Revision 1 1 2 3 An Updated Calibration of the Plagioclase-Liquid Hygrometer-Thermometer Applicable to **Basalts through Rhyolites** 4 5 6 7 Laura E. Waters^{1*} and Rebecca A. Lange¹ 8 9 ¹Department of Earth and Environmental Sciences University of Michigan, Ann Arbor, MI 48109 USA 10 11 12 13 *E-mail: lewaters@umich.edu 14 Phone: +1-734-764-7421 Fax: +1-734-763-4690 15 16 17 18 Submitted to: American Mineralogist 19 October 2014

20

Abstract

21	An updated and expanded data set that consists of 214 plagioclase-liquid equilibrium
22	pairs from 40 experimental studies in the literature is used to recalibrate the thermodynamic
23	model for the plagioclase-liquid hygrometer of Lange et al. (2009); the updated model is
24	applicable to metaluminous and alkaline magmas. The model is based on the crystal-liquid
25	exchange reaction between the anorthite $(CaAl_2Si_2O_8)$ and albite $(NaAlSi_3O_8)$ components, and
26	all available volumetric and calorimetric data for the pure end-member components are used in
27	the revised model. The activities of the crystalline plagioclase components are taken from
28	Holland and Powell (1992). Of the 214 experiments, 107 are hydrous and 107 are anhydrous.
29	Four criteria were applied for inclusion of experiments in the final data set: (1) crystallinities
30	<30%; (2) pure-H ₂ O fluid saturated; (3) compositional totals (including H ₂ O component) of 97–
31	101% for hydrous quenched glasses and 98.5-101 for anhydrous quenched glasses; and (4) melt
32	viscosities $\leq 5.2 \log_{10}$ Pa s. The final data set spans a wide range in liquid composition (45-80
33	wt% SiO ₂ ; 1-10 wt% Na ₂ O+K ₂ O), plagioclase composition (An ₁₇ -An ₉₅), temperature (750-
34	1244°C), pressure (0-350 MPa), and H ₂ O content (0-8.3 wt%). The water solubility model of
35	Zhang et al. (2007) was applied to all hydrous experiments. The standard error estimate on the
36	hygrometer model is 0.35 wt% H ₂ O, and all liquid compositions are fitted equally well.
37	Application of the model as a thermometer recovers temperatures to within ± 12 degrees, on
38	average. Tests of the hygrometer on anhydrous piston-cylinder experiments in the literature, not
39	included in the regression, show that the model is accurate at all pressures where plagioclase is
40	stable. Applications of the hygrometer are made to natural rhyolites (Bishop Tuff, Katmai and
41	TobaTuff) with reported H ₂ O analyses in quartz-hosted melt inclusions from the literature; the
42	results show agreement. Applications of the hygrometer/thermometer are additionally made to

1

4/23

4/23

43	natural rhyolites from Iceland and Glass Mountain, CA. The updated model can be downloaded
44	either as a program in Excel format or as a MatLab script from the Data Repository.
45	Keywords
46	NEW TECHNIQUE: plagioclase-liquid hygrometer, IGNEOUS PETROLOGY: hygrometer,
47	thermometer, THERMODYNAMICS, PHASE EQUILIBRIA: plagioclase, liquid
48 49	Introduction
50	The composition of plagioclase in magmatic liquids is strongly sensitive to temperature
51	and dissolved water concentrations, and therefore plagioclase has the potential to be used as
52	either a hygrometer or thermometer in volcanic rocks (e.g., Kudo and Weill 1970; Mathez 1973;
53	Glazner 1984; Marsh et al. 1990; Housh and Luhr 1991, Sisson and Grove 1993;
54	Panjasawatwong et al. 1995; Danyushevksy et al. 1997; Putirka 2005, 2008). Recently, Lange et
55	al. (2009) developed a thermodynamic model for the plagioclase-liquid exchange reaction
56	involving the anorthite (CaAl ₂ Si ₂ O ₈) and albite (NaAlSi ₃ O ₈) components, in which all published
57	calorimetric and volumetric data on the standard state reaction were incorporated into the model
58	in order to independently constrain the effects of temperature and pressure. This allowed
59	available phase-equilibrium experiments in the literature to constrain the effect of melt
60	composition, including dissolved water, on the exchange reaction, thus permitting a plagioclase-
61	liquid hygrometer to be developed.
62	Application of the Lange et al. (2009) model is restricted to plagioclase more calcic than
63	An ₃₅ and therefore cannot be applied to most rhyolites, owing to the compositional limitation of
64	the experimental data set upon which that model was calibrated. The 2009 hygrometer was
65	calibrated on 71 plagioclase-liquid experiments, of which 45 were hydrous and 26 anhydrous.
66	Three filters were applied to that phase-equilibrium data set: (1) crystallanities < 30%; (2) pure

67	$\rm H_2O$ -fluid saturated; and (3) compositional totals (including $\rm H_2O$ component) of 97-101 % for
68	hydrous quenched glasses. In the 2009 calibration, all melt water concentrations were obtained
69	using the water solubility model of Moore et al. (1998). Experiments were included in the
70	calibration if the analyzed anhydrous oxide components in the glass and the H ₂ O concentration
71	determined by Moore et al. (1998) summed to values between 97 and 101%.
72	Results from the Couch et al. (2003) study on a low-silica rhyolite were included in the
73	calibration, but owing to the application of the three filters, experiments from other studies on
74	silica-rich liquids with more sodic plagioclases ($\langle An_{35} \rangle$) were not included. In some cases,
75	experiments were not included because information on modes or glass totals were not published,
76	but otherwise would have passed all three filters (e.g, Larsen, 2006).
77	Since 2009, there have been several published water-saturated phase-equilibrium
78	experiments on rhyolite, rhyodacite and trachyte liquids that pass all filters (e.g., Martel, 2012;
79	Rader and Larsen, 2013; Martel et al., 2013; Castro et al., 2013; Waters et al., 2014), as well as
80	on basalts (e.g., Parman et al., 2011). Therefore, there is an opportunity to significantly expand
81	the data set upon which the plagioclase-liquid hygrometer/thermometer is calibrated, and to
82	extend its application to a wider range of plagioclase and melt composition, including both
83	rhyolites and alkaline magmas in equilibrium with sodic plagioclase. In addition, the Zhang et
84	al. (2007) water solubility model is used in this study, which is calibrated on the same data set
85	used by Moore et al. (1998) as well as additional data published in the intervening years.
86	
87	Thermodynamic Model of Plagioclase-Liquid Equilibrium
88	Following Lange et al., (2009), the plagioclase-liquid hygrometer/thermometer is based
89	on the equilibrium exchange reaction of the anorthite ($CaAl_2Si_2O_8$) and albite ($NaAlSi_3O_8$)

3

4/23

90 components between crystalline plagioclase and magmatic liquid:

91
$$CaAl_2Si_2O_8^{crystal} + NaAlSi_3O_8^{liquid} = CaAl_2Si_2O_8^{liquid} + NaAlSi_3O_8^{crystal}$$
(1)

92 At equilibrium:

93
$$\Delta G(T, X, P) = 0 = \Delta H^{\circ}(T) - T\Delta S^{\circ}(T) + RT lnK + \int_{0}^{P} \Delta V^{\circ}_{T}(P) dP, \qquad (2)$$

94 where $\Delta H^{\circ}(T)$ and $\Delta S^{\circ}(T)$ are the standard state change in molar enthalpy and entropy,

95 respectively, for the pure crystalline and liquid components, *K* is the equilibrium constant that

96 accounts for differences in ΔG due to composition, and $\Delta V^{\circ}_{T}(P)$ is the change in molar volume

97 for the reaction at temperature T, as a function of pressure, where initial pressure is one bar or

- 98 0.0001 GPa (shown as 0 in Eq. 2).
- 99

100 Standard State Thermodynamic Data

101 The standard state thermodynamic data used in Equation 2 are listed in Table 1. As

102 stated in Lange et al. (2009), $\Delta H^{\circ}(T)$, $\Delta S^{\circ}(T)$ and $\Delta V^{\circ}_{T}(P)$ are equivalent to the difference

103 between the enthalpy, entropy and volume of fusion of pure anorthite (An) and pure albite (Ab),

respectively (see Eq. 3-5 in Lange et al. 2009). The enthalpy and entropy of fusion for anorthiteand albite vary with temperature as follows (where f refers to fusion):

106
$$\Delta H_{\rm f}(T) = \Delta H_{\rm f}(T_{\rm f}) + \int_{T_{\rm f}}^{T} \left[\mathcal{C}_{\rm P}^{\rm liq}(T) - \mathcal{C}_{\rm P}^{\rm xtl}(T) \right] dT \tag{3}$$

107
$$\Delta S_{\rm f}(T) = \Delta S_{\rm f}(T_{\rm f}) + \int_{T_{\rm f}}^{T} \left[\frac{C_{\rm P}^{\rm liq}(T) - C_{\rm P}^{\rm xtl}(T)}{T} \right] dT \tag{4}$$

In this study, the heat capacity equations of Berman (1988) are used for crystalline anorthite and
albite in Equations 3 and 4 (Table 1). Tenner et al. (2007) used the drop calorimetric

110 measurements of Stebbins et al. (1983) and Richet and Bottinga (1984a), together with the heat

- 111 capacity equations of Berman (1988) and Richet (1987) for albite crystal and glass, respectively,
- 112 to derive internally consistent values for the enthalpy of fusion for albite at its 1-bar fusion

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

113	temperature and the heat capacity of liquid NaAlSi ₃ O ₈ (Table 1). A similar exercise is followed
114	in this study to derive internally consistent values for the 1-bar enthalpy of fusion for anorthite
115	and the heat capacity of liquid $CaAl_2Si_2O_8$ from the drop calorimetric data of Stebbins et al.
116	(1983) and Richet and Bottinga (1984b). The details of this exercise are provided in Appendix
117	A, and the results are given in Table 1.
118	Calculation of $\Delta V^{\circ}_{T}(P)$ in Equation 2 requires information on the molar volume, thermal
119	expansion, and compressibility for both liquid and crystalline anorthite and albite (Table 1). The
120	data and equations used in this study are identical to those used in Lange et al. (2009), where a
121	detailed discussion of the volumetric terms is provided. We note, however, that there was a
122	decimal point error in Table 1 of Lange et al. (2009) for the $\delta V/\delta P$ values for albite and anorthite
123	liquid, respectively, which are correct in Table 1 of this study.

124

125 Activity-Composition Relations

126 The natural log of the equilibrium constant in Equation 2 is equal to:

127
$$\ln(K) = \ln\left(\frac{a_{\text{CaAl}_2\text{Si}_2\text{O}_8}^{\text{liquid}}}{a_{\text{NaAlSi}_3\text{O}_8}^{\text{liquid}}}\right) + \ln\left(\frac{a_{\text{NaAlSi}_3\text{O}_8}^{\text{crystal}}}{a_{\text{CaAl}_2\text{Si}_2\text{O}_8}^{\text{crystal}}}\right).$$
(5)

128 The activity terms in Equation 5 are further broken down to the mole fractions (X) and activity

129 coefficients (γ) for the crystalline and liquid components in Equations 6a and 6b, respectively:

130
$$\ln\left(\frac{a_{\text{NaAlSi}_3O_8}^{\text{crystal}}}{a_{\text{CaAl}_2Si_2O_8}^{\text{crystal}}}\right) = \ln\left(\frac{\gamma_{\text{NaAlSi}_3O_8}^{\text{crystal}}}{\gamma_{\text{CaAl}_2Si_2O_8}^{\text{crystal}}}\right) + \ln\left(\frac{x_{\text{NaAlSi}_3O_8}^{\text{crystal}}}{x_{\text{CaAl}_2Si_2O_8}^{\text{crystal}}}\right)$$
(6a)

131
$$\ln\left(\frac{a_{CaAl_2Si_2O_8}^{liquid}}{a_{NaAlSi_3O_8}^{liquid}}\right) = \ln\left(\frac{\gamma_{CaAl_2Si_2O_8}^{liquid}}{\gamma_{NaAlSi_3O_8}^{liquid}}\right) + \ln\left(\frac{x_{CaAl_2Si_2O_8}^{liquid}}{x_{NaAlSi_3O_8}^{liquid}}\right).$$
(6b)

The mole fraction of anorthite and albite in the plagioclase crystal is based on the abundance of
Ca and Na in the A site alone and is determined from microprobe analyses. In both the
hygrometer of Lange et al. (2009) and the updated hygrometer in this study, the activity

135 coefficient (γ) terms for the crystalline components are obtained from the THERMOCALC

136 program (http://www.earthscii.unimelb.edu.au/tpg/thermocalc/), which is based on the Holland

- 137 and Powell (1992) model for plagioclase. In this study, the activity coefficient terms for
- 138 crystalline plagioclase have been parameterized for a range of compositions (0 to 100 mol% An)
- and a range of temperatures (600 to 1350°C); the details of the parameterization are given in
- 140 Appendix B.
- 141 The activity-composition relations for the liquid components (Equation 6b), forms the
- basis of the hygrometer of both Lange et al. (2009) and this study. The mole fractions of the
- 143 *liquid* anorthite and albite components are defined following Carmichael (1977):

144
$$X_{\text{CaAl}_2\text{Si}_2\text{O}_8}^{\text{ideal liquid}} = 64.0 \left(X_{\text{CaO}}^{\text{liq}} \right) \left(X_{\text{Al}_2\text{O}_3}^{\text{liq}} \right) \left(X_{\text{SiO}_2}^{\text{liq}} \right)^2$$
(7a)

145
$$X_{\text{NaAlSi}_{3}O_{8}}^{\text{ideal liquid}} = 18.963 \left(X_{\text{Na}_{2}O}^{\text{liq}} \right)^{0.5} \left(X_{\text{Al}_{2}O_{3}}^{\text{liq}} \right)^{0.5} \left(X_{\text{SiO}_{2}}^{\text{liq}} \right)^{3}$$
(7b)

146 The coefficients in Equations 7a and 7b ensure that the mole fraction of pure anorthite and pure 147 albite liquid, respectively, each take the value of one. The ratio of the activity coefficient terms 148 (γ) in Equation 6b is modeled as a linear function of liquid composition, including the dissolved 149 H₂O component:

150
$$\ln\left(\frac{\gamma_{\text{CaAl}_2\text{Si}_2\text{O}_8}^{\text{liquid}}}{\gamma_{\text{NaAlSi}_3\text{O}_8}^{\text{liquid}}}\right) = a + \frac{b}{T} + \sum d_i X_i + d_{\text{H}_2\text{O}} X_{\text{H}_2\text{O}}$$
(8)

151 The terms a, b and d_i are parameters to be fitted from the calibration of plagioclase-liquid

152 equilibrium experiments, X_{H2O} is the mole fraction of dissolved H₂O in the melt, and X_i the mole

- 153 fraction of other oxide components (e.g., SiO₂, Al₂O₃, etc.), where "i" is defined as i=1 to n,
- 154 where n is the number of oxide components in Equation 8. A temperature term (b/T) is added to
- account for the dependence of H_2O speciation (e.g., OH^- groups and molecular H_2O) on
- temperature, which is discussed extensively in Lange et al. (2009).

158 Calibration Equation

157

Because the goal is to calibrate a plagioclase-liquid hygrometer, a regression equation is developed with X_{H2O} as the dependent variable on the left side of the equation. To accomplish this, first the equilibrium reaction is shown in Equation 9, where *x* (defined in Equation 10) includes all of the standard-state thermodynamic data, crystalline activity terms, and the ideal contributions to the liquid anorthite and albite activities.

1

164
$$0 = x + a + \frac{b}{T} + \sum X_i d_i + X_{H_2O}(d_{H_2O})$$
(9)

165 where

166
$$x = \frac{\Delta H^{\circ}(T)}{RT} - \frac{\Delta S^{\circ}(T)}{R} + \frac{\int_{1}^{P} \Delta V_{T}^{\circ}(P) dP}{RT} + \ln\left(\frac{X_{CaAl_{2}Si_{2}O_{8}}^{ideal liquid}}{X_{NaAlSi_{3}O_{8}}^{ideal liquid}}\right) + \ln\left(\frac{a_{NaAlSi_{3}O_{8}}^{crystal}}{a_{CaAl_{2}Si_{2}O_{8}}^{crystal}}\right)$$
(10)

167 Equation 9 is then rearranged so that X_{H2O} is the dependent variable in Equation 11.

168
$$X_{\rm H_20}(-d_{\rm H_20}) = x + a + \frac{b}{T} + \sum X_{\rm i} d_{\rm i}$$
(11)

169 Both sides of Equation 11 are divided through by $-d_{H2O}$, which leads to:

170
$$X_{H_2O} = mx + a' + \frac{b'}{T} + \sum X_i d_i'$$
(12)

171 where

172
$$m = -\frac{1}{d_{H_20}}, a' = \frac{a}{-d_{H_20}}, b' = \frac{b}{-d_{H_20}}, d_i' = \frac{d_i}{-d_{H_20}}$$
 (13)

Lange et al. (2009) found that the most advantageous form of the regression equation was made by substituting wt% H_2O for X_{H2O} , which allows for the calculation of wt% H_2O without having prior information about the concentration of dissolved melt H_2O . This empirical change does not diminish the quality of the final calibration. Thus, the final form of the regression equation is:

177 wt% H₂0 =
$$m'x + a'' + \frac{b''}{T} + \sum X_i d_i''$$
. (14)

178

179 Plagioclase-Liquid Phase Equilibrium Data

180	In order to perform a regression on Equation 14, plagioclase-liquid equilibrium
181	experiments from the literature are required. A final data set of 214 plagioclase-liquid
182	equilibrium pairs (107 hydrous; 107 anhydrous) was chosen from an initially larger set of
183	experiments, after application of the following four filters: (1) pure-H ₂ O fluid saturated; (2)
184	compositional totals (including H_2O component) of 97–101% for hydrous quenched glasses and
185	98.5-101 for anhydrous quenched glasses; (3) crystallinities \leq 30%; and (4) melt viscosities \leq 5.2
186	log_{10} Pa s. The purpose of these filters is to exclude experiments where analytical uncertainties
187	may be too high and/or where equilibrium may not have been attained. Lange et al. (2009)
188	provide a detailed explanation of the first three filters. The last filter is new to this study
189	(although it applies to the data set used in Lange et al. 2009) and it is another mechanism to
190	exclude experiments where equilibrium may not have been obtained owing to slow diffusion in
191	the melt phase. The four filters were applied uniformly to experiments from the literature, and
192	although some experiments may have been excluded that achieved equilibrium and/or had small
193	analytical uncertainties, the uniform application of all four filters prevented several
194	disequilibrium experiments and/or those with low analytical totals from being included in an
195	unbiased manner. In this study, the H_2O solubility model of Zhang et al. (2007) is used to
196	calculate the water concentration in all experimental liquids; the model has a 1σ error of 0.34
197	wt% H ₂ O.

The final data set of 214 plagioclase-liquid equilibrium experiments is obtained from 40
studies (Aigner-Torres et al., 2007; Bartels et al., 1991; Berndt et al., 2005; Blatter and

200 Carmichael, 2001; Blundy, 1997; Botcharnikov et al., 2008; Brugger et al., 2003; Castro et al.,

201 2013; Couch et al., 2003; Costa et al., 2004; Gardner et al., 1995; Grove et al., 1982, 1997, 2003;

202 Grove and Bryan, 1983; Grove and Juster, 1989; Holtz et al., 2005; Juster et al., 1989; Larsen,

203 2006; Luhr, 1990; Mahood and Baker, 1986; Martel et al., 1999, 2013; Martel, 2012; Moore and

204 Carmichael, 1998; Parman et al., 2011; Rader and Larsen, 2013; Sack et al., 1987; Sisson et al.

205 (1993a,b); Snyder et al., 1993; Takagi et al., 2005; Thy et al., 2006; Toplis et al., 1994; Toplis

and Carroll, 1995; Tormey et al., 1987; Wagner et al., 1995; Waters et al., (in review); Vander

Auwera et al., 1998; Yang et al., 1996) and greatly expands the compositional range relative to

208 the data set used by Lange et al. (2009). The final hydrous data set (Appendix C) spans a wide

range of liquid composition (45-80 wt% SiO₂), plagioclase composition (An₁₇₋₉₅), temperature

210 (750-1125°C), pressure (48-350 MPa), and water concentration (1.4-8.3 wt%), which is

211 illustrated in Fig 1A and 1B. The anhydrous data set (Appendix C) is dominated by basaltic melt

compositions, but extends to 70 wt% SiO₂ (Brugger et al., 2003), which marks the limit of the

213 melt viscosity filter. The plagioclase compositions in anhydrous melts are also more restricted

214 (An₅₁₋₉₀), as well as the temperature range (1072-1244 $^{\circ}$ C). The 214 experiments include several

alkaline liquids (as defined by Irvine and Baragar, 1971; Fig. 2) in equilibrium with plagioclase

from the studies of Sack et al. (1987), Luhr (1990), Martel et al. (2013), and Waters et al. (in

217 review).

218 Another illustration of the compositional range of the calibration data set is seen in a plot 219 of plagioclase composition (mol% An) vs. the An-number of the equilibrium melt composition (Fig. 3). An-number is defined as $X_{CaAl_2Si_2O_8}^{liquid} / (X_{NaAlSi_3O_8}^{liquid} + X_{CaAl_2Si_2O_8}^{liquid})$, using Equations 7a and 7b. 220 221 Figure 3 shows that for each liquid An-number there is a wide range of plagioclase compositions 222 that can crystallize under equilibrium conditions, depending on other compositional components 223 in the melt, especially dissolved water concentration, as well as temperature and pressure. The 224 effect of dissolved water is clearly seen; plagioclase is systematically more calcic in hydrous vs. 225 anhydrous liquids. What is most striking is the wide range in plagioclase compositions (An_{17-60})

226	at melt An-numbers \leq 20, and the question is whether a multiple linear regression of Equation 14
227	can adequately model the data in Figure 3. The calibration data set is projected onto the
228	anhydrous and hydrous binary loop phase diagrams to further illustrate the effect of temperature
229	and melt composition on plagioclase composition in the supplemental material (Appendix D).

230

231 **RESULTS**

232 Hygrometer/Thermometer Regression Results

233 A series of un-weighted, least squares, multiple linear regressions of Equation 14 were 234 performed using the backward stepwise method. The initial regression included 11 fitted terms (m', a'', b'') and d_i'' , where i = SiO₂, TiO₂, Al₂O₃, FeO^T, MgO, CaO, Na₂O and K₂O). The only 235 236 component that did not pass the t-test was TiO₂, but all others were statistically significant, 237 leading to 10 fitted terms. However, the magnitude of the fitted K₂O term was anomalously 238 large, and so a new term $(K_2Al_2O_4)$ was constructed, where the moles of K_2O in each sample were subtracted from the moles of Al_2O_3 , leading to a revised $Al_2O_3^*$ term. This change 239 improved the regression results, whereas a similar approach to construct a Na₂Al₂O₄ term did 240 not. The results of the final regression are shown in Table 2; the fit has an R^2 value of 0.98 and a 241 242 standard error on the estimate of 0.35 wt% H₂O, which is comparable to the 1σ error of ± 0.34 243 wt% on the H₂O solubility model of Zhang et al. (2007). Therefore the hygrometer recovers the 244 wt% H₂O in each experimental liquid within the uncertainty of its value in the calibration data 245 set. Attempts to reduce the standard error estimate in half, to levels well below the 246 1σ uncertainty in the water contents of the experimental liquids by more than doubling the 247 number of fitted terms (e.g., 26 fitted terms in Zeng et al., 2014), should be viewed with caution as this can lead to an over fit to the experimental data set. A plot of measured vs. calculated H₂O 248 249 concentrations is shown in Figure 4A, along with a histogram of residuals in Figures 4B. The

250	residuals plotted in Figure 5A-F show that the quality of the fit is equally good for all melt
251	compositions (wt% SiO ₂ , wt% Na ₂ O+K ₂ O, An-number), as well as plagioclase composition,
252	temperature and melt viscosity. Also shown in Figure 5 are the residuals when the model of
253	Lange et al. (2009) is applied. This former model breaks down when the An-number of the
254	liquid is < 15 , which is also when SiO ₂ concentrations exceed 70 wt% and total alkalis exceed 8
255	wt%.
256	It is also possible to use the plagioclase-liquid model as a thermometer rather than a
257	hygrometer. When melt composition, plagioclase composition, pressure and wt% H_2O are all
258	inputs, temperature can be varied until the calculated wt% $\rm H_2O$ value matches the input wt%
259	H ₂ O. A plot of measured vs. calculated temperatures is shown in Figure 6A, along with a
260	histogram of residuals in Figures 6B. Figure 7 illustrates that the model (Equation 14; Tables 1
261	and 2) recovers temperatures equally well for all experimental temperatures (750-1244°C) and
262	all melt compositions (45-80 wt% SiO_2). The average difference between the reported and
263	calculated temperature for the 214 experiments is 12 degrees (10 and 14 degrees, respectively,
264	for anhydrous and hydrous experiments). The excellent recovery in temperature is notable
265	because the regression of Equation 14 did not minimize residuals for temperature, but for wt%
266	H ₂ O. Therefore, the advantage of this thermometer is that it is not based on a separate regression
267	from the hygrometer, but is the exact same model. We attribute the internal consistency to the
268	incorporation of thermodynamic data on the standard-state reaction (Table 1). For comparison,
269	the plagioclase-liquid thermometer presented by Putirka (2008) yields calculated temperatures
270	for our calibration data set that are within 18°C, on average (12 and 23 degrees, respectively, for
271	anhydrous and hydrous experiments), as shown in Figure 7.
272 273	Tests of the Accuracy of the Hygrometer/Thermometer Model

4/23

274	The newly calibrated plagioclase-liquid hygrometer/thermometer can be tested against
275	several experimental studies not included in the regression. For example, anhydrous piston-
276	cylinder experiments on plagioclase-liquid equilibrium pairs at 1.0-1.2 GPa (Bartels et al., 1991;
277	Draper and Johnston, 1992; Appendix E) allow an examination of how well the volumetric terms
278	in the hygrometer/thermometer model capture the effect of increasing pressure on plagioclase-
279	liquid equilibrium, independent of melt water concentration. The model outputs water
280	concentrations that range from -0.4 to 0.5 wt% for these anhydrous high-pressure experiments,
281	which is well within the range of residuals for the 1-bar anhydrous experiments used in the
282	calibration (see Figure 4B). Therefore, the results demonstrate that the hygrometer can be
283	applied to all pressures where plagioclase is stable.
284	A similar test can be made on hydrous plagioclase-liquid experiments on basalts
285	conducted under H ₂ O-undersaturated conditions (Hamada and Fujii, 2008) and on rhyolites
286	conducted under mixed H ₂ O-CO ₂ fluid conditions (Almeev et al., 2012), where the quenched
287	glasses in the run products were all analyzed directly for dissolved H ₂ O concentration using
288	FTIR (Fourier Transform Infrared) spectroscopy (Appendix E). The average difference between
289	analyzed and calculated wt% H_2O is 0.6 and 0.4, respectively, for the basalt and rhyolite
290	experiments (Fig. 8), again indicating good agreement within the combined uncertainties of the
291	hygrometer model (see residuals in Fig. 4) and the experiments (including analyzed water and
292	reported temperature; an uncertainty of five degrees can lead to an uncertainty in calculated
293	water of ± 0.2 wt% H ₂ O).
294	Another test of the hygrometer, in terms of its ability to be extrapolated to rhyolitic melts
295	(72-77 wt% SiO ₂) under anhydrous conditions, is made by applying it those experiments in
296	Brugger et al. (2003) not included in the calibration data set because melt viscosities ranged from

297	5.3 to 6.6 log_{10} Pa-s (Note that three experiments from that study with lower melt viscosities
298	were included in the regression; Appendix C.) Experiments with high viscosities (>5.3 log ₁₀ Pa-
299	s) were excluded from the calibration, as the high viscosities may prevent achievement of
300	equilibrium due to low melt diffusivity. The Brugger et al. (2003) rhyolite experiments were held
301	for seven days and the starting material was 100% glass. The plagioclase compositions that
302	crystallized from these experiments lead to calculated wt% H_2O values that range from -0.3 to +
303	$0.3 \text{ wt\% H}_2\text{O}$ (Fig. 9), which is well the within the range of residuals for anhydrous experiments
304	used to calibrate this hygrometer (see Fig. 4). These results suggest that is it is possible to attain
305	equilibrium plagioclase compositions at high melt viscosities if the samples are held long enough
306	and the starting material is glass. The good agreement further indicates that the updated
307	hygrometer model accurately captures the effect of variable melt composition (from basalt to
308	rhyolite) on plagioclase composition, independent of the effects of dissolved water
309	concentration, temperature and pressure.
309 310 311	concentration, temperature and pressure. The Effects of Melt composition, Dissolved Water Concentration, Temperature and
309310311312	concentration, temperature and pressure. The Effects of Melt composition, Dissolved Water Concentration, Temperature and Pressure on Plagioclase Composition
 309 310 311 312 313 	concentration, temperature and pressure. The Effects of Melt composition, Dissolved Water Concentration, Temperature and Pressure on Plagioclase Composition The effect of melt composition, temperature, pressure and dissolved water concentration
 309 310 311 312 313 314 	concentration, temperature and pressure. The Effects of Melt composition, Dissolved Water Concentration, Temperature and Pressure on Plagioclase Composition The effect of melt composition, temperature, pressure and dissolved water concentration on the composition of plagioclase is illustrated in Fig. 10. In that diagram, calculated values of
 309 310 311 312 313 314 315 	concentration, temperature and pressure. The Effects of Melt composition, Dissolved Water Concentration, Temperature and Pressure on Plagioclase Composition The effect of melt composition, temperature, pressure and dissolved water concentration on the composition of plagioclase is illustrated in Fig. 10. In that diagram, calculated values of wt% H ₂ O in melt vs. equilibrium plagioclase composition are plotted at constant 100 MPa for
 309 310 311 312 313 314 315 316 	concentration, temperature and pressure. The Effects of Melt composition, Dissolved Water Concentration, Temperature and Pressure on Plagioclase Composition The effect of melt composition, temperature, pressure and dissolved water concentration on the composition of plagioclase is illustrated in Fig. 10. In that diagram, calculated values of wt% H ₂ O in melt vs. equilibrium plagioclase composition are plotted at constant 100 MPa for three different melt compositions, at temperatures that each is reasonably found in nature. The
 309 310 311 312 313 314 315 316 317 	concentration, temperature and pressure. The Effects of Melt composition, Dissolved Water Concentration, Temperature and Pressure on Plagioclase Composition The effect of melt composition, temperature, pressure and dissolved water concentration on the composition of plagioclase is illustrated in Fig. 10. In that diagram, calculated values of wt% H ₂ O in melt vs. equilibrium plagioclase composition are plotted at constant 100 MPa for three different melt compositions, at temperatures that each is reasonably found in nature. The compositions of the basalt (50.5 wt% SiO ₂ ; 1200°C), andesite (61.8 wt% SiO ₂ ; 1000°C), and
 309 310 311 312 313 314 315 316 317 318 	concentration, temperature and pressure. The Effects of Melt composition, Dissolved Water Concentration, Temperature and Pressure on Plagioclase Composition The effect of melt composition, temperature, pressure and dissolved water concentration on the composition of plagioclase is illustrated in Fig. 10. In that diagram, calculated values of wt% H ₂ O in melt vs. equilibrium plagioclase composition are plotted at constant 100 MPa for three different melt compositions, at temperatures that each is reasonably found in nature. The compositions of the basalt (50.5 wt% SiO ₂ ; 1200°C), andesite (61.8 wt% SiO ₂ ; 1000°C), and thyolite (75.4 wt% SiO ₂ ; 800°C) used for this figure are given in Table 3. Not surprisingly, for a
 309 310 311 312 313 314 315 316 317 318 319 	concentration, temperature and pressure. The Effects of Melt composition, Dissolved Water Concentration, Temperature and Pressure on Plagioclase Composition The effect of melt composition, temperature, pressure and dissolved water concentration on the composition of plagioclase is illustrated in Fig. 10. In that diagram, calculated values of wt% H ₂ O in melt vs. equilibrium plagioclase composition are plotted at constant 100 MPa for three different melt compositions, at temperatures that each is reasonably found in nature. The compositions of the basalt (50.5 wt% SiO ₂ ; 1200°C), andesite (61.8 wt% SiO ₂ ; 1000°C), and rhyolite (75.4 wt% SiO ₂ ; 800°C) used for this figure are given in Table 3. Not surprisingly, for a given plagioclase composition (e.g., An ₅₀), the rhyolite at lower temperature a higher

321	with the same plagioclase composition. What is also illustrated in Figure 10 is the strong
322	sensitivity of plagioclase composition to dissolved water concentration. An increase of just 0.5
323	wt% dissolved H ₂ O leads to an increase in the anorthite component of ~ 20 mol% in the
324	equilibrium plagioclase, with the effect of water strongest at high temperature. Additionally,
325	temperature exerts a strong influence on calculated values of wt% H ₂ O, as seen in the dashed
326	lines associated with a change of ± 20 degrees in the input temperature for each melt
327	composition (Fig. 10). At relatively low and high temperatures, (800 and 1200 °C), a variation
328	of ± 20 degrees in the input temperature leads to a variation in calculated water of ± 0.5 and ± 0.2
329	wt%, respectively. This result underscores the necessity of evaluating temperature
330	independently and accurately (e.g., through Fe-Ti oxide thermometry) in order to apply the
331	plagioclase-liquid hygrometer.
332	In stark contrast to the effect of temperature, pressure exerts little influence on the
333	plagioclase-liquid hygrometer. This is illustrated in Fig. 11, where the effect of increasing
334	pressure on the calculated wt% H ₂ O is shown for rhyolite, andesite and basalt melts (at 800,
335	1000, and 1200°C, respectively) for the same plagioclase composition of An_{50} . The results show
336	a weak pressure dependence on the calculated value of wt% H_2O , where an increase from 0 to
337	1.2 GPa leads to a small increase of 0.3 and 0.2 wt% H_2O , at 800 and 1200°C, respectively. The
338	slight temperature dependence on the magnitude of the pressure effect is due to the fact that the
339	volume change for the exchange reaction varies with temperature. Nonetheless, the reason for
340	the nearly negligible effect of pressure on the hygrometer, which contrasts with the very large
341	effect of temperature, is due to the small magnitude of the volume change for the exchange
342	reaction, particularly when compared to the large magnitude of the enthalpy of the exchange
343	reaction, all of which is discussed at length in Lange et al. (2009).

344	
345	Discussion
346	Application of the Hygrometer to Natural Rhyolites with Analyzed Melt Inclusion Water
347	Contents
348	In the following section, the plagioclase-liquid hygrometer is applied to rhyolites from:
349	(1) the Bishop Tuff, California; (2) the Katmai 1912 eruption, Alaska; and (3) the Toba Tuff,
350	Sumatra, Indonesia. The rhyolites from these three localities permit a test of the plagioclase-
351	liquid hygrometer against reported H ₂ O contents measured in quartz-hosted melt inclusions (MI)
352	from the literature.
353 354	Bishop Tuff.
355	The Bishop Tuff is the product of a $>600 \text{ km}^3$ Plinian eruption of rhyolite magma, which
356	was saturated in nine to twelve mineral phases: quartz + plagioclase + sanidine + biotite +
357	titanomagnetite + ilmenite + apatite + zircon \pm allanite \pm orthopyroxene \pm monazite \pm augite \pm
358	pyrrhotite. Whole-rock compositions are reported for 14 samples ($75.3-77.6$ wt% SiO ₂) in
359	Hildreth (1977), for which plagioclase (An_{13} - An_{24}), titanomagnetite and ilmenite compositions
360	are also provided. The Fe-Ti oxide analyses from Hildreth (1977) were input into the Ghiorso
361	and Evans (2008) thermometer, leading to pre-eruptive temperatures that range between \sim 700-
362	810°C. Application of the plagioclase-liquid hygrometer to these samples results in H ₂ O
363	contents that range from 3.9-6.8 wt% (Fig. 12), with water concentrations increasing
364	systematically with decreasing temperature. Also shown in Fig. 12 are the range of H ₂ O contents
365	measured in quartz-hosted melt inclusions from Wallace et al. (1999) and Anderson et al. (2000)
366	for the Early (Ig1Eb), Middle (Ig2Ea) and Late (Ig2NWa; Ig2NWb) units of the Bishop Tuff,
367	which are plotted as a function of Fe-Ti oxide temperatures reported for those units by Hildreth

and Wilson (2007). The H₂O contents calculated with the plagioclase-liquid hygrometer broadly
match the H₂O contents measured in quartz-hosted melt inclusions from the Early, Middle and
Late Bishop Tuff (Fig. 12).

- 371
- 372 Katmai 1912 Eruption.

The Katmai 1912 eruption produced 11-15 km³ of magma ranging from 58-75 wt% SiO₂. The rhyolitic end-member is a crystal-poor (0.5-2%), high-silica rhyolite (76.9 wt% SiO₂) that is saturated with up seven mineral phases: quartz + plagioclase + titanomagnetite + ilmenite +

376 hypersthene + pyrrhotite \pm amphibole. Analyzed H₂O concentrations in quartz-hosted melt

inclusions range from 3.0-5.2 wt% (Lowenstern, 1993) and 4.2-4.7 wt% H_2O (Wallace, 2005).

378 For comparison, application of the plagioclase-liquid hygrometer using whole-rock compositions

379 (76.6-77.4 wt% SiO₂), plagioclase compositions (An₂₅₋₂₉), and pre-eruptive temperatures (805-

380 850°C; recalculated with Ghiorso and Evans, 2008) obtained from Fe-Ti oxide analyses reported

in Hildreth (1983) lead to values that range from 3.9-5.0 wt% H₂O. This result shows that the

382 plagiclase-liquid hygrometer is fully consistent with the published melt inclusion analyses

383 reported in Lowenstern (1993) and Wallace (2005).

384 This consistency further suggests that plagioclase and quartz were co-liquidus phases in 385 the Katmai rhyolite. This inference is confirmed by some of the phase-equilibrium experiments 386 reported for Katmai rhyolite in Coombs and Gardner (2001), although at 800-850°C the 387 plagioclase-in and quartz-in curves are both located at $P_{H2O} = 100-40$ MPa, which leads to a 388 maximum H₂O concentration in the melt during crystallization of these phases of ≤ 4.1 wt%. 389 This discrepancy of ~1 wt% H₂O between the results from the phase-equilibrium experiments 390 and those from the melt inclusion analyses and the plagioclase-liquid hygrometer may be 391 attributable to the relatively high viscosity of the liquids (>5.5 log₁₀ Pa-s) in the phase392 equilibrium experiments at $P_{H2O} \le 100$ MPa.

393

394 Toba Tuff.

The voungest unit of the Toba tuff (YTT) is 2,800 km³ (Chesner, 1998) of zoned rhyolite 395 396 (68-76 wt% SiO₂) (Chesner and Rose, 1991), which is saturated in ten mineral phases: quartz, 397 plagioclase, sanidine, biotite, amphibole, orthopyroxene, titanomagnetite, allanite, zircon, and 398 ilmenite. The compositions of Fe-Ti oxides reported in Chesner (1998) are incorporated into the geothermometer of Ghiorso & Evans (2008) to calculate three pre-eruptive temperatures for the 399 400 YTT (687, 722, and 732 °C). The plagioclase-liquid hygrometer is applied to pre-eruptive 401 temperatures, the average plagioclase composition found in the YTT (An_{34}) and the bulk 402 composition of the more evolved end member of the YTT (sample #54; Chesner 1998) to 403 calculate melt H₂O contents of 6.6 to 7.9 wt% H₂O (Fig. 13). Using the water solubility model 404 of Zhang et al. (2007), these H₂O contents (6.6-7.9 wt%) correspond to P_{H2O}(total) values 405 ranging from ~230 to 330 MPa for the YTT melt composition. The water contents derived from 406 the plagioclase-liquid hygrometer are compared to the results of phase equilibrium experiments 407 on the Toba Tuff conducted by Gardner et al. (2002) in Figure 13. The water contents obtained 408 by appling the hygrometer to plagioclase from the natural sample match the water contents at the 409 plagioclase-in curve experimentally determined by Gardner et al. (2002), which implies that the 410 plagioclase-hygrometer accurately predicts-pre-eruptive melt H₂O contents for the average of the 411 reported plagioclase compositions.

412

413

414

Pre-eruptive melt H₂O and CO₂ contents measured by FTIR in quartz hosted melt inclusions from the Younger Toba Tuff reported by Chesner and Luhr (2010) range from 3.9-6.4 wt% and 10-175 ppm, respectively. The plagioclase-liquid hygrometer calculates a maximum

415 melt H₂O content of 7.9 wt% at 687°C, which is \sim 1.5 wt% higher than the maximum value

416	obtained from melt inclusions (Chesner and Luhr, 2010). The discrepancy between the
417	plagioclase hygrometer and the melt inclusion analyses can be accounted for by the observation
418	that plagioclase crystallizes at higher $P_{\rm H2O}$ than quartz in this rhyolite composition at any given
419	temperature at upper crustal conditions, according to the experimental phase diagram of Gardner
420	et al. (2002) in Fig. 13. Therefore, the H_2O contents measured in quartz-hosted melt inclusions
421	are not always applicable to the conditions of plagioclase growth, which is seen in liquids
422	(typically those with An-numbers >4) where quartz saturates at a lower P_{H2O} value lower than
423	that for plagioclase.
424 425	Application of the hygrometer to rhyolites for which H_2O and/or temperature is unknown
426	The plagioclase-liquid hygrometer/thermometer provides an opportunity to obtain pre-
427	eruptive intensive variables for samples where data from melt inclusions are not available or
428	where geo-thermometers may not be applied. Here, melt water contents are calculated for lavas
429	from Glass Mountain, Long Valley, CA and Thingmuli Volcano, Iceland, and pre-eruptive
430	temperatures are calculated for rhyolites from the Torfajökull volcanic complex, Iceland.
431 432	Glass Mountain Rhyolites, Long Valley, CA.
433	The hygrometer is applied to rhyolites from Glass Mountain, Long Valley, CA to obtain
434	the first estimates of their pre-eruptive water contents. Glass Mountain is composed of high-
435	silica (76.8-77 wt% SiO ₂) rhyolite lavas that are saturated in \geq seven mineral phases: plagioclase
436	+ sanidine + ilmenite + titanomagnetite + zircon + allanite + apatite ± biotite (Metz & Mahood,
437	1991). Compositions of coexisting ilmenite and titanomagnetite phenocrysts are reported for
438	eight obsidian lavas in Metz & Mahood (1991) and input into the thermometer of Ghiorso &
439	Evans (2008) to obtain pre-eruptive temperatures that range from 698-725°C. Application of the

440	plagioclase-liquid hygrometer using these temperatures with the plagioclase (An ₉ -An ₂₂) and
441	liquid compositions reported in Metz & Mahood (1991) results in pre-eruptive water contents
442	that range from 6.6-7.7 wt% H_2O for the Glass Mountain rhyolites. The fact that lower water
443	contents are not recorded by the plagioclase in these degassed obsidian samples, with LOI (loss
444	on ignition) of <0.4 wt% (Metz and Mahood, 1991), suggests that magma ascent was sufficiently
445	rapid that the loss of dissolved water led to a rapid increase in melt viscosity and decrease in
446	chemical diffusivity, similar to the effects of rapid cooling, leading to a termination in
447	plagioclase nucleation and growth, which is experimentally demonstrated in Waters et al. (in
448	review).
449	

450 Icelandic Rhyolites: Thingmuli and Torfajökull Volcanic Complexes.

451 Thingmuli Volcano in eastern Iceland erupted a suite of lavas that span a range of

452 compositions from tholeiitic basalt to rhyolite (47.1-75.7 wt% SiO₂; Carmichael, 1964).

453 Compositions are reported for whole rocks (Carmichael, 1964), as well as for mineral phases,

454 including plagioclase, ilmenite, and titanomagnetite (Carmichael, 1967). Here, we re-calculate

455 temperatures (917 and 865°C, respectively) for two silicic lavas (59 and 70 wt% SiO₂) (#16 and

456 #18; Carmichael, 1964), using the Fe-Ti oxide thermometer of Ghiorso and Evans (2008).

457 Application of the plagioclase-liquid hygrometer to these two samples, which crystallized sparse

458 plagioclase phenocrysts (An₄₂ and An₃₈, respectively), leads to melt water concentrations of 3.5

- and 3.6 wt%, respectively, at the time of phenocryst crystallization.
- 460 In contrast to the case for Thingmuli silicic lavas, where pre-eruptive temperatures are
- 461 known from two Fe-Ti oxides, rhyolites from the Torfajökull volcanic complex contain a mineral
- 462 assemblage that does not permit thermometry to be applied. The Torfajökull rhyolites are

463	saturated with \geq four mineral phases: plagioclase +alkali feldspar + clinopyroxene +
464	titanomagnetite \pm olivine \pm apatite \pm zircon \pm biotite \pm amphibole; neither ilmenite nor
465	orthpyroxene is found (MacDonald et al., 1990). Although pre-eruptive temperatures are not
466	known for these rhyolites, Owens et al. (2013) analyzed water concentrations in feldspar-hosted
467	melt inclusions in several samples; the highest value of 4.8 wt% was found in an explosively
468	erupted unit. This maximum value for the melt water concentration in the Torfajökull rhyolites
469	provides an opportunity to use the plagioclase-liquid thermometer from this study to constrain
470	pre-eruptive temperatures. Given the range of plagioclase (An_{27-15}) observed in the Torfajökull
471	rhyolites, along with the range of whole-rock compositions (MacDonald et al., 1990), the
472	calculated pre-eruptive temperatures ranges from 780-830°C. These are minimum values, as
473	melt water concentrations \leq 4.8 wt% were measured in some of the units, and lower water
474	concentrations will lead to higher calculated temperatures. Nonetheless, the collective data
475	reveal that Icelandic rhyolites are surprisingly hydrous, with \leq 4.8 wt% H ₂ O in the Torfajökull
476	rhyolites (Owens et al., 2013) and \sim 3.5-3.6 wt% H ₂ O in the Thingmuli rhyolites (this study).
477 478	Implications and Recommended Applications
479	The plagioclase thermometer/hygrometer presented in this study is calibrated on a data
480	set that spans a wide range of liquid compositions (45-78 wt% SiO ₂), including high-SiO ₂
481	rhyolites and both metaluminous and alkaline liquids. In addition, the compositional range of
482	plagioclase in the calibration has been extended to values as sodic as An_{17} . It is demonstrated
483	that the updated hygrometer accurately reproduces plagioclase-liquid equilibrium experiments
484	that were conducted in a piston-cylinder apparatus at 1.0-1.2 GPa (Bartels et al., 1991), although
485	these experiments were not included in the calibration. This result shows that the updated
486	plagioclase-liquid hygrometer/thermometer in this study can be applied to all pressures

- throughout the crustal column, and that the volumetric terms in the thermodynamic model
- 488 accurately account for the minor effect of pressure. Application of the revised plagioclase-liquid
- 489 hygrometer/thermometer is recommended for liquids that range from 45-78 wt% SiO₂,
- 490 plagioclase compositions that range from An_{15-95} , temperatures of 700-1300°C, and pressures of
- 491 0-1.2 GPa. The updated model can be downloaded in Excel format from the data repository or
- 492 obtained directly from the authors. The program is also availabe as a script formated for MatLab
- 493 that may be obtained directly from the authors.
- 494

495 ACKNOWLEDGEMENTS

- 496 This study was supported by National Science Foundation grant (EAR-1250368). John
- 497 Naliboff is thanked for assistance and improvement upon the available MatLab script for the
- 498 plagioclase-hygrometer program. Thanks to Youxue Zhang and Ling Zeng for invaluable
- 499 feedback on the earlier 2009 version of this hygrometer, which led to important modifications.
- 500 We are particularly grateful for the thorough and constructive comments provided by Jim
- 501 Watkins, Julia Hammer and Chip Lesher, which led to an improved manuscript.
- 502

503 **REFERENCES**

- Ai, Y. and Lange, R.A. (2008) New acoustic velocity measurements on CaO-MgO-Al₂O₃-SiO₂
 liquids: Reevaluation of the volume and compressibility of CaMgSi₂O₆-CaAl₂Si₂O₈
- 506 liquids to 25 GPa. Journal of Geophysical Research 113, B04203, DOI:
- 507 10.1029/2007JB005010
- Aigner-Torres, M., Blundy, J., Ulmer, P., Pettke, T. (2007) Laser ablation ICPMS study of trace
 element partitioning between plagioclase and basaltic melts: an experimental approach.
 Contributions to Mineralogy and Petrology 153, 647-667
- 511 Almeev, R. R., Bolte, T., Nash, B.P., Holtz, F., Erdmann, M. and Cathey, H. (2012) High-512 temperature, low-H₂O silicic magmas of the Yellowstone Hotspot: an Experimental
- 513 Study of Rhyolite from the Bruneau-Jarbidge Eruptive Center, Central Snake River Plain, 514 USA. Journal of Petrology 53, 1837-1866
- 515 Anderson, A.T., Davis, A.M., and Lu, F. (2000) Evolution of Bishop Tuff Rhyolitic Magma

516	based on Melt and Magnetite Inclusions and Zoned Phenocrysts. Journal of Petrology 41,
517	449-4/3
518 519	Angel, R.J. (2004) Equations of state of plagioclase feldspars. Contributions to Mineralogy and Petrology 146, 506–512
520	Bartels, K.S., Kinzler, R.J., and Grove, T.L. (1991) High pressure phase relations of primitive
521	high alumina basalts from Medicine Lake volcano, northern California, Contributions to
522	Mineralogy and Petrology 108, 253-270
523	Berman, R.G. (1988) Internally consistent thermodynamic data for minerals in the system Na ₂ O-
524	$K_2O-CaO-MgO-FeO-Fe_2O_3-Al_2O_3-SiO_2-TiO_2-H_2O-CO_2$ Journal of Petrology 29 445–
525	522
526	Berndt I Koenke I and Holtz F (2005) An Experimental Investigation of the Influence of
520	Water and Oxygen Fugacity on Differentiation of MORB at 200 MPa Journal of
528	Petrology 46 135-167
520	Blatter D L and Carmichael ISE (1998) Plagioclase-free andesites from Zitácuaro
52)	(Michoacán) Mexico: Petrology and experimental constraints. Contributions to
531	Mineralogy and Patrology 231, 121, 138
537	Blatter D. L. and Carmichael J.S.E. (2001) Hydrous phase equilibria of a Maxican high silica
522	andogita: a condidate for mantle origin? Googhimica at Cosmochimica Acta 65, 4042
555	Andesite. a candidate for mantie origin? Ocochimica et Cosmochimica Acta 05, 4045-
525	4004 Dividy, I. (1007) Experimental study of a Vialenait marginal reals and implications for trace
555 526	blundy, J. (1997) Experimental study of a Kigiapan marginal fock and implications for trace
530 527	Deattoher A L. Durnham C.W. Windown K.E. and Dahlan S.D. (1982) Liquida glasses and
537	Boeucher, A.L., Burnham, C.W., Windown, K.E., and Bonien, S.K. (1982) Liquids, glasses and
538	the meiting of silicates to high pressures. The Journal of Geology 90, $127-138$
539	Botcharnikov, R.E., Almeev, R.R., Koepke, J. and Holtz, F. (2008) Phase Relations and Liquid
540	Lines of Descent in Hydrous Ferrobasalt. Implications for the Skaergaard Intrusion and
541	Columbia River Flood Basalts. Journal of Petrology 49, 168/-1/2/
542	Brugger, C.R., Johnston, A.D. and Cashman, K.V. (2003) Phase relations in silicic systems at
543	one-atmosphere pressure. Contributions to Mineralogy and Petrology 146, 356-369
544	Carmichael, I.S.E. (1964) The petrology of Thingmuli, a Tertiary Volcano in Eastern Iceland.
545	Journal of Petrology 5, 435-460
546	Carmichael, I.S.E. (1967) The mineralogy of Thingmuli, A tertiary volcano in eastern Iceland.
547	The American Mineralogist 52, 1815-1841
548	Carmichael, I.S.E., Nicholls, J., Spera, F.J., Wood, B.J., and Nelson, S.A. (1977) High-
549	temperature properties of silicate liquids: Applications to the equilibration and ascent of
550	basic magma. Philosophical Transactions of the Royal Society of London, Series A 286,
551	373–431
552	Castro, J.M., Schipper, C.I., Mueller, S.P., Militzer, A.S., Amigo, A., Parejas, C., and Jacob, D.
553	(2013) Storage and eruption of near-liquidus rhyolite magma Cordón Caulle, Chile.
554	Bulletin of Volcanology 75, 701-718
555	Chesner, C.A. (1998) Petrogenesis of the Toba Tuffs, Sumatra, Indonesia. Journal of Petrology
556	49 397-438
557	Chesner, C.A. and Luhr, J.F. (2010) A melt inclusion study of the Toba Tuffs, Sumatra,
558	Indonesia. Journal of Volcanology and Geothermal Research 197, 259-278
559	Chesner, C.A. and Rose, W.I. (1991) Stratigraphy of the Toba Tuffs and evolution of the Toba
560	Caldera Complex, Sumatra, Indonesia. Bulletin of Volcanology 53, 343-356
561	Coombs, M.L. and Gardner, J.E. (2001) Shallow-storage conditions for the rhyolite of th 1912

562	eruption at Novarupta, Alaska. Geology 29, 775-778
563	Costa, F., Scaillet, B., and Pichavant, M. (2004) Petrological and experimental constraints on the
564	pre-eruptive conditions of Holocene dacite from Volcán San Pedro (36°S, Chilean
565	Andes) and the importance of sulphur in silicic subduction magmas. Journal of Petrology
566	45, 855-881
567	Couch, S., Harford, C.L., Sparks, R.S.J., and Carroll, M. R. (2003) Experimental constraints on
568	the formation of highly calcic plagioclase microlites at the Soufriere Hills Volcano,
569	Montserrat. Journal of Petrology 44, 1455-1475.
570	Danyushevksy, L.V., Carroll, M.R., and Falloon, T.J. (1997) Origin of high-An plagioclase in
571	Tongan high-Ca boninites: Implications for plagioclase-melt equilibria at low P(H2O).
572	The Canadian Mineralogist, 35, 313–326
573	Draper, D.S. and Johnston, A.D. (1992) Anhydrous P-T phase relations of an Aleutian high-
574	MgO basalt: An investigation of the role of olivine-liquid reaction in the generation of arc
575	high-alumina basalts. Contributions to Mineralogy and Petrology 112, 501-519
576	Fei, Y. (1995) Thermal expansion. In T. Ahrens, Ed., Mineral Physics and Crystallography, p.
577	29–44 AGU Reference Shelf 2, Washington, D.C.
578	Gansecki, C.A. (1998) ⁴⁰ Ar/ ³⁹ Ar geochronology and pre-eruptive geochemistry of the
579	Yellowstone Plateau volcanic field rhyolites Ph.D. thesis, Stanford University
580	Gardner, J.E., Rutherford, M., Carey, S., and Sigurdsson, H. (1995) Experimental constraints on
581	pre-eruptive water contents and changing magma storage prior to explosive eruptions of
582	Mount St. Helens volcano. Bulletin of Volcanology, 57, 1-17.
583	Gardner, J.E., Layer, P.W. and Rutherford, M.J. (2002) Phenocrysts versus xenocrysts in the
584	youngest Toba Tuff: Implications for the petrogenesis of 2800 km ³ of magma. Geology
585	30 347-350
586	Geschwind, C.H. and Rutherford, M.J. (1995) Crystallization of microlites during magma ascent:
587	the fluid mechanics of 1980-1986 eruptions at Mount St. Helens. Bulletin of Volcanology
588	57, 356-370
589	Ghiorso, Mark S., Hirschmann, Marc M., Reiners, Peter W., and Kress, Victor C. III (2002) The
590	pMELTS: An revision of MELTS aimed at improving calculation of phase relations and
591	major element partitioning involved in partial melting of the mantle at pressures up to 3
592	GPa. Geochemistry, ,Geophysics Geosystems 3(5), 10.1029/2001GC000217
593	Ghiorso, M. and Evans, B.W. (2008) Thermodynamics of rhombohedral oxide solid solutions
594	and a revision of the Fe-Ti two-oxide geothermometer and oxygen barometer. American
595	Journal of Science 308, 957-1039
596	Glazner, A.F. (1984) Activities of olivine and plagioclase components in silicate melts and their
597	application to geothermometry. Contributions to Mineralogy and Petrology, 88, 260-268
598	Grove, T.L. Gerlach, D.C. and Sando, T.W. (1982) Origin of calc-alkaline series lavas at
599	Medicine Lake volcano by fractionation, assimilation and mixing. Contributions to
600	Mineralogy and Petrology 80, 160-182
601	Grove, T.L., Bryan, W.B. (1983) Fractionation of pyroxene-phyric MORB at low pressure: an
602	experimental study. Contributions to Mineralogy and Petrology 84, 293-309
603	Grove, T. L. and Juster, T.C. (1989) Experimental investigations of low-Ca pyroxene stability
604	and olivine-pyroxene-liquid equilibria at 1 atm in natural basaltic and andesitic liquids.
605	Contributions to Mineralogy and Petrology 103, 287-305
606	Grove TL Donnelly-Nolan JM and Housh T (1997) Magmatic processes that generated the
607	rhyolite of Glass Mountain. Medicine Lake volcano N California Contributions to
	, sine of clubs incommun, incomonic Lune volcano, 14. Cantonna. Controlation 01

608	Mineralogy and Petrology 127, 205-223
609	Grove, T.L., Elkins-Tanton, L.T., Parman, S.W., Catterjee, N., Mütener, O., Gaetani, G.A.
610	(2003) Fractional crystallization and mantle-melting controls on calc-alkaline
611	differentiation trends. Contributions to Mineralogy and Petrology 145, 515-533
612	Gualda G A R Ghiorso M S Lemons R V Carley T L (2012) Rhyolite-MELTS: A modified
613	calibration of MELTS optimized for silica-rich fluid-bearing magmatic systems Journal
614	of Petrology 53, 875-890
615	Hildreth, W. (1977) The magma chamber of the Bishop Tuff: gradients in temperature, pressure.
616	and composition. Ph.D. thesis, University of California, Berkeley
617	Hildreth W and Wilson C I N (2007) Compositional Zoning of the Bishop Tuff Journal of
618	Petrology 48, 951-999
619	Holland T and Powell R (1992) Plagiocalse feldspars: Activity-composition relations based
620	upon Darken's quadratic formalism and Landau theory American Mineralogist 77 53-61
621	Holtz R. Johannes W. Tamic N. and Behrens H. (2005) Experimental petrology of the 1001
622	1005 Unzen dacite Japan Part I: phase relations, phase composition and pre-eruntive
623	conditions Journal of Petrology 46, 319-337
623 624	Housh TB and Luhr LF (1991) Plagioclase-melt equilibria in hydrous systems American
625	Mineralogist 76 477–492
626	Hamada, M. and Fuiji, T. (2008) Experimental constraints on the effects of pressure and H2O on
627	the fractional crystallization of high-Mg island arc basalt. Contributions to Mineralogy
628	and Petrology 155, 767-790
629	Holland, T. and Powell, R. (1992) Plagioclase feldspars: Activity-composition relations based
630	upon Darken's quadratic formalism and Landau theory. American Mineralogist, 77, 53–
631	61.
632	Irvine, T.N. and Baragar, W.R.A. (1971) A guide to the chemical classification of the common
633	volcanic rocks. Canadian Journal of Earth Sciences 8, 523-548
634	Juster, T. C., Grove, T. and Perfit, M. R. (1989) Experimental constraints on the generation of
635	Fe-Ti basalts, andesites and rhyodacites at the Galapagos spreading center 85°W and
636	95°W. Journal of Geophysical Research, 94, 9251-9274
637	Kress, V.C., Williams, Q., and Carmichael, I.S.E. (1988) Ultrasonic investigation of melts in the
638	system Na2O-Al2O3-SiO2. Geochimica et Cosmochimica Acta 52, 283–293
639	Kudo, A.M. and Weill, D.F. (1970) An igneous plagioclase thermometer. Contributions to
640	Mineralogy and Petrology, 25, 52–65.
641	Lange, R.A. (1996) Temperature independent thermal expansivities of sodium aluminosilicate
642	melts between 713 and 1835 K. Geochimica et Cosmochimica Acta 60, 4989–4996
643	(1997) A revised model for the density and thermal expansivity of K ₂ O-Na ₂ O-CaO-
644	MgO-Al ₂ O ₃ -SiO ₂ liquids from 700 to 1900 K: Extension to crustal magmatic
645	temperatures. Contributions to Mineralogy and Petrology 130, 1–11
646	(2003) The fusion curve of albite revisited and the compressibility of NaAlS ₁₃ O ₈ liquid
647	with pressure. American Mineralogist 88, 109–120
648	Lange, K. A., Frey, H. M. and Hector, J. (2009) A thermodynamic model for the plagioclase-
649	liquid hygreometer/thermometer. American Mineralogist 94, 494-506
650	Larsen, J.F. (2005) Experimental study of plagioclase rim growth around anorthite seed crystals
001	In inyodacitic meit. American Mineralogist 90, 41/-42/
0.1/	~ 1.30 Sec. T.E. T. AUDALK DVADACUE DRAUDA STARAGE CONTITIONS DRIVE TO THE ALAUV. BE CRUPPETARMING

Larsen, J.F. (2006) Rhyodacite magma storage conditions prior to the 3430y BP caldera-forming eruption of Aniakchak volcano, Alaska. Contributions to Mineralogy and Petrology 152,

523-540
Lowenstern, J.B. (1993), Evidence for Cu-bearing fluid in magma erupted at the Valley of Ten
Thousand Smokes, Alaska. Contributions to Mineralogy and Petrology 114, 409-421
Luhr, J.F. (1990) Experimental phase relations of water- and sulfur-saturated arc magmas and the
1982 eruptions of El Chichón volcano. Journal of Petrology 31, 1071–1114
MacDonald, R., McGarvie, D.W., Pinkerton, H., Smith, R.L. and Palacz, Z.A. (1990)
Petrogenetic Evolution of the Torfajökull Volcanic Complex, Iceland I. Relationship
Between the Magma Types. Journal of Petrology 31, 429-459
Mahood, G.A. and Baker, D.R. (1986) Experimental constraints on depths of fractionation of
mildly alkalic basalts and associated felsic rocks: Pantelleria, Strait of Sicily.
Contributions to Mineralogy and Petrology 93, 251-264
Marsh, B.D., Fournelle, J., Myers, J.D., and Chou, IM. (1990) On plagioclase thermometry in
island-arc rocks: Experiments and theory. In R.J. Spencer and IM. Chou, Eds., Fluid-
Mineral Interactions: a Tribute to H.P. Eugster, 2, p. 65–83. Geochemical Society Special
Publication, St. Louis, Missouri
Martel, C., Pichavant, M., Holtz, F., and Scaillet, B. (1999) Effects of fO ₂ and H ₂ O on andesite
phase relations between 2 and 4 kbar. Journal of Geophysical Research, 104, 29453-
29470.
Martel, C. & Schmidt, B.C., (2003) Decompression experiments as an insight into ascent rates of
silicic magmas. Contributions to Mineralogy and Petrology 144, 397-415
Martel, C. (2012) Eruption Dynamics inferred from microlite crystallization experiments:
Application to Plinian and Dome-forming Eruptions of Mt. Pelée (Martinique, Lesser
Antilles). Journal of Petrology 53, 699-725
Martel, C., Champallier, R., Prouteau, G., Pichavant, M., Arbaret, L., Balcone-Boissard, H.,
Boudon, G., Boivin, P., Bourdier, J., Scaillet, B. (2013) Trachyte Phase Relations and
Implication for Magma Storage Conditions in the Chaîne des Puys (French Massif
Central). Journal of Petrology 54, 1071-1107
Mathez, E.A. (1973) A refinement of the Kudo-Weill plagioclase thermometer and its
application to basaltic rocks. Contributions to Mineralogy and Petrology 41, 61–72
Metz, J.M. and Mahood, G.A. (1991) Development of the Long Valley, California, magma
chamber recorded in precaldera rhyolite lavas of Glass Mountain. Contributions to
Mineralogy and Petrology 106, 379-397
Moore, G. (2008) Interpreting H_2O and CO_2 contents in melt inclusions: Constraints from
solubility experiments and modeling. In K.D. Putirka and F.J. Tepley III, Eds., Minerals,
Inclusions and Volcanic Processes 69, p. 333–361 Reviews in Mineralogy and
Geochemistry, Mineralogical Society of America, Chantilly, Virginia
Moore, G. and Carmichael, I.S.E. (1998) The hydrous phase equilibria (to 3 kbar) of an andesite
and basaltic andesite from western Mexico: constraints on water content and conditions
of phenocryst growth. Contributions to Mineralogy and Petrology, 130, 304–319
Moore, G., Vennemann, I., and Carmichael, I.S.E. (1998) An empirical model for the solubility
of water in magmas to 3 kbars. American Mineralogist, 83, 36–42
Uwen, J., Tutten, H. and MicGarvie, D.W. (2013) Explosive subglacial involutic eruptions in
Iceland are luened by high magmatic H_2O and closed-system degassing. Geology 41,
201-204 Demissionary V. Demunichard V. V. Crowford A. L. and Harris V. L. (1005) A.
experimental study of the effects of melt composition on plagioclase-melt equilibria at 5

700 701	and 10 kbar; implications for the origin of magmatic high-An plagioclase. Contributions to Mineralogy and Petrology 118, 420–432
701	Darman S.W. Grove T.L. Kelley, K.A. and Dlank T. (2011) Along Are Variations in the Pre-
702	Failinali, S. W., Olove, T.L., Kelley, K.A., and Flank, T. (2011) Along-Ale Valiations in the Fie-
703	Euprive H ₂ O Contents of Mariana Arc Maginas Interfed from Fractionation Faths.
704	Journal of Petrology 52, 257-278
705	Pullika K.D. (2005) Igneous inermometers and barometers based on plagloclase + liquid
700	equilibria. Tests of some existing models and new calibrations. American Mineralogist
/0/	90, 330-340
/08	(2008) Thermometers and barometers for volcanic systems, in: Putifka, K. D., and
/09	Tepley, F. eds., Reviews in Mineralogy and Geochemistry vol. 69, p 61-120
/10	Rader, E. L. and Larsen, J.F. Experimental phase relations of a low MgO Aleutian basaltic
/11	andesite at XH2O 5 0.7–1. Contributions to Mineralogy and Petrology, 166, 1593-1611
/12	Rankin, G.A. and Wright, F.E. (1915) The ternary system CaO-Al ₂ O ₃ -SiO ₂ . American Journal of
713	Science, 39, 1–79
714	
715	Richet, P. and Bottinga, Y. (1984a) Glass transitions and thermodynamic properties of
716	amorphous SiO ₂ , NaAlSiO ₂ n+2, and KAlSi ₃ O ₈ Geochimica et Cosmochimica Acta 48,
717	453-470.
718	Richet, P. and Bottinga, Y. (1984b) Anorthite, andesine, wollastonite, diopside, cordierite, and
719	pyrope: Thermodynamics of melting, glass transitions, and properties of the amorphous
720	phases. Earth and Planetary Science Letters 67, 415-432
721	Sack, R.O., Walker, D. and Carmichael, I.S.E. (1987) Experimental petrology of alkalic lavas:
722	constraints on cotectics of multiple saturation in natural basic liquids. Contributions to
723	Mineralogy and Petrology 96, 1-23
724	Scaillet, B. and Evans, B. W. (1999) The 15 June 1991 eruption of mount Pinatubo. I. Phase
725	equilibria and pre-eruption P-T-fO ₂ -fH ₂ O conditions of the dacite magma. Journal of
726	Petrology 40, 381-411
727	Shea, T. and Hammer, J.E. (2013) Kinetics of cooling- and decompression-induced
728	crystallization in hydrous mafic-intermediate magmas. Journal of Volcanology and
729	Geothermal Research 260, 127-145
730	Sisson, T.W. and Grove, T.L. (1993a) Experimental investigations of the role of H ₂ O in calc-
731	alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy
732	and Petrology 113, 143–166
733	(1993b) Temperatures and H ₂ O contents of low-MgO high-alumina basalts.
734	Contributions to Mineralogy and Petrology 113, 167–184
735	Snyder, D., Carmichael, I.S.E., and Wiebe, R.A. (1993) Experimental study of liquid evolution
736	in a Fe-rich, layered mafic intrusion: constraints of Fe-Ti oxide precipitation on the T-fO2
737	and T-P paths of tholeiitic magmas. Contributions to Mineralogy and Petrology 113, 73-
738	86
739	Stebbins, J.F., Carmichael, I.S.E., and Weill, D.E. (1983) The high temperature liquid and glass
740	heat contents and heats of fusion of diopside, albite, sanidine, and nepheline. American
741	Mineralogist 68, 717–730
742	Takagi, D., Sato, H. and Nakagawa, M. (2005) Experimental study of a low-alkali tholeiite at 1-5
743	kbar: optimal condition for the crystallization of high-An plagioclase in hydrous arc
744	tholeiite. Contributions to Mineralogy and Petrology 149, 527-540
745	Tenner, T.J., Lange, R.A., and Downs, R.T. (2007) The albite fusion curve reexamined: New

746 747	experiments and the high-pressure density and compressibility of high albite and NaAlSi ₂ Ω_{2} liquid American Mineralogist 92, 1573–1585
748	Thy P., Lesher, C.E., Nielsen, T.F. and Brooks, C.K. (2006) Experimental constraints on the
749	Skaergaard liquid line of descent. Lithos 92,154-180
750	Tomiya, A., Takahashi, E., Furukawa, N., and Suzuki, T. (2010) Depth and Evolution of a Silicic
751	Magma Chamber: Melting Experiments of a Low-K Rhyolite from Usu Volcano, Japan.
752	Journal of Petrology 51, 1333-1354
753	Toplis, M.J., Libourel, G. and Carroll, M.R. (1994) The role of phosphorous in crystallization
754	processes of basalt: An experimental study. Geochimica Cosmochimica Acta 58, 797-810
755	Toplis, M.J. and Carroll, M.R. (1995) An experimental study of the influence of oxygen fugacity
756	on Fe-Ti oxide stability, phase relations, and mineralmelt equilibria in ferro-basaltic
757	systems. Journal of Petrology 36, 1137-1170
758	Tormey, D.R., Grove, T.L., and Bryan, W.B. (1987) Experimental petrology of normal MORB
759	near the Kane Fracture Zone: 22–25° N, mid-Atlantic ridge. Contributions to Mineralogy
760	and Petrology 96, 121–139
761	Vander Auwera, J., Longhi, J. and Duchesne, J.C. (1998) A liquid line of descent of the jotunite
762	(hypersthene monzodiorite) suite. Journal of Petrology 39, 439-468
763	Wagner, T.P., Donnelly-Nolan, J.M., and Grove, T.L. (1995) Evidence of hydrous differentiation
764	and accumulation in the low-MgO, high-Al2O3 Lake Basalt from Medicine Lake
765	volcano, California. Contributions to Mineralogy and Petrology 121, 201-216
766	Wainright, J.E. and Starkey, J. (1971) A refinement of the crystal structure of anorthite.
767	Zeitschrift fu r Kristallographie, 133, 75–84
768	Wallace, P.J., Anderson, A.T. and Davis, A.M. (1999) Gradients in H2O, CO2, and exsolved gas
769	in a large-volume silicic magmas system: Interpreting the record preserved in melt
770	inclusions from the Bishop Tuff. Journal of Geophysical Research 104, 97-122
771	Wallace, P. (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on
772	melt inclusion and volcanic gas data. Journal of Volcanology and Geothermal Reseach.
773	140, 217-240
774	Waters, L.E., Andrews, B.J., and Lange, R.A. (in review) Degassing-induced crystallization of
775	plagioclase phenocrysts in rhyolite and dacite: Phase equilibrium and decompression
776	experiments: Journal of Petrology
777	Watson, E.B. and Harrison, T.M. (1983) Zircon saturation revisited: temperature and
778	composition effects in a variety of crustal magma types. Earth and Planetary Science
779	Letters 64, 295-304
780	Watts K. E., Bindeman, I.N. and Schmitt, A.K. (2011) Large-volume rhyolite genesis in caldera
781	complexes of the Snake River Plain: insights from the Kilgore 1 uff of the Heise volcanic
782	field, Idaho, with comparison to Yellowstone and Bruneau-Jarbidge rhyolites. Journal of
/83	Petrology 52, 85/-890 $N_{\rm c}$ = $D_{\rm c}$ = $D_{\rm c}$ = $A_{\rm c}$ (1001) $K_{\rm c}$ = $A_{\rm c}$ = 1
/84	wruck, B., Salje, E.K.H., and Graeme-Barber, A. (1991) Kinetic rate laws derived from order
/85 796	chemistry of Minorale, 17, 700, 710
/80 707	Veng II I. Vingler, P. L. and Crave, T. L. (1006) Experiments and models of anhydrous baseltic.
101 789	align a lagio class augite saturated malts from 0.001 to 10 kbar. Contributions to
700 780	Mineralogy and Petrology 124 1-18
707 700	Zeng I Cheng I Cheng O and Zhang S (2014) A refinement of Lange's plagioclass liquid
791	hygrometer/thermometer based on quadratic log-contrast models for experiments with

- mixtures. Journal of Geochemical Exploration 141, 89-99
- 793 Zhang, Y., Xu, Z., Zhu, M., and Wang, H. (2007) Silicate melt properties and volcanic eruptions.
- Reviews of Geophysics 45, RG4004
- 795

796 **Figure Captions**

797 798 Figure 1: (A) Histogram of hydrous (light grey) and anhydrous (black) liquid compositions used 799 in the calibration of the hygrometer as a function of wt% SiO₂ in the melt. (B) A histogram of 800 plagioclase compositions used in the calibration of the hygrometer as a function of mol% An.

801

Figure 2: Plot showing the range in total alkali content (wt% Na₂O + wt% K₂O) as a function of 802 803 wt% SiO₂ for liquids used in the calibration of the hygrometer, along with the proposed boundary between alkaline and calc-alkaline liquids from Irvine & Baragar (1972). Water-804 805 saturated experiments are shown as hollow circles, anhydrous experiments are shown as black 806 diamonds, and the experiments used in the calibrations Lange et al. (2009) are shown as grey 807 circles.

808

809 Figure 3: (A) Plot showing the experiments used in the calibration of the hygrometer as a function of liquid An-number and mol% An in plagioclase. (B) Plot showing the experiments 810 used in the calibration of the hygrometer as a function of wt% SiO₂ in the liquid and mol%An in 811 812 plagioclase. The dashed lines highlight the limits of the calibration of Lange et al. (2009), which 813 does not adequately cover the liquids with low An-numbers (rhyolitic). Symbols the same as in Fig. 2.

814

815

816 Figure 4: (A) A plot of measured water contents from the calibration v. the predicted water 817 contents derived from the hygrometer, with a 1:1 correspondence line, and dashed lines 818 reflecting two standard errors (±0.7 wt% H₂O). (B) Results of the plagioclase-liquid hygrometer 819 show as a function of residuals (measured wt% H_2O – predicted wt% H_2O). With the exception 820 of three experiments, the hygrometer predicts melt water contents for the calibration data set 821 within <1 wt%.

822

823 **Figure 5:** The residuals (measured – predicted wt% H_2O) of the hygrometer plotted against (A) 824 wt% SiO₂, (B) Total Alkalis (wt% Na₂O + wt% K₂O), (C) liquid An-number, (D) plagioclase 825 composition (mol% An), (E) temperature (°C), and (F) melt viscosity (log₁₀ Pa s). In all plots (A-F), water saturated experiments are shown as hollow circles, anhydrous experiments are 826 827 shown as black diamonds. For comparison, results from the model of Lange et al. (2009) are 828 shown as grey circles.

829

830 Figure 6: (A) Comparison of measured vs. predicted temperature (°C) using a 1:1

- 831 correspondence line. The average difference is 12°C (14°C and 10°C for hydrous and anhydrous
- 832 experiments, respectively). Also shown are dashed lines marking $\pm 40^{\circ}$ C, which highlights that
- 833 the model recovers temperatures within $\leq 40^{\circ}$ C for 210 of 214 experiments. (B) The difference in
- 834 measured vs. predicted temperature for the calibration data set, shown as a histogram.
- 835

836 Figure 7: The difference between measured and predicted temperature for the calibration data 837 set plotted against (A) wt% SiO₂ (B) temperature, and (C) wt% H₂O. In all plots (A-C), water

- saturated experiments are shown as hollow circles, and anhydrous experiments are shown as 838
- 839 black diamonds. For comparison, results from the thermometer of Putirka (2008) are shown as

840 grev diamonds in A-C.

842 Figure 8: A comparison of H₂O contents calculated by the plagioclase-liquid hygrometer on 843 H₂O under-saturated experiments in the studies of Almeev et al. (2012), Bartels et al. (1991) and 844 Hamada and Fujii (2008), where H₂O contents were measured using FTIR. Experiments of 845 Almeev et al. (2012) and Hamada and Fugii (2008) were conducted under mixed CO₂-H₂O 846 conditions on a rhyolite and basalt, respectively. Bartels et al. (1991) performed anhydrous 847 experiments on a basalt and in a piston cylinder at pressures ≥ 1 GPa. See text for discussion. 848 849 Figure 9: Measured minus predicted wt% H₂O, using the the plagioclase-liquid hygrometer, for 850 the anhydrous experiments on rhyolite liquid of Brugger et al. (2003) plotted as a function of 851 wt% SiO₂. 852 853 Figure 10: A plot showing the effect of wt% H₂O in melt on equilibrium plagioclase 854 composition for rhyolite, andesite and basalt (see text for discussion). 855 856 **Figure 11:** A plot showing the effect of pressure (MPa) on the wt% H₂O value calculated with the plagioclase-liquid hygrometer for three liquids (rhyolite, and esite, and basalt). Horizontal 857 858 light-grey isopleths of 2, 4 and 6 wt% H₂O highlight the small effect of pressure. See text for 859 discussion. 860 Figure 12: (A) A plot of plagioclase composition (mol% An) as a function of temperature for 13 861 862 samples from the Bishop Tuff using the data reported in Hildreth (1977). (B) A plot showing water contents for the Bishop Tuff calculated using the plagioclase-liquid hygrometer, using 863 864 plagioclase compositions from (A) and temperatures from Hildreth and Wilson (2007). Also 865 shown are reported water contents in melt inclusions from the Early (Ig1Eb), Middle (Ig2Ea) and Late (Ig1NWa and Ig1NWb) units of the Bishop Tuff from Wallace et al. (1999) (black crosses) 866 and Anderson et al. (2000) (grey diamonds). The width of the grey boxes reflects the range of 867 868 reported temperatures for each unit in Hildreth and Wilson (2007). See text for discussion. 869 870 Figure 13: Application of the plagioclase-liquid hygrometer to the Youngest Toba Tuff (YTT), 871 using the plagioclase compositions, and bulk compositions reported in Chesner (1998). The pre-872 eruptive temperatures presented for the YTT have been recalculated using the oxide 873 compositions presented in Chesner (1998) and the geo-thermometer of Ghiorso and Evans 874 (2008). The results of the hygrometer are shown as stars. Also shown are the phase equilibrium 875 experiments (grey circles) and mineral-in curves of Gardner et al. (2002), along with isopleths of H₂O solubility (in wt %) for the YTT calculated with Zhang et al. (2007). The water contents 876 877 derived from the plagioclase-liquid hygrometer are consistent with the plagioclase-in curve of 878 Gardner et al. (2002). Also shown on the phase diagram is a grev field that shows the range of 879 reported water contents, 3.9-6.4 wt%, in quartz-hosted melt inclusions from Chesner and Luhr 880 (2010). The grey field is defined by pre-eruptive temperatures presented in Chesner (1998) and 881 the quartz-in curve as determined by Gardner et al. (2002). The water contents recorded by the 882 melt inclusions and the plagioclase-liquid hygrometer are consistent with the phase equilibrium 883 experiments. See text for discussion.

884

Figure 14: A plot showing estimates of minimum pre-eruptive temperatures (°C) that are

calculated by applying the plagioclase-liquid thermometer to 19 rhyolite lavas from the

887 Torfajökull Volcanic Complex, for which water contents (≤4.8wt%) have been measured in melt

4/23

- inclusions (Owen et al. 2013). Plagioclase compositions $(An_{15}-An_{27})$ are from MacDonald et al.
- 889 (1990). See text for discussion.

4/23

Table 1A. Summary of albite thermodynamic data used in the hygrometer model

Parameter	Value	Reference
T_f	1373 K	Boettcher et al. (1982)
$\Delta H_{fus}(T_f)$	64.5 kJ/(mol·K)	Tenner et al. (2007)
$\Delta S_{fus}(T_f)$	47.0 J/(mol·K)	Tenner et al. (2007)
C_p crystal	$393.64-2415.5T^{-0.5}-7.8928\ 10^{6}T^{-2}+1.07064\ 10^{9}\ T^{-3}$	Berman (1988)
C_p liquid	359 J/(mol·K)	Tenner et al. (2007)
V _{298K} crystal	$100.57 \text{ cm}^3/\text{mol}$	Wruck et al. (1991)
α (T) crystal	2.68 x 10 ⁻⁵ K ⁻¹	Fei (1995)
$(\delta V/\delta P)^{\text{crystal}}$	-1.67 cm ³ /GPa	Tenner et al. (2007); Lange et al. (2009)
V(T) liquid	$112.72 + 0.00382 (T-1373) \text{ cm}^3/\text{mol}$	Lange (1996)
$(\delta V/\delta P)^{\text{liquid}}$	-6.379 - 0.00055 (T-1673) cm ³ /GPa	Kress and Carmichael (1988)

Table 1B. Summary of anorthite thermodynamic data used in the hygrometer model

Parameter	Value	Reference
T_f	1830 K	Rankin and Wright (1915)
$\Delta H_{fus}(T_f)$	142.4 kJ/(mol·K)	This study (Appendix A)
$\Delta S_{fus}(T_f)$	77.8 J/(mol·K)	This study (Appendix A)
C_p crystal	$439.37-3734.1T^{-0.5} + 0.317024 \ 10^9 \ T^3$	Berman (1988)
C_p liquid	433.6 J/(mol·K)	This study (Appendix A)
V _{298K} crystal	$100.61 \text{ cm}^3/\text{mol}$	Wainright and Starky (1971)
α (T) crystal	$1.41 \ge 10^{-5} \text{ K}^{-1}$	Fei (1995)
$(\delta V/\delta P)^{\text{crystal}}$	-1.16 cm ³ /GPa	Angel (2004); Lange et al. (2009)
V(T) liquid	$106.3 + 0.00371 (T-1673) \text{ cm}^3/\text{mol}$	Lange (1997)
$(\delta V / \delta P)^{\text{liquid}}$	-5.182 - 0.00101 (T-1673) cm ³ /GPa	Ai and Lange (2008)

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5232

Table 2: Model Parameters	Fitted Values $\pm 1\sigma$	t-statistic	
a"	-17.3 ± 2.53	-6.86	
m'	0.39 ± 0.12	3.40	
b"	2.99 ± 0.07	39.9	
d" (SiO ₂)	7.83 ± 2.52	3.11	
d" (Al ₂ O ₃ *)	-50.1 ± 3.53	-14.2	
$d'' (FeO^T)$	14.1 ± 3.30	4.27	
d" (MgO)	24.0 ± 3.05	7.86	
d" (CaO)	-15.9 ± 3.45	-4.61	
d" (Na ₂ O)	18.6 ± 4.32	4.31	
d" (K ₂ Al ₂ O ₄)	24.0 ± 6.73	3.57	
Number of cases = 214; SEE =0.35 wt% H_2O ; $R^2 = 0.98$			

*Al₂O₃ is moles Al₂O₃ minus the moles of \tilde{K}_2O

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5232

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Figure 10

Figure 13

