbachite studied by Perchuk (2008). This is the only other example of oriented 381 micaceous multiphase needles of which we are aware. The Erzgebirge needles contain rutile and 382 383 two other phases thought to be phlogopite and paragonite, are crystallographically oriented with respect to their garnet host, and are similar in size to the CT needles (several µm wide, up to 200 384 385 μm long). From Perchuk's (2008) Figures 2 and 3, it is unclear if the Erzgebirge needles have 386 filled radiating cracks; therefore, they may not have decrepitated like the CT needles. The Erzgebirge needles are concentrated radially in halos around large (~200 µm), non-acicular 387 multiphase inclusions that contain quartz, phengite, chlorite, rutile, and apatite and that are 388 389 inferred by Perchuk (2008) to have decrepitated. The CT multiphase needles do not surround

large multiphase inclusions, but rather are found concentrated in discrete areas within garnet
cores (Fig. 5). Erzgebirge garnet can also contain oriented, single-phase rutile needles (e.g., Fig.
la in Ague and Eckert 2012).

Ferrero et al. (2012) describe crystallized and glassy melt inclusions in garnet from three 393 different granulite localities (Kerala Khondalite Belt, India; Ronda migmatites, Spain; and Barun 394 395 Gneiss, Nepal Himalaya). Their melt inclusions are found in clusters, although, unlike the CT 396 examples, the clusters are not always present in garnet cores. A negative crystal shape is common for the inclusions, similar to the cross-section perpendicular to the elongation direction 397 398 of the CT inclusions. However, the Ferrero et al. (2012) inclusions are generally equant while the multiphase inclusions in our rocks are acicular. Phases commonly found within the Ferrero et al. 399 (2012) inclusions are: quartz, plagioclase, K-feldspar, biotite, muscovite, and glassy material. As 400 in our rocks the muscovite and biotite generally grow adjacent to each other resulting in 401 interlocking crystals. On the other hand, the CT inclusions lack feldspars. Ferrero et al. (2012) 402 403 also found a few elongate, unoriented, tubular melt inclusions which have diameters of 5-6 μ m 404 and lengths less than 100 μ m. They interpreted these to be the result of melt adhering to elongate phases such as rutile. 405

406

Original Nature of the Multiphase Inclusions

We consider it likely that the needles originated as fluid inclusions of hydrous melt, aqueous fluid containing dissolved silicate material, or some combination of these that were trapped in growing garnet. Supercritical fluids intermediate between aqueous fluids and hydrous melts are another possible fluid type. These fluids, however, are likely stable only under UHP conditions (e.g., Manning 2004; Ferrando et al. 2005; Hermann et al. 2013) and we have found no evidence to date that the CT rocks are UHP.

413	As described above, the phases in the CT inclusions have textural relationships similar to
414	those of fluid inclusions recognized elsewhere; these include angular wedge-like protrusions of
415	one phase into another (Fig. 6a) and granophyre-like quartz-mica intergrowths (Fig. 6g; e.g.,
416	Ferrero et al. 2012; Stöckhert et al. 2001, 2009). In addition, the quartz and mica-bearing phase
417	assemblages in the CT inclusions are similar to those observed in other well-documented
418	examples. Moreover, the presence of siliceous "Phase-CV", which is probably glassy material or
419	its nanocrystalline equivalent, is also consistent with a fluid origin. The common occurrence of
420	graphite demonstrates that carbon was present in the CT inclusion fluids.
421	The roughly 30–50 volume percent micas + hydrous Phase-CV in the inclusions yields
422	H ₂ O contents of 1–2 wt.%. Original water contents were potentially greater but are difficult to
423	constrain as water loss may have occurred via decrepitation and diffusion.
424	It is possible that Phase-CV represents relic trapped hydrous melt. However, most Phase-
425	CV analyses do not correspond to any common type of igneous melt and have normative quartz
426	>60 wt.%, well above the normal SiO ₂ limit for igneous rocks (Fig. 10). All have normative
427	corundum. Three of the analyses are tonalitic, which is unexpected as the host rocks contain K-
428	feldspar (MI-1 and MI-2 in 124A-2, Table 4). Compositions vary widely between inclusions in a
429	single sample; for example, those in 124A-6 span the range from tonalitic to extremely quartz
430	rich (Fig. 10). It is possible that the compositions of Phase-CV diverge from "normal" melt due
431	to crystallization of minerals within the inclusions, reaction of those minerals with melt
432	subsequent to their crystallization, or reaction of melt with the garnet host. It is also possible that
433	Phase-CV compositions were modified by diffusion of elements through garnet (e.g., Proyer et
434	al. 2013). For example, alkali and alkaline earth loss could have led to high normative corundum,
435	and low normative feldspars.

436	The analyzed Phase-CV material from sample 141B (Table 4) is noteworthy because it
437	contains multiple compositional domains: one is extremely siliceous (MI-2a) whereas the others
438	are still highly siliceous but contain more Al and Ca (MI-2b, 2c; Fig. 10). The internal variability
439	of Phase-CV is also clear in the chemical maps of other inclusions from this sample (Fig. 7c) and
440	elsewhere (Fig. 7d). Remarkably, the different compositional domains can be intergrown on
441	micrometer to submicrometer scales. The BSE image reveals that the inclusions in sample 141B
442	may contain visible porosity which suggests the former presence of fluid (Fig. 7c). We speculate
443	that the 141B Phase-CV material may be quenched aqueous fluid that contained substantial
444	dissolved silicate material, or some combination of such a fluid and hydrous melt. This is
445	consistent with the high silica content, but not the lack of alkalis (e.g., Manning 2004, 2013).
446	One possibility is that the alkalis were lost together with fluid along cracks via decrepitation, or
447	by diffusion through garnet.
448	The absence of discernable crystals in Phase-CV demonstrates impeded crystal
449	nucleation and growth. Cesare et al. (2009) attribute the lack of crystallization observed in melt
450	inclusions in metamorphic garnets to surface free energy effects associated with small pores.
451	Small (nanometer to micrometer scale) crystals have higher interfacial energy and thus decreased
452	stability relative to larger ones. It follows that smaller pore (inclusion) sizes that restrict crystal
453	size and radius of curvature will increase the level of saturation necessary for precipitation (e.g.,
454	Putnis et al. 1995; Emmanuel and Ague 2009; Emmanuel et al. 2010).
455	Possible Mechanisms of Multiphase Needle Formation
456	We consider several hypotheses for the formation of multiphase needle inclusions.
457	Additional general mechanisms for oriented inclusion formation not discussed herein are
458	considered unlikely based on the arguments of Proyer et al. (2013).

459 Hypothesis 1: Trapped fluid inclusions

Our preferred hypothesis is that the multiphase needles formed due to physical interaction between fluid inclusions and exsolving rutile needles. Most of the oriented rutile and ilmenite needles are not in contact with another inclusion phase, although they are more abundant in areas where the multiphase needles are present. This demonstrates that the Ti±Fe oxide needles did not crystallize from fluid, but instead exsolved out of garnet. The key questions then become: why are the inclusions acicular, and why are they crystallographically oriented?

We postulate the series of events illustrated in Figure 11. The first step requires fluid to be entrapped within a growing, Ti-bearing garnet (Fig. 11a). Later, during retrogression, the Ti \pm Fe oxide needles exsolved out of the garnet due to cooling and/or decompression (Fig. 11b). Garnet contains Ti sufficient for Ti \pm Fe oxide needle formation because it formed at \geq 1000 °C and high *P* as well (at least 1 GPa).

Two processes may have come into play during Ti±Fe oxide precipitation. The first 471 472 involves the growth of exsolved Ti±Fe oxide needles that intersect fluid inclusions allowing the 473 fluid to adhere to the oxide needles and elongate (Fig. 11b). A second possible process occurring simultaneously is the movement of fluid solely due to internal overpressure within the inclusion. 474 475 During exhumation, the pressure on the rock mass is reduced. However, the inclusions within a robust host such as garnet will retain a higher pressure (close to that of entrapment) than the rock 476 477 mass (e.g., Stöckhert et al. 2001, 2009). To reduce the overpressure within the inclusion the fluid 478 could propagate along a direction of weakness in the garnet— $\{110\}$ partings that intersect to 479 define <111>. During this process the overpressure of the inclusion is not sufficient to crack the garnet and decrepitate, but can cause elongation. As the fluid moves within the garnet it may or 480 481 may not intersect Ti±Fe oxide needles.

The first process of fluid adhering to oxide needles as they grow and intersect the melt 482 inclusions is considered the main cause of elongation because most inclusions contain rutile 483 484 needles parallel to their elongation direction. The nucleation of Ti±Fe oxides may have been aided by presence of the fluid inclusions. The interface between fluid inclusions and the garnet 485 host would provide a surface on which heterogeneous nucleation may more readily take place 486 487 than in the lattice of the host, as heterogeneous nucleation has a lower free energy barrier to overcome. In addition, defects in the garnet crystal lattice surrounding fluid inclusions would 488 lower the free energy of nucleation and could aid the exsolution of rutile (e.g. Cahn 1957; 489 490 Gómez-Ramírez & Pound 1973; Dutta et al. 2001). More defects would be created if the fluid 491 inclusion strained garnet due to fluid volume changes caused by changing *P*-*T* conditions. Although ilmenite needles are relatively common in garnet, multiphase needles rarely contain 492 ilmenite. Consequently, it is likely that the ilmenite needles formed after the rutile needles. This 493 is very strong evidence against a co-precipitation origin for garnet + oxide and multiphase 494 needles. 495

496 The next step requires the elongated inclusions to equilibrate with the garnet structure by forming low-energy interfaces with garnet (Fig. 11c). This creates the hexagonal negative crystal 497 shapes visible in cross-section. While the fluid is equilibrating with the garnet structure, the P 498 499 and/or T environment of the rock as a whole would have been changing. Eventually it changed enough such that the internal overpressure within the inclusions exceeded that of the tensile 500 strength of the garnet and the least compressive principal stress on the garnet causing 501 502 decrepitation (Fig. 11d) (e.g., Stöckhert et al. 2001, 2009). Crystallization of the fluid would 503 occur sometime after decrepitation due to further cooling and/or decompression, or due to the decrepitation event itself. 504

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5018

The negative crystal cross-section of the multiphase inclusions requires some delay between elongation and decrepitation. The inclusions would have to have decrepitated after elongating along <111> in order to preserve the radiating cracks, the negative crystal inclusion cross-sections, and the elongate shape. Our mechanism differs from previous explanations for elongated melt inclusions (e.g., Ferrero et al. 2012), as processes that crystallographically control melt movement within garnet are required.

511 **Other Hypotheses:**

512 Hypothesis 2: Precipitation (exsolution)

513 As rutile and ilmenite needles preferentially exsolve from garnet along <111>, it could be possible for other phases to precipitate out along with the oxides. For example, the Si and Mg 514 needed to form quartz and phlogopite could have been derived from a majorite component in 515 garnet, implying garnet core formation >5 GPa (e.g., Collerson et al. 2010). Garnet Na contents 516 are elevated at HP/UHP conditions (e.g., Ono 1998; Hermann and Spandler 2008; Konzett and 517 Frost 2009; Auzanneau et al. 2010); Na in the CT garnets could have gone into white mica and 518 Phase-CV (Fig. 9a, Tables 2, 4). Ultrahigh pressures are necessary for K incorporation into 519 520 garnet (e.g., Ono 1998; Wang and Takahashi 1999). However, the multiphase needles are thin so 521 garnet would not necessarily need to contain large amounts of K to make the observed quantities of micas. It may also be possible that K and other elements were mobile and diffused into garnet 522 to growing needles (e.g., Proyer et al. 2013). Garnets in UHP rocks have variable H_2O contents 523 524 that can exceed 1000 ppm (e.g., Zheng 2009); this could have been a source for water in micas 525 and Phase-CV. The exsolved water may have reacted with other phases in the inclusions to produce fluids/melts unlike those expected for partial melting of felsic rocks, perhaps accounting 526 527 for the highly-siliceous Phase-CV compositions. Ni is elevated in garnet at mantle conditions and

can be used in thermometry (e.g., Canil 1999). The loss of Ni from garnet during needle 528 exsolution could explain the highly unusual Ni-rich phlogopite compositions (Table 3). 529 530 However, a severe problem with this hypothesis is that, as far as we are aware, the 531 exsolution of K-rich phases from garnet has never been documented from any geological setting. K-feldspar, phlogopite, and phengite exsolution has been well studied in UHP clinopyroxene 532 533 (e.g., Shatsky et al. 1995; Katyama et al. 2002; Bozhilov et al. 2009; Dobrzhinetskaya et al. 534 2009; Sakamaki and Ogasawara 2014), but exsolution of such phases from garnet remains highly speculative. In addition, there is no unequivocal evidence of UHP metamorphism for the CT 535 536 rocks.

537 Hypothesis 3: Melting of pre-existing inclusions

A third possibility is that polyphase mineral inclusions trapped during garnet growth 538 melted during heating (e.g., Perchuk et al. 2005, 2009) and then re-equilibrated with the host 539 garnet structure to form acicular inclusions. While this is a possibility, it seems unlikely. First, it 540 541 is unusual for melted polyphase inclusions to take on the negative crystal shape of their host 542 (Sobolev and Shimizu 1993; Perchuk et al. 2009). Second, the rather uniform size and phase 543 assemblage of the multiphase needles observed in garnets from multiple localities suggests that 544 they were not the product of melting of trapped mineral inclusions. If that were the case, the needles would be expected to be more heterogeneous in composition, volume, and regional 545 546 distribution.

547 Hypothesis 4: Infiltration including dissolution-precipitation

Infiltration requires fluid entry into garnet followed by its crystallization along <111> of garnet (e.g., Hwang et al. 2007). We consider this to be improbable because if fluid were to infiltrate a garnet it would most likely flow in through fractures and other imperfections and

would not become crystallographically oriented. The slow diffusion of P provides additional
evidence in this regard. The P map of needle-bearing garnet, while preserving detailed growth
textures, shows no evidence of infiltration such as healed fractures communicating with the
matrix (Fig. 9c).

Dissolution-precipitation of garnet also involves the entry of fluids. The garnet would be dissolved at an advancing dissolution front, and new garnet with a somewhat different composition would precipitate out behind (e.g. Putnis and John 2010). This process can in some cases produce oriented precipitates (e.g. Harlov et al. 2005). However, the preservation of original growth zoning in phosphorous, including overprint zonation, is inconsistent with this mechanism (Fig. 9c).

561

Implications

A growing number of localities recognized worldwide host garnets containing significant 562 quantities of petrographically-obvious oriented Ti±Fe oxide needles (Fig. 12). With few 563 exceptions, these rocks have undergone high- or ultrahigh-pressures, or very high temperatures 564 near or above the UHT boundary of 900 °C. These P and/or T conditions are required to 565 incorporate enough Ti into the garnet to produce Ti±Fe oxide needles during retrogression. A 566 567 handful of localities contain both rutile and ilmenite needles, including the rocks described here (Fig. 12). As Ti diffusion in garnet is sluggish even at high-T (e.g. Hanger et al. 2014), the 568 presence of rutile lamellae in comparatively low-T (~600–700 °C) garnet may indicate the 569 570 involvement of additional formation mechanisms such as recrystallization. These would not, 571 however, necessitate external Ti input to garnet. Only two examples of oriented mica-bearing multiphase needles containing or coexisting with oxide needles in garnet are known: the 572 573 diamondiferous UHP Erzgebirge saidenbachite and the rocks of this study. However, it is

important to reiterate that we have not found any unequivocal UHP indicators such as coesite ordiamond in our rocks.

576 We conclude that the acicular, oriented multiphase inclusions originated as trapped fluid inclusions that elongated during Ti±Fe oxide needle exsolution from garnet and subsequently 577 decrepitated during retrogression. Both the matrix ternary feldspar compositions and the high-Zr 578 579 contents of exsolved rutile needles in garnet from the upper member of the Bigelow Brook Formation demonstrate that the rocks underwent UHT metamorphism ~1000 °C. This finding 580 extends the first described UHT locality in the United States (Brimfield Schist) to include a 581 582 second rock unit. Ongoing work indicates that UHTM occurred farther north in Massachusetts as well (Ostwald et al. 2014). The cause of the high heat input into this area is yet to be determined 583 and will be the subject of future studies. As the only other documented locality containing 584 similar micaceous inclusions, the Erzgebirge of Germany, has also experienced T in excess of 585 1000 °C (and ultrahigh pressures), oriented acicular multiphase inclusions are likely to be useful 586 587 indicators of extreme temperatures and/or pressures.

588

Acknowledgements

We thank Xu Chu, Meng Tian, M.R. Ackerson, E. F. Baxter, N. C. Sullivan, and R. P. Wintsch for discussions, J. O. Eckert, Jr. for microprobe analysis support, Z. Jiang for assistance with EBSD measurements, Stewart's Gem Shop in Boise, Idaho for donation of Idaho star garnet samples to the Yale Peabody Museum of Natural History, and two anonymous referees for their reviews. Becker Construction Company kindly granted access to key exposures. Support from the National Science Foundation Directorate of Geosciences (EAR-0744154, EAR-0948092, and EAR-1250269) is gratefully acknowledged.

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5018

597

1092.

615

References Cited

598	Ackerson, M.R., Tailby, N., Watson, E.B. and Spear, F.S. (2013) Variations in Ti coordination
599	and concentration in garnet in response to temperature, pressure and composition.
600	Abstract. 2013 Fall Meeting, San Francisco, California.
601	Ague, J. (1995) Deep-crustal growth of quartz, kyanite and garnet into large-aperture, fluid-filled
602	fractures, north-eastern Connecticut, USA. Journal of Metamorphic Geology, 13, 299-
603	314.
604	Ague, J.J. and Carlson, W.D. (2013) Metamorphism as garnet sees it: The kinetics of nucleation
605	and growth, equilibration, and diffusional relaxation. Elements, 9, 439-445.
606	Ague, J.J. and Eckert, J.O., Jr. (2012) Precipitation of rutile and ilmenite needles in garnet:
607	Implications for extreme metamorphic conditions in the Acadian orogen, USA. American
608	Mineralogist, 97, 840-855.
609	Ague, J.J., Eckert, J.O., Jr., Chu, X., Baxter, E.F. and Chamberlain, C.P. (2013) Discovery of
610	ultrahigh-temperature metamorphism in the Acadian orogen, Connecticut, USA.
611	Geology, 41, 271-274.
612	Alifirova, T.A., Pokhilenko, L.N., Ovchinnikov, Y.I., Donnelly, C.L., Riches, A.J., and Taylor,
613	L.A. (2012) Petrologic origin of exsolution textures in mantle minerals: evidence in
614	pyroxenitic xenoliths from Yakutia kimberlites. International Geology Review, 54, 1071-

5/6

616	Armstrong, T.R., Tracy, R.J., and Hames, W.E. (1992) Contrasting styles of Taconian, eastern
617	Acadian, and western Acadian metamorphism, central and western New England. Journal
618	of Metamorphic Geology, 10, 415–426.
619	Auzanneau, E., Schmidt, M.W., Vielzeuf, D. and Connolly, J.A.D. (2010) Titanium in phengite:
620	a geobarometer for high temperature eclogites. Contributions to Mineralogy and
621	Petrology, 159, 1-24.
622	Benisek, A., Kroll, H. and Cemič, L. (2004) New developments in two-feldspar thermometry.
623	American Mineralogist, 89, 1496-1504.
624	Benisek, A., Dachs, E. and Kroll, H. (2010) A ternary feldspar-mixing model based on
625	calorimetric data: Development and application. Contributions to Mineralogy and
626	Petrology, 160, 327-337.
627	Bozhilov, K.N., Xu, Z., Dobrzhinetskaya, L.F., Jin, Z. and Green, H.W. II (2009) Cation-
628	deficient phlogopitic mica exsolution in diopside from garnet peridotite in SuLu, China.
629	Lithos, 109, 304-313.
630	Brueckner, H.K. and Medaris, L.G. (2000) A general model for the intrusion and evolution of
631	'mantle' garnet peridotites in high-pressure and ultra-high-pressure metamorphic terranes.
632	Journal of Metamorphic Geology, 18, 123-133.
633	Caby, R., Bruguier, O., Fernandez, L., Hammor, D., Bosch, D., Mechati, M., Laouar, R.,
634	Ouabadi, A., Abdallah, N., and Douchet, C. (2014). Metamorphic diamonds in a garnet

635	megacryst from the Edough massif (northeastern Algeria). Recognition and geodynamic
636	consequences. Tectonophysics, 637, 341-353.
637	Cahn, J.W. (1957). Nucleation on dislocations. Acta Metallurgica, 5, 169-172.
638	Canil, D. (1999) The Ni-in-garnet geothermometer: Calibration at natural abundances.
639	Contributions to Mineralogy and Petrology, 136, 240-246.
640	Carstens, H. (1971) Plastic stress relaxation around solid inclusions in pyrope. Contributions to
641	Mineralogy and Petrology, 32, 289-294.
642	Carswell, D. and Van Roermund, H. (2005) On multi-phase mineral inclusions associated with
643	microdiamond formation in mantle-derived peridotite lens at Bardane on Fjortoft, west
644	Norway. European Journal of Mineralogy, 17, 31-42.
645	Cesare, B., Ferrero, S., Salvioli-Mariani, E., Pedron, D. and Cavallo, A. (2009) "Nanogranite"
646	and glassy inclusions: The anatectic melt in migmatites and granulites. Geology, 37, 627-
647	630.
648	Chamberlain, C.P. and Lyons, J.B. (1983) Pressure, temperature and metamorphic zonation
649	Studies of pelitic schists in the Merrimack Synclinorium, South-Central New-Hampshire.
650	American Mineralogist, 68, 530-540.
651	Clarke, G.L., Daczko, N.R. and Miescher, D. (2013) Identifying relic igneous garnet and
652	clinopyroxene in eclogite and granulite, Breaksea orthogneiss, New Zealand. Journal of
653	Petrology, 54, 1921-1938.

654	Collerson, K.D., Williams, Q., Kamber, B.S., Omori, S., Arai, H. and Ohtani, E. (2010) Majoritic
655	garnet: A new approach to pressure estimation of shock events in meteorites and the
656	encapsulation of sub-lithospheric inclusions in diamond. Geochimica et Cosmochimica
657	Acta, 74, 5939-5957.
658	Dludla, S., le Roex, A.P. and Gurney, J.J. (2006) Eclogite xenoliths from the Premier kimberlite,
659	South Africa: Geochemical evidence for a subduction origin. South African Journal of
660	Geology, 109, 353-368.
661	Dobrzhinetskaya, L.F., Wirth, R., Rhede, D., Liu, Z. and Green, H.W. (2009) Phlogopite and
662	quartz lamellae in diamond-bearing diopside from marbles of the Kokchetav massif,
663	Kazakhstan: Exsolution or replacement reaction? Journal of Metamorphic Geology, 27,
664	607-620.
665	Donovan, J.J. and Tingle, T.N. (1996) An improved mean atomic number background correction
666	for quantitative microanalysis. Microscopy and Microanalysis, 2, 1-7.
667	Dutta, B., Palmiere, E.J., & Sellars, C.M. (2001). Modelling the kinetics of strain induced
668	precipitation in Nb microalloyed steels. Acta Materialia, 49, 785-794.
669	Emmanuel, S., & Ague, J.J. (2009). Modeling the impact of nano-pores on mineralization in
670	sedimentary rocks. Water Resources Research, 45, W04406.
671	Emmanuel, S., Ague, J.J., and Walderhaug, O. (2010). Interfacial energy effects and the
672	evolution of pore size distributions during quartz precipitation in sandstone. Geochimica
673	et Cosmochimica Acta, 74, 3539-3552.
	30

674	Ewing, T.A., Hermann, J. and Rubatto, D. (2013) The robustness of the Zr-in-rutile and Ti-in-
675	zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone,
676	northern Italy). Contributions to Mineralogy and Petrology, 165, 757-779.
677	Fahey, R. and Pease Jr, M. (1977) Preliminary bedrock geologic map of the South Coventry
678	quadrangle. Tolland County, Connecticut: US Geological Survey Open-File Report, 77-
679	587.
680	Ferrando, S., Frezzotti, M.L., Dallai, L. and Compagnoni, R. (2005) Multiphase solid inclusions
681	in UHP rocks (Su-Lu, China): Remnants of supercritical silicate-rich aqueous fluids
682	released during continental subduction. Chemical Geology, 223, 68-81.
683	Ferrero, S., Bartoli, O., Cesare, B., Salvioli-Mariani, E., Acosta-Vigil, A., Cavallo, A., Groppo,
684	C. and Battiston, S. (2012) Microstructures of melt inclusions in anatectic
685	metasedimentary rocks. Journal of Metamorphic Geology, 30, 303-322.
686	Frezzotti, M.L., Ferrando, S., Dallai, L. and Compagnoni, R. (2007) Intermediate alkali-
687	alumino-silicate aqueous solutions released by deeply subducted continental crust: Fluid
688	evolution in UHP OH-rich topaz-kyanite quartzites from Donghai (Sulu, China). Journal
689	of Petrology, 48, 1219-1241.
690	Gomez-Ramirez, R., & Pound, G.M. (1973) Nucleation of a second solid phase along
691	dislocations. Metallurgical Transactions, 4, 1563-1570.
692	Griffin, W.L., Jensen, B.B., and Misra, S.N. (1971) Anomalously elongated rutile in eclogite-

facies pyroxene and garnet. Norsk Geologisk Tidsskrift, 51, 177–185.

694	Guinel, M.J.F. and Norton, M.G. (2006) The origin of asterism in almandine-pyrope garnets
695	from Idaho. Journal of Materials Science, 41, 719-725.
696	Hacker, B., Luffi, P., Lutkov, V., Minaev, V., Ratschbacher, L., Plank, T., Ducea, M., Patino-
697	Douce, A., McWilliams, M. and Metcalf, J. (2005) Near-ultrahigh pressure processing of
698	continental crust: Miocene crustal xenoliths from the Pamir. Journal of Petrology, 46,
699	1661-1687.
700	Haggerty, S.E. (1991) Oxide textures; a mini-atlas. Reviews in Mineralogy and Geochemistry,
701	25, 129-219.
702	Hanger, B. J., Yaxley, G.M., Jollands, M.C., and Hermann, J. (2014) Diffusion of major and
703	minor elements within zoned garnet from the Kaapvaal craton, as determined using
704	NanoSIMS and EPMA. In: Goldschmidt Conference, Sacramento, California.
705	Harlov, D.E., Wirth, R., and Forster, HJ. (2005) An experimental study of dissolution-
706	reprecipitation in fluorapatite: fluid infiltration and the formation of monazite.
707	Contributions to Mineralogy and Petrology, 150, 268-286.
708	Hermann, J. and Rubatto, D. (2014) Subduction of continental crust to mantle depth:
709	Geochemistry of ultrahigh-pressure rocks. Treatise on Geochemistry 2nd Ed., p. 309-340.
710	Elsevier Science
711	Hermann, J. and Spandler, C.J. (2008) Sediment melts at sub-arc depths: An experimental study.
712	Journal of Petrology, 49, 717-740.

713	Hermann, J., Zheng, Y., and Rubatto, D. (2013) Deep fluids in subducted continental crust.
714	Elements, 9, 281-287.
715	Hwang, S.L., Shen, P., Chu, H.T. and Yui, T.F. (2000) Nanometer-size a-PbO ₂ -type TiO ₂ in
716	garnet: A thermobarometer for ultrahigh-pressure metamorphism. Science, 288, 321-324.
717	Hwang, S.L., Yui, T.F., Chu, H.T., Shen, P., Schertl, H.P., Zhang, R.Y. and Liou, J.G. (2007) On
718	the origin of oriented rutile needles in garnet from UHP eclogites. Journal of
719	Metamorphic Geology, 25, 349-362.
720	Hwang, S.L., Shen, P., Chu, H.T., Yui, T.F., & Iizuka, Y. (2014). Origin of rutile needles in star
721	garnet and implications for interpretation of inclusion textures in ultrahigh-pressure
722	metamorphic rocks. Journal of Metamorphic Geology., in press, DOI:
723	10.1111/jmg.12119
724	Jiao, S., Guo, J., Mao, Q. and Zhao, R. (2011) Application of Zr-in-rutile thermometry: A case
725	study from ultrahigh-temperature granulites of the Khondalite belt, North China Craton.
726	Contributions to Mineralogy and Petrology, 162, 379-393.
727	Katayama, I., Ohta, M. and Ogasawara, Y. (2002) Mineral inclusions in zircon from diamond-
728	bearing marble in the Kokchetav Massif, northern Kazakhstan. European Journal of
729	Mineralogy, 14, 1103-1108.
730	Kawasaki, T. and Motoyoshi, Y. (2007) Solubility of TiO_2 in garnet and orthopyroxene: Ti
731	thermometer for ultrahigh-temperature granulites. U.S. Geological Survey and The

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5018

732	National Academies; USGS OF-2007-1047, Short Research Paper 038; DOI:
733	10.3133/of2007-1047.srp038.
734	Kelsey, D.E. and Hand, M. (2014) On ultrahigh temperature crustal metamorphism: Phase
735	equilibria, trace element thermometry, bulk composition, heat sources, timescales and
736	tectonic settings. Geoscience Frontiers, in press, DOI: 10.1016/j.gsf.2014.09.006.
737	Keshav, S. and Sen, G. (2001) Majoritic garnets in Hawaiian xenoliths: preliminary results.
738	Geophysical Research Letters, 28, 3509-3512.
739	Keshav, S., Sen, G. and Presnall, D.C. (2007) Garnet-bearing xenoliths from Salt Lake Crater,
740	Oahu, Hawaii: High-pressure fractional crystallization in the oceanic mantle. Journal of
741	Petrology, 48, 1681-1724.
742	Khomenko, V.M., Langer, K., Beran, A., Koch-Müller, M., and Fehr, T. (1994) Titanium
743	substitution and OH-Bearing defects in hydrothermally grown pyrope crystals. Physics
744	and Chemistry of Minerals, 20, 483–488.
745	Kohn, M.J. (2014) 4.7 - Geochemical Zoning in Metamorphic Minerals. In H.D. Holland and
746	K.K. Turekian, Eds., Treatise on Geochemistry (Second Edition), p. 249-280. Elsevier,
747	Oxford
748	Konzett, J, and Frost, D.J. (2009) The high P-T stability of hydroxyl-apatite in natural and
749	simplified MORB—an experimental study to 15 GPa with implications for transport and
750	storage of phosphorus and halogens in subduction zones. Journal of Petrology, 50, 2043-
751	2062.
	34

752	Kotkova, J., O'Brien, P.J. and Ziemann, M.A. (2011) Diamond and coesite discovered in
753	Saxony-type granulite: Solution to the Variscan garnet peridotite enigma. Geology, 39,
754	667-670.
755	Kroner, A., O'Brien, P.J., Nemchin, A.A. and Pidgeon, R.T. (2000) Zircon ages for high pressure
756	granulites from South Bohemia, Czech Republic, and their connection to Carboniferous
757	high temperature processes. Contributions to Mineralogy and Petrology, 138, 127-142.
758	Larsen, R.B., Eide, E.A. and Burke, E.A.J. (1998) Evolution of metamorphic volatiles during
759	exhumation of microdiamond-bearing granulites in the Western Gneiss Region, Norway.
760	Contributions to Mineralogy and Petrology, 133, 106-121.
761	Liu, S., Li, J. and Santosh, M. (2010) First application of the revised Ti-in-zircon
762	geothermometer to Paleoproterozoic ultrahigh-temperature granulites of Tuguiwula,
763	Inner Mongolia, North China Craton. Contributions to Mineralogy and Petrology, 159,
764	225-235.
765	Liu, Y., Gu, X., Li, S., Hou, Z. and Song, B. (2011a) Multistage metamorphic events in
766	granulitized eclogites from the North Dabie complex zone, central China: Evidence from
767	zircon U–Pb age, trace element and mineral inclusion. Lithos, 122, 107-121.
768	Liu, Y., Gu, X., Rolfo, F. and Chen, Z. (2011b) Ultrahigh-pressure metamorphism and
769	multistage exhumation of eclogite of the Luotian dome, North Dabie Complex Zone
770	(central China): Evidence from mineral inclusions and decompression textures. Journal of
771	Asian Earth Sciences, 42, 607-617.

772	Luvizotto, G. and Zack, T. (2009) Nb and Zr behavior in rutile during high-grade metamorphism
773	and retrogression: An example from the Ivrea-Verbano Zone. Chemical Geology, 261,
774	303-317.
775	Malaspina, N., Hermann, J., Scambelluri, M. and Compagnoni, R. (2006) Polyphase inclusions
776	in garnet-orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-
777	related trace element transfer in subduction zone peridotite. Earth and Planetary Science
778	Letters, 249, 173-187.
779	Malitesta, C., Losito, I., Scordari, F. and Schingaro, E. (1995) XPS investigation of titanium in
780	melanites from Monte Vulture (Italy). European Journal of Mineralogy, 7, 847-858.
781	Manning, C.E. (2004). The chemistry of subduction-zone fluids. Earth and Planetary Science
782	Letters, 223, 1-16.
783	Manning, C.E. (2013) Thermodynamic modeling of fluid-rock interaction at mid-crustal to
784	upper-mantle conditions. Reviews in Mineralogy & Geochemistry, 76, 135-164.
785	Marschall, H.R., Kalt, A. and Hanel, M. (2003) P-T evolution of a Variscan lower-crustal
786	segment: A study of granulites from the Schwarzwald, Germany. Journal of Petrology,
787	44, 227-253.
788	Maruyama, S. and Parkinson, C.D. (2000) Overview of the geology, petrology and tectonic
789	framework of the high-pressure-ultrahigh-pressure metamorphic belt of the Kokchetav
790	Massif, Kazakhstan. Island Arc, 9, 439-455.

791	Massonne, HJ. (2003) A comparison of the evolution of diamondiferous quartz-rich rocks from
792	the Saxonian Erzgebirge and the Kokchetav Massif: Are so-called diamondiferous
793	gneisses magmatic rocks? Earth and Planetary Science Letters, 216, 347-364.
794	Massonne, HJ. and Brandelik, A. (1998) Ti in Al-garnet-a newly calibrated
795	geothermobarometer for HP and UHP metamorphic rocks. Eos, 79, F972.
796	Mohammad, Y.O., Cornell, D.H., Danielsson, E., Hegardt, E.A., & Anczkiewicz, R. (2011). Mg-
797	rich staurolite and kyanite inclusions in metabasic garnet amphibolite from the Swedish
798	Eastern Segment: evidence for a Mesoproterozoic subduction event. European Journal of
799	Mineralogy, 23, 609-631.
800	Mposkos, E.D. and Kostopoulos, D.K. (2001) Diamond, former coesite and supersilicic garnet in
801	metasedimentary rocks from the Greek Rhodope: A new ultrahigh-pressure metamorphic
802	province established. Earth and Planetary Science Letters, 192, 497-506.
803	Mposkos, E., Perraki, M. and Palikari, S. (2009) Single and multiphase inclusions in metapelitic
804	garnets of the Rhodope Metamorphic Province, NE Greece. Spectrochimica Acta Part A-
805	Molecular and Biomolecular Spectroscopy, 73, 477-483.
806	Obata, M. (1994) Material transfer and local equilibria in a zoned kelyphite from a garnet
807	pyroxenite, Ronda, Spain. Journal of Petrology, 35, 271-287.
808	O'Brien, P.J. and Rotzler, J. (2003) High-pressure granulites: Formation, recovery of peak
809	conditions and implications for tectonics. Journal of Metamorphic Geology, 21, 3-20.

810	O'Brien, P.J., Kroner, A., Jaeckel, P., Hegner, E., Zelazniewicz, A. and Kryza, R. (1997)
811	Petrological and isotopic studies on palaeozoic high-pressure granulites, Gory Sowie Mts,
812	Polish Sudetes. Journal of Petrology, 38, 433-456.
813	Ono, S. (1998) Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt
814	compositions: Implications for water transport in subduction zones. Journal of
815	Geophysical Research, 103, 18,253-18,267.
816	Osanai, Y., Nakano, N., Owada, M., Nam, T.N., Miyamoto, T., Minh, N.T., Van Nam, N. and
817	Van Tri, T. (2008) Collision zone metamorphism in Vietnam and adjacent South-eastern
818	Asia: Proposition for Trans Vietnam Orogenic Belt. Journal of Mineralogical and
819	Petrological Sciences, 103, 226-241.
820	Ostwald, C.E., Sullivan, N.C., Baxter, E.F., Ague, J.J. and Eckert, J.O., Jr. (2014) Discovery of a
821	Neo-Acadian ultrahigh temperature metamorphic event in central Massachusetts via Sm-
822	Nd garnet geochronology and Zr-in-rutile thermometry. Goldschmidt Conference,
823	Sacramento, California, USA (in press).
824	Patel, S.C., Ravi, S., Thakur, S.S., Rao, T.K. and Subbarao, K.V. (2006) Eclogite xenoliths from
825	Wajrakarur kimberlites, southern India. Mineralogy and Petrology, 88, 363-380.
826	Peper, J.D. and Pease, M.H. Jr. (1975) Geologic map of the Westford quadrangle, Connecticut.
827	U.S. Geological Survey Quadrangle Map, GQ-1214.
828	Perchuk, A.L. (2008) Unusual inclusions in garnet from the diamond-bearing gneiss of the
829	Erzgebirge, Germany. Geochemistry International, 46, 296-303.

830	Perchuk, A.L., Burchard, M., Maresch, W.V. and Schertl, H. (2005) Fluid-mediated modification
831	of garnet interiors under ultrahigh-pressure conditions. Terra Nova, 17, 545-553.
832	Perchuk, A.L., Davydova, V.V., Burchard, M., Maresch, W.V., Schertl, H, Yapaskurt, V.O.
833	and Safonov, O.G. (2009) Modification of mineral inclusions in garnet under high-
834	pressure conditions: Experimental simulation and application to the carbonate-silicate
835	rocks of Kokchetav massif. Russian Geology and Geophysics, 50, 1153-1168.
836	Proyer, A., Habler, G., Abart, R., Wirth, R., Krenn, K. and Hoinkes, G. (2013) TiO ₂ exsolution
837	from garnet by open-system precipitation: Evidence from crystallographic and shape
838	preferred orientation of rutile inclusions. Contributions to Mineralogy and Petrology,
839	166, 211-234.
840	Putnis, A. and John, T. (2010) Replacement processes in the Earth's crust. Elements 6, 159-164.
841	Putnis, A., Prieto, M. and Fernandez-Diaz, L. (1995) Fluid supersaturation and crystallization in
842	porous media. Geological Magazine, 132, 1–13.
843	Robinson, P. and Tucker, R.D. (1982) The Merrimack synclinorium in northeastern Connecticut.
844	American Journal of Science, 282, 1735–1744.
845	Robinson, P., Tucker, R.D., Bradley, D., Berry, H.N. IV and Osberg, P.H. (1998) Paleozoic
846	orogens in New England, USA. GFF, 120, 119-148.
847	Rodgers, J. (1981) The Merrimack synclinorium in northeastern Connecticut. American Journal
848	of Science, 281, 176-186.

849	Rodgers (1985) Bedrock Geological Map of Connecticut, scale 1:125,000. Connecticut
850	Geological and Natural History Survey, Department of Environmental Protection,
851	Hartford, Connecticut.
852	Ruiz-Cruz, M.D. and Sanz de Galdeano, C. (2013) Coesite and diamond inclusions, exsolution
853	microstructures and chemical patterns in ultrahigh pressure garnet from Ceuta (Northern
854	Rif, Spain). Lithos, 177, 184-206.
855	Sajeev, K., Windley, B., Connolly, J. and Kon, Y. (2009) Retrogressed eclogite (20kbar, 1020
856	°C) from the Neoproterozoic Palghat–Cauvery suture zone, southern India. Precambrian
857	Research, 171, 23-36.
858	Sajeev, K., Kawai, T., Omori, S., Windley, B.F. and Maruyama, S. (2010) P-T evolution of
859	Glenelg eclogites, NW Scotland: Did they experience ultrahigh-pressure metamorphism?
860	Lithos, 114, 473-489.
861	Sakamaki, K. and Ogasawara, Y. (2014) Hydroxyl in clinopyroxene and titanite in a UHP
862	diamond-free garnet-clinopyroxene rock from the Kokchetav Massif, northern
863	Kazakhstan. International Geology Review, 56, 133-149.
864	Schmetzer, K., Bernhardt, HJ. and Kiefert, L. (2002) Star garnet and star garnet cat's-eyes from
865	Ambatondrazaka, Madagascar. Journal of Gemmology, 28, 13-23.
866	Schumacher, J.C., Schumacher, R., and Robinson, P. (1989) Acadian metamorphism in central
867	Massachusetts and southwestern New Hampshire: evidence for contrasting P-T

868	trajectories. In J.S. Daly, R.A. Cliff, and B.W.D. Yardley, Eds., Evolution of
869	Metamorphic Belts, 34, p. 453-460. Geological Society Special Publication, London.
870	Shatsky, V.S., Sobolev, N.V. and Vavilov, M.A. (1995) Diamond-bearing metamorphic rocks of
871	the Kokchetav Massif (Northern Kazakhstan). In: Coleman RG and Wang X (eds.)
872	Ultrahigh Pressure Metamorphism, pp. 427–455. Cambridge: Cambridge University
873	Press.
874	Shen, P.Y., Hwang, S.L., Chu, H.T., Yu, T.F., Pan, C.N. and Huang, W.L. (2005) On the
875	transformation pathways of alpha-PbO ₂ -type TiO ₂ at the twin boundary of rutile
876	bicrystals and the origin of rutile bicrystals. European Journal of Mineralogy, 17, 543-
877	552.
878	Snoeyenbos, D.R. and Koziol, A.M. (2008) Exsolution Phenomena of UHP Type in Garnets
879	From Western New England, USA. EOS, American Geophysical Union, V31E-07.
880	Snoeyenbos, D.R., Williams, M.L. and Hanmer, S. (1995) Archean high-pressure metamorphism
881	in the western Canadian shield. European Journal of Mineralogy, 7, 1251-1272.
882	Sobolev, A. and Shimizu, N. (1993) Ultra-depleted primary melt included in an olivine from the
883	Mid-Atlantic Ridge. Nature, 363, 151-153.
884	Song, S.G., Zhang, L.F. and Niu, Y.L. (2004) Ultra-deep origin of garnet peridotite from the
885	North Qaidam ultrahigh-pressure belt, Northern Tibetan Plateau, NW China. American
886	Mineralogist, 89, 1330-1336.

887	Stöckhert, B., Duyster, J., Trepmann, C. and Massonne, HJ. (2001) Microdiamond daughter
888	crystals precipitated from supercritical COH + silicate fluids included in garnet,
889	Erzgebirge, Germany. Geology, 29, 391.
890	Stöckhert, B., Trepmann, C.A. and Massonne, HJ. (2009) Decrepitated UHP fluid inclusions:
891	About diverse phase assemblages and extreme decompression rates (Erzgebirge,
892	Germany). Journal of Metamorphic Geology, 27, 673-684.
893	Streckeisen, A. (1979) Classification and nomenclature of volcanic rocks, lamprophyres,
894	carbonatites, and melilitic rocks: Recommendations and suggestions of the IUGS
895	Subcommission on the Systematics of Igneous Rocks. Geology, 7, 331-335.
896	Thomson, J.A. (2001) A counterclockwise P-T path for anatectic pelites, south-central
897	Massachusetts. Contributions to Mineralogy and Petrology, 141, 623-641.
898	Tomkins, H.S., Powell, R. and Ellis, D.J. (2007) The pressure dependence of the zirconium-in-
899	rutile thermometer. Journal of Metamorphic Geology, 25, 703-713.
900	Touret, J.L.R. and Huizenga, J.M. (2012) Charnockite microstructures: From magmatic to
901	metamorphic. Geoscience Frontiers, 3, 745-753.
902	van Roermund, H.L.M and Drury, M.R. (1998) Ultra-high pressure ($P > 6$ GPa) garnet
903	peridotites in Western Norway: Exhumation of mantle rocks from > 185 km depth. Terra
904	Nova, 10, 295-301.

905	van Roermund, H.L.M., Drury, M.R., Barnhoorn, A. and De Ronde, A. (2000) Non-silicate
906	inclusions in garnet from an ultra-deep orogenic peridotite. Geological Journal, 35, 209-
907	229.
908	van Roermund, H.L.M., Carswell, D.A., Drury, M.R. and Heijboer, T.C. (2002) Microdiamonds
909	in a megacrystic garnet websterite pod from Bardane on the island of Fjørtoft, western
910	Norway: Evidence for diamond formation in mantle rocks during deep continental
911	subduction. Geology, 30, 959-962.
912	Vrana, S. (2008) Mineral inclusions in pyrope from garnet peridotites, Kolin area, central Czech
913	Republic. Journal of Geosciences, 53, 17-30.
914	Wang, W. and Takahashi, E. (1999) Subsolidus and melting experiments of a K-rich basaltic
915	composition to 27 GPa; Implication for the behavior of potassium in the mantle. 84, 357-
916	361.
917	Wang, L.P., Essene, E.J. and Zhang, Y.X. (1999) Mineral inclusions in pyrope crystals from
918	Garnet Ridge, Arizona, USA: Implications for processes in the upper mantle.
919	Contributions to Mineralogy and Petrology, 135, 164-178.
920	Whitney, D. L. (1992). High-pressure metamorphism in the Western Cordillera of North
921	America. Journal of Metamorphic Geology, 10, 71-85.
922	Wintsch, R.P., Sutter, J.F., Kunk, M.J., Aleinikoff, J.N., and Dorais, M.J. (1992) Contrasting P-
923	T-t paths: Thermochronologic evidence for a late Paleozoic final assembly of the Avalon
924	composite terrane in the New England Appalachians. Tectonics, 11, 672-689.
	43

925	Wintsch, R.P., Aleinikoff, J.N., Walsh, G.J., Bothner, W.A., Hussey, A.M., II and Fanining, C.M.
926	(2007) Shrimp U-Pb evidence for a late Silurian age of metasedimentary rocks in the
927	Merrimack and Putnam-Nashoba terranes, eastern New England. American Journal of
928	Science, 307, 119-167.
929	Wintsch, R.P., Aleinikoff, J.N. and Walsh, G.J. (2009) Late Silurian deposition and late
930	Devonian metamorphism of gander cover at the southern end of the central maine
931	terrane: Evidence from shrimp analysis of detrital zircons. Geological Society of America
932	Abstracts with Programs, 41(3), 98.
933	Ye, K., Cong, B.L. and Ye, D.I. (2000) The possible subduction of continental material to depths
934	greater than 200 km. Nature, 407, 734-736.
935	Zhang, R.Y. and Liou, J.G. (1999) Exsolution lamellae in minerals from ultrahigh-pressure
936	rocks. International Geology Review, 41, 981-993.
937	Zhang, R.Y. and Liou, J.G. (2003) Clinopyroxenite from the Sulu ultrahigh-pressure terrane,
938	eastern China: Origin and evolution of garnet exsolution in clinopyroxene. American
939	Mineralogist, 88, 1591-1600.
940	Zhang, R.Y., Zhai, S.M., Fei, Y.W. and Liou, J.G. (2003) Titanium solubility in coexisting
941	garnet and clinopyroxene at very high pressure: The significance of exsolved rutile in
942	garnet. Earth and Planetary Science Letters, 216, 591-601.
943	Zheng, Y. (2009) Fluid regime in continental subduction zones: Petrological insights from
944	ultrahigh-pressure metamorphic rocks. Journal of the Geological Society, 166, 763-782. 44

945 **Figure Captions**

- Figure 1. Photomicrographs of inclusions in garnet from the southern end of the Central Maine
 Terrane in northeastern Connecticut. Specimen numbers in square brackets for this and all
 following figures. (a) Oriented rutile needles in garnet in cross-polarized light with conoscopic
 illumination [124A-6]. (b) Close up of part a in plane-polarized light with oriented rutile (Rt),
- 950 ilmenite (Ilm), and multiphase needles (M).
- **Figure 2.** Orientation of garnet containing multiphase (M) and rutile (Rt) needles from EBSD
- measurements [124A-1]. Note the alignment of needles with garnet <111> and the rough
- 953 outlines of the multiphase needles.
- **Figure 3.** Simplified geologic map of part of the Central Maine Terrane in northeastern
- 955 Connecticut, after Rodgers (1981, 1985), modified from Ague et al. (2013). Major west-dipping
- faults are labeled. Sample localities with multiphase needle-bearing garnets denoted by yellow
- 957 diamonds. Other sample localities discussed in this paper, Ague and Eckert (2012), and Ague et
- al. (2013) denoted by filled circles. Sample number prefix JAQ omitted for clarity. Bold text
- 959 indicates a multiphase needle bearing sample.
- **Figure 4.** Common textures in rocks from the Upper Member of the Bigelow Brook Formation
- and the Brimfield Schist, Connecticut. (a) Photo of a megacryst pseudomorph of sillimanite after
- 962 kyanite [131A]. (b) Photomicrograph of sillimanite with inclusions of spinel (Spl) and ilmenite
- 963 (Ilm) in plane-polarized light [125A]. (c) Photomicrograph of a garnet core containing
- multiphase inclusions [27-7]. (d) Photomicrograph of plagioclase antiperthite in cross-polarized
- 965 light [173A].

Figure 5. Illustrations of garnets showing example core-rim relationships and the locations of
inclusions. (a) A large garnet with a sharp core-rim boundary marked by the appearance of
sillimanite surrounding the core. The core contains an area of biotite inclusions surrounded by
rutile, ilmenite, and multiphase needles [124A-1]. (b) Garnet with a sharp core-rim boundary
roughly outlined by quartz inclusions [141B]. Rutile, ilmenite, and multiphase needles occur in
the central part of the garnet core.

Figure 6. Backscattered electron images of cross sections of multiphase needles in garnet from

sample 124A-6. Images (a) – (h) taken perpendicular to long axis of needles; images (i) and (j)

taken sub-parallel to long axes. Qtz=quartz, Phl=phlogopite, WM=white mica, Rt=rutile,

975 G=graphite, Phase-CV=siliceous compositionally variable phase. (a) Multiphase needle showing

976 negative garnet crystal shape and cracks radiating out from the corners. (b) Multiphase needle

977 containing phlogopite and quartz surrounding a rutile needle. (c) Multiphase needle with fine-

978 grained quartz and phlogopite surrounding a graphite rod. (d) Multiphase needle displaying

979 negative garnet crystal shape and radiating cracks. The inclusion contains finely intergrown

980 phlogopite, quartz, and white mica around rutile. (e) Multiphase needle containing a complex

intergrowth of phlogopite, quartz, and Phase-CV with two rutile needles. (f) Multiphase needle

982 with well-developed negative crystal shape of garnet. White mica, phlogopite, and quartz

983 interfinger with each other. (g) Multiphase needle that has negative crystal shape of garnet and

984 common granophyre-like quartz-mica intergrowths. (h) Multiphase needle roughly parallel to the

thin section surface. Rutile crystal lies parallel to the elongation direction of the needle. Quartz

and phlogopite are finely intergrown. (i) Multiphase needle roughly parallel to the thin section

987 surface. Rutile crystal lies parallel to the elongation direction of the needle. The inclusion

988 contains a complex intergrowth of phlogopite, white mica, and quartz.

989	Figure 7. Chemical maps of multiphase needles in garnet. Maps (a) and (b) made sub-parallel to
990	long axis of needles; maps (c) and (d) made perpendicular to long axes. BSE=Backscattered
991	electron image, Als=Al ₂ SiO ₅ polymorph, Qtz=quartz, Phl=phlogopite, WM=white mica,
992	Rt=rutile, G=graphite, Mnz=monazite, Zrn=zircon, Phase-CV=siliceous compositionally
993	variable phase. (a) Multiphase needle containing phlogopite, quartz, rutile, and zircon [27-7]. (b)
994	Multiphase needle shown previously in Figure 5g showing the complex intergrowth of quartz,
995	micas, and rutile [124A-6]. (c) Multiphase needle containing monazite, rutile, and phlogopite
996	with finely intergrown quartz and Phase-CV [141B]. (d) Multiphase needle composed of Phase-
997	CV. Note the variable composition of Phase-CV. The high Al features in the map (red) are
998	artifacts of the void at the southern end of the inclusion [172A].
999	Figure 8. Chemical zoning profiles from rim to core across a representative garnet [124A-6].
1000	Exsolved oxides and multiphase needles are present in the shaded gray region. (a) Molar Mg/Fe.

1001 (b) Mn atoms per formula unit (a.f.u.). (c) Ca. (d) Ti. Note the Ti growth zoning in the rim and

1002 the drop in Ti concentration where exsolved rutile and ilmenite needles are located. (e) P. The

abrupt drop in P in the core region is due to overprint zonation (see Fig. 7). (f) Y. Note the

1004 decrease in Y from core to rim.

Figure 9. Chemical zoning profiles from rim to core across a garnet along with a phosphorus

1006 map of the garnet of the same area [124A-2]. (a) Na atoms per formula unit (a.f.u.). (b) P. The

abrupt drops in P are due to overprint zonation as shown in part (c). (c) Phosphorus map of

1008 garnet. Note the core rim-boundary marked by a sharp change in P content as well as the low-P

1009 patches within the garnet core due to overprint zonation. Line of traverse shown in part (b) is

1010 slightly irregular to avoid cracks, pits, and inclusions.

Figure 10. Ternary Quartz-Orthoclase-Anorthite+Albite diagram for CIPW norms of Phase-CV
analyses in Table 4. The rock names are from the Quartz-Alkali feldspar-Plagioclase (QAP)
diagram of the IUGS classification scheme (Streckeisen 1979). Strictly speaking, the QAP
diagram should be based on modes whenever possible, but chemical (e.g., normative)
mineralogical proxies can be used if the material is amorphous or too fine grained for modal
analysis.

1017 Figure 11. Illustration showing the steps of multiphase needle formation as proposed by the

1018 trapped fluid hypothesis (Hypothesis 1). (a) Ti-bearing garnet grows and entraps fluid. (b)

1019 Cooling and/or decompression cause rutile exsolution. Entrapped fluid can propagate through the

1020 garnet and elongate either by adhering to a growing rutile needle or moving due to internal

1021 overpressure within the fluid inclusion by following points of weakness in the garnet structure

along <111>. As the multiphase needles rarely contain ilmenite, it is likely that the ilmenite

1023 exsolved at a later time. (c) Over time the inclusions texturally equilibrate with the garnet

structure by developing low-energy interfaces shown by the hexagonal negative garnet crystal

1025 cross-sections of the inclusions. (d) Further cooling and/or decompression causes the internal

1026 overpressure within the inclusions to exceed the combination of the tensile strength of the garnet

1027 host and least principle compressive stress such that decrepitation occurs. Crystallization of fluid

1028 occurs during or after decrepitation.

Figure 12. Examples of published *P*-*T* estimates for rocks containing garnet with

1030 petrographically-obvious oriented Ti±Fe oxide needle inclusions modified from Ague and Eckert

1031 (2012). *T* at maximum *P* (if known) is plotted. Arrows indicate that *T* or *P* estimate is a

1032 minimum. Uncertainties shown if given in original publication. A: Edough Massif, northeastern

1033	Algeria (Caby et al 2014). B: omphacite granulite, Breaksea Orthogneiss, New Zealand (Clarke
1034	et al. 2013). BM: diamondiferous felsic granulites, Bohemian Massif (Kröner et al. 2000;
1035	O'Brien and Rötzler 2003; Hwang et al. 2007; Kotkavá et al. 2011). BR: diamondiferous
1036	granulite of Cueta, Betic-Rif cordillera, Africa (Ruiz-Cruz and de Galdeano 2013). C: garnet
1037	peridotites, Kolín area, central Czech Republic (Vrána 2008). E: Saxonian Erzgebirge,
1038	Saidenbach reservoir (Hwang et al. 2000; Massonne 2003; Hermann and Rubatto 2014). G:
1039	Eclogite, Glenelg, NW Scotland (Sajeev et al. 2010). GR: Mantle garnet xenocrysts, Garnet
1040	Ridge, Arizona (Wang et al. 1999). Ha: Hawaiian xenoliths (Keshav and Sen 2001; Keshav et al.
1041	2007). J: Eclogite, Junan, Sulu UHP terrane (Zhang et al. 2003). K: Kulet whiteschist, Kokchetav
1042	Massif (Maruyama and Parkinson 2000; Shen et al. 2005). L: Eclogite, Luotian dome, North
1043	Dabie Complex Zone, Central China (Malaspina et al. 2006; Liu et al. 2011a,b). M: Felsic
1044	granulites, Tuguiwula, Inner Mongolia, North China Craton (Liu et al. 2010).N: mafic granulite,
1045	Ngoc Linh Complex, Vietnam (Osanai et al. 2008). NQ: Garnet peridotite, North Qaidam,
1046	Tibetan Plateau (Song et al. 2004). O: Garnet peridotite, Otrøy, Western Gneiss Region, Norway
1047	(van Roermund et al. 2000). P: granulite xenolith, Pamir, India (Touret and Huizenga 2012;
1048	Hacker et al. 2005). PC: Eclogite, Palghat-Cauvery suture zone, India (Sajeev et al. 2009) PK:
1049	Eclogite xenoliths, Premier Kimberlite (Dludla et al. 2006). R: Garnet pyroxenite, Ronda, Spain
1050	(Obata 1994; Brueckner and Medaris 2000). Rh: Metapelitic rocks, Greek Rhodope (Mposkos
1051	and Kostopoulos 2001). Rz: Rizhao garnet clinopyroxenite, Sulu UHP terrane (Zhang and Liou
1052	2003). S: Granulites from the Schwarzwald, Germany (Marschall et al. 2003). P-T estimate is a
1053	minimum. Sb: High-pressure granulite, Snowbird tectonic zone, Canada (Snoeyenbos et al.
1054	1995). P-T estimate is a minimum. SM: Eclogite, Song Ma suture zone, Vietnam (Osanai et al.
1055	2008). Sw : Borås Mafic Intrusion of the Swedish Eastern Segment (Mohammad et al. 2011). W:

1056	Eclogite xenolith,	Wajrakarur	kimberlites,	southern I	India (Patel et al.	2006). '	WGR: Felsic	

- 1057 granulite, Western Gneiss Region, Norway (Larsen et al. 1998; Hermann and Rubatto 2014). Y:
- 1058 Yangkou ultramafic-mafic complex, Sulu UHP terrane (Zhang et al. 2003). Ya : Yakutia
- 1059 kimberlites, Siberian Craton (Carstens 1971; Alifirova et al. 2011). Garnets from the Skagit
- 1060 gneiss (not shown) in the North Cascades, Washington, USA and British Columbia, Canada also
- 1061 contain oriented rutile needles (Whitney 1992). The minimum *T* is 700–725 °C (at 0.8-1.0 GPa)
- 1062 based on petrogenetic grid considerations. However, most gneiss garnet-biotite *T* estimates are
- 1063 800-1000 °C (Whitney 1992). These high *T* estimates were interpreted to be due to retrogression,
- 1064 but perhaps reflect actual peak conditions.

*** *

. . . .

Table 1. Rut	tile analyses															
	Needle	Needle	Needle	Needle	Needle	Needle	Needle	Needle	Needle	Needle		Matrix	Matrix	Matrix	Matrix	Matrix
	Rt-2	Rt-3	Rt-4	Rt-7	Rt-8	Rt-9	Rt-10	Rt-12	Rt-17	Rt-18*		Rt-1	Rt-2	Rt-3	Rt-4	Rt-5
	124A-2	124A-2	124A-6	124A-2	124A-6	124A-6	124A-6	124A-6	124A-6	124A-6		124A-6	124A-6	124A-6	124A-6	124A-6
SiO ₂	0.10	0.11	0.10	0.20	0.13	0.12	0.11	0.11	0.12	0.18		0.02	0.04	0.03	0.06	0.05
TiO ₂	93.98	94.35	94.05	94.44	94.84	94.09	95.47	95.13	95.84	94.77		98.01	97.77	98.58	96.16	98.33
ZrO_2	0.920	1.078	1.037	0.914	0.986	1.043	1.174	1.167	1.225	1.308		0.098	0.054	0.068	0.093	0.077
Al_2O_3	0.06	0.06	0.04	0.12	0.08	0.10	0.06	0.13	0.05	0.09		0.02	0.05	0.05	0.07	0.06
Cr_2O_3	0.10	0.14	0.11	0.13	0.08	0.10	0.07	0.05	0.06	0.13		0.36	0.27	0.33	0.36	0.09
Nb ₂ O ₅	0.78	0.77	0.88	1.13	0.79	1.19	0.36	0.45	0.28	0.42		0.12	0.45	0.48	0.88	0.37
Ta_2O_5	0.04	0.03	0.04	0.01	0.02	0.06	0.01	b.d.	0.03	0.03		b.d.	b.d.	0.03	0.13	0.02
V_2O_5	0.91	0.79	0.75	0.81	0.95	0.90	0.80	0.71	0.74	0.57		1.26	1.07	0.95	1.38	0.54
Fe_2O_3	1.81	1.93	2.18	2.11	2.26	2.08	1.79	2.24	1.99	1.90		0.05	0.17	0.20	0.20	0.27
MnO	0.01	0.04	0.01	0.03	0.03	0.03	0.04	0.02	0.04	0.06		0.04	b.d.	0.02	b.d.	b.d.
MgO	0.01	0.01	0.01	0.03	0.02	0.02	0.01	0.01	0.01	0.06		0.01	b.d.	b.d.	b.d.	b.d.
Total	98.73	99.30	99.22	99.93	100.17	99.73	99.90	99.84	100.39	99.41		99.99	99.87	100.74	99.33	99.81
							Structu	ral Formulas	s(2,0)							
Si	0.001	0.002	0.001	0.003	0.002	0.002	0.002	0.001	0.002	0.002			0.001		0.001	0.001
Ti	0.961	0.960	0.958	0.955	0.956	0.954	0.964	0.960	0.964	0.963		0.981	0.980	0.980	0.971	0.986
Zr	0.006	0.007	0.007	0.006	0.006	0.007	0.008	0.008	0.008	0.008		0.001	01900	01/00	0.001	0.001
Al	0.001	0.001	0.001	0.002	0.001	0.002	0.001	0.002	0.008	0.001		01001	0.001	0.001	0.001	0.001
Cr	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001		0.004	0.003	0.004	0.004	0.001
Nb	0.005	0.005	0.005	0.007	0.005	0.007	0.000	0.003	0.002	0.002		0.001	0.003	0.003	0.005	0.002
Та															0.001	
V	0.008	0.007	0.007	0.007	0.008	0.008	0.007	0.006	0.007	0.007		0.011	0.010	0.008	0.012	0.005
Fe ³⁺	0.019	0.020	0.022	0.021	0.023	0.021	0.018	0.023	0.020	0.019		0.001	0.002	0.002	0.002	0.003
Mn									0.001	0.001						
Mg				0.001	0.001											
$T(^{\circ}C)$ at											$T(^{\circ}C)$ at					
1.0 GPa:	984	1008	1002	984	995	1003	1021	1020	1028	1038	0.6 GPa:	700	654	673	700	684

Notes: b.d. = below detection, Rt = Rutile. All Fe as Fe^{3+} . V counts corrected for Ti interference; Cr counts corrected for V interference. The thermometer of Tomkins et al. (2007) was used for all temperature estimates. A pressure of 1.0 GPa corresponding to the minimum peak pressure from Ague et al. (2013) was used for temperature estimates for rutile needles. 0.6 GPa was used for matrix rutile assuming re-equilibration during exhumation (Ague et al. 2013). *Rutile within a multiphase needle coexisting with quartz (Fig. 5b).

Table 2. Garnet analyses

	124A-6	124A-6	165A-2	165A-2	172A	172A
	SE-Rim	Core	Near Rim	Core	Near Rim	Core
SiO ₂	37.74	37.69	38.48	38.23	38.43	38.14
TiO ₂	0.013	0.006	0.029	0.024	0.040	0.018
P_2O_5	0.042	0.067	0.043	0.044	0.057	0.047
Al_2O_3	21.72	21.74	21.96	21.90	21.65	21.92
Cr_2O_3	0.04	0.02	0.02	0.01	0.02	0.01
Y_2O_3	0.01	0.08	b.d.	b.d.	b.d.	0.04
FeO	31.43	30.61	28.84	30.33	28.59	28.98
MgO	6.76	6.59	8.23	7.28	8.02	8.29
MnO	0.93	0.93	0.46	0.54	1.00	1.01
CaO	1.27	1.68	1.34	1.31	1.20	0.91
Na ₂ O	0.018	0.030	0.009	0.009	0.007	0.010
Total	99.97	99.45	99.41	99.56	99.01	99.38
		Stru	ictural Form	nulas (12 C))	
Si	2.961	2.971	2.999	2.993	3.013	2.977
Ti	0.0008	0.0004	0.0017	0.0014	0.0024	0.0011
Р	0.0028	0.0045	0.0028	0.0029	0.0038	0.0031
^{IV} Al	0.039	0.029	0.001	0.007		0.023
^{vi} Al	1.969	1.990	2.016	2.013	2.000	1.993
Cr	0.003	0.001	0.001	0.001	0.001	0.001
Y		0.003				0.002
Fe ²⁺	2.003	1.993	1.905	2.002	1.882	1.874
Fe ³⁺	0.059	0.025			0.002	0.018
Mg	0.791	0.774	0.956	0.850	0.943	0.965
Mn	0.062	0.062	0.030	0.036	0.067	0.067
Ca	0.107	0.142	0.112	0.110	0.101	0.076
Na	0.0027	0.0046	0.001	0.0014	0.0011	0.0015
Notes: b.d	= below de	etection. Bla	nk in wt. % 1	table means	element or o	oxide not

Notes: b.d. = below detection. Blank in wt. % table means element or oxide not analyzed. Fe^{2+} and Fe^{3+} in garnet estimated based on 8 cations per 12 O. By convention, garnet ^{IV}Al is amount needed to fill the tetrahedral sites; however, actual site occupancies have not been determined. Zr and K are b.d. and are not tabulated; detection limits: ~80 ppm (Zr) and ~20 ppm (K). Near Rim values exclude analyses directly at the garnet rims affected by retrograde drops in Mg/Fe and increases in Mn.

	Phl-1 124A-6	Phl-2 124A-6	Phl-3 124A-6	Phl/WM-1 124A-6	Phl/WM- 2 124A-6	WM-1ab 124A-6	WM-2 124A-6
SiO ₂	37.16	39.00	38.02	46.68	42.50	49.32	45.67
TiO ₂	0.54	0.24	0.52	b.d.	0.41	0.08	0.03
Al ₂ O ₃	18.19	20.24	17.53	30.79	23.43	32.32	34.38
Cr ₂ O ₃	0.61	0.08	0.52	b.d.	0.61	0.03	0.03
FeO	9.02	8.95	7.53	3.32	5.83	2.61	1.87
MnO	1.08	b.d	0.96	b.d	0.88	0.19	0.12
NiO	2.66	b.d	0.94	b.d	2.40	0.14	b.d.
MgO	16.54	18.14	19.70	5.37	9.84	1.66	1.09
CaO	0.30	0.05	0.39	0.06	0.32	0.19	0.03
BaO	0.82	0.22	0.62	0.16	0.88	0.10	b.d.
Na ₂ O	0.44	0.33	0.84	1.78	1.28	3.44	1.60
K_2O	9.14	9.09	7.69	8.26	8.35	5.34	7.83
F	0.18	0.03	1.29	b.d	0.22	0.14	b.d.
Cl	0.18	0.08	0.19	0.03	0.18	0.03	0.01
Total	96.74	96.42	96.16	96.44	97.00	95.52	92.66
		Struct	ural Form	ulas (11 O)			
Si	2.722	2.767	2.751	3.099	2.973	3.228	3.100
^{IV} Al	1.278	1.233	1.250	0.901	1.027	0.772	0.900
∑IV	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Ti	0.030	0.013	0.028		0.022	0.004	0.002
^{VI} Al	0.292	0.460	0.245	1.508	0.905	1.721	1.850
Cr	0.035	0.005	0.030		0.034	0002	0.002
Fe	0.553	0.531	0.456	0.184	0.341	0.143	0.106
Mn	0.067		0.059		0.052	0.011	0.007
Ni	0.157		0.055		0.135	0.007	
Mg	1.806	1.919	2.125	0.532	1.027	0.162	0.110
∑VI	2.940	2.927	2.997	2.224	2.515	2.049	2.077
Ca	0.024	0.004	0.030	0.005	0.024	0.013	0.002
Ba	0.024	0.006	0.018	0.004	0.024	0.003	
Na	0.063	0.045	0.118	0.229	0.173	0.436	0.211
K	0.854	0.823	0.709	0.699	0.745	0.446	0.678
∑XII	0.965	0.878	0.875	0.937	0.967	0.898	0.891
F	0.043	0.006	0.296		0.049	0.029	
Cl	0.022	0.009	0.024	0.004	0.021	0.003	0.001
Mg/(Mg+Fe)	0.77	0.78	0.82	0.74	0.75	0 53	0.51
wig/(wig+re)	0.//	0.78	0.82	0.74	0.75	0.33	0.31

Table 3. Mica analyses

Notes: b.d. = below detection. Phl = Phlogopite, WM = White Mica, Phl/WM = finely intergrown phlogopite and white mica. By convention, ^{IV}Al mica is amount needed to fill the tetrahedral sites; however, actual site occupancies have not been determined. Oxygen equivalent of F^- and Cl⁻ subtracted from totals. Fe as Fe²⁺.

Table 4. Pha	se-CV analy	ses										
	MI-1	MI-2	MI-3	MI-6	MI-9	MI-1	MI-2	M1-2a	MI-2b	MI-2c	MI-1a	MI-1b
	124A-6	124A-6	124A-6	124A-6	124A-6	124A-2	124A-2	141B	141B	141B	172A	172A
SiO_2	68.26	86.33	77.15	59.48	71.69	75.89	73.12	94.26	76.23	83.09	89.78	89.78
TiO ₂	b.d.	0.06	b.d.	0.15	b.d.	0.06	b.d.	0.32	0.15	0.04	b.d.	b.d.
Al_2O_3	22.46	6.14	16.13	26.68	17.31	14.99	16.61	0.60	18.33	12.53	4.63	4.63
Cr_2O_3	b.d.	0.04	0.08	0.15	b.d.	b.d.	0.10	b.d.	0.04	0.04	0.20	0.20
FeO	2.79	2.72	2.22	1.53	1.94	1.42	1.55	1.35	1.61	1.17	1.10	1.10
MnO	b.d.	0.08	0.19	0.12	0.18	0.61	0.04	b.d.	0.15	b.d.	0.12	0.12
NiO	0.27	b.d.	0.74	0.13	b.d.	b.d.	b.d.	0.74	0.27	b.d.	0.27	0.27
MgO	4.33	2.30	1.77	0.97	2.10	0.07	1.32	0.19	0.37	0.05	0.03	0.03
CaO	b.d.	0.04	0.07	4.33	0.74	3.09	2.38	0.05	1.06	0.97	0.26	0.26
BaO	0.06	0.20	b.d.	b.d.	b.d.	0.13	0.14	b.d.	0.03	0.03	0.13	0.13
Na ₂ O	0.01	0.17	0.03	4.44	1.64	3.50	0.96	0.04	0.10	0.05	2.31	2.31
K ₂ O	0.01	1.99	0.05	0.68	1.89	0.51	0.15	0.06	0.08	0.02	0.04	0.04
F	b.d.	0.08	0.09	b.d.	b.d.	0.01	0.03	0.04	b.d.	0.01	b.d.	b.d.
Cl	0.02	0.05	b.d.	0.02	b.d.	0.01	b.d.	b.d.	b.d.	0.01	0.02	0.02
Total	98.20	100.18	98.49	98.68	97.39	100.28	96.39	97.62	98.42	98.00	98.87	97.70
					CIPW N	lorm (wt. %	b)					
Quartz	60.15	71.89	72.64	19.47	49.69	44.88	34.97	94.27	72.02	81.33	75.15	76.85
Anorthite				21.78	3.77	15.21	11.54		5.36	4.84	1.29	1.09
Albite		0.70	0.25	37.78	14.22	29.38	41.80	0.34	0.85	0.28	19.50	16.92
Orthoclase	0.28	12.49	0.30	4.08	11.46	3.49	1.39	0.35	0.58	0.23	0.71	1.65
Corundum	22.82	3.71	16.27	10.97	11.51	3.03	3.93	0.48	16.39	10.91	0.29	1.12
Hypersthene	16.68	10.72	10.21	5.36	9.34	3.82	6.08	3.81	4.43	2.21	2.64	2.04
Ilmenite		0.11	0.02	0.28		0.11		0.63	0.28	0.08		0.28
Chromite		0.06	0.12	0.22			0.15		0.06	0.06	0.29	0.03
Halite	0.04	0.09		0.04		0.02				0.02	0.04	
Fluorite		0.20	0.22			0.02	0.07	0.10		0.02		
Notes: b.d. =	below detec	tion. MI = N	Multiphase I	nclusion. Fe	as Fe ²⁺ . To	tals below 9	9 wt. % are	assumed to	be due to a h	ydrous com	ponent. Oxy	gen

equivalent of F⁻ and Cl⁻ subtracted from totals.

Table 5. Spinel and ilmenite inclusions in sillimanite
pseudomorph after kyanite, sample 125A

i	pseudomorph alter kyanite, sample 125A									
	SpI-1	SpI-2	IIm-1	Ilm-2						
SiO ₂	0.03	0.03	0.04	0.04						
TiO_2	b.d.	0.04	52.04	52.50						
Al_2O_3	59.44	59.40	0.08	0.05						
Cr_2O_3	0.41	0.30	0.01	0.06						
Nb_2O_5	0.02	b.d.	0.13	0.14						
Ta_2O_5	b.d.	0.02	0.01	0.02						
V_2O_5	0.15	0.09	0.15	0.17						
Fe_2O_3	0.79	1.21	1.32	0.81						
FeO	22.49	24.05	44.89	44.16						
ZnO	7.65	7.21	b.d.	0.01						
MnO	0.04	0.05	0.25	0.25						
NiO	b.d.	0.10	0.03	0.04						
MgO	7.48	6.84	1.03	1.62						
Total	98.50	99.33	99.97	99.79						
rotur										
	C4	n otunol E	annulaa							
100	Str	uctural F	ormulas	(20)						
o	Str Spinel (uctural F (4 O)	ormulas Ilmenite	e (3 O)						
Si	Str Spinel (0.001	uctural F (4 O) 0.001	ormulas Ilmenite 0.001	e (3 O) 0.001						
Si Ti	Str Spinel (0.001	uctural F 4 O) 0.001 0.001	ormulas Ilmenite 0.001 0.982	e (3 O) 0.001 0.987						
Si Ti Al	Str Spinel (0.001 1.968	uctural F 4 O) 0.001 0.001 1.962	ormulas Ilmenite 0.001 0.982 0.002	e (3 O) 0.001 0.987 0.002						
Si Ti Al Cr	Str Spinel (0.001 1.968 0.009	uctural F 4 O) 0.001 0.001 1.962 0.007	ormulas Ilmenite 0.001 0.982 0.002	e (3 O) 0.001 0.987 0.002 0.001						
Si Ti Al Cr Nb	Str Spinel (0.001 1.968 0.009	uctural F 4 O) 0.001 0.001 1.962 0.007	ormulas Ilmenite 0.001 0.982 0.002 0.002	e (3 O) 0.001 0.987 0.002 0.001 0.001						
Si Ti Al Cr Nb Ta	Str Spinel (0.001 1.968 0.009	uctural F 4 O) 0.001 0.001 1.962 0.007	formulas Ilmenita 0.001 0.982 0.002 0.002	e (3 O) 0.001 0.987 0.002 0.001 0.001						
Si Ti Al Cr Nb Ta V	Str Spinel (0.001 1.968 0.009 0.003	uctural F 4 O) 0.001 0.001 1.962 0.007 0.002	formulas Ilmenita 0.001 0.982 0.002 0.002 0.002	e (3 O) 0.001 0.987 0.002 0.001 0.001 0.003						
Si Ti Al Cr Nb Ta V Fe ²⁺	Str Spinel (0.001 1.968 0.009 0.003 0.528	uctural F 4 O) 0.001 0.001 1.962 0.007 0.002 0.564	formulas Ilmenita 0.001 0.982 0.002 0.002 0.002 0.003 0.941	e (3 O) 0.001 0.987 0.002 0.001 0.001 0.003 0.923						
Si Ti Al Cr Nb Ta V Fe^{2+} Fe^{3+}	Str Spinel (0.001 1.968 0.009 0.003 0.528 0.017	uctural F 4 O) 0.001 0.001 1.962 0.007 0.002 0.564 0.025	formulas Ilmenita 0.001 0.982 0.002 0.002 0.003 0.941 0.025	e (3 O) 0.001 0.987 0.002 0.001 0.001 0.003 0.923 0.015						
Si Ti Al Cr Nb Ta V Fe^{2+} Fe^{3+} Zn	Str Spinel (0.001 1.968 0.009 0.003 0.528 0.017 0.159	uctural F 4 O) 0.001 1.962 0.007 0.002 0.564 0.025 0.149	formulas Ilmenita 0.001 0.982 0.002 0.002 0.003 0.941 0.025	e (3 O) 0.001 0.987 0.002 0.001 0.001 0.003 0.923 0.015						
Si Ti Al Cr Nb Ta V Fe^{2+} Fe^{3+} Zn Mn	Str Spinel (0.001 1.968 0.009 0.003 0.528 0.017 0.159 0.001	uctural F 4 O) 0.001 1.962 0.007 0.002 0.564 0.025 0.149 0.001	formulas Hmenite 0.001 0.982 0.002 0.002 0.003 0.941 0.025 0.005	e (3 O) 0.001 0.987 0.002 0.001 0.001 0.003 0.923 0.015 0.005						
Si Ti Al Cr Nb Ta V F e^{2+} F e^{3+} Zn Mn Ni	Str Spinel (0.001 1.968 0.009 0.003 0.528 0.017 0.159 0.001	uctural F 4 O) 0.001 1.962 0.007 0.002 0.564 0.025 0.149 0.001 0.002	formulas Hmenite 0.001 0.982 0.002 0.002 0.003 0.941 0.025 0.005 0.004	e (3 O) 0.001 0.987 0.002 0.001 0.001 0.003 0.923 0.015 0.005 0.001						

Mg0.5150.2860.0590.060Notes:b.d. = below detection.Spl = spinel,IIm = ilmenite.FeO and Fe₂O₃ calculated using twocations per three O atoms for ilmenite and threecations per four O atoms for spinel.V countscorrected for Ti interference;Cr counts corrected for V interference.

Table 0.	reiuspai (ai	iuperunte) allai	y 505								
	Pl-1	Kfs-1	Pl-2	Kfs-2	Pl-6	Kfs-6	Pl-1	Kfs-1			
	Host	Exsolution	Host	Exsolution	Host	Exsolution	Host	Exsolution			
	167A	167A	167A	167A	167A	167A	173A	173A			
SiO_2	59.82	64.66	59.82	64.60	60.31	64.65	57.95	64.27			
Al_2O_3	25.05	18.95	25.13	18.98	25.29	18.89	26.92	18.85			
FeO	0.03	0.01	0.03	0.02	0.03	0.03	0.03	0.02			
MnO	0.02	0.01	0.01	0.02	0.01	0.02	0.01	b.d.			
MgO	0.01	b.d.	b.d.	b.d.	0.01	b.d.	b.d.	b.d.			
CaO	6.51	0.06	6.49	0.06	6.47	0.06	8.32	0.08			
BaO	0.02	0.31	0.02	0.33	0.01	0.29	0.02	0.27			
Na_2O	7.79	0.86	7.86	1.03	7.77	0.77	6.78	0.60			
K_2O	0.24	15.39	0.22	15.07	0.26	15.39	0.26	15.68			
Total	99.48	100.25	99.58	100.10	100.17	100.19	100.30	99.77			
			Str	uctural Form	ulas (8 O)						
Si	2.679	2.979	2.676	2.977	2.680	2.981	2.587	2.978			
Al	1.322	1.029	1.325	1.031	1.325	1.027	1.417	1.029			
Fe	0.001		0.001	0.001	0.001	0.001	0.001	0.001			
Mn				0.001		0.001					
Mg					0.001						
Ca	0.312	0.003	0.311	0.003	0.308	0.003	0.398	0.004			
Ba		0.006		0.006		0.005		0.005			
Na	0.676	0.077	0.682	0.092	0.670	0.069	0.587	0.054			
К	0.014	0.904	0.013	0.886	0.015	0.905	0.015	0.927			
X _{An}	0.311	0.003	0.309	0.003	0.310	0.003	0.398	0.004			
X_{Ab}	0.675	0.078	0.678	0.094	0.675	0.071	0.587	0.055			
\mathbf{X}_{Or}	0.014	0.919	0.013	0.903	0.015	0.926	0.015	0.941			
Vol. %	77.1	22.9	80.9	19.1	78.6	21.4	84.3	15.7			
Reintegrated Compositions and Temperature Estimates											
X_{An}	24.6			25.5		24.9		34.1			
X_{Ab}	54.7			57.5		55.4		50.9			
X _{Or}	20.7		17.0		19.7		15.0				
T (°C)	100	1005 956		73 921 998		8 948 98		3 999			
Notes: b.d. = below detection. Pl= Plagioclase, Kfs = Potassium Feldspar, Vol. % = volume percent phase in											
antiperthi	antiperthite. All Fe as Fe ²⁺ . Temperature estimates using the feldspar activity model of Benisek et al. (2004) are										

 Table 6. Feldspar (antiperthite) analyses

Notes: b.d. = below detection. Pl= Plagioclase, Kfs = Potassium Feldspar, Vol. % = volume percent phase in antiperthite. All Fe as Fe^{2+} . Temperature estimates using the feldspar activity model of Benisek et al. (2004) are shown in plain text and temperature estimates italicized were done using the feldspar activity model of Benisek et al. (2010).

Figure 1. Axler and Ague

Figure 2. Axler and Ague

Figure 3. Axler and Ague

Figure 4. Axler and Ague

Figure 5. Axler and Ague

Figure 6. Axler and Ague

Figure 7. Axler and Ague

Figure 9. Axler and Ague

Figure 10. Axler and Ague

Figure 11. Axler and Ague

Figure 12. Axler and Ague