1 2 3 4 5 6 7 8	Revision 3 New thermobarometers for martian igneous rocks, and some implications for secular cooling on Mars Jerrod Lessel ^{1,*} and Keith Putirka ¹ ¹ Department of Earth and Environmental Sciences, California State University, Fresno, Fresno, CA 93740, U.S.A. Address: 2576 E San Ramon Ave. M/S ST24, Fresno, CA, 93740 *E-mail: jlessel@iri.columbia.edu Abstract
9	Tests show that terrestrial mineral+liquid geothermobarometers are not well
10	equipped for use on martian rocks, which tend to have much higher FeO and lower
11	Al ₂ O ₃ . Here, we present new calibrations of thermometers and barometers using
12	experimental data on martian samples from the literature. These new models recover $P-T$
13	conditions with a greater accuracy compared to models calibrated using terrestrial
14	compositions. We applied these new calibrations to primitive martian mantle derived
15	melts Yamato 980459 (Y98) and Northwest Africa (NWA) 6234 and several surface
16	basalts (Gusev). Our new models yield similar P-T conditions for NWA and Y98
17	compositions of 1.4-1.7 GPa and 1500-1550 °C, which are close to estimates by most
18	prior studies. Our models yield somewhat lower P estimates compared to Lee et al.
19	(2009), apparently because our Si-activity model (from Beattie 1993) includes an Al_2O_3 -
20	correction (where lower Al_2O_3 , as in martian samples, leads to lower <i>P</i> estimates). For
21	Gusev basalt compositions, our new models yield <i>P-T</i> estimates of 1.0-1.3 GPa and 1340-
22	1390 °C; furthermore, we also obtain $P = 1.03$ GPa and $T = 1340$ °C, for a Gusev
23	composition from Monders et al. (2007), which comes very close to the Monders et al.
24	(2007) estimate for multiple saturation, of 1.0 GPa and 1325 °C, derived from phase
25	saturation relationships. Given the different ages of these meteorites, with Gusev at 3.65
26	Ga (Greeley et al. 2005) and Y98 at 4.3 Ga (Bouvier et al. 2005, 2008, 2009; Werner et

27	al. 2014), their thermal contrasts may represent secular cooling of Mars. We estimate a
28	mantle potential temperature difference of ~200 °C, with mantle potential temperatures of
29	1450 ± 50 °C for Gusev and 1650 ± 50 °C for Y98; this implies a cooling rate of 300
30	°C/Ga. This would appear to be a much more rapid rate of cooling compared to Earth, as
31	may be expected by Mars' higher surface/volume ratio.
32	Keywords: geothermobarometry, thermobarometry, martian meteorites, experimental
33	petrology, martian geology, thermometer, barometer, Mars, petrology, SNC meteorites
34	Introduction
35	Geothermobarometers are useful tools as they lend insights into the inner
36	workings of planetary bodies (see Essene, 1989; Brey and Köhler, 1990; Putirka et al.,
37	1996; Putirka, 2008). This was illustrated during the Apollo era, when return samples
38	from the Moon gave scientists unique opportunities to apply geothermobarometry to a
39	planetary body other than Earth (see McCallum and Schwartz, 2001; Lee et al., 2009).
40	For example, workers discerned lower to middle crustal depths of recrystallization and
41	partial melting in lunar samples (McCallum and Schwartz, 2001), which bolstered
42	arguments for convective overturn of the lunar mantle early in its history (Lee at al.,
43	2009). However, as indicated by Filberto and Dasgupta (2011) and as we show below,
44	thermobarometers calibrated on terrestrial compositions (Putirka et al. 1996; Putirka
45	2008) are poor predictors of P and T when applied to experiments performed on martian
46	bulk compositions. We thus calibrate new thermometers and barometers that are specific
47	to martin bulk compositions.

48 Martian meteorites

2

4/29

49	Martian meteorites are primarily comprised of basalts and basaltic cumulates
50	(Shergottites), Ca-rich clinopyroxene cumulates (Nakhlites), and Dunites (Chassignites)
51	in addition to other unique samples such as orthopyroxenite ALH84001 (Papike et al.,
52	2009) and a porphyritic basaltic monomict breccia NWA7034 (Agee et al., 2013).
53	Shergottites themselves are typically further subdivided into basaltic, lherzolitic, and
54	olivine-phyric shergottites (Goodrich, 2002). Furthermore, the literature shows that
55	martian bulk compositions are different from common terrestrial samples in a number of
56	ways. For example, Papike et al. (2009) compared the bulk silicate compositions of
57	Earth, Mars, the Moon, and Vesta (see Papike et al., 2009; their tables 5 and 6) and
58	showed that martian basalts are enriched in FeO and depleted in Al ₂ O ₃ when compared to
59	terrestrial samples. Papike et al. (2009) estimated that average martian basaltic
60	compositions for Al_2O_3 and FeO were 6.55 wt% and 18.0 wt% respectively. We show
61	similar contrasts between the two rock types using total FeO (FeOt) in liquids from
62	partial melting experiments on martian bulk compositions, with an average of 16.6 ± 4.29
63	wt% FeOt is compared to 8.60 ± 3.15 wt% FeOt when terrestrial bulk compositions are
64	used (Fig. 1a). We also illustrate that liquids equilibrated from martian samples have less
65	Al ₂ O ₃ , with an average 10.6 ± 3.12 wt% Al ₂ O ₃ as compared to 14.8 ± 3.92 wt% Al ₂ O ₃ for
66	terrestrial basalts (Fig. 1b).
67	Since the bulk of martian meteorites are cumulates, there has been no pressing
68	need for new mineral-liquid thermobarometers. But, with new martian rover and potential
69	future sample return missions, accurate mineral-liquid thermometers and barometers are

70 likely to prove quite useful for understanding martian magmatic processes. As we show

71	below, the contrasts between martian and terrestrial samples lead to problems when
72	models calibrated using terrestrial samples are used to predict P and T for martian rocks.
73	For example, when we applied a two-pyroxene barometer from Putirka (2008) to
74	experimental martian meteorite data (n = 39), it obtained an R^2 value of 0.08, with a root
75	mean square error (RMSE) of 0.62 GPa. We thus calibrate new thermometers, and
76	barometers, following Putirka (2008), using equilibria that involve clinopyroxene (Cpx),
77	orthopyroxene (Opx), and olivine (Ol).
78	Methodology
79	The models in this study follow the thermodynamic approach presented in Putirka
80	(2008), where P and T are related to equilibrium compositions using an equilibrium
81	constant (K_{eq}), which is in turn related to the Gibbs free energy of pure substances at a
82	standard state (ΔG° in units of J/mole) through the familiar expression: $\Delta G^{\circ}=-RT \ln K_{eq}$
83	(where <i>R</i> equals the gas constant J/K·mole and <i>T</i> is temperature in K). This equation can
84	be expanded to derive equations that express P as a function of T and composition (see
85	Putirka, 2008). Regression analyses are performed using JMP statistical software (SAS
86	Institute Inc., 2010). Calculations of liquid and mineral components are as in Putirka
87	(2008; Tables 1-3), where liquid components are treated as cation fractions. The
88	pyroxene components were calculated using a normative scheme, as the cations are
89	calculated on the basis of six oxygens (see examples in Putirka, 2008).
90	Experimental data collected from the literature span a wide array of P , T , and
91	liquid compositions (Table 1); these data range from 1 atm to 2.3 GPa and 950-1540 °C,
92	with liquid compositions covering 40.2-66.16 wt% SiO ₂ , 0.62-24.52 wt% MgO, 2.80-

93	30.2 wt% FeO, 2.97-20.5 wt% $Al_2O_3,$ and 0.19-6.77 wt% total alkalis. The total number
94	of data (n) for various equilibria are as follows: cpx+liquid, n=63; opx+liquid, n=89;
95	ol+liquid, n=115. In each case, we use approximately 83% of the data for calibration and
96	withhold 17% for use as test data. After testing various percentages, the ratio of
97	calibration to test data was chosen to have a test data set large enough to verify accuracy,
98	but still retain a calibration data set that included the widest possible range of liquid
99	compositions and <i>P-T</i> conditions to produce precise models. In addition to mineral-liquid
100	equilibria, we also calibrate 1) a two-pyroxene thermometer and barometer $(n=39)$ and 2)
101	a Si-Activity barometer (n=29), where 21% and 24% of the data are respectively reserved
102	for test purposes. Because of the limited amount of total data for these models we
103	increased the percentage of the test data sets to insure the accuracy of the models.
104	Volatile bearing samples were used in the calibration and testing of the models and were
105	treated the same as the other experimental data. Because of the sensitivity of the Ol+Liq
106	thermometers to volatiles, figure 6 shows the distribution of hydrated data (from Dann et
107	al. 2001, Filiberto 2008, and McCubbin et al., 2008) and Cl-rich data (from Filiberto and
108	Treiman, 2009) used in the model. Experimental data on martian compositions are from:
109	(Bertka and Holloway, 1989; Dann et al., 2001; Filberto, 2008; Filberto et al., 2008,
110	2009; Filberto and Treiman, 2009; Herd et al., 2002; Longhi and Pan, 1989; McCanta et
111	al., 2004; McKay et al., 1986; McCoy and Lofgren, 1999; McCubbin et al., 2008;
112	Medard and Grove, 2006; Minitti and Rutherford, 2000; Monders et al., 2007;
113	Musselwhite et al., 2006; and Singletary and Grove, 2008).
114	New models

4/29

Equations (1) and (2) are calibrated using clinopyroxene-saturated partial melting experiments on martian bulk compositions; mineral and liquid components are calculated as in Putirka (2008):

118 (1)

$$P(GPa) = -412.7 + 9.667 \times 10^{-6} T(K) \ln \left[\frac{X_{Jd}^{cpx}}{X_{AlO_{1.5}}^{liq} \cdot X_{NaO_{0.5}}^{liq} \cdot (X_{SiO_2}^{liq})^2} \right] + 722.1[X_{SiO_2}^{liq}] + 119$$

$$5.496[X_{MgO}^{liq}] - 195.0 \ln[X_{SiO_2}^{liq}] - 334.7[(X_{SiO_2}^{liq})^2] + 686.3[(X_{TiO_2}^{liq})^2] + 30.77[(X_{AlO_{1.5}}^{liq})^2] - 57.14[(X_{CaO}^{liq})^2]$$

120 The term
$$X_{Jd}^{cpx}$$
 is equal to $X_{Al(VI)}^{cpx}$ or $X_{NaO0.5}^{cpx}$, whichever is less and if excess
121 $X_{Al(VI)}^{cpx}$ remains then $X_{CaTs}^{cpx} = X_{Al(VI)}^{cpx} - X_{Jd}^{cpx}$ (from Putirka, 2008). Eqn. (1)

reproduces *P* for the calibration data with an
$$R^2 = 0.91$$
 and an RMSE = ± 0.17 GPa, and

123 predicts *P* for test data with $R^2 = 0.94$ and an RMSE of ± 0.22 GPa (Fig. 2).

124 (2)

$$\frac{1}{T(K)} = 7.463 \times 10^{-4} - 1.855 \times 10^{-5} \ln \left[\frac{X_{Jd}^{cpx} \cdot X_{CaO}^{liq} \cdot X_{Fm}^{liq}}{X_{DiHd}^{cpx} \cdot X_{NaO_{05}}^{liq} \cdot X_{AlO_{15}}^{liq}} \right]$$

$$125 \qquad -7.417 \times 10^{-4} \left[X_{TiO_2}^{liq} \right] + 1.981 \times 10^{-4} \left[X_{AlO_{15}}^{liq} \right] - 9.346 \times 10^{-4} \left[X_{MgO}^{liq} \right]$$

$$-6.891 \times 10^{-4} \left[X_{NaO_{05}}^{liq} \right] + 1.605 \times 10^{-3} \left[X_{CrCaTs}^{cpx} \right]$$

126 Eqn. (2) is based on the Jadeite–Diopside/Hedenbergite exchange equilibrium

127 presented in Putirka et al., 1996. In Eqn. (2), the terms
$$X_{CrCaTs}^{cpx} = X_{CrO1.5}^{cpx}/2$$
; $X_{DiHd}^{cpx} =$

128
$$(X_{CaO}^{cpx} - [X_{Al(IV)}^{cpx} - X_{CaTs}^{cpx}]/2 - X_{CaTs}^{cpx} - X_{CrCaTs}^{cpx}); \text{ and } X_{Fm}^{liq} = X_{FeO}^{liq} + X_{MgO}^{liq}.$$

- 129 The calibration data for Eqn. (2) recovered T with an $R^2 = 0.96$ and an RMSE of ± 22 K,
- 130 while *T* for the test data was predicted with $R^2 = 0.90$ and an RMSE of ± 41 K (Fig. 3).
- 131 The next set of models is based on orthopyroxene-liquid equilibria.

132 (3)

$$P(GPa) = -5.050 + 35.05 \left\lfloor X_{TiO_{2}}^{liq} \right\rfloor + 6.458 \left\lfloor X_{AlO_{1.5}}^{liq} \right\rfloor - 10.67 \left\lfloor X_{CaO}^{liq} \right\rfloor$$

$$+1.438 \left\lfloor Mg \#^{liq} \right\rfloor - 20.74 \left\lfloor X_{TiO_{2}}^{opx} \right\rfloor - 6.188 \left\lfloor X_{AlO_{1.5}}^{opx} \right\rfloor$$

$$+0.01915 \left\lfloor D_{MgO}^{opx/liq} \right\rfloor + 1.111 \left\lfloor \frac{X_{AlO_{1.5}}^{opx}}{X_{AlO_{1.5}}^{liq}} + \frac{X_{SiO_{2}}^{opx}}{X_{SiO_{2}}^{liq}} \right\rfloor$$

134 (4)

$$\frac{1}{T(K)} = 2.234 \times 10^{-4} - 3.982 \times 10^{-6} \Big[D_{MgO}^{opx/liq} \Big] - 9.394 \times 10^{-4} \Big[X_{NaO_{05}}^{opx} \Big]$$

$$135 \qquad -2.058 \times 10^{-4} \ln \Big[X_{MgO}^{liq} \Big] + 3.564 \times 10^{-5} \ln \Big[X_{CaO}^{liq} \Big] + 2.186 \times 10^{-4} \ln \Big[X_{MgO}^{opx} \Big]$$

$$-1.958 \times 10^{-5} \ln \Big[X_{Al(IV)}^{opx} \Big] + 0.002298 \Big[X_{Al(IV)}^{opx} \Big]^{2}$$

136In the orthopyroxene-liquid models the term $D_{MgO}^{opx/liq} = X_{MgO}^{opx}/X_{MgO}^{liq}$ and the137term $X_{Al(IV)}^{opx} = 2 - X_{SiO2}^{opx}$. In Eqn. (3), P is recovered for the calibration data with $R^2 =$ 1380.89 and an RMSE = \pm 0.20 GPa, while P is predicted for test data with $R^2 = 0.91$ and139RMSE = \pm 0.21 GPa (Fig. 4). Equation (4) reproduces T for calibration data with an $R^2 =$ 1400.94 and RMSE = \pm 33 K, while T is predicted for test data with $R^2 = 0.96$ and an RMSE141 $= \pm 27$ K (Fig. 5).142We also calibrate a thermometer based on olivine + liquid equilibria.

$$\frac{1}{T(K)} = 6.529 \times 10^{-4} - 6.425 \times 10^{-4} \Big[X_{TiO_2}^{liq} \Big] - 1.049 \times 10^{-3} \Big[X_{MgO}^{liq} \Big] -4.206 \times 10^{-5} \ln \Big[X_{FeO}^{liq} \Big] - 4.121 \times 10^{-5} \ln \Big[X_{NaO_{0.5}}^{liq} \Big] + 2.047 \times 10^{-3} \Big[X_{NaO_{0.5}}^{liq} \Big]^{2} -8.807 \times 10^{-4} \Big[X_{SiO_2}^{ol} \Big]^{2} + 2.299 \times 10^{-6} \Big[D_{MgO}^{ol/liq} \Big]$$

4/29

where $D_{MgO}^{ol/liq} = X_{MgO}^{ol}/X_{MgO}^{liq}$. In Eqn. (5) the calibration data are reproduced with R² 146 = 0.88 and an RMSE = \pm 48 K, while T for the test data is predicted with R² = 0.90 and 147 148 an RMSE = \pm 38 K (Fig. 6). Because many martian samples appear to be cumulates, we 149 also calibrate a two-pyroxene thermometer and barometer, with components calculated as 150 in Putirka (2008): 151 (6) $P(GPa) = -3.764 + 0.6739[X_{CaO}^{cpx}] + 33.45[X_{Jd}^{cpx}] + 4.033[X_{DiHd}^{cpx}] - 5.945[X_{Di}^{opx}] + 3.320 \left| \frac{X_{EnFs}^{cpx}}{X_{enFs}^{opx}} \right|$ 152 +40.34[$X_{AlO_{15}}^{cpx}$ · $X_{AlO_{15}}^{opx}$] - 75.80[$(X_{AlO_{15}}^{cpx}$ · $X_{NaO_{05}}^{cpx}$) + $(X_{AlO_{15}}^{opx}$ · $X_{NaO_{05}}^{opx}$)] 153 (7)154 $\frac{1}{T(K)} = 6.644 \times 10^{-4} - 2.757 \times 10^{-5} \left[P(GPa) \right] + 1.499 \times 10^{-3} \left[X_{NaO_{0.5}}^{opx} \right] - 1.640 \times 10^{-4} \left[X_{Fe^{2+}}^{cpx} \right]$ $+6.664 \times 10^{-5} \left[X_{DiHd}^{cpx} \right]^2 + 2.611 \times 10^{-4} \left[X_{FeO}^{opx} \right]^2 - 6.602 \times 10^{-8} \left[\frac{1}{X_{cpx}^{cpx}} \right] + 6.869 \times 10^{-8} \left[\frac{1}{X_{cpx}^{opx}} \right]^2$ 155 $-1.166 \times 10^{-8} \left[\frac{1}{X^{opx}} \right]$ The parameter $X_{Fe2^+}^{cpx} = X_{Fe0}^{cpx} - X_{Fe3^+}^{cpx}$ where the term $X_{Fe3^+}^{cpx}$ is based on the 156

157 calculation from Papike et al. (1974) and is calculated as: $X_{Fe3+}^{cpx} = X_{Al(IV)}^{cpx} + X_{NaO0.5}^{cpx}$ 158 $-X_{Al(VI)}^{cpx} - X_{CrO1.5}^{cpx} - 2X_{TiO2}^{cpx}$. Equation (6) reproduced *P* for the calibration data with 159 $R^2 = 0.93$ and RMSE = ± 0.17 GPa, while *P* is predicted for test data with $R^2 = 0.96$ and 160 an RMSE = ± 0.16 GPa (Fig. 7). In Eqn. (7) the calibration data are reproduced with $R^2 =$ 161 0.99 and an RMSE = ± 12 K, while *T* for the test data are predicted with $R^2 = 0.95$ and an 162 RMSE = ± 37 K (Fig. 8). The Si-activity barometer uses the liquid components in which only ol and opx

9

164 have formed (see Putirka, 2008).

163

$$P(GPa) = -11.16 - 184.3[X_{MnO}^{liq}] - 5.268[X_{MgO}^{liq}] + 21.18[a_{SiO_2}^{liq}] + 4.961[X_{NaO_{0.5}}^{liq} + X_{KO_{0.5}}^{liq}] -3.577 \times 10^{-3} T(K) \ln[a_{SiO_2}^{liq}]$$

167 In Eqn. (8), the activity of SiO₂ is calculated from Beattie (1993): $a_{SiO2}^{liq} =$

168
$$(3X_{SiO2}^{liq})^{-2} \cdot (1-X_{AlO1.5}^{liq})^{7/2} \cdot (1-X_{TiO2}^{liq})^{7}$$
; the calibration data are reproduced with $R^{2} =$

169 0.91 and RMSE = \pm 0.16 GPa , while *P* is predicted for the test data with R² = 0.92 and

170 an RMSE =
$$\pm 0.18$$
 (Fig. 9)

171 Fe-Mg Exchange Equilibria and Tests of Equilibrium

As a test of inter-phase equilibrium, we consider one of the classic means of

evaluation, the Fe-Mg exchange coefficient as established by Roeder and Emslie (1970):

174 (9)

175
$$K_{D}(\text{Fe-Mg})^{\text{min-liq}} = [X_{\text{FeO}}/X_{\text{MgO}}]^{\text{mineral}}/[X_{\text{FeO}}/X_{\text{MgO}}]^{\text{liquid}}$$

176 where X_i are mole fractions of FeO or MgO in a silicate liquid (liq) and a co-existing

177 silicate mineral (min). This equilibrium constant is known from prior studies to be

- 178 slightly sensitive to *T*, *P*, and composition (e.g., Longhi et al. 1978; Herzberg and O'Hara
- 179 1998; Toplis 2005; Matzen et al., 2011), but such variations are quite small and over
- 180 limited compositional and *P*-*T* ranges, this equilibrium constant is independent of such
- 181 variables. It thus provides an important and useful means for establishing whether a given
- 182 ferromagnesian silicate mineral is in equilibrium with a putative liquid composition.

10

183	Like Filiberto and Dasgupta (2011) we find that the equilibrium constant
184	describing Fe-Mg exchange between olivine and liquid, K_D (Fe-Mg) ^{ol-liq} (Roeder and
185	Emslie, 1970), is significantly higher for martian than terrestrial systems (Filiberto and
186	Dasgupta, 2011 found a K_D (Fe-Mg) ^{ol-liq} = 0.35 ± 0.01), and it is also sensitive to the
187	model used to calculate F_2O_3 /FeO in a liquid when fO_2 is given. We calculated K_D (Fe-
188	Mg) ^{ol-liq} using Kress and Carmichael (1988), Kress and Carmichael (1991; Eqns. 6 and
189	7), Borisov (2010) and Jayasuria et al. (2004; Eqn. 12). We obtained a low and a high for
190	the mean K_D (Fe-Mg) ^{ol-liq} for martian samples using Kress and Carmichael (1991; Eqn. 7),
191	which yields $K_D(Fe-Mg)^{ol-liq} = 0.366 \pm 0.023$ and Jayasuria et al. (2004; Eqn. 12), which
192	produces K_D (Fe-Mg) ^{ol-liq} = 0.385 ± 030 (n=95). Experiments by Filiberto (2008) yield
193	liquids with unusually high K ₂ O contents compared to other martian silicate liquids, but
194	even removing these, the mean $K_D(\text{Fe-Mg})^{\text{ol-liq}}$ values are 0.363 ± 0.023 and 0.383 ± 0.03
195	using the Kress and Carmichael (1991) and Jayasuria et al. (2004) models respectively.
196	We use the Kress and Carmichael (1991; Eqn. 7) model for all calculations of
197	Fe ₂ O ₃ /FeO in experimental liquids. Absent the high K_2O samples, we find that K_D (Fe-
198	Mg) ^{ol-liq} values are quite nearly independent of melt composition, P and T . We obtain a
199	slight positive dependence of the $K_D(Fe-Mg)^{ol-liq}$ on Ti:
200	(10)

201
$$K_D(Fe-Mg)^{ol-liq} = 0.356 + 0.012[TiO_2 \text{ wt. }\%]^{liquid}.$$

But this equation captures <5% of the total variation of K_D (Fe-Mg)^{ol-liq} (R² = 0.03), so for practical purposes, K_D (Fe-Mg)^{ol-liq} may be considered a constant and a useful test of equilibrium. Ignoring compositional effects, we recommend an equilibrium value of

4/29

205	(11)
-----	------

206
$$K_D(Fe-Mg)^{ol-liq} = 0.36 \pm 0.02.$$

207 Unlike $K_D(Fe-Mg)^{ol-liq}$, the coefficient for orthopyroxene + liquid equilibrium,

208 $K_D(Fe-Mg)^{opx-liq}$, is much more sensitive to liquid composition. The global mean is

209 K_D (Fe-Mg)^{opx-liq} = 0.303 ± 0.010. But variations in K₂O account for 30-45% or more of

210 the variation of K_D (Fe-Mg)^{opx-liq} (depending upon which data are excluded from the

211 regression), and so we do not recommend that the mean value be used as a test of

212 equilibrium. Instead, it is best to use:

214 $K_D(Fe-Mg)^{opx-liq} = 0.32 - 0.05[K_2O^{liq} wt. \%]^{liquid}$

215 where $R^2 = 0.45$, the standard error of estimate (SEE) = ± 0.03 , and we use the Kress and

216 Carmichael (1991; Eqn. 7) model to calculate Fe₂O₃/FeO in the silicate liquid. After

217 accounting for this compositional effect, no other compositional parameter, nor *P* and *T*,

218 describes more than 3% of remaining variation in K_D (Fe-Mg)^{opx-liq}.

219 Interestingly, values for K_D(Fe-Mg)^{cpx-liq} for martian clinopyroxene-liquid pairs

are rather close to their terrestrial counterparts, with a mean of about 0.26 ± 0.05 .

- However, like orthopyroxene, K_D(Fe-Mg)^{cpx-liq} is also sensitive to alkali content:
- 222 (13)

223 $K_D(Fe-Mg)^{cpx-liq} = 0.32 - 0.02[Na_2O + K_2O^{liq}(wt. \%)]^{liquid}.$

224 where K_D(Fe-Mg)^{cpx-liq} is calculated using Fe₂O₃/FeO ratios in the liquid from Kress and

225 Carmichael (1991: Eqn. 7). This model explains $\sim 30\%$ of the variation of K_D (Fe-Mg)^{cpx-}

¹¹ 226 ¹¹ and the SEE = ± 0.03 , when those samples falling further than 3σ away from the mean

(n = 43) are excluded.

Finally, we calibrate an Fe-Mg exchange coefficient for clinopyroxene andorthopyroxene:

230 (14)

231
$$K_{D}(Fe-Mg)^{cpx-opx} = [X_{FeO}/X_{MgO}]^{cpx}/[X_{FeO}/X_{MgO}]^{opx}$$

The global mean is $K_D(Fe-Mg)^{cpx-opx} = 0.942 \pm 0.144$, but as might be expected from the

233 mineral-liquid exchange equilibria, this coefficient is sensitive to composition. In this

234 case, however, the compositional effects appear to be a proxy for a somewhat stronger

thermal variation. While it would be more thermodynamically correct to use a regression

equation of the form $\ln K = f(1/T)$, this empirical relationship describes a slightly greater

fraction of the variation:

238 (15)

239
$$K_D(Fe-Mg)^{cpx-opx} = 0.115 + 7.693 \times 10^{-4} [T(^{\circ}C)]$$

240 where $R^2 = 0.44$ and SEE = ± 0.09 (n = 38). We do not recommend this as a "weak"

241 thermometer but instead $K_D(Fe-Mg)^{cpx-opx}$ can be used as a check in the application of a

242 geothermometeric result. As a *T*-independent test, the following compositionally

243 dependent model may be more useful:

244 (16)

245
$$K_D(Fe-Mg)^{cpx-opx} = 1.262 - 0.023[CaO (wt.%)]^{cpx}$$

where the CaO content of clinopyroxene serves as a proxy for *T* and the model explains

about 30% of the variation amongst 39 experimental data, with an SEE of ± 0.10 .

248 Comparisons of the new mineral+liquid models

249	Table 2 shows the regression statistics of the new models compared with those in
250	table 3 that shows the statistics for models from Putirka et al. (1996) and Putirka (2008),
251	when using martian compositions to predict T or P . This comparison highlights the result
252	that the new models yield lower errors and better precision. For example, the new cpx-liq
253	barometer (Eqn. 1) predicts a <i>P</i> for martian samples with half the error (± 0.22 GPa)
254	compared to Eqn. 32a from Putirka (2008; ± 0.40 GPa). The increased precision is even
255	greater for orthopyroxene-liquid equilibria, and the new models are significantly more
256	precise for each of the equilibria examined.
257	Discussion and Implications
258	Yamato 980459 (Y98) is one of the few martian meteorites that is thought to
259	represent a primitive mantle derived melt (Lee et al., 2009; Filiberto and Dasgupta, 2011)
260	along with Northwest Africa (NWA) 6234 (Gross et al., 2013). Y98 is most similar to the
261	olivine-phyric shergottites, although it lacks plagioclase (likely due to the presence of
262	glassy mesostasis) and has highly magnesian mineral components (Mikouchi et al.,
263	2004). Dalton et al. (2005) described Y98 compositionally as comprised of 48%
264	pyroxene, 26% olivine, 25% mesostasis, and 1% other minerals. Y98 is thought to
265	represent a primitive martian magma derived from a highly reduced mantle (Mikouchi et
266	al., 2004). Indeed, Y98's olivine composition has the highest MgO of any of the martian
267	meteorites (Fo $_{84}$) and so Y98 appears to be the most primitive martian magma found to
268	date (Dalton et al. 2005, 2007). NWA 6234 is also an olivine-phyric shergottite, with
269	olivine crystals set in a finer grained groundmass of pyroxene, maskelynite, and
270	accessory minerals (Filiberto et al., 2012; Gross et al., 2013). NWA 6234 is unique

271	among the olivine-phyric shergottites because it is the only one thought to be from a
272	primitive ferroan magma with a source region located deeper than other martian basalts
273	(Gross et al., 2013). As a test, we apply our new calibrations to Y98 and NWA 6234.
274	Presented here are only the <i>P</i> - <i>T</i> estimates of mineral-liquid pairs for Y98 and
275	NWA 6234 that passed our tests of equilibrium. When calculating pressures and
276	temperatures for Y98, the Si-activity barometer (Eqn. 8) was combined with the olivine
277	thermometer (Eqn. 5) and a simple empirical MgO thermometer:
278	$T(^{\circ}C) = 1011 + 29.8[MgO \text{ wt. \%}].$ (17)
279	A K_D (Fe-Mg) ^{ol-liq} for Y98 was determined by pairing the "bulk chemistry for Y 980459"
280	composition (used as the liquid component) from Greshake et al.'s (2004) table 6 with
281	the "olivine core" composition (Fo $_{84}$), the highest Fo olivine from their Table 3. This
282	olivine-whole rock pair yields a K_D (Fe-Mg) ^{ol-liq} of 0.40 at QFM-3 (Herd, 2006) and a
283	temperature in the range of 1400-1500 °C, well above the expected value of 0.36 from,
284	Eqn. 10. At $K_D = 0.36$, the equilibrium olivine would be Fo ₈₇ , and Eqn. 4 from Putirka et
285	al. (2007) and this study's Eqn. 8 together yield a <i>T</i> of 1476 °C and $P = 1.15$ GPa (and a
286	nearly identical T of 1480°C is obtained using Beattie, 1993). Our Eqn. 17 yields a T of
287	1550 °C but this T is probably too high given the more precise model of Putirka et al.
288	(2007). For NWA 6234, if the whole rock is a liquid, then it would precipitate olivine of
289	Fo ₈₅ composition, with $K_D = 0.37$, and at <i>T-P</i> conditions of 1499 °C and 1.34 GPa, using
290	the same models as applied to Y98.
291	As shown in Figure 10 our new <i>P</i> - <i>T</i> estimates for Y98 are similar to those of prior
292	studies: Blinova and Herd, 2009 (1.35 GPa and 1460 °C) and just slightly lower than

293	estimated by Musselwhite et al., 2006 (1.2 GPa and 1540 °C), but while our T estimates
294	are similar to Lee et al. (2009) we obtain a significantly lower P compared to their
295	estimate of 1.7 GPa. We attribute our lower <i>P</i> estimate to the use of an Al-activity
296	modifying term in the Beattie (1993) Si-activity model; the Lee et al. (2009) model lacks
297	such a term, and the inclusion of such yields lower pressure estimates as Al ₂ O ₃ decreases.
298	For NWA 6234, our models lower <i>T</i> conditions from Gross et al., 2013 (1600 °C).
299	However, our <i>P</i> estimates are significantly lower than the <i>P</i> estimate from Gross et al.
300	(2013), who obtained a $P = 2.7$ GPa by applying the models of Putirka (2005) and Lee et
301	al. (2009). As with Y98, we suspect that the Al-activity term in the Beattie (1993) Si-
302	activity expression, which we use in our Eqn. (8), is responsible for this difference.
303	We also examined martian surface basalt compositions. Filberto (2011) also
304	found that martian surface basalts have a larger range of bulk compositions than the
305	shergottites, and the Gusev "recalibrated" composition reported by Monders et al. (2007)
306	is of special interest. Monders et al. (2007) show that this composition is multiply
307	saturated at 1 GPa and 1325 °C. Our Eqn. Si-activity barometer paired with Beattie
308	(1993) or Putrika et al. (2007; Eqn. 4) yields a higher <i>T</i> estimate of 1381 °C with a <i>P</i>
309	estimate of 1.33 GPa for this composition; while the T estimate is higher, the P estimate
310	is well within model error. But our simpler (although less precise) Eqn. (17), when
311	combined with our Si-activity barometer, comes remarkably close to their reported
312	conditions, with a <i>P</i> - <i>T</i> estimate of 1.1 GPa and 1340 °C, both within 1σ error of the
313	reported values. We thus tentatively conclude that Eqn. (17) might prove to be useful,
314	perhaps especially at lower temperatures.

315	These results support the idea that two different mantle processes (acting at
316	different <i>P</i> - <i>T</i> conditions), rather than shallow level magma processing, are responsible for
317	generating the meteorite and surface basalt populations. If this were the case, the Y98
318	source would appear to be characterized by olivines with distinctly higher Fo content
319	(Fo ₈₄), while the remaining basalts (including the NWA source, even though it yields
320	similar <i>P</i> - <i>T</i> conditions compared to Y98) would have sources characterized by olivines
321	with Fo_{80} compositions. Another possibility is that the surface-derived compositions are
322	fractionated. It is not a necessary condition that multiply saturated basalts are mantle-
323	derived, but if our pressure estimates (ca. 1 GPa) are accurate then that would imply that
324	the crust must be >85 km thick, which has been suggested by others (see Gross et al.,
325	2011). The other possibility, as noted by Monders et al. (2007) is that the martian mantle
326	contains a range of mantle compositions, unhomogenized by mantle convection, which
327	would be quite different from Earth, where sub-oceanic basalts converge to Fo _{91.5} ,
328	regardless of whether they derive from mantle plume or spreading ridge localities
329	(Putirka et al., 2011). In any case, we obtain mantle potential temperatures of 1450 ± 50
330	°C at Gusev and 1650 ± 50 °C for Y98 (depending upon melt fraction which we assume
331	is between 0.2 and 0.4). These estimates may have bearing on martain secular cooling
332	rates. The Gusev samples are estimated to be 3.65 Ga (Greeley et al. 2005). In contrast,
333	there has been some controversy regarding the age dates of Y98 and other shergottites,
334	but new evidence appears to indicate an age \sim 4.3 Ga for this meteorite and shergottites
335	generally (Bouvier et al. 2005, 2008, 2009; Werner et al. 2014). If we accept these ages,
336	then the implied cooling rate is ~300 °C/Ga (≈ 200 °C/[4.3Ga -3.65Ga]), which is a much

337	faster rate than what is inferred for Earth (Herzberg et al. 2010) but perhaps reasonable
338	given Mars' much greater surface-area-to-volume ratio.
339	Acknowledgements
340	We thank John Wakabayashi and Robert Dundas for their input and reviews of
341	earlier drafts of this manuscript, and we thank J. Brian Balta, J Gross, and C. Herd for
342	very thoughtful formal reviews of the present paper. J. Lessel thanks his wife, family,
343	friends, and the entire CSU Fresno faculty for their support.
344	References cited
345	Agee, C. B., Wilson, N. V., McCubbin, F. M., Ziegler, K., Polyak, V. J., Sharp, Z. D.,
346	and Elardo, S. M. (2013). Unique meteorite from early Amazonian Mars: Water-rich
347	basaltic breccia Northwest Africa 7034. Science, 339, 780-785.
348	
349	Albarede, F. (1992). How deep do common basaltic magmas form and differentiate?
350	Journal of Geophysical Research: Solid Earth (1978–2012), 97, 10997-11009.
351	
352	Beattie, P. (1993). Olivine-melt and orthopyroxene-melt equilibria. Contributions to
353	Mineralogy and Petrology, 115, 103-111.
354	
355	Bertka, C. M., and Holloway, J. R. (1989). Martian Mantle Primary Melts: an
356	Experimental Study of Melt Density and Viscosity and Viscosity at 23 KB. In Lunar and
357	Planetary Institute Science Conference Abstracts, 20, 69.
358	

359	Blinova, A., and Herd, C. D. (2009). Experimental study of polybaric REE partitioning
360	between olivine, pyroxene and melt of the Yamato 980459 composition: Insights into the
361	petrogenesis of depleted shergottites. Geochimica et Cosmochimica Acta, 73, 3471-3492.
362	
363	Borisov, A. A. (2010). Ferric-ferrous ratio in liquid iron oxides: Analysis and
364	applications to natural basaltic melts. Petrology, 18, 471-481.
365	
366	Bouvier, A., Blichert-Toft, J., Vervoort, J. D., and Albarède, F. (2005). The age of SNC
367	meteorites and the antiquity of the Martian surface. Earth and Planetary Science
368	Letters, 240, 221-233.
369	
370	Bouvier, A., Blichert-Toft, J., Vervoort, J. D., Gillet, P., & Albarède, F. (2008). The case
371	for old basaltic shergottites. Earth and Planetary Science Letters, 266, 105-124.
372	
373	Bouvier, A., Blichert-Toft, J., & Albarede, F. (2009). Martian meteorite chronology and
374	the evolution of the interior of Mars. Earth and Planetary Science Letters, 280, 285-295.
375	
376	Brey, G. P., and Köhler, T. (1990). Geothermobarometry in four-phase lherzolites II.
377	New thermobarometers, and practical assessment of existing thermobarometers. Journal
378	of Petrology, 31, 1353-1378.
379	
380	Bulatov, V. K., Girnis, A. V., and Brey, G. P. (2002). Experimental melting of a modally
381	heterogeneous mantle. Mineralogy and Petrology, 75, 131-152.
382	

- 383 Dalton, H. A., Musselwhite, D. S., Kiefer, W. S., and Treiman, A. H. (2005).
- 384 Experimental petrology of the basaltic shergottite Yamato 980459: implications for the
- 385 thermal structure of the Martian mantle. Lunar and Planetary Institute Science
- 386 Conference, 36, 2142.

387

- 388 Dalton, H. A., Sharp, T. G., and Holloway, J. R. (2007). Investigation of the effects of
- 389 water on a Martian mantle composition. Lunar and Planetary Institute Science
- 390 Conference, 38, 2102.
- 391
- 392 Dann, J. C., Holzheid, A. H., Grove, T. L., and McSween, H. Y. (2001). Phase equilibria
- 393 of the Shergotty meteorite: Constraints on pre-eruptive water contents of martian magmas
- and fractional crystallization under hydrous conditions. Meteoritics & Planetary
- 395 Science, 36, 793-806.
- 396
- 397 Draper, D. S., and Green, T. H. (1997). P–T phase relations of silicic, alkaline, aluminous
 398 mantle-xenolith glasses under anhydrous and C–O–H fluid-saturated conditions. Journal
 399 of Petrology, 38, 1187-1224.
- 400

401 Draper, D. S., and Green, T. H. (1999). P–T phase relations of silicic, alkaline, aluminous

402 liquids: new results and applications to mantle melting and metasomatism. Earth and

- 403 Planetary Science Letters, 170, 255-268.
- 404

405 Draper, D. S., and Johnston, A. D. (1992). Anhydrous PT phase relations of an Aleutian

406 high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation

407 of arc high-alumina basalts. Contributions to Mineralogy and Petrology, 112, 501-519.

409	Dunn, T., and Sen, C. (1994). Mineral/matrix partition coefficients for orthopyroxene,
410	plagioclase, and olivine in basaltic to andesitic systems: a combined analytical and
411	experimental study. Geochimica et Cosmochimica Acta, 58, 717-733.
412	
413	Elkins-Tanton, L. T., Draper, D. S., Agee, C. B., Jewell, J., Thorpe, A., and Hess, P. C.
414	(2007). The last lavas erupted during the main phase of the Siberian flood volcanic
415	province: results from experimental petrology. Contributions to Mineralogy and
416	Petrology, 153, 191-209.
417	
418	Elkins-Tanton, L. T., and Grove, T. L. (2003). Evidence for deep melting of hydrous
419	metasomatized mantle: Pliocene high-potassium magmas from the Sierra
420	Nevadas. Journal of Geophysical Research, 108, 2350.
421	
422	Essene, E. J. (1989). The current status of thermobarometry in metamorphic
423	rocks. Geological Society, London, Special Publications, 43, 1-44.
424	
425	Falloon, T. J., Danyushevsky, L. V., and Green, D. H. (2001). Peridotite melting at 1
426	GPa: reversal experiments on partial melt compositions produced by peridotite-basalt
427	sandwich experiments. Journal of Petrology, 42, 2363-2390.
428	
429	Falloon, T. J., Green, D. H., Danyushevsky, L. V., and Faul, U. H. (1999). Peridotite
430	melting at 1.0 and 1.5 GPa: an experimental evaluation of techniques using diamond
431	aggregates and mineral mixes for determination of near-solidus melts. Journal of
432	Petrology, 40, 1343-1375.

433

434	Falloon, T. J.	Green, D. H.,	O'Neill, H. S.	C., and Hibberson,	W. O. (1997).
-----	----------------	---------------	----------------	--------------------	---------------

- 435 Experimental tests of low degree peridotite partial melt compositions: implications for
- the nature of anhydrous near-solidus peridotite melts at 1 GPa. Earth and Planetary
- 437 Science Letters, 152, 149-162.

438

- 439 Filiberto, J. (2008). Experimental constraints on the parental liquid of the Chassigny
- 440 meteorite: A possible link between the Chassigny meteorite and a Martian Gusev
- 441 basalt. Geochimica et Cosmochimica Acta, 72, 690-701.
- 442

443 Filiberto, J. (2011). Geochemical differences between surface basalts and Martian

- 444 meteorites: the need for Martian sample return. Lunar and Planetary Institute
- 445 Contributions, 1611, 5004.
- 446
- 447 Filiberto, J., Chin, E., Day, J., Franchi, I. A., Greenwood, R. C., Gross, J., Penniston-
- 448 Dorland, S. C., Schwenzer, S. P., and Treiman, A. H. (2012). Geochemistry of
- 449 intermediate olivine-phyric shergottite Northwest Africa 6234, with similarities to
- 450 basaltic shergottite Northwest Africa 480 and olivine-phyric shergottite Northwest Africa
- 451 2990. Meteoritics & Planetary Science, 47, 1256-1273.
- 452
- 453 Filiberto, J., and Dasgupta, R. (2011). Fe²⁺–Mg partitioning between olivine and basaltic
- 454 melts: Applications to genesis of olivine-phyric shergottites and conditions of melting in
- 455 the Martian interior. Earth and Planetary Science Letters, 304, 527-537.
- 456

- 457 Filiberto, J., Jackson, C., Le, L., and Treiman, A. H. (2009). Partitioning of Ni between
- 458 olivine and an iron-rich basalt: Experiments, partition models, and planetary
- 459 implications. American Mineralogist, 94, 256-261.
- 460
- 461 Filiberto, J., and Treiman, A. H. (2009). The effect of chlorine on the liquidus of basalt:
- 462 First results and implications for basalt genesis on Mars and Earth. Chemical
- 463 Geology, 263, 60-68.
- 464
- 465 Filiberto, J., Treiman, A. H., and Le, L. (2008). Crystallization experiments on a Gusev
- 466 Adirondack basalt composition. Meteoritics & Planetary Science, 43, 1137-1146.
- 467
- 468 Gaetani, G. A., and Grove, T. L. (1998). The influence of water on melting of mantle
- 469 peridotite. Contributions to Mineralogy and Petrology, 131, 323-346.
- 470
- 471 Gee, L. L., and Sack, R. O. (1988). Experimental petrology of melilite
- 472 nephelinites. Journal of Petrology, 29, 1233-1255.
- 473
- 474 Goodrich, C. A. (2002). Olivine-phyric martian basalts: A new type of
- 475 shergottite. Meteoritics & Planetary Science, 37, B31-B34.
- 476
- 477 Greeley, R., Foing, B.H., McSween, H.Y., Neukum, G., Pinet, P., van Kan, M., Werner,
- 478 S.C., Williams, D.A., and Zegers, T.E. (2005) Fluid lava flows in Gusev crater, Mars.
- 479 Journal of Geophysical Research, 110, E05008, doi:10.1029/2005JE002401.
- 480

- 481 Greshake, A., Fritz, J., and Stöffler, D. (2004). Petrology and shock metamorphism of the
- 482 olivine-phyric shergottite Yamato 980459: Evidence for a two-stage cooling and a single-
- 483 stage ejection history. Geochimica et Cosmochimica Acta, 68, 2359-2377.
- 484
- 485 Gross, J., Treiman, A. H., Filiberto, J., & Herd, C. D. (2011). Primitive olivine-phyric
- 486 shergottite NWA 5789: Petrography, mineral chemistry, and cooling history imply a
- 487 magma similar to Yamato-980459. Meteoritics & Planetary Science, 46, 116-133.
- 488
- 489 Gross, J., Filiberto, J., Herd, C. D., Daswani, M. M., Schwenzer, S. P., and Treiman, A.
- 490 H. (2013). Petrography, mineral chemistry, and crystallization history of olivine-phyric
- 491 shergottite NWA 6234: A new melt composition. Meteoritics & Planetary Science, 48,
 492 854-871.
- 493
- Grove, T. L., and Bryan, W. B. (1983). Fractionation of pyroxene-phyric MORB at low
 pressure: an experimental study. Contributions to Mineralogy and Petrology, 84, 293309.
- 497
- 498 Grove, T. L., Elkins-Tanton, L. T., Parman, S. W., Chatterjee, N., Müntener, O., and
- 499 Gaetani, G. A. (2003). Fractional crystallization and mantle-melting controls on calc-
- alkaline differentiation trends. Contributions to Mineralogy and Petrology, 145, 515-533.
- 501
- 502 Grove, T. L., Gerlach, D. C., and Sando, T. W. (1982). Origin of calc-alkaline series
- 503 lavas at Medicine Lake volcano by fractionation, assimilation and mixing. Contributions
- to Mineralogy and Petrology, 80, 160-182.
- 505

Grove, T. L., and Juster, T. C. (1989). Experimental investigations of low-Ca pyroxene

507	stability and olivine-pyroxene-liquid equilibria at 1-atm in natural basaltic and andesitic
508	liquids. Contributions to Mineralogy and Petrology, 103, 287-305.
509	
510	Grove, T. L., Kinzler, R. J., and Bryan, W. B. (1992). Fractionation of mid-ocean ridge
511	basalt (MORB). Geophysical Monograph Series, 71, 281-310.
512	
513	Herd, C.D.K. (2006). Insights into the redox history of the NWA 1068/1110 martian
514	basalt from mineral equilibria and vanadium oxybarometry. American Mineralogist, 91,
515	1616-1627.
516	
517	Herd, C. D., Schwandt, C. S., Jones, J. H., and Papike, J. J. (2002). An experimental and
518	petrographic investigation of Elephant Moraine 79001 lithology A: Implications for its
519	petrogenesis and the partitioning of chromium and vanadium in a martian
520	basalt. Meteoritics & Planetary Science, 37, 987-1000.
521	
522	Herzberg, C., Condie, K., and Korenega, J. (2010). Thermal history of the Earth and its
523	petrological expression. Earth and Planetary Science Letters, 292, 79-88.
524	
525	Herzberg, C. and O'Hara, M.J. (1998). Phase equilibria constraints on the origin of
526	basalts, picrites, and komatites. Earth-Science Reviews, 44, 39-79.
527	
528	Holbig, E. S., and Grove, T. L. (2008). Mantle melting beneath the Tibetan Plateau:
529	Experimental constraints on ultrapotassic magmatism. Journal of Geophysical
530	Research, 113, B04210.

2	5
7	J

532Ikeda, Y. (2004). Petrology of the Yamato 980459 shergottite. Antarctic Meteorite

- 533 Research, 17, 35.
- 534

535 Irving, A. J., Kuehner, S. M., Herd, C. D. K., Gellissen, M., Korotev, R. L., Puchtel, I., ...

and Rumble, D. (2010). Petrologic, elemental and multi-isotopic characterization of

537 permafic olivine-phyric shergottite Northwest Africa 5789: A primitive magma derived

- from depleted martian mantle. Lunar and Planetary Institute Science Conference, 41,
- 539 1547.
- 540
- 541 Jayasuriya, K. D., O'Neill, H. S. C., Berry, A. J., and Campbell, S. J. (2004). A
- 542 Mössbauer study of the oxidation state of Fe in silicate melts. American Mineralogist, 89,
- 543 1597-1609.
- 544
- 545 Johnson, K. T. (1998). Experimental determination of partition coefficients for rare earth
- and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high

547 pressures. Contributions to Mineralogy and Petrology, 133, 60-68.

548

549 Kennedy, A. K., Grove, T. L., and Johnson, R. W. (1990). Experimental and major

- element constraints on the evolution of lavas from Lihir Island, Papua New
- 551 Guinea. Contributions to Mineralogy and Petrology, 104, 722-734.
- 552
- 553 Keshav, S., Gudfinnsson, G. H., Sen, G., and Fei, Y. (2004). High-pressure melting
- 554 experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-
- island basalts. Earth and Planetary Science Letters, 223, 365-379.

556

557	Kiefer, W. S., Li, Q., and Filiberto, J. (2007). Parameterizations of magma production in
558	a water-undersaturated martian mantle: A plea for improved experimental petrology
559	constraints. In Workshop on Water in Planetary Basalts, 1, 22-23.
560	
561	Kogiso, T., Hirose, K., and Takahashi, E. (1998). Melting experiments on homogeneous
562	mixtures of peridotite and basalt: application to the genesis of ocean island basalts. Earth
563	and Planetary Science Letters, 162, 45-61.
564	
565	Kogiso, T., and Hirschmann, M. M. (2001). Experimental study of clinopyroxenite partial
566	melting and the origin of ultra-calcic melt inclusions. Contributions to Mineralogy and
567	Petrology, 142, 347-360.
568	
569	Kogiso, T., Hirschmann, M. M., and Frost, D. J. (2003). High-pressure partial melting of
570	garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth
571	and Planetary Science Letters, 216, 603-617.
572	
573	Kress, V.C. and Carmichael, I.S. (1988). Stoichiometry of the iron oxidation reaction in
574	silicate melts. American Mineralogist, 73, 1267-1274.
575	
576	Kress, V.C. and Carmichael, I.S. (1991). The compressibility of silicate liquids
577	containing Fe ₂ O ₃ and the effect of composition, temperature, oxygen fugacity and
578	pressure on their redox states. Contributions to Mineralogy and Petrology, 108, 82-92.

- 580 Laporte, D., Toplis, M. J., Seyler, M., and Devidal, J. L. (2004). A new experimental
- technique for extracting liquids from peridotite at very low degrees of melting:
- application to partial melting of depleted peridotite. Contributions to Mineralogy and
- 583 Petrology, 146, 463-484.

584

- 585 Lee, C. T. A., Luffi, P., Plank, T., Dalton, H., and Leeman, W. P. (2009). Constraints on
- the depths and temperatures of basaltic magma generation on Earth and other terrestrial
- 587 planets using new thermobarometers for mafic magmas. Earth and Planetary Science
- 588 Letters, 279, 20-33.

589

Longhi, J., and Pan, V. (1989). The parent magmas of the SNC meteorites. Lunar and
Planetary Institute Science Conference, 19, 451-464.

592

- 593 Longhi, J., Walker, D., and Hays, J.F. (1978). The distribution of Fe and Mg between
- olivine and lunar basaltic liquids. Geochmica et Cosmochimica Acta, 42, 1545-1558.

- 596 Matzen, A.K., Baker, M.B., Beckett, J.R., and Stolper, E.M. (2011). Fe-Mg partitioning
- 597 between olivine and high-magnesian melts and the nature of Hawaiian parental liquids.
- 598 Journal of Petrology, 52, 1243-1263.
- 599
- 600 McDade, P., Blundy, J. D., and Wood, B. J. (2003). Trace element partitioning on the
- 601 Tinaquillo Lherzolite solidus at 1.5 GPa. Physics of the Earth and Planetary
- 602 Interiors, 139, 129-147.
- 603

McCanta, M. C., Rutherford, M. J., and Jones, J. H. (2004). An experimental study of

rare earth element partitioning between a shergottite melt and pigeonite: implications for

28

606	the oxygen fugacity of the martian interior. Geochimica et Cosmochimica Acta, 68,
607	1943-1952.
608	
609	McCallum, I. S., and Schwartz, J. M. (2001). Lunar Mg suite: Thermobarometry and
610	petrogenesis of parental magmas. Journal of Geophysical Research, 106, 27969-27983.
611	
612	McKay, G., Wagstaff, J., and Yang, S. R. (1986). Clinopyroxene REE distribution
613	coefficients for shergottites: The REE content of the Shergotty melt. Geochimica et
614	Cosmochimica Acta, 50, 927-937.
615	
616	McCoy, T. J., and Lofgren, G. E. (1999). Crystallization of the Zagami shergottite: An
617	experimental study. Earth and Planetary Science Letters, 173, 397-411.
618	
619	McCubbin, F. M., Nekvasil, H., Harrington, A. D., Elardo, S. M., and Lindsley, D. H.
620	(2008). Compositional diversity and stratification of the Martian crust: Inferences from
621	crystallization experiments on the picrobasalt Humphrey from Gusev Crater,
622	Mars. Journal of Geophysical Research, 113, E11013.
623	

- 624 McSween, H. Y., Arvidson, R. E., Bell, J. F., Blaney, D., Cabrol, N. A., Christensen, P.
- R., ... and Zipfel, J. (2004). Basaltic rocks analyzed by the Spirit rover in Gusev Crater.
- 626 Science, 305, 842-845.
- 627

604

628	Médard, E., and Grove, T. L. (2006). Early hydrous melting and degassing of the Martian
629	interior. Journal of Geophysical Research: Planets, 111, E11003.
630	
631	Mikouchi, T., Koizumi, E., McKay, G., Monkawa, A., Ueda, Y., Chokai, J., and
632	Miyamoto, M. (2004). Yamato 980459: mineralogy and petrology of a new shergottite-
633	related rock from Antarctica. Antarctic Meteorite Research, 17, 13.
634	
635	Minitti, M. E., and Rutherford, M. J. (2000). Genesis of the Mars Pathfinder "sulfur-free"
636	rock from SNC parental liquids. Geochimica et Cosmochimica Acta, 64, 2535-2547.
637	
638	Monders, A. G., Médard, E., and Grove, T. L. (2007). Phase equilibrium investigations of
639	the Adirondack class basalts from the Gusev plains, Gusev crater, Mars. Meteoritics &
640	Planetary Science, 42, 131-148.
641	
642	Musselwhite, D. S., Dalton, H. A., Kiefer, W. S., and Treiman, A. H. (2006).
643	Experimental petrology of the basaltic shergottite Yamato-980459: Implications for the
644	thermal structure of the Martian mantle. Meteoritics & Planetary Science, 41, 1271-1290.
645	
646	Papike, J. J., Cameron, K. L., and Baldwin, K. (1974). Amphiboles and pyroxenes:
647	characterization of other than quadrilateral components and estimates of ferric iron from
648	microprobe data. In Geologic Society of America Abstract Programs, 6, 1053-1054.
649	
650	Papike, J. J., Karner, J. M., Shearer, C. K., and Burger, P. V. (2009). Silicate mineralogy
651	of martian meteorites. Geochimica et Cosmochimica Acta, 73, 7443-7485.
652	

653	Parman, S.	W.,	Dann, J.	С.,	Grove,	T. L.,	and De	Wit, M	. J.	(1997).	. Emplacement
-----	------------	-----	----------	-----	--------	--------	--------	--------	------	---------	---------------

- 654 conditions of komatiite magmas from the 3.49 Ga Komati Formation, Barberton
- greenstone belt, South Africa. Earth and Planetary Science Letters, 150, 303-323.
- 656
- Parman, S. W., and Grove, T. L. (2004). Harzburgite melting with and without H2O:
- Experimental data and predictive modeling. Journal of Geophysical Research, 109,
- 659 B02201.
- 660
- 661 Pertermann, M., and Lundstrom, C. C. (2006). Phase equilibrium experiments at 0.5 GPa
- and 1100–1300° C on a basaltic andesite from Arenal volcano, Costa Rica. Journal of

663 Volcanology and Geothermal Research, 157, 222-235.

- 664
- 665 Pichavant, M., Mysen, B. O., and MacDonald, R. (2002). Source and H2O content of

high-MgO magmas in island arc settings: an experimental study of a primitive calc-

alkaline basalt from St. Vincent, lesser antilles arc. Geochimica et Cosmochimica

- 668 Acta, 66, 2193-2209.
- 669
- 670 Putirka, K. D. (1998). Garnet+ liquid equilibrium. Contributions to Mineralogy and
- 671 Petrology, 131, 273-288.
- 672
- 673 Putirka, K. D. (2005). Mantle potential temperatures at Hawaii, Iceland, and the mid-
- 674 ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven
- 675 mantle plumes. Geochemistry, Geophysics, Geosystems, 6, 1-4.
- 676

- 678 Mineralogy and Geochemistry, 69, 61-120.
- 679
- 680 Putirka, K. D., Johnson, M., Kinzler, R., Longhi, J., and Walker, D. (1996).
- 681 Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30
- 682 kbar. Contributions to Mineralogy and Petrology, 123, 92-108.
- 683
- 684 Putirka, K. D., Mikaelian, H., Ryerson, F., and Shaw, H. (2003). New clinopyroxene-
- 685 liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with
- 686 applications to lavas from Tibet and the Snake River Plain, Idaho. American
- 687 Mineralogist, 88, 1542-1554.
- 688
- 689 Putirka, K. D., Perfit, M., Ryerson, F.J., and Jackson, M.G. (2007) Ambient and excess
- 690 mantle temperatures, olivine thermometry, and active vs. passive upwelling, Chemical
- 691 Geology, 241, 177-206.
- 692
- 693 Putirka, K.D., Ryerson, F.J., Perfit, M., and Ridley, W.I. (2011) Mineralogy and
- 694 composition of the oceanic mantle, Journal of Petrology, 52, 279-313.
- 695
- 696 Roeder, P. L., and Emslie, R. (1970). Olivine-liquid equilibrium. Contributions to
- 697 Mineralogy and Petrology, 29, 275-289.
- 698
- 699 Robinson, J. A. C., Wood, B. J., and Blundy, J. D. (1998). The beginning of melting of
- fertile and depleted peridotite at 1.5 GPa. Earth and Planetary Science Letters, 155, 97-
- 701 111.

702	
703	SAS Institute Inc. (2010). JMP. Version 9.0.1, Cary, NC
704	
705	Schwab, B. E., and Johnston, A. D. (2001). Melting systematics of modally variable,
706	compositionally intermediate peridotites and the effects of mineral fertility. Journal of
707	Petrology, 42, 1789-1811.
708	
709	Singletary, S. J., and Grove, T. L. (2008). Experimental petrology of the Mars Pathfinder
710	rock composition: Constraints on the interpretation of Martian reflectance
711	spectra. Journal of Geophysical Research, 113, E11011.
712	
713	Takahahshi, E., Nakajima, K., and Wright, T. L. (1998). Origin of the Columbia River
714	basalts: melting model of a heterogeneous plume head. Earth and Planetary Science
715	Letters, 162, 63-80.
716	
717	Toplis, M.J. (2005). The thermodynamics of iron and magnesium partitioning
718	between olivine and liquid: criteria for assessing and predicting equilibrium in natural
719	and experimental systems. Contributions to Mineralogy and Petrology, 149, 22-39.
720	
721	Tsuruta, K., and Takahashi, E. (1998). Melting study of an alkali basalt JB-1 up to 12.5
722	GPa: behavior of potassium in the deep mantle. Physics of the Earth and Planetary
723	Interiors, 107, 119-130.

725	Usui, T., McSween Jr, H. Y., and Floss, C. (2008). Petrogenesis of olivine-phyric
726	shergottite Yamato 980459, revisited. Geochimica et Cosmochimica Acta, 72, 1711-
727	1730.
728	
729	Villiger, S., Ulmer, P., Müntener, O., and Thompson, A. B. (2004). The liquid line of
730	descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium
731	crystallization—an experimental study at 1.0 GPa. Journal of Petrology, 45, 2369-2388.
732	
733	Walter, M. J. (1998). Melting of garnet peridotite and the origin of komatiite and depleted
734	lithosphere. Journal of Petrology, 39, 29-60.
735	
736	Werner, S.C., Ody, A., and Poulet, F. (2014). The source crater of martian shergottite
737	meteorites. Science, 343, 1343-1346.
738	
739	Figure Captions
740	
741	Figure 1. Comparison of basaltic liquid compositions between martian and terrestrial
742	compositions (in weight %). These comparisons show distinct compositional differences.
743	Grey crosses represent terrestrial samples while black circles represent martian samples.
744	Martian data sources are outlined in Table 4 and terrestrial data sources are from: Bulatov
745	et al. (2002), Draper and Green (1997, 1999), Draper and Johnston (1992), Dunn and Sen
746	(1994), Elkins-Tanton and Grove (2003), Elkins-Tanton et al. (2007), Falloon et al.
747	(1997, 1999, 2001), Gaetani and Grove (1998), Gee and Sack (1988), Grove et al. (1982),
748	Grove and Bryan (1983), Grove and Juster (1989), Grove et al. (1992), Grove et al.
749	(2003), Holbig and Grove (2008), Johnson (1998), Kennedy et al. (1990), Keshav et al.

33

750	(2004), Kogiso and Hirschmann (2001), Kogiso et al. (1998, 2003), Laporte et al. (2004),
751	McDade et al. (2003), Parman et al. (1997), Parman and Grove (2004), Pertermann and
752	Lundstrom (2006), Pichavant et al. (2002), Putirka (1998), Putirka et al. (1996, 2003),
753	Robinson et al. (1998), Schwab and Johnston (2001), Takahahshi et al. (1998), Tsuruta
754	and Takahashi (1998), Villiger et al. (2004), and Walter (1998).
755	
756	Figure 2. Pressures in GPa recovered from model 1. The data are separated into
757	calibration data (open gray circles) and test data (closed black circles). A one-to-one
758	correlation line is presented as the dashed gray line.
759	
760	Figure 3 Temperatures in K recovered from model 2. The data are separated into
761	calibration data (open gray circles) and test data (closed black circles). A one-to-one
762	correlation line is presented as the dashed gray line.
763	
764	Figure 4. Pressures in GPa recovered from model 3. The data are separated into
765	calibration data (open gray circles) and test data (closed black circles). A one-to-one
766	correlation line is presented as the dashed gray line.
767	
768	Figure 5. Temperatures in K recovered from model 4. The data are separated into
769	calibration data (open gray circles) and test data (closed black circles). A one-to-one
770	correlation line is presented as the dashed gray line.
771	
772	Figure 6. Temperatures in K recovered from model 5. The data are separated into
773	calibration data (open gray circles) and test data (closed black circles). Hydrated
774	calibration data is shown in closed grey circles while hydrated test data is presented as a

775	closed black square. Cl-rich calibration data is shown in closed grey diamonds and Cl-
776	rich test data is presented as a closed black diamond. A one-to-one correlation line is
777	presented as the dashed gray line.
778	
779	Figure 7. Pressures in GPa recovered from model 6. The data are separated into
780	calibration data (open gray circles) and test data (closed black circles). A one-to-one
781	correlation line is presented as the dashed gray line.
782	
783	Figure 8. Temperatures in K recovered from model 7. The data are separated into
784	calibration data (open gray circles) and test data (closed black circles). A one-to-one
785	correlation line is presented as the dashed gray line.
786	
787	Figure 9. Pressures in GPa recovered from model 8. The data are separated into
788	calibration data (open gray circles) and test data (closed black circles). A one-to-one
789	correlation line is presented as the dashed gray line.
790	
791	Figure 10. The Si-Activity barometer (Eqn. 8) is combined with the olivine thermometer
792	(Eqn. 5) (grey symbols) and then with the empirical MgO thermometer (Eqn. 17) (black
793	symbols) to produce pressures and temperatures for Y98459 (closed circles), NWA 6234
794	(closed squares), NWA 1068 (closed diamonds), and a martian surface basalt (Gusev)
795	(closed triangle) using sample data from Greshake et al (2004), Gross et al (2013),
796	McSween (2004), and Monders et al. (2007) respectively. Our models are compared to P-
797	T conditions found in: Musselwhite et al. (2006), Blinova and Herd (2009), and Lee et al.
798	(2009) for Y98 (open circles); Gross et al. (2013) for NWA 6234 (open square); and

- Monders et al. (2007) for the Gusev basalt (open triangle). The grey line represents the
- 800 martian mantle solidus, estimated from Kiefer et al. (2007).
- 801
- 802 Tables
- 803
- **Table 1.** Experimental studies on martian meteorites and their analogs used in this study.
- 805 Shown in this table are their respective pressure and temperature ranges as well as their
- 806 mineral phases.

Source	Pressure Ranges (GPa)	Temperature Ranges (*C)	Срх	Opx	Ol
Bertka and Holloway (1987)	2.3	1400-1440	X	х	X
Dann et al. (2001)	0.0001-0.2	960-1175	X	х	X
Filberto and Treiman (2009)	0.57-1.17	1200-1315		Х	X
Filberto et al. (2008)	0.0001-1.57	1200-1385		Х	X
Filberto et al. (2009)	0.77-1.37	1300-1390		Х	X
Filberto et al. (2010)	0.01-2.07	1390-1520		Х	X
Filberto (2008)	0.43-0.93	972-1232	X	Х	X
Herd et al. (2002)	0.0001	1150-1250	X		X
Longhi and Pan (1989)	0.0001013	1215-1300	X		X
McCanta et al. (2004)	0.0001013-0.02	1110-1165		х	
McCay et al. (1986)	0.0001013	1140-1171	X	х	
McCoy and Lofgren (1999)	0.0001013	1050-1175	X	х	
McCubbin et al. (2008)	0.93	1100-1250	X	х	X
Medard and Grove (2006)	1.0-1.5	975-1000	X	х	
Minitti and Rutherford (2000)	0.0001-0.02	950-1130	X	x	
Monders et al. (2007)	0.0001-1.55	1105-1360		x	X

51

Musselwhite et al. (2006)	0.45-1.38	1410-1540		X
Singletary and Grove (2008)	0.0001-0.1	950-1050	Х	

808 **Table 2.** A summary of useful statistic for the models created in this study separated into

809 calibration and test data results for each model. The statistics in this table were

810 calculated by JMP statistical software version 9.0.1.

Model	R ²	RMSE	n	
Clinopyroxene+Liquid				
1) Calibration	0.91	0.17 GPa	42	
Test	0.94	0.22 GPa	9	
2) Calibration	0.96	22 K	42	
Test	0.90	41 K	9	
Ortho	pyroxene	e+Liquid		
3) Calibration	0.89	0.20 GPa	75	
Test	0.91	0.21 GPa	14	
4) Calibration	0.94	33 K	74	
Test	0.96	27 K	14	
Olivine+Liquid				
5) Calibration	0.88	48 K	95	
Test	0.90	38 K	20	
Two-Pyroxene				
6) Calibration	0.93	0.17 GPa	31	
Test	0.96	16 GPa	8	
7) Calibration	0.99	12 K	24	

Test	0.95	37 K	5		
Si-Activity					
8) Calibration	0.91	0.16 GPa	22		
Test	0.92	18 GPa	7		

813 **Table 3.** A summary of useful statistic for the previously published models from Putirka

et al. (1996) and Putirka (2008) when applied to the same experimental martian meteorite

815 data used in the creation of the models in this study. The statistics in this table were

816 calculated in JMP statistical software version 9.0.1. Pressures in GPa have been

817 converted from their original units of kbar.

818

Model	\mathbf{R}^2	RMSE	n
Clinopyroxene+Liquid			
Puritka (2008) Eq. 32a	0.55	0.40 Gpa	59
Putirka et al. (1996) Eq. T1	0.76	52 K	50
Orthopyroxene+Liquid			
Puritka (2008) Eq. 29c	0.22	0.59 GPa	32
Two-Pyroxene			
Putirka (2008) Eq. 38	0.08	0.62 GPa	39
Putirka (2008) Eq. 36	0.49	75 °C	39
Si-Activity			
Putirka (2008) Eq. 42	0.81	0.24 GPa	29

819

- 820 Figures
- 821 Figure 1.

822	
823	
824	
825	
826	Figure 2.
827	
828	
829	
830	
831	Figure 3.
832	
833	
834	
835	
836	Figure 4.
837	
838	
839	
840	
841	
842	Figure 5.
843	
844	
845	
846	

847	Figure 6.
848	
849	
850	
851	
852	Figure 7.
853	
854	
855	
856	
857	Figure 8.
858	
859	
860	
861	
862	Figure 9.
863	
864	
865	
866	
867	Figure 10.
868	

P (GPa) Calculated from Eqn. 1

T (K) Calculated from Eqn. 2

P (GPa) Calculated from Eqn. 3

2.5

T (K) Calculated from Eqn. 4

T (K) Calculated from Eqn. 5

P (GPa) Calculated from Eqn. 6

2.5

P (GPa) Calculated from Eqn. 8

2.5

