Laser-Induced Breakdown Spectroscopy (LIBS) as a tool for in situ mapping and textural interpretation of lithium in pegmatite minerals

Sweetapple, Marcus T.¹*, Tassios, Steven²

¹CSIRO, Earth Science and Resource Engineering, PO Box 1130, Perth, Western Australia, 6102
²CSIRO, Process Science and Engineering, Gate 1, Normanby Rd, Clayton, Victoria, 3169 Australia

Abstract

Laser-Induced Breakdown Spectroscopy (LIBS) offers an efficient method for qualitative and semi-quantitative analysis of light elements (Z < 10), including lithium. This relatively inexpensive analytical tool provides very rapid analysis with little sample damage, requiring minimal sample preparation. In principle, LIBS is a form of atomic emission spectroscopy, relying on characteristic spectra emitted from plasma generated by a high energy laser pulse striking a sample (solid, liquid or gas).

In this study LIBS mapping was applied to petrographically characterised samples of hydrothermally altered spodumene from the Neoarchaean Mt. Cattlin lithium pegmatite deposit. Spodumene (LiAlSi₂O₆) is the ore mineral in this deposit, but lithium is distributed in variety of minerals including primary micas and tourmaline, as well as in the alteration mineralogy of

* Present Address: Centre for Exploration Targeting, University of Western Australia, 35 Stirling Highway, Crawley, Perth, W.A., Australia 6009. Email: sweetapple.consulting@gmail.com
spodumene. Mapping was carried out using a grid of analysis spots of 125 µm diameter, spaced at 200 µm intervals, on a sample surface cut by a diamond saw blade without further preparation. Results from mapping of lithium in these samples effectively discriminated between spodumene, its alteration mineralogy, and matrix silicate minerals of the matrix. However, quantification of LIBS results using lithium doped borosilicate glasses as standards was limited due to issues with the sensitivity of matrix matching of standards and self absorption effects at Li₂O values greater than ~2 wt%, especially at values greater than ~6 wt%. The results of this study testify to the effectiveness of LIBS as a mapping tool for light elements, which may be used as a complement to other mapping techniques. Mapping of lithium in pegmatite minerals has important applications in exploration, evaluation and beneficiation of lithium pegmatite ore bodies.

Introduction

Lithium is a problematic element for in situ mineral analysis by most routine microanalytical techniques available to geoscientists. For example, it cannot be detected or analysed as part of routine element suites by energy dispersive spectroscopy (EDS) and electron microprobe analysis (EMPA) since its wavelength lies outside the accessible range for current instrumentation, due to absorption of its low energy characteristic X-ray emission line (e.g. Reed 2005). Other techniques such as Ion or Proton Microprobe, Electron Energy Loss Spectroscopy (EELS), and Secondary Ion Mass Spectrometry (SIMS) and Laser Ablation ICP-MS, which can provide effective lithium analysis, may be difficult to access or impracticable, and may also be expensive. These drawbacks are particularly true in industrial contexts relating to exploration for, and mining and processing of, lithium minerals, where Li content is typically evaluated purely by bulk chemical analyses.
In the case of rare metal granitic pegmatites, particularly the LCT petrogenetic type of Černý (1993) and Černý and Ercit (2005), lithium may be distributed across a number of different mineral species within the same pegmatite, both those having Li as an essential component, such as petalite (LiAlSi$_4$O$_{10}$), spodumene (LiAlSi$_2$O$_6$) and ambylygonite-montebrasite (LiAl(PO$_4$)(F,OH)), and those minerals having variable amounts of Li substitution, such as dioctahedral and trioctahedral micas and tourmaline. The sheer complexity of mineralogical assemblages of granitic pegmatites, combined with the varying stages of primary, secondary, and alteration mineral paragenesis may result in wide ranges of mineralogical and textural variation in lithium distribution in rare metal granitic pegmatites. Such issues become of paramount importance in the interpretation of Li data obtained from whole rock analyses in the aforementioned industrial context. Characterization of distinct Li species is essential when ore beneficiation processes are designed to recover minerals with distinct physical properties such as specific gravity.

The most common approach to obtaining an estimate of lithium content of minerals from microanalytical data is by calculations from quantifiable elements from EMPA data, making use of well-known structural formulae derived from measureable major and minor elements. These calculations typically require normalization, charge balance and/or difference calculations based on other atomic species, or in the case of micas make use of empirical relationships between Li and other elements, such as Mg, F and Si (e.g. Monier and Robert 1986; Tindle and Webb 1990; Tischendorf et al. 1997, 1999). However, all of these calculations are invariably limited by inherent assumptions regarding the extent of site occupancy, presence of site vacancies, substitution relationships, and the oxidation state of iron. A discussion of some different methods
of lithium determinations in minerals may be found in Charoy et al. (1995). In the case of lithium pegmatite minerals, Li concentrations have typically been obtained directly by LA-ICP-MS (e.g. Beurlen et al. 2011, Gadas et al. 2012; Roda Robles et al. 2012), or less commonly, by ion microprobe analyses (e.g. Wilson and Long 1983; Henderson et al. 1989; Charoy et al. 1995).

By extension, spatial (2 or 3D) mapping of lithium distributions in mineral assemblages is similarly problematic. Techniques such as nuclear microprobe, as PIGE (Proton Induced Gamma-ray Emission) (cf. review of Potts et al. 1995), and TOF-SIMS (Time-Of-Flight Secondary Ion Mass Spectrometry) are capable of mapping lithium, but very few studies of light element mapping using these techniques have been carried out with mineralogical applications in mind. Depth homogeneity of lithium and boron in micas and tourmaline, respectively, was studied using nuclear microprobe by Toulhoat et al. (1993). LA-ICP-MS mapping of lithium, over a concentration range of 5-340 ppm, in quartz from precious and base metal ore deposits was carried out by Rusk et al. (2011). TOF-SIMS mapping of low level (< 15 ppm) Li was carried out on serpentinised peridotite by Savov et al. (2006), and by Stephan (2001) on meteorites and their inclusions.

Here we report on a novel application of Laser-Induced Breakdown Spectroscopy (LIBS) as a simple tool for semi-quantitative mapping of lithium mineral distributions in 2D, applied to spodumene and accompanying primary and alteration micas. These minerals have been sampled from the Mt. Cattlin spodumene pegmatite, described by Spiers et al. (2011). Spodumene and its alteration products at Mt. Cattlin were previously studied chemically and crystallographically by Grubb (1963) and Graham (1975). We also report on supporting SEM and EMPA studies that are
used to characterize these lithium bearing minerals. This pegmatite orebody was mined as a
source of Li from spodumene between 2010 and 2013. To the best of our knowledge, LIBS has
not been used to map specifically Li distributions of minerals in any other published studies to
date.

The LIBS technique and its petrological applications
LIBS offers an efficient and powerful method for simultaneous multi-element analysis of
materials. Elements that can be detected span the bulk of the periodic table, with excellent
coverage of elements with Z < 13, including Li, Be and B, which are of interest in the study of
rare metal pegmatites. In particular, lithium has strong optical emissivity characteristics which
allow effective measurement by the LIBS technique.

In principle, LIBS is a form of atomic emission spectroscopy, relying on characteristic spectra
emitted from plasma generated by a high-energy laser pulse striking a sample (solid, liquid or
gas). Each pulse produces a high-intensity plasma that is detected by a series of spectrometers,
and the resulting emission spectrum contains atomic emission lines from the atomic species
present in the plasma. A number of pulses are averaged over a few seconds analysis time to
produce an averaged spectrum for the sample being analysed. The spectrometer is able to
measure, with varying degrees of sensitivity, almost every element of the periodic table within
each laser pulse, subject to the strength of the emission lines. A portion of a typical LIBS
spectrum from analysis of spodumene is shown in Figure 1. Quantification is achievable by both
conventional calibration methods using defined standards (e.g. chemometric methodology of
Death et al. 2009), and also potentially by standardless methods (cf. Harmon et al. 2013 and
The essential components of the LIBS setup and instrumentation are shown diagrammatically in Figure 2.

Comprehensive overviews of the LIBS technique may be found in Yueh et al. (2000), Myers et al. (2008), Noll (2012), and Musazzi and Perini (2014). Overviews of applications to mineral analysis may be found in McMillan et al. (2007), Harmon et al. (2009, 2013) and Hark and Harmon (2014). In mineralogy, LIBS has found wide application across a range of different mineral types for ‘fingerprinting’ studies of compositional variants of given species (e.g. Harmon et al. 2006, 2009, 2013; Alvey et al. 2010; Rossi, et al. 2014).

LIBS has advantages over many other microanalytical tools, for example: little or no sample preparation; accommodation of small sample sizes; detection of trace elements to ppm levels; a modular and readily configurable nature in terms of instrumentation (cf. Harmon et al. 2009; Hark and Harmon 2014). It also produces little damage to samples, consuming nanograms of sample material per laser pulse. Each laser pulse has the potential to detect nearly all elements in a mineral with a suitably configured instrument. LIBS also has the advantage of being able to be readily combined with other analytical techniques such as infra-red and Raman spectroscopies. LIBS instruments are also relatively cheap compared to many other advanced microanalytical tools, with an instrument capable of research grade performance costing between ~US$100,000 and US$250,000, with relatively low operating costs. However, these advantages should be contextualized by the disadvantages of LIBS: physical (e.g. density, surface texture, granularity) and chemical (element concentration) matrix effects; the inherent shot-to-shot variability in LIBS experiments; and a level of precision of ~5-20% RSD (Hark and Harmon 2014; Rossi et al. 2014).
2014). Precision of LIBS measurements can be affected by issues relating to spectrometer calibration, and plasma effects that can induce broadening in spectral peaks (cf. Noll 2012).

In terms of application to lithian minerals, the seminal study of Fabre et al. (2002) applied LIBS to Li analysis in a variety of geological samples with Li at ppm to % level concentrations, using a lithium spectral line measured at 670.706 nm. These studies included analyses of spodumene, petalite and eucryptite (LiAlSiO₄), with Li concentrations measured in the % level; results obtained from most of these lithium specimens were considered to compare well with results from ion microprobe analysis, although relative errors of up to 20% were reported. Pilot studies of Hanson et al. (2008) and Mader and McMillan (2011) have described methodologies and preliminary quantitative analyses of spodumene and lepidolite by LIBS. Investigations of gem quality spodumene, tourmaline and topaz by Rossi et al. (2014) did not find significant conformity with lithium analysis results from LIBS with EMPA and LA-ICP-MS methods, although good agreement was found for Be, B, Al and Si.

Mapping of surfaces by LIBS has found application in a range of scientific disciplines, including biological and materials science studies, especially for metal alloys (e.g. Noll 2012; Musazzi and Perini 2014 and references therein), but application to minerals has been limited. Examples of applications in mineralogical or petrological studies are mapping of the distribution of major and minor elements in granite by Novotny et al. (2008) (Al, Ca, Fe, Mn), and Kim and Lin (2012) (Ba, Pb, Sr, Fe). The former study found a good spatial correlation between elemental patterns of LIBS and LA-ICP-MS data. Menut et al. (2003) mapped Fe, Si and O in volcanic ash, and Ca, Fe and Al were mapped by Rodolfa et al. (2004) in a rhyolite sample, with a view to use in
planetary exploration. Quantitative mapping of basnäsite was carried out by Quarles et al. (2014) (F), and by Chirinos et al. (2014) (Si, Ca, Al) in a comparative and complementary 2D and 3D multi-element study with LA-ICP-MS.

Sampling and petrological background

Contrasting units of the Neoarchaean Mt. Cattlin rare metal pegmatite group (Western Australia), were sampled at a location approximately 2 km north of the township of Ravensthorpe (Fig. 3). Samples were taken from a primary spodumene unit, and a lepidolite ‘replacement’ unit, as described by Sofoulis (1958) and Jacobson et al. (2007).

Spodumene (LiAlSi₂O₆), the targeted ore mineral at Mt. Cattlin, mostly occurs as very coarse to megaclastic grains (typically > 50 mm grain size) that formed during early magmatic crystallization of the pegmatite. Although spodumene is the dominant lithium mineral, Li is typically distributed within this pegmatite in a variety of other minerals of varying abundance and significance. These include di- and triocatahedral micas (e.g. muscovite and members of the lepidolite series), members of the tourmaline supergroup, Li-bearing phosphates (amblygonite-montebrasite) and cookeite (lithian chloride) (Grubb 1963; Jacobson et al. 2007; Spiers et al. 2011). Additionally, spodumene alters readily under hydrothermal conditions to produce a range of alteration minerals, typically involving a loss of most Li⁺ into solution (Graham 1975; London and Burt 1982a,b; Wood and Williams-Jones 1993), relating to the interaction of spodumene with paragenetically late stage residual pegmatic fluids containing H⁺ and K⁺ ions (e.g. London and Burt 1982a; Wood and Williams-Jones 1993; Charoy et al. 2001; Rao et al. 2012).

Spodumene is typically replaced to varying extents by ‘sericite’/muscovite, quartz, eucryptite
(LiAlSiO₄), ‘adularia’, albite and chlorite. Textural changes transitioning between spodumene and its alteration products are graphically described by London and Burt (1982a; their Figure 2). This replacement accompanies color changes in spodumene, typically from white-grey to shades of green and ultimately black, accompanying the destruction of the crystal fabric of spodumene, i.e. the ‘rotten spodumene’ described by Graham (1975) at Mt. Cattlin. This latter work at Mt. Cattlin showed that spodumene makes a transition to muscovite in three intergrowth orientations controlled by the original spodumene structure. However, in most cases observed, the extent of replacement by this hydrothermal alteration is variable, and often results in a very fine mixture of spodumene fragments and alteration minerals.

For the purposes of this paper, ‘sericite’ is used as an informal petrographic term for very fine grained white mica, typically occurring as an alteration or replacement species of primary silicates, usually of muscovite or phengite series compositions but possibly including other mineral species, equivalent to the definition of Eberl et al. (1987). ‘Adularia’ is used as an informal term to denote low-temperature potassium feldspar alteration that has not been crystallographically defined, but has been characterized by EDS analyses and petrography (cf. Thompson and Thompson 1996). Lepidolite is used as a generalized term for trioctahedral lithium micas of the lepidolite series approximating the composition of trilithonite-polyolithonite as per the definition of Rieder et al. (1998).

Analytical Methods

LIBS

Sweetapple & Tassios – LIBS mapping lithium
Instrumentation and calibration A Spectrolaser 4000 LIBS system (Laser Analysis Technologies Pty. Ltd.) was used to carry out the lithium mapping and analyses for this study. The LIBS instrument is housed at CSIRO laboratories, Clayton, Victoria. This instrument employs a high power (300 mJ) 1064 nm Nd:YAG Q-switched laser configured for a 532 nm output. The system is equipped with a 4-channel Czerny Turner spectrometer capable of acquiring between 190 nm – 950 nm at a resolution of 0.09 nm at 300 nm. The system has a high precision x-y stepper motor. The lithium peak used for calibration was at a wavelength of 812.644 nm (Fig. 1). This line was selected on the basis of best linear calibration response and lack of interference from other peaks. All analyses were carried out in ambient indoor atmospheric conditions using a laser power of 120 mJ per pulse. Data processing was carried out on software native to the Spectrolaser instrument.

Two different suites of samples were used to construct calibrations that were considered to present reasonable matrix matches to the lithium-bearing silicate minerals analysed. The first suite consisted of a series of synthetic glass standards prepared from a sodium tetraborate flux with various quantities of Li$_2$O, Al$_2$O$_3$, SiO$_2$, Rb$_2$O and Cs$_2$O added. The mixture was fused at 1100°C in a platinum dish and then quenched. The methodology used was identical to that routinely used to make fused beads for XRF analysis.

A second suite comprised of six lithium rock and mineral standards was also used to generate an alternate calibration curve. These standards were pressed as pellets in a 25 mm die to 30 tonnes pressure, and consisted of: certified reference materials (CRMs) NCS86303 and NCS86304 from the China National Analysis Centre for Iron and Steel (2008), certified ISO9001; the OPEG...
pegmatite reference material #433 from Geolabs Geoscience Laboratories, Sudbury, Ontario; two split fractions from bulk mica bulk testwork sample T751, and a split fraction from bulk β-spodumene, provided by Galaxy Resources Ltd, and characterized by supplied ICP-MS or OES analyses. These samples provided a range of 0.058-5.45 wt% Li₂O. All standard samples were split under ‘clean lab’ conditions.

The two different calibration standards were compared in order to deal with the previously mentioned physical and chemical matrix effects (cf. Hark and Harmon 2014). In LIBS analysis, it is important that not only appropriate chemical matches be made, but also that there is a close morphological match between the calibration standards and the unknown samples. Therefore, differences in density, granularity and surface texture can affect the accuracy of the results, i.e. physical matrix effects. The fused synthetic glass discs more closely match the density of the unknown ore sections, but not the elemental distribution of components such as SiO₂ and Al₂O₃. Conversely, the pressed powders more closely match the chemical compositions, but less so the physical nature of the pegmatite samples.

The results of the two univariate calibrations, both using the Li I 812.644 nm spectral emission line, are shown in Figure 4(a) and (b), for the synthetic glass disc and pressed powder calibrations, respectively. The glass and pressed powder standards achieved an r² of 0.994 and 0.999, respectively. It can be seen in the glass calibration (Fig. 4a) that there is a large degree of self-absorption for lithium at high concentrations. This occurs due to the absorption of emission from lithium in the hotter part of the plasma by lithium in the cooler part of the plasma. As a
result, the concentration response is not linear and there is a noticeable plateau at high lithium concentrations.

These two calibrations were then compared with each other by analysing the standard sets of each type with both calibrations, in order to evaluate how well each calibration predicted the composition of the reference standard (Fig. 5a and b). The glass calibration predicts both the glass and pressed powder Li₂O concentrations very well with a close linear fit (R^2 of 0.9165) at levels below approximately 2 wt% (Fig. 5a). There is a notable over-estimation that occurs at higher concentrations due to non-linearity in the calibration caused by lithium self-absorption.

The results for the validation of the pressed powder standards were not as good, with a notable underestimation of the Li₂O concentrations of the fused glass disc samples (Fig. 5b).

Averaged analyses for the calibration of the glass discs standards returned relative standard deviations of 3.13 to 11.54 for standards containing 0.02-1.68 wt% Li₂O, and 5.61 to 11.27 for standards containing 3.02-6.85 wt% Li₂O. Relative standard deviations do not show linear increases across these ranges.

The lower practical limit of detection (DL) of lithium (as Li₂O) is calculated to be 240 ppm. This value has been calculated as:

$$DL = 3\sigma / \text{slope}$$

where σ is the standard deviation of the intensity of the blank spectra, i.e. where the measureable concentration of the element is zero; slope refers to the gradient of the calibration line, or the slope at concentration zero in the case of calibration curves.
LIBS mapping studies were carried out on portions of flat rock slabs or billets left over from the preparation of polished thin sections used for petrographic, SEM and EMPA studies. LIBS analyses were carried out on the slab faces opposite to that which EMPA and SEM work was carried out on, so the LIBS analyses would be directly relevant to other data gathered, yet not be potentially affected by the impact of other analytical techniques. The slab faces analysed were not subject to any polishing or further treatment other than the original diamond saw cutting of the blocks. A circular area of approximately 30 mm diameter was available for analysis from each slab, exposed within the sample holder, held in position by clamps.

The LIBS mapping exercise was carried out initially on sample SMCP112, representative of a portion of a spodumene crystal with a gradational alteration rim of very fine mica, and a quartz matrix. The analysis area was selected to encompass a range of different lithium concentrations accompanying a change in mineralogy, delineated from previous SEM and petrographic studies.

A grid was constructed over a selected area of 5 x 5 mm, with a raster pattern programmed into the PC driving the LIBS analysis over this area. The outline of the chosen grid was marked on the sample with a pencil outline. Initially, LIBS analysis points at 200 μm spacing were traversed down either side of the area to be mapped, and then photographed under a binocular microscope. Subsequently, the full analysis point set was run, and the grid area was photographed again in order to accurately locate the sample points and to provide mineralogical context to the individual LIBS analysis points. In this way, it was possible to reference each analysis spot to a
corresponding grid reference on the sample. The grid was reconstructed with vector drawing software and placed over the sample image with the LIBS analysis points, so individual analysis points could be identified from a sketch of the raster scan path.

A grid spacing of 200 μm between the centre of each point was used over the 5 x 5 mm area mapped, to provide comprehensive coverage, for a total of 676 analysis spots. The LIBS analysis spot size on silicate minerals averaged ~125 μm (Fig. 6), thus a spacing of ~50 μm was left between each analysis spot (Fig. 7). Depths are estimated indirectly from these SEM images to range from ~10 to 25 μm, dependant on the mineral type encountered. Each analysis point was subject to one burn off laser shot (120 mJ), followed by three analysis shots each comprised of 120 mJ energy with a 2 μs delay, which were then averaged into a single spectrum. Each spectrum was stored on the attached PC (cf. Fig. 2) along with its location. The LIBS analysis time for these positions was 2 hours and 38 minutes.

A further sample (SMCP172) was mapped with LIBS, where petrological information and mineral chemistry was available for the sample and host unit in general, but not for the specific sample face analysed by LIBS. The selected area covered an area of a medium grained lepidolite crystal adjoining part a very coarse altered spodumene grain, and coarse grained ‘cleavelandite’ albite. In this sample, an area of 4 x 5 mm was chosen over the area of interest, for a total of 546 points. All other settings used were identical to those described above. The LIBS analysis time for this map was 2 hours and 7 minutes.
The numerical results from both mapping exercises were subsequently compiled in a Microsoft Excel® spreadsheet, and then scaled using the conditional formatting function built into Excel® to generate color maps.

SEM

SEM imaging was conducted using a Phillips XL40 scanning electron microscope with energy dispersive analytical X-ray detection (EDAX) and low-vacuum capabilities, housed at CSIRO ARRC laboratories, W.A. Operating conditions were 30 keV, 0.5 mBar chamber pressure and a working distance of 9-11 mm. The SEM was used in Robinson backscatter imaging mode. EDAX was used to identify the elemental composition of areas of interest on the backscattered image.

EMPA

The chemical composition of spodumene and micas was analysed using a JEOL 8530F field emission electron probe micro-analyser (EPMA) at the Centre for Microscopy, Characterization and Analysis (CMCA), University of Western Australia. Operating conditions used were a 20 kV accelerating voltage and 15 nA beam current. Software Probe for EPMA from Probe Software Inc. was used for setting up and analysing the data. Matrix corrections were based on the phi-rho-zeta calculation of Pouchou and Pichoir (1985). Calibration standards and X-ray lines used were: rutile TiKα, periclase MgKα, wollastonite SiKα and CaKα, apatite PKα, pollucite CsLα, synthetic rubidium zinc silicate glass (University of Manitoba) ZnKα and RbLα, corundum AlKα, orthoclase KKα, altaite (PbTe) PbKα, synthetic Gd₃Ga₅O₁₂ GaKα, celestite...
Srα, jadeite Naα, manganese Mnα, iron Feα, barite Ba$L\alpha$, fluorite Fα, thallium iodide, Tlα, and chalcopyrite, Cuα.

A second data set of mica (‘sericite’) analyses (samples SMCP03, 12, 23) were carried out using the JEOL JXA-8500F-CL HyperProbe Field Emission Gun instrument at CSIRO analytical laboratories at Clayton, Victoria. Mica analyses used an accelerating voltage of 15 kV and a beam current of 18 nA, with a defocused analysis spot (typically > 50 µm across) to reduce migration of loosely bound ions away from the electron beam. Matrix correction calculations were performed using an XPP implementation of PRZ (phi-rho-zeta of Pouchou and Pichoir 1985) used in the data reduction program STRATA. Calibration standards and X-ray lines used were: rutile Tiα, Magalox Alα, Mgα, wollastonite Siα and Caα, CsI Cs$L\alpha$, synthetic rubidium zinc silicate glass (University of Manitoba) Rb$L\alpha$, adularia Kα, apatite Pα, NaCl Naα and Clα, MnSiO$_3$ Mnα, Fe$_2$O$_3$ Feα, barite Ba$L\alpha$, and fluorite Fα. Detection limits for elements from both microprobes ranged from 0.01-0.05 wt%; further information is available on request.

Lithium contents of minerals were estimated by indirect methods using EMPA data, in order to provide constraints on the reasonableness of LIBS results. Methods for indirect estimation of lithium contents for micas use empirically established relationships between lithium and silicon content for trioctahedral micas (Tindle and Webb 1990), or fluorine for dioctahedral micas (Tischendorf et al. 1997) (summarized in Table 1). The relationship of Tindle and Webb (1990) was used in preference to similar empirically established relationships established between lithium and magnesium for trioctahedral micas by Tischendorf et al. (1999), due to the low MgO...
contents of the micas analysed here, as well as the former relationship returning superior structural formulae. In mica structural formulae, all Fe is assumed to be divalent.

Calculations of Li content of spodumene has been carried by stoichiometric calculation based on two atoms per formula unit of silicon, with all iron assumed to be in the trivalent state. In the case of SMCP1172 average weight percent totals of spodumene have mean values of 101.4 and 101.8 (Table 2). Although this value is within acceptable error limits, it may indicate slightly lower Li contents than have been estimated (assuming accurate determination of Si). Assumptions of all iron being in the trivalent state may also have served to increase the mean total in the case of the more iron rich spodumene from SMCP112. Microprobe results presented here for both spodumene and micas are based on analyses with structural formula recalculations with an error factor of ± 2%. For the purposes of these calculations, analytical results below detection limit are treated as ‘zero’ for statistical purposes.

Results

The maps of lithium distribution (as wt% Li₂O) of the selected areas generated by LIBS analyses are presented in Figures 8 (SMCP112) and 9 (SMCP172), accompanied by photomicrographs of the mapped areas. The analyses constituting these images are calibrated against the glass standards only. Each pixel represents one analysis spot (cf. Fig. 7), which may potentially sample more than one mineral species, both laterally and with respect to depth. Both LIBS maps have been scaled in order to highlight changes in lithium contents with changes in mineralogy.
Clearly, the LIBS maps distinguish the variations in lithium content coincident with changes in mineralogy and texture. In Figure 8 (SMCP112), the relationship between mineralogy and lithium distribution is very distinct, and corresponds well to anticipated differences in mineralogy, from spodumene with high lithium grades, to a ‘rind’ of ‘sericite’ ± chlorite ± ‘adularia’ alteration, with greatly reduced lithium content (~0.1-1 wt% Li$_2$O), and quartz with effectively zero lithium content.

Similarly the LIBS map of SMCP172 (Fig. 9) clearly shows distinctive patterns of lithium distribution, that display relationships to mineralogy in the accompanying photomicrograph. In comparison with the LIBS map of SMCP112, Figure 9 indicates that lithium concentrations are at relatively higher background levels, with all minerals either containing lithium (as Li$_2$O) at levels > 0.22 wt%, or hosting lithium-bearing inclusions. However, peak values are still in the same order of magnitude of several wt%.

LIBS mapping of lithium using the powder standards was carried out for sample SMCP112 over the same selected area (map not shown). This mapping was less accurate and precise, but still returned the same broad distribution of higher and lower lithium values, with a ‘zero region’ for quartz. These results are expected, given the cross correlation obtained from analyses of each standard set with each other (cf. Fig. 5), as described in the methods section. Most Li$_2$O results were in the range ~0-5 wt%, similar to those obtained by the glass standard data (cf. Fig. 8).

These results, even with greater physical matrix effects as previously discussed, support the validity of LIBS as a tool of semi-quantitative element mapping. However, there are a number of anomalously high values (~6-11 wt% Li$_2$O) at the border between mica alteration and quartz, for
which no mineralogical explanation can be advanced; additionally Li$_2$O values > 8 wt% are implausible based on the known mineralogy.

Results of EMP analyses expressed as data ranges for spodumene, dioctahedral ‘sericite’ and lepidolite are presented in Tables 2-5. The results of these analyses are utilized to support interpretations of the LIBS maps.

Discussion and interpretation of maps

In order to evaluate the performance of the LIBS maps for lithium, it is instructive to compare the lithium contents of the various minerals mapped with data derived from EMP analyses.

SMCP112 In the case of SMCP112, the values for the region of spodumene in Figure 8 range from ~2-4.2 wt%, with the mapped region taking on a patchy or mottled appearance within the restrictions of the pixelated image. These values are significantly less than the values indicated by recalculation from microprobe data of ~7.7-8.1 wt% Li$_2$O (Table 2), with the maximum LIBS Li$_2$O value mapped being 4.2 wt%. This apparent discrepancy may be partially explained by the nature of incipient alteration affecting the spodumene, which may be made out to some degree in the accompanying photomicrograph (Fig. 8). Lighter shades, indicative of unaltered spodumene, broadly correspond to higher Li$_2$O concentrations, whereas the darker greyish green shades, indicative of ‘sericite’ dominated alteration, correspond to lower concentrations. Thus these different color shades relate to the extent of microcrystalline internal alteration within the larger spodumene crystal.
The texture, grainsize and distribution of this alteration of primary spodumene is illustrated in Figure 10, where very fine grained to cryptocrystalline ‘sericite’, with minor ‘adularia’, chlorite and albite, replaces spodumene along cleavage planes, as well as in fractures cross cutting these planes. This photomicrograph is representative of the least altered spodumene seen in the lower right corner of the map in Figure 8. Locally, and towards the margins, this ‘sericite’ dominated alteration becomes pervasive, ultimately completely replacing spodumene (cf. Fig. 11). The relative intensity of this alteration would suggest that the majority of analysis points in the map grid will contain at least a minor component of this alteration, given the size and coverage of the analysis points (Figs. 6, 7) and the distribution of alteration (Fig. 10).

EMP analyses of ‘sericite’ from SMCP112 are listed in Table 3, with ranges of values derived from indirect calculations from known structural formulae; Li$_2$O content averages 0.03 wt% and has a maxima of 0.07 wt% (cf. muscovite analysis of 0.02 wt% Li$_2$O by wet chemistry, of Graham (1975)). The other subordinate silicate alteration minerals (chlorite, albite, ‘adularia’) do not contain lithium contents detectable by EMPA, and can be considered to have zero lithium content for practical purposes. No cookeite (lithian chlorite, LiAl$_5$Si$_3$O$_{10}$(OH)$_8$) was detected within spodumene alteration here, although this is known as an alteration mineral of spodumene in pegmatites elsewhere (e.g. Bobos et al. 2007). Thus dilution of spodumene by alteration mineralogy is highly plausible as a mechanism to explain the mapped distribution pattern of Li$_2$O. However, the pattern of fragmentation of spodumene (Fig. 10) suggests that at least a few of the analysed spots in the area of palest (corresponding to least altered) spodumene should have values close to those determined from the EMP analyses (i.e. ~6-7 wt%). Therefore it is most probable that the peak mapped Li$_2$O values for spodumene also relate to the previously
discussed self-absorption effects of the lithium glass standard calibration curve, at values \(> \sim 2 \) wt\%, and especially for values \(> \sim 6 \) wt\%.

The outer ‘sericite’ dominated alteration rim is effectively composed of a pseudomorph of ‘sericitic’ micas after spodumene, often retaining the original crystal shape. Petrographic investigation indicates the retention of original texture from spodumene, including cleavage, as well as the system of irregular alteration fractures (Fig. 11; cf. Fig. 10). These rims and fractures typically also include a minor component of other alteration minerals beside ‘sericite’, as previously described (Fig. 11), and may also contain traces (typically \(< 1\%\)) of spodumene fragments. The Li\(_2\)O content of most of the ‘sericite’ dominated rim determined by LIBS analyses is in the order \(\sim 0.15 \) wt\% (Fig. 8), which are in the same order of magnitude as the values obtained indirectly from EMPA analyses (0.01-0.07 wt\%; Table 3). The higher values from LIBS analyses compared with data derived from EMPA data may be accounted for by greater errors induced by the indirect nature of the EMPA Li\(_2\)O calculations and/or cryptic traces of residual spodumene. It is most improbable that such a difference can be accounted for by analytical variations in the LIBS analytical results, given the low standard deviations (0.003-0.011) given by analysis of the calibration standards over these Li\(_2\)O concentrations (cf. Instrumentation and Calibration section). Notably, comparable Li\(_2\)O values of up to 0.14 wt\%, averaging 0.06 wt\%, have been derived from EMPA results from analyses of ‘sericite’ derived from alteration of spodumene from samples elsewhere in the Mt. Cattlin pegmatites (Table 4). Furthermore, data from other alteration muscovite/‘sericite’ after spodumene from pegmatite occurrences elsewhere have similarly low Li\(_2\)O contents (e.g. \(\leq 0.05 \) wt\%, Nanping pegmatite,
China, Rao et al. 2012), similar to other late stage pegmatitic white micas (e.g. summary of Hawthorne and Černý 1982).

LIBS analyses of quartz did not indicate any lithium content above the detection limit, consistent with expectations. Values of Li$_2$O between ~0.04-0.1 wt% along the upper margin of the ‘sericite’ dominated alteration rim (Fig. 8) are indicative of mixture of ‘sericite’ and quartz in LIBS analysis spots, and gradational dispersion of ‘sericite’ into the matrix.

SMCP172 The LIBS map of this sample (Fig. 9) shows some predictable correspondence with mineralogy in the accompanying photomicrograph, but also some unexpected findings with respect to Li$_2$O distribution. Interpretation of the Li$_2$O distribution and mineralogy of the sample has been undertaken with data from other samples and EMPA analysis of spodumene and purple alteration mica from material comprising a different part of the same hand sample (Tables 2, 3).

Most prominently, there is a close correspondence between a wedge-shaped silvery grey lepidolite crystal aggregate on the left side of the map (outlined by a dashed line in Fig. 9) and elevated Li$_2$O values in the ~1.9-5 wt% range, with most values in the ~2.5-3 wt% range. Comparison with the range of Li$_2$O values estimated from EMPA analysis (Table 5) of 3.78-6.84 wt% (mean 5.28 wt%) suggests that many of these values may be underestimating the Li$_2$O content. The most likely cause of this relates to truncation of higher Li$_2$O values by self-absorption effects within the calibration, as previously discussed for spodumene from SMCP112.

Petrographic observations of lepidolite in other samples do not suggest significant alteration, as
in the case of spodumene, although a component of intergrowth with other non-lithium bearing silicate minerals is a possible contributor.

Very fine grained purple micas as an alteration product of spodumene occupy the bulk of the left hand side of the map (Fig. 9), wrapping around the wedge-shaped lepidolite aggregate. LIBS analyses of this altered spodumene broadly return relatively uniform values in the 0.9-1.6 wt% Li₂O range. Petrography suggests that this alteration is relatively uniform and pervasive, and texturally analogous to that seen in Figure 11 for SMCP112. Calculation Li₂O contents from microprobe analyses of this mica in another fragment of the sample with the same alteration (Table 3) yield very low Li₂O contents, ranging from less than detection to 0.02 wt%, with a mean value of ~0.01 wt%. Although some EMPA results have relatively low weight percent totals (a number returning totals of 97-98 wt%), and slightly depleted octahedral sites (Y=3.94-4.0), it is not possible to comment further on the relative accuracy of the Li₂O calculations given that these results lie with the envelope of error. These results are also within the same order of magnitude as dioctahedral micas replacing spodumene from other samples (Tables 3 and 4). However, the LIBS values are considered not implausible, given the common occurrence of relic spodumene fragments in other samples (cf. SCMP112; Fig. 11), which may be dispersed amongst masses of alteration micas. The central pink mica grain, contiguous with the previously discussed lepidolite aggregate, tentatively identified visually as a rose muscovite, had relatively low Li₂O values of ~0.7-1.6 wt%. Although we do not have comparative data derived from EMPA for this pink mica, these values are within the ranges of known rose or lithian pegmatitic muscovites elsewhere (e.g. Hawthorne and Černý 1982).
It is important to state the purple or pink coloration of micas does not relate to their lithium contents as popularly believed, but is related to the interplay between the dominance of Mn over Fe, and the oxidation states of Fe and other transition metal chromophores (Finch et al. 1982; Hawthorne and Černý 1982; Jolliff et al. 1987; Fleet 2003).

LIBS mapping of lithium across the variably altered, mottled green spodumene grain occupying much of the right side of the mapped area (Fig. 9) reveals changes in lithium distribution which in most cases corresponds to changes in color within the spodumene crystal in hand specimen, as per spodumene in SMCP112. Again, lighter green corresponds to higher Li$_2$O concentrations, whereas the darker green shades correspond to lower concentrations. However, LIBS mapping shows up subtle changes in Li$_2$O, and therefore mineralogy, not evident in the photomicrograph. However, it is probable that these color changes may also reflect content of other subordinate alteration minerals such as chlorite. Estimations of Li$_2$O concentrations from LIBS spots of the ‘sericite’ dominated alteration of this grain range from ~0.5-1.6 wt%; most of these values are much greater than analyses of typical spodumene alteration ‘sericite’ (Tables 3, 4), and the comparable alteration rim of SMCP112 (Fig. 8). Thus it is inferred that these higher values relate to alteration micas with greater Li$_2$O content and/or inclusions of relic spodumene. The LIBS map (Fig. 9) shows a few distinct spots of ~2.8-3.6 wt% Li$_2$O within the mottled green spodumene crystal, corresponding to the least altered (paler) regions. Given that higher Li$_2$O values were returned within lepidolite (~4-5 wt%), it is most probable that these LIBS Li$_2$O values are reasonable for this altered spodumene, as they lie below the level (of ~6 wt%) where self-absorption has the strongest effects on the calibration curve. Certainly Li$_2$O values of pure spodumene fragments calculated from EMPA analyses (Table 2) from another location within
the same sample (SMCP172) return very similar values to those of SMCP112, as clear indicators of expected Li$_2$O contents.

Perhaps the most unexpected result from the lithium mapping exercise of SMCP172 is the indication of elevated level Li$_2$O contents (≥ 0.22 wt%) over the area of ‘cleavelandite’ albite on the bottom left edge of the map. LIBS mapping clearly outlines the distribution of the white ‘cleavelandite’ in the photomicrograph in comparison with the LIBS map. This distribution is particularly emphasized due to adjustment of the color scaling of the map, highlighting differences in lithium concentration (Fig. 9). These lithium results for ‘cleavelandite’ are inconsistent with its known mineral chemistry of albite (e.g. average and maximum documented contents of 13 and 200 ppm Li$_2$O respectively, database of Smith and Higgins 2010) and the limited degree of crystal chemical compatibility of lithium in the plagioclase crystal lattice (cf. Shannon 1976). Therefore, the most likely explanation is the presence of micro-inclusions of lithium-bearing micas within the ‘cleavelandite’, either as primary inclusions along twin planes or as microcrystalline disseminations related to alteration (e.g. of adjoining spodumene).

In summary, LIBS mapping of this sample has returned plausible results that can be explained from mineral analyses and known petrological features, but with some higher Li$_2$O values truncated by self-absorption effects inherent in the calibration. The wide distribution of lithium values indicated by mapping is considered to be reasonable based on known lithium enrichment in lepidolite-rich units in the Mt. Cattlin pegmatite.

Conclusions
We demonstrate in this article that LIBS is a powerful tool for semi-quantitative mapping of lithium oxide concentrations in silicate minerals. These maps, comprised of closely spaced analysis points, were carried out with a minimal amount of sample preparation, and are virtually non-destructive. The size of LIBS maps is limited only by computing power and the physical limitations of the sample holder.

The LIBS maps demonstrated here effectively discriminated between spodumene, its accompanying ‘sericite’ alteration, lepidolite and matrix minerals (quartz and albite), in samples of lithium-rich granitic pegmatites. These maps were able to be meaningfully related to photomicrographs and textural observations of samples characterized by petrology. Results obtained from LIBS analyses in the range of ~0.01-5 wt% from analysis of these mineral suites gave reasonable results based on a calibration curve using lithium doped borosilicate glasses, with reference to constraints provided by electron microprobe analysis, and external datasets. However, quantification of LIBS results using lithium doped borosilicate glasses as standards was restricted at Li₂O values > ~2 wt%, and especially at values > ~6 wt%, primarily due to self absorption effects, and secondly, matrix matching of standards. These results validate the basic capability of the LIBS method as a semi-quantitative analytical tool for mapping, although further refinement is required with respect to calibration for full quantification.

Implications

This study demonstrates the effectiveness of LIBS as a mapping tool for light elements, which may be used to complement other mineral mapping techniques, such as EDS X-ray mapping of rocks and minerals in situ. The minimal amount of sample preparation and flexibility of the LIBS
technique potentially allow it to be taken into other geologic and industrial environments where Li and other light elements are encountered, e.g. assessment of brine deposits.

LIBS mapping of light elements including lithium, has considerable application in an industrial context, where LIBS can potentially provide very rapid information that can inform time critical processes in mining and ore beneficiation. Examples of this include grade control during mining and assessment of concentrate grades after crushing and screening of fractions of spodumene and other light element bearing minerals. Naturally, results of spatially referenced LIBS analysis points can be referred back to visual observations of minerals made by geologists during exploration and mining, to improve workflows.

Acknowledgements

The authors thank Nancy McMillan and Alexandre Lima for their insightful reviews of this paper. Joanna Parr and Yulia Uvarova (CSIRO Earth Science and Engineering) are thanked for their reviews of an earlier version of this article. Fernando Colombo is thanked for his editorial oversight and additional detailed review. We acknowledge the support of Galaxy Resources Ltd. for this study, which was carried out as part of a larger research project. We thank Phil Tornatora, Tim Leonard (Galaxy) and Mike Grigson (Consulting Geologist) for their support of research into the Mt. Cattlin lithium orebody. Doug Body (Independent LIBS consultant) is particularly thanked for expert advice in support of the LIBS analyses, including calibration, and David Death and Pavel Yaroshchyk (CSIRO Process Science and Engineering) are thanked for initial investigations of the LIBS technique. Steve Barnes and Joanna Parr (CSIRO Earth Science and Engineering) are thanked for their encouragement to write this paper. Michael Verrall
(CSIRO Earth Science and Engineering) is thanked for assistance with SEM work. The authors acknowledge the use of the electron microprobe facilities at CSIRO Process Science and Engineering, Clayton, and technical assistance of Colin McRae, and at the Australian Microscopy & Microanalysis Research Facility of the University of Western Australia, with the technical assistance of David Adams. The latter facility at UWA is within the Centre for Microscopy, Characterisation & Analysis, a facility funded by the University, State and Commonwealth Governments. Data handling of microprobe analyses was carried out using modified versions of Microsoft Excel® spreadsheets devised by A.G. Tindle of the Open University, Milton Keynes, U.K (available from http://www.open.ac.uk/earth-research/tindle/AGTWebPages/AGTSsoft.html; website accessed April 2014).

References

Advances in lithium analysis in solids by means of laser-induced breakdown spectroscopy:
London, 758 p.
evolution of zoned tourmaline crystals from pockets in common pegmatites of the
Moldanubian Zone, Czech Republic. Canadian Mineralogist, 50, 895-912.
Graham, J. (1975) Some notes on alpha-spodumene, LiAlSi$_2$O$_6$. American Mineralogist, 60, 919-
923.
report to Galaxy Resources Ltd.
Grubb, P.L.C. (1963) Spodumene from Ravensthorpe and Mt. Marion, Western Australia – a
mineralogical and chemical Study. CSIRO Mineragraphic Investigations Reports, CSIRO,
16 p.
Hark, R.R., and Harmon, R.S. (2014) Geochemical fingerprinting using LIBS. In S. Musazzi and
P. Perini, Eds., Laser-Induced Breakdown Spectroscopy - Theory and Applications,

Witt, W.K. (1997) Geology of the Ravensthorpe and Cocanarup 1:100,000 sheets. 1:100,000
1:100,000 sheets: Report 54, Geological Survey of Western Australia, 154 p.
petalite eucryptite and pollucite in granitic pegmatites: exchange reactions with alkali
feldspars. Contributions to Mineralogy and Petrology, 114, 255-263.
Chichester, John Wiley and Sons Ltd., p. 2066-2087.

Figure captions

Figure 1. Example of a portion of a LIBS spectrum from analysis of spodumene (sample
SMCP112), over the spectral range of 580-850 nm, including the 812.644 nm lithium line used
for calibration here. The relative spectral intensity unit on the y-axis is given in arbitrary units
(a.u.), as relative units of intensity. Note that peak intensities have no relationship to element
concentration, for instance Rb and K would be expected to have negligible concentrations in
spodumene, although these could relate to mica inclusions.

Figure 2. Schematic diagram of the essential elements of the LIBS system.

Figure 3. Geological plan of the rock relationships interpreted at surface in the area of the Mt.
Cattlin mine (adapted from Grigson 2009; Spiers et al. 2011), with sample locations shown. The
bracketed negative figure indicates the depth below surface from which the samples were taken.
from open pit exposures of pegmatite. Pegmatite sheets dip gently to the southwest. Geological
units referred to in the legend are those described by Witt (1997, 1998). The area outlined by the
black dashed line indicates Galaxy’s final proposed open pit design.

Figure 4. LIBS calibration curves (mean peak area vs. concentration) with lines of fit plotted for
lithium (812.644 nm line) for (a) synthetic glass standards ($R^2 = 0.994$); (b) pressed powder
standards ($R^2 = 0.999$). Concentration for both graphs is weight percent Li$_2$O.

Figure 5. Scatter plots of comparative analyses between glass disc and pressed powder
standards, for (a) analysis of glass and pressed powder standards using the glass disc calibration;
(b) analysis of glass and pressed powder standards using the pressed powder calibration.

Figure 6. Backscattered SEM image of a typical LIBS analysis spot in fine grained albite-
‘sericite’ alteration of spodumene, from LIBS map of sample SMCP112. Note that these LIBS
analysis spots are typically visible to the unaided eye, dependant on mineralogy and grainsize.

Figure 7. Backscattered SEM image showing detail of close spaced LIBS points used in
mapping of sample SMCP112. Mineralogy is very fine albite-‘sericite’ (upper part of image) and
spodumene (lower right corner), displaying strong cleavage. Note spots in the lower part of the
image, where surficial micas/albite has been removed by the LIBS analysis spot, exposing
spodumene with visible cleavage beneath.
Figure 8. Photomicrograph (left) and corresponding false colored LIBS map of lithium distribution (right) from the selected area of sample SMCP112. The sample mineralogy is labelled in the photomicrograph (abbreviations of Whitney and Evans 2010) with pale white-green spodumene with incipient alteration at bottom, with a rind of dull khaki ‘sericite’ alteration (±‘adularia’ ± chlorite) forming a rind on spodumene, and grey quartz of the host matrix is at the top of the image. Each pixel (200 µm squares) on the map represents a corresponding LIBS spot on the sample image to the left (cf. Fig. 7). The numerical scale is weight percent Li$_2$O. Note that the color scaling of the map is non-linear in order to highlight the correspondence between mineralogy and Li$_2$O concentration.

Figure 9. Photomicrograph (left) and corresponding false colored LIBS map of lithium distribution (right) from the selected area of sample SMCP172. The sample mineralogy is labelled in the photomicrograph (abbreviations of Whitney and Evans 2010) with pale green weakly altered spodumene in the lower right, and more strongly altered spodumene in the upper right. Spodumene with replacement by very fine purple mica (lepidolite?) is present on the left half of the photomicrograph, with lepidolite and related micas in the centre, and (‘cleavelandite’) albite at the bottom. This image highlights the lower Li$_2$O levels associated with albite, and ‘sericite’± chlorite alteration of spodumene. The numerical scale is weight percent Li$_2$O, with a non-linear colour scaling to highlight differences in lithium distribution (cf. Fig. 8).

Figure 10. Cross polarized transmitted light photomicrograph of spodumene from SMCP112, displaying typically weak alteration to ‘sericite’ along cleavage planes (NW-SE orientation) and
irregular cross cutting fractures, with subordinate alteration to chlorite and ‘adularia’ (as indicated). A subordinate component of albite is also likely within the alteration assemblage.

Figure 11. Cross polarized transmitted light photomicrograph of strongly altered spodumene from SMCP112, displaying pervasive crystallographically controlled replacement by ‘sericite’ (cf. Graham 1975); note the preservation of spodumene cleavage in the same orientation as shown in Figure 10, as well as irregular cross-cutting fractures. Chlorite, ‘adularia’ and albite form minor components of the alteration assemblage (as indicated). The locally strong cleavage in the lower left corner suggests the presence of minor spodumene relicts. Strained quartz in the top right corner is representative of the matrix of the original spodumene crystal.
Table 1: Methods of lithium estimation for dioctahedral and trioctahedral micas, with attribution.

<table>
<thead>
<tr>
<th>Source</th>
<th>Calculation</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tischendorf et al. (1997)</td>
<td>$\text{Li}_2\text{O} = 0.3935 \times F^{1.326}$</td>
<td>$F = 0.01$ to $8 \text{ wt}%$ Dioctahedral class</td>
</tr>
<tr>
<td>Tindle and Webb (1990)</td>
<td>$\text{Li}_2\text{O} = (0.287 \times \text{SiO}_2) - 9.552$</td>
<td>$\text{MgO} < 3 \text{ wt}%$ $\text{SiO}_2 > 34 \text{ wt}%$ Trioctahedral class</td>
</tr>
</tbody>
</table>

*recommended application range by Tischendorf et al. (1999)

Table 2: Compositional data range (minima, maxima, mean and standard deviation) for spodumene from electron microprobe analysis. All Fe is treated as Fe$_2$O$_3$ for calculation purposes, and all values are listed as weight percent. Titanium was sought but not detected.

<table>
<thead>
<tr>
<th></th>
<th>SMCP112</th>
<th></th>
<th>SMCP172</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>MAX</td>
<td>MEAN</td>
<td>STD DEV</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>61.30</td>
<td>64.80</td>
<td>62.54</td>
<td>1.34</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>27.54</td>
<td>27.76</td>
<td>27.68</td>
<td>0.08</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>1.13</td>
<td>1.30</td>
<td>1.23</td>
<td>0.07</td>
</tr>
<tr>
<td>MnO</td>
<td>0.20</td>
<td>0.29</td>
<td>0.24</td>
<td>0.04</td>
</tr>
<tr>
<td>MgO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CaO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>0.14</td>
<td>0.18</td>
<td>0.16</td>
<td>0.01</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>0.00</td>
<td>0.11</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>Li$_2$O§</td>
<td>7.74</td>
<td>8.11</td>
<td>7.98</td>
<td>0.14</td>
</tr>
<tr>
<td>Total</td>
<td>98.78</td>
<td>101.75</td>
<td>99.85</td>
<td>1.75</td>
</tr>
</tbody>
</table>

§ calculation by stoichiometry; Li ions calculated on the basis of Li = 1-(Na+K+Ca)
Table 3: Compositional data range (minima, maxima, mean and standard deviation) for dioctahedral micas ('sericite'), as alteration of spodumene, from electron microprobe analysis. All values are listed as weight percent. The data set from SMCP172 is representative of the fine purple micas replacing spodumene.

<table>
<thead>
<tr>
<th>Element</th>
<th>SMCP112 wt%</th>
<th>MIN</th>
<th>MAX</th>
<th>AVE</th>
<th>STD DEV</th>
<th>SMCP172 wt%</th>
<th>MIN</th>
<th>MAX</th>
<th>AVE</th>
<th>STD DEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>48.64</td>
<td>52.51</td>
<td>51.04</td>
<td>1.24</td>
<td></td>
<td>46.93</td>
<td>47.61</td>
<td>47.21</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td>26.40</td>
<td>28.60</td>
<td>27.09</td>
<td>0.87</td>
<td></td>
<td>33.02</td>
<td>34.97</td>
<td>33.84</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>2.05</td>
<td>3.16</td>
<td>2.64</td>
<td>0.44</td>
<td></td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.10</td>
<td>0.31</td>
<td>0.22</td>
<td>0.07</td>
<td></td>
<td>0.14</td>
<td>0.28</td>
<td>0.20</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>2.14</td>
<td>3.59</td>
<td>2.83</td>
<td>0.57</td>
<td></td>
<td>0.83</td>
<td>1.22</td>
<td>0.96</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0.04</td>
<td>0.15</td>
<td>0.11</td>
<td>0.04</td>
<td></td>
<td>0.03</td>
<td>0.10</td>
<td>0.06</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Na2O</td>
<td>0.06</td>
<td>0.55</td>
<td>0.17</td>
<td>0.18</td>
<td></td>
<td>0.07</td>
<td>0.16</td>
<td>0.12</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>K2O</td>
<td>10.07</td>
<td>11.29</td>
<td>10.71</td>
<td>0.40</td>
<td></td>
<td>10.01</td>
<td>10.75</td>
<td>10.27</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>BaO</td>
<td>0.00</td>
<td>0.11</td>
<td>0.02</td>
<td>0.04</td>
<td></td>
<td>0.00</td>
<td>0.04</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Rb2O</td>
<td>0.28</td>
<td>0.51</td>
<td>0.38</td>
<td>0.08</td>
<td></td>
<td>1.23</td>
<td>1.61</td>
<td>1.38</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Cs2O</td>
<td>0.00</td>
<td>0.04</td>
<td>0.03</td>
<td>0.01</td>
<td></td>
<td>0.04</td>
<td>0.10</td>
<td>0.06</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.06</td>
<td>0.27</td>
<td>0.15</td>
<td>0.08</td>
<td></td>
<td>0.00</td>
<td>0.11</td>
<td>0.06</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>TiO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.04</td>
<td>0.01</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Li2O*</td>
<td>0.01</td>
<td>0.07</td>
<td>0.03</td>
<td>0.02</td>
<td></td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>H2O**</td>
<td>4.23</td>
<td>4.52</td>
<td>4.39</td>
<td>0.09</td>
<td></td>
<td>4.36</td>
<td>4.45</td>
<td>4.42</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Total***</td>
<td>98.08</td>
<td>101.14</td>
<td>99.76</td>
<td>1.20</td>
<td></td>
<td>98.20</td>
<td>99.54</td>
<td>98.64</td>
<td>0.61</td>
<td></td>
</tr>
</tbody>
</table>

*Li2O calculation by the method of Tischendorf et al. (1997)
**H2O calculation by the method of Tindle and Webb (1990), based on a back-calculation from OH estimated by assuming full site occupancy of (OH, F).
***Totals have been corrected for O=F.
Table 4: Compositional data range (minima, maxima, mean and standard deviation) for dioctahedral micas (‘sericite’), as alteration of spodumene, from electron microprobe analysis (CSIRO FEG hyperprobe) of samples SMCP03, 12 and 23. All values are listed as weight percent.

<table>
<thead>
<tr>
<th></th>
<th>SMCP03,12,23</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=10</td>
<td>MIN</td>
<td>MAX</td>
<td>MEAN</td>
</tr>
<tr>
<td>SiO2</td>
<td>45.93</td>
<td>56.50</td>
<td>48.66</td>
<td>3.76</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.00</td>
<td>0.21</td>
<td>0.03</td>
<td>0.07</td>
</tr>
<tr>
<td>Al2O3</td>
<td>28.64</td>
<td>36.24</td>
<td>33.68</td>
<td>2.12</td>
</tr>
<tr>
<td>FeO</td>
<td>0.09</td>
<td>1.85</td>
<td>0.61</td>
<td>0.62</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.31</td>
<td>0.12</td>
<td>0.10</td>
</tr>
<tr>
<td>MgO</td>
<td>0.05</td>
<td>0.63</td>
<td>0.22</td>
<td>0.19</td>
</tr>
<tr>
<td>CaO</td>
<td>0.00</td>
<td>0.05</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.06</td>
<td>0.40</td>
<td>0.21</td>
<td>0.12</td>
</tr>
<tr>
<td>K2O</td>
<td>9.25</td>
<td>11.48</td>
<td>10.65</td>
<td>0.60</td>
</tr>
<tr>
<td>Rb2O</td>
<td>0.04</td>
<td>1.35</td>
<td>0.76</td>
<td>0.53</td>
</tr>
<tr>
<td>Cs2O</td>
<td>0.02</td>
<td>0.05</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.00</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>0.00</td>
<td>0.46</td>
<td>0.23</td>
<td>0.18</td>
</tr>
<tr>
<td>Cl</td>
<td>0.00</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Li2O*</td>
<td>0.00</td>
<td>0.14</td>
<td>0.06</td>
<td>0.05</td>
</tr>
<tr>
<td>H2O**</td>
<td>4.20</td>
<td>4.67</td>
<td>4.39</td>
<td>0.18</td>
</tr>
<tr>
<td>Total***</td>
<td>98.27</td>
<td>101.57</td>
<td>99.53</td>
<td>1.11</td>
</tr>
</tbody>
</table>

*Li2O calculation by the method of Tischendorf et al. (1997)
**H2O calculation by the method of Tindle and Webb (1990)
***Totals have been corrected for O=F
Table 5: Compositional data range (minima, maxima, mean and standard deviation) for lepidolite (trioctahedral mica class) from electron microprobe analysis. Data presented here are from the spatially adjoining sample SMCP171 in addition to SMCP172. All values are listed as weight percent.

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>MIN</th>
<th>MAX</th>
<th>MEAN</th>
<th>STD DEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al2O3</td>
<td>17.30</td>
<td>32.81</td>
<td>23.90</td>
<td>2.68</td>
</tr>
<tr>
<td>FeO</td>
<td>0.00</td>
<td>0.30</td>
<td>0.03</td>
<td>0.07</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.29</td>
<td>0.10</td>
<td>0.06</td>
</tr>
<tr>
<td>MgO</td>
<td>0.00</td>
<td>0.86</td>
<td>0.11</td>
<td>0.22</td>
</tr>
<tr>
<td>CaO</td>
<td>0.00</td>
<td>0.30</td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.07</td>
<td>0.27</td>
<td>0.14</td>
<td>0.04</td>
</tr>
<tr>
<td>K2O</td>
<td>9.11</td>
<td>10.77</td>
<td>9.47</td>
<td>0.31</td>
</tr>
<tr>
<td>SrO</td>
<td>0.00</td>
<td>0.12</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Rb2O</td>
<td>1.06</td>
<td>4.40</td>
<td>3.69</td>
<td>0.62</td>
</tr>
<tr>
<td>Cs2O</td>
<td>0.02</td>
<td>1.15</td>
<td>0.77</td>
<td>0.21</td>
</tr>
<tr>
<td>P2O5</td>
<td>0.05</td>
<td>0.28</td>
<td>0.17</td>
<td>0.12</td>
</tr>
<tr>
<td>F</td>
<td>2.67</td>
<td>5.36</td>
<td>4.19</td>
<td>0.73</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.00</td>
<td>0.06</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Li2O*</td>
<td>3.78</td>
<td>6.84</td>
<td>5.26</td>
<td>0.52</td>
</tr>
<tr>
<td>H2O*</td>
<td>1.97</td>
<td>4.57</td>
<td>2.55</td>
<td>0.52</td>
</tr>
<tr>
<td>Total**</td>
<td>99.17</td>
<td>100.99</td>
<td>100.07</td>
<td>0.52</td>
</tr>
</tbody>
</table>

*Li2O and H2O calculation by the method of Tindle and Webb (1990)
**Totals have been corrected for O=F