5/6

1	Revision 2#
2	Fe-Mg diffusion in spinel: New experimental data and a point defect based model
3	Katharina Vogt ^{1,2} , Ralf Dohmen ¹ , Sumit Chakraborty ¹
4	1 Institut für Geologie, Mineralogie und Geophysik, Ruhr Universität Bochum, Bochum, Germany
5	2 Tectonics Group, Department of Earth Sciences, University of Utrecht, Utrecht, Netherlands
6	
7	Abstract
8	We have measured Fe-Mg interdiffusion rates (D_{Fe-Mg}) in synthetic Mg-Al spinel and a natural (Mg,Fe)
9	aluminous spinel from Sri Lanka ($X_{Fe} \sim 0.07$) at atmospheric pressure over a range of different oxygen
10	fugacities $(\log_{10} (fO_2 [Pa]) = -14 \text{ to } -10)$ and temperatures (750-900 °C). Diffusion couples made of
11	single crystal spinel and thin films of hercynitic composition ($X_{Fe} \sim 0.5$) were used for the diffusion
12	anneals. The experimentally induced diffusion profiles were analyzed by Rutherford Backscattering
13	Spectroscopy to retrieve true depth concentration profiles for Fe. These were fitted numerically by an
14	explicit finite difference scheme that allows compositionally dependent interdiffusion processes to be
15	modelled by relating self- and interdiffusion coefficients. Synthesis of data from the two diffusion
16	couples indicate that: (a) D_{Fe-Mg} depends on X_{Mg} of spinel, with increasing diffusion rates with
17	increasing X_{Mg} . This behaviour is opposite of that found in silicates. (b) Self diffusion coefficients
18	could not be determined from these experiments, but the results indicate that $D_{Fe'}/D_{Mg} > 100$. (c) D_{Fe-Mg}
19	in Mg-spinel is independent of oxygen fugacity whereas it depends strongly and non-linearly on
20	oxygen fugacity for the natural spinel. This observation indicates that the mechanisms of diffusion are
21	different in the two kinds of spinel (Fe-bearing vs. Fe-free), which is also seen in the difference in
22	activation energy obtained for these. Moreover, the non-linear dependence on oxygen fugacity
23	indicates that diffusion occurs by an interstitial mechanism at low oxygen fugacities and by a vacancy
24	mechanism at high oxygen fugacities in natural, Fe-bearing spinel. (d) Simple Arrhenius relations that
25	describe the data within the range of experimental conditions are - Synthetic magnesium spinel: Q_{FeMg}

26	=213 ± 14 kJ/mol, $\log_{10}D_{Fe-Mg}$ =-8.02±0.67[m ² /s]. Natural Fe-bearing spinel for $\log_{10} (fO_2 [Pa]) = -12$):
27	Q_{FeMg} =139 ± 18 kJ/mol, log ₁₀ D_{Fe-Mg} =-12.33± 0.85[m ² /s]. A model based on point defect considerations
28	that describes the temperature as well as oxygen fugacity dependence of D_{Fe-Mg} in Fe-bearing spinel is:
29	$D[m^{2}/s] = D_{v}[m^{2}/s]fO_{2}[Pa]^{m}exp(-Q_{v}[J/mol]/RT[K]) + D_{i}[m^{2}/s]fO_{2}[Pa]^{-m}exp(-Q_{i}[J/mol]/RT[K]),$
30	with $D_v = 1.07 \times 10^{-09} \pm 1.55 \times 10^{-09} \text{ m}^2/\text{s}$, $Q_v = 131 \pm 66 \text{ kJ/mol}$, $D_i = 1.03 \times 10^{-17} \pm 7.32 \times 10^{-17} \text{ m}^2/\text{s}$,
31	$Q_v = 130 \pm 80$ kJ/mol and m=0.34 ±0.18. Poor coverage of T- fO_2 space by available experimental data
32	results in large uncertainties in the fit parameters. As a result, these expressions are useful for
33	understanding the diffusion behaviour in spinels, but not for extrapolation and calculation of diffusion
34	coefficients for cooling rate or other related calculations. Until the parameters can be better constrained
35	through the availability of more data, we recommend that for such calculations, the parameters noted
36	above for Fe-bearing spinels be used for compositions and fO_2 conditions that are close to those of the
37	experiments. (e) D_{Fe-Mg} in spinel is faster than D_{Fe-Mg} in olivines, pyroxenes and garnets at most
38	conditions.

Keywords: Spinel; diffusion coefficient; diffusion mechanism; point defect; thin films; pulsed laser
 deposition; Rutherford Backscattering Spectroscopy;

- 41
- 42

Introduction

Spinel (Fe_xMg_{1-x}Al₂O₄) is one of the major minerals in Earth's uppermost mantle, a common mineral in 43 44 a wide range of metamorphic and ultramafic rocks, an important mineral inclusion found in chondritic 45 meteorites of the early solar system, and it has also been found in lunar rocks (see references in the 46 review by Van Orman and Crispin, 2010). Because of its wide range of thermodynamic solid solutions, 47 spinel may form in a variety of different tectonic environments and its chemical composition has been 48 used to infer the physicochemical conditions under which its host rocks have formed (e.g. Irving, 1965; 49 O'Neill and Wall, 1987; Ballhaus, 1991). Hence, knowledge of diffusion rates in spinel is of interest in 50 a number of geological and planetary science problems. For example, Sheng et al., (1992) studied the

51 Mg isotopic variations in spinel and coexisting silicates of the plagioclase-olivine inclusions in the 52 Allende meteorite to evaluate cooling rates based on Mg-self diffusion in spinel and equilibrium melt. 53 Ozawa (1983) used zoning patterns in spinel and coexisting olivine to constrain cooling rates of 54 ultramafic rocks of the Miyamori ultramafic complex. Similarly, Coogan et al. (2007) used the partitioning of Mg and Fe²⁺ between olivine and spinel to infer cooling rates of the lower oceanic crust 55 56 and upper mantle, whereas Liermann and Ganguly (2002) studied the partitioning between spinel and orthopyroxene to study the thermal history of diogenites. Apart from these, diffusion of Fe^{2+} in spinel is 57 58 believed to be a major process controlling maghemitization, by which magnetic minerals with spinel 59 structure become progressively oxidized but remain single phase spinels, which is an important feature 60 of submarine weathering (Freer and O'Reilly, 1980). Although much emphasis has been placed on the temperature dependent exchange of Fe^{2+} and 61 62 Mg between olivine and spinel (e.g. Lehmann et al., 1983; Ozawa, 1983; Ozawa, 1984; Kessel et al., 63 2006; Coogan et al., 2007) and orthopyroxene and spinel (e.g. Liermann and Ganguly, 2001, 2002, 2003) in order to constrain complex thermal histories and cooling rates, aspects of Fe^{2+} -Mg 64 65 interdiffusion in spinel, such as the nature of dependence of diffusion rates on oxygen fugacity, still 66 remain unclear. Freer and O'Reilly (1980) were the first to determine the activation energy and the Fe^{2+} -Mg interdiffusion coefficient, D_{Fe-Mg} in aluminous spinel as a function of temperature (800-1034) 67 °C) and composition (FeAl₂O₄-MgAl₂O₄) using diffusion couples composed of synthetic pellets. Their 68 data reveals a strong compositional dependency where D_{Fe-Mg} increases with decreasing Fe²⁺ content in 69 70 spinel. Sheng and co-workers (1992) measured Mg self diffusion (D_{Mg}) in aluminous spinel 71 (MgAl₂O₄) and coexisting melt at bulk chemical equilibrium using an isotopic tracer at 1261-1553 °C. More recently Liermann and Ganguly (2002) have determined the diffusion kinetics of Fe²⁺ and Mg in 72 73 spinel (Mg_{0.99}Fe_{0.01}Al_{1.997}Cr_{0.003}O₄) using diffusion couples at 2 GPa, 950-1325 °C and at 3 GPa and 1125 °C. Comparison of their data with those of Freer and O'Reilly implies that Fe²⁺-Mg interdiffusion 74 75 might be much slower than previously thought. Also, in contrast to the complex profiles measured by

76	Freer and O'Reilly (1980), Liermann and Ganguly (2002) found simple symmetric diffusion profiles
77	that indicate a weak compositional dependency. Suzuki et al. (2008) found that Fe-Mg interdiffusion
78	might be strongly dependent on the Cr-Al ratio in spinel, but the authors based their inference on a
79	single experiment and assumed D_{Mg} and D_{Fe} to be equal and thus independent of Mg/(Mg+Fe).
80	However, none of these studies considered the effect of varying oxygen fugacity upon the rate
81	of diffusion, which could have a significant effect not only on the diffusion rate itself but also on the
82	point defect chemistry and hence diffusion mechanisms, as has been reported for magnetite based
83	spinels (e.g. Dieckmann and Schmalzried, 1977a,b; Hallron and Bowen, 1980; Dieckmann and
84	Schmalzried, 1986; Dieckmann et al., 1987; Töpfer et al., 1995, Aggarwal and Dieckmann, 2002a,
85	Aggarwal and Dieckmann, 2002b). It would also be useful to extend the data set to lower temperatures
86	to obtain better constraints on activation energies of diffusion. The aim of this study is to characterize
87	the temperature dependent Fe ²⁺ -Mg interdiffusion in aluminous spinel in particular at temperatures
88	below 1000 °C and to verify possible effects of oxygen fugacity and composition on the diffusion
89	mechanism. Here we present an experimental study on Fe ²⁺ -Mg interdiffusion in spinel as a function of
90	oxygen fugacity ($\log_{10} [fO_2 Pa] = -14$ to -10), temperature (750-900 °C) and composition and discuss
91	mechanisms of diffusion. In the process, we explore whether it is possible to reconcile the various data
92	sets that are available in the literature in the framework of one consistent model.

93

94

Methods

95 Starting material

We have prepared diffusion couples made of single crystals of Mg-rich aluminous spinel and 30-80 nm
thick films of synthetic Fe²⁺-rich spinel. Crystals of two different compositions were used for the
experiments –a synthetic aluminous spinel (Sp1: MgAl₂O₄) and a natural gem-quality spinel (Sp2:
(Mg_{0.93}Fe_{0.07})(Al_{1.997}Cr_{0.003})O₄) from Sri Lanka. The synthetic crystals were obtained from CrysTec
GmbH (Berlin, Germany). The compositional difference between diffusion couples involving Sp1 and

101 Sp2 enable a test of the role of Fe in influencing diffusion rates in spinel. All crystals were cut into 102 pieces with dimensions of approximately 1-2 mm x 2 mm x 2 mm and polished mechanically using 103 diamond compounds, followed by a final step of mechano-chemical polishing using colloidal silica. Thin films of Fe²⁺-rich spinel were deposited on these polished samples using Pulsed Laser Deposition 104 105 (PLD). The source material (target) used for all depositions was a polycrystalline spinel pellet with a 106 hercynite content of 50% (Fe_{0.5}Mg_{0.5})Al₂O₄ synthesized from powdered oxide mixes. A detailed 107 description of the method, experimental setup and target preparation used in similar studies in our 108 laboratory is given in Dohmen et al. (2002) and Dohmen et al. (2007). To ensure that the polished crystal surfaces are free of any volatile absorbents, all samples were heated in vacuum ($<6 \times 10^{-1}$ Pa) at 109 110 600 °C for 15-20 minutes before the deposition. The synthetic target, (Fe_{0.5}Mg_{0.5})Al₂O₄, was ablated using an ArF-excimer laser with a wavelength of 193 nm at laser fluences of a few J/cm² which formed 111 112 a stoichiometric conversion of all components of the target into a plasma that finally condenses on the 113 substrate (single crystal spinel). Typically 4 samples were deposited at the same time of which one was 114 used as a reference sample to infer the film thickness and initial composition of the deposited film. 115 Previous studies have shown that the variations in film thickness among those crystals are less than 116 10% (Dohmen et al., 2002). Likewise, no compositional variations have been detected for any given 117 deposition. A detailed list of the deposition conditions is given in Table 1.

118

119 **Diffusion Anneal**

All diffusion anneals were carried out in a gas-mixing furnace at atmospheric pressure under controlled oxygen fugacity. To induce Fe^{2+} -Mg interdiffusion, the diffusion couples were annealed at

temperatures between 750-900°C for varying lengths of time, during which the oxygen fugacity was

123 buffered using a continuously flowing gas mixture of $CO-CO_2(10^{-14}-10^{-10} \text{ Pa})$. Both, temperature and

124 oxygen fugacity, were continuously monitored in situ by a type B thermocouple (Pt/Rh6%-Pt/Rh30%)

125 and a fO_2 -sensor (ZrO₂) and controlled within ± 1 °C and $\pm 0.1 \log_{10}$ units, respectively. The

reproducibility of the data was tested by repeating experiments at 800 °C and for different durations.
Conditions of all diffusion anneals are summarised in Table 2.

128 The surface topography of the samples was analysed using reflected light microscopy and some 129 selected samples were investigated using scanning electron microscopy and white-light phase-shifting 130 interference microscopy. The structure of the initially amorphous thin layer was also analysed using 131 electron backscatter diffraction (EBSD).

132

133 Rutherford Backscattering Spectroscopy and measurement of diffusion profiles

134 Film thickness and composition of the reference samples and detailed analysis of the compositional 135 changes of spinel across the interface of the diffusion couples were measured using Rutherford 136 Backscattering Spectroscopy (RBS). RBS is widely used for near surface analysis of solids and there is 137 a growing number of studies that use RBS for diffusion related problems in the earth sciences (e.g. see 138 Cherniak et al., 1991; Jaoul et al., 1991; and Dohmen et al., 2002; Dohmen et al., 2007 for related 139 studies from our laboratory). The analyses shown in this study were performed at the Dynamitron 140 Tandem Accelerator Laboratory of the Ruhr-University of Bochum. The 4 Mev tandem accelerator was 141 used to generate a beam of α -particles at 2 MeV that was focused onto the spinel samples. A final 142 aperture of 0.5 mm diameter enables to analyze samples with surface areas as small as 1 mm². A beam 143 current of 20-50 nA was typically used for the measurement. To prevent charging of samples, the sides 144 of sample crystals were coated with an Ag solution to allow for direct contact with the metallic sample 145 holder. The backscattered particles were detected at an angle of 170 ° with a silicon particle detector at 146 an energy resolution of about 16-20 keV. The sample surface was tilted at 5 ° relative to the beam to 147 prevent channeling.

Element distributions and film thicknesses were simulated by an iterative procedure to fit the measured spectra using the software RBX (Kótai, 1994), which enabled us to retrieve true concentration depth profiles for Fe and Mg spanning up to 400 nm. Because the depth profiles of

6

- 151 heavier elements are better constrained using RBS, only the well-defined Fe concentration profiles
- 152 were fitted in the following. A typical RBS spectrum is shown in Fig. 1.
- 153

154 **Fitting of Diffusion Profiles and calculation of Diffusion Coefficients.**

- In a binary diffusion process, the net flux of Fe^{2+} and Mg^{2+} in a binary solid solution such as spinel must be zero at any given point in order to maintain charge balance and stoichiometry. It is governed by the same diffusion coefficient, which represents the interdiffusion coefficient of the two
- 158 components, D_{Fe-Mg} :
- 159

160
$$\frac{\partial C_{Fe}^{Sp}}{\partial t} = \frac{\partial}{\partial x} \left[D_{Fe-Mg}^{Sp} \frac{\partial C_{Fe}^{Sp}}{\partial x} \right]$$
(1)

161

We have used an explicit finite difference scheme (e.g. see Costa et al., 2008) to solve for equation (1) in order to calculate compositionally dependent interdiffusion coefficients to fit the concentration depth profiles extracted from the RBS spectra. A compositionally dependent D_{Fe-Mg} is calculated at each grid point to calculate concentration profiles according to:

166

$$C_i^{n+1} = C_i^n + \Delta t \left(\frac{D_{i+1}^n - D_i^n}{\Delta x}\right) \left(\frac{C_{i+1}^n - C_i^n}{\Delta x}\right) + D_i^n \Delta t \left(\frac{C_{i+1}^n - 2C_i^n + C_{i-1}^n}{\Delta x^2}\right)$$

167

168 C_i^n represents the concentration at the location *i* at the current timestep, *n*, whereas *n*+1 represents the 169 new (future) concentration (C_i^{n+1}), Δt is the timestep, Δx is the grid spacing and D_i^n refers to the 170 diffusion coefficient, D_{Fe-Mg} , at a given composition (at node i) and time-step, n. We assume constant 171 grid spacing, zero flux at the top of the thin film and constant flux at the bottom i.e. the interior of the 172 crystal.

The interdiffusion coefficient is related to the self-diffusion coefficients D_{Me} , D_{Fe} and the 173174thermodynamic properties of the silicate / oxide according to (e.g.: Barrer, 1963): 175

176
$$D_{Fe-Mg}^{Sp} = \frac{D_{Fe}^{Sp} D_{Mg}^{Sp}}{X_{Fe} D_{Fe}^{Sp} + X_{Mg} D_{Mg}^{Sp}} \left[1 + \frac{\partial ln \gamma_{Fe}^{Sp}}{\partial ln X_{Fe}^{Sp}} \right]$$
(2)

177

where D_{Fe-Mg}^{Sp} is the interdiffusion coefficient at a given composition, D_{Fe}^{Sp} and D_{Mg}^{Sp} are the self-178 diffusion coefficients of Fe^{2+} and Mg^{2+} , X_i is the mole fraction of a component i, where $i = Fe^{2+}$ or 179 Mg^{2+} in this study, and γ_{Fe}^{Sp} is the thermodynamic activity coefficient of the Fe-component, all at the 180 181 same composition at which D_{Fe-Mg} is to be calculated. This relationship provides a theoretical basis for describing the compositional dependence of D_{Fe-Mg} that is used in Eqn. (1) and is more meaningful than 182 183 using arbitrary functions such as polynomials or power laws. It should be noted that the self-diffusion coefficients D_{Fe} and D_{Mg} themselves might also depend on the major element composition, in which 184 185 case the compositional dependence of D_{Fe-Mg} is even stronger. The term in parentheses, called the 186 thermodynamic factor, is equal to one if the solid solution behaves ideally (or nearly ideally), which is the case for the mixing of Fe²⁺- and Mg-components in spinel (Liermann and Ganguly, 1999; Liermann 187 188 and Ganguly, 2003).

In a situation where Fe^{2+} and Mg are exchanged, the shapes and lengths of concentration 189 profiles are controlled by the interdiffusion coefficient, D_{Fe-Mg} , and its compositional dependence as 190 given, for example, by Eqn. 2. However, as the relationship between D_{Fe-Mg} , D_{Fe} and D_{Mg} is non-linear, 191 192 it is worth exploring the sensitivity of the different diffusion parameters in Eqn. (2) to compositional 193 variation, particularly if D_{Fe} and D_{Mg} are not similar to each other. A question that will become 194 particularly relevant is: To what extent may the quantities D_{Fe} and D_{Mg} be constrained from the profile 195 shapes in different compositions and for different $(D_{Fe'}/D_{Mg})$?

196 If D_{Fe} and D_{Mg} are similar to each other, then it follows from Eqn. (2) that in the limiting case 197 when one of the components is dilute (e.g. $X_{Fe} \rightarrow 0$), the interdiffusion coefficient approaches the selfdiffusion coefficient of the dilute component (i.e. $D_{Fe-Mg} \sim D_{Fe}$). To illustrate the total range of 198 199 possibilities, we have plotted the relationship between D_{Fe-Mg} , D_{Fe} and D_{Mg} for a wide range of values of D_{Fe} and D_{Mg} for different compositions, with these quantities, and hence also $(D_{Fe'}/D_{Mg})$, varying 200 201 over 10 orders of magnitude (Fig. 2). The median values of D_{Fe-Mg} , D_{Fe} and D_{Mg} are arbitrarily chosen to be $1 \times 10^{-18} \text{ m}^2/\text{s}$ for the purpose of illustration – the choice of this value has no effect on the 202 203 discussion that follows.

204 For a given spinel composition (X_{Fe}) and $D_{Fe'}/D_{Mg}$ there exists a minimum value of the ratio 205 where D_{Fe-Mg} is effectively equal to D_{Fe} and a maximum where D_{Fe-Mg} approaches D_{Mg} . These two ratios delineate a band (Fig. 2) within which D_{Fe-Mg} (and hence profile lengths) are determined by both D_{Fe} 206 207 and D_{Mg} . Conversely, a given profile can be fitted to retrieve both D_{Fe} and D_{Mg} only if D_{Fe}/D_{Mg} lies 208 within this band. If D_{Fe} and D_{Mg} differ by more than a couple of orders of magnitude, then the profile 209 lengths and shapes become effectively independent of one of the quantities and this quantity cannot be 210 constrained from the data. See also Borinski et al. (2012) for a related discussion on multicomponent 211 systems. With increasing molar fraction of the hercynite component (X_{Fe}) , the band shifts to lower 212 values. We have illustrated this behaviour for four spinel compositions in Figs. 2.

213 For example for $X_{Fe} = 0.001$, the composition of Sp1 in this study, for $D_{Fe}/D_{Mg} < 100$, $D_{Fe-Mg} \approx$ D_{Fe} , but for $D_{Fe}/D_{Mg} > 10000$ one has $D_{Fe-Mg} = D_{Mg}$ (Fig. 2a). In between these two ratios D_{Fe-Mg} is 214 215 dependent on both tracer diffusion coefficients. It follows that diffusion profiles in Sp1 can be used to 216 extract D_{Fe-Mg} and this quantity is essentially D_{Fe} , whereas D_{Mg} cannot be constrained (unless D_{Mg}/D_{Fe} 217 0.001). With incorporation of Fe, at $X_{Fe} = 0.07$ (the composition of Sp2) if $D_{Fe}/D_{Mg} < \sim 1$, $D_{Fe-Mg} = D_{Fe}$, and if $D_{Fe}/D_{Mg} > \sim 100$, $D_{Fe-Mg} = D_{Mg}$ (Fig. 2b). Similarly, for $X_{Fe} = 0.5$ (the composition of the thin 218 film) the band lies between D_{Fe}/D_{Mg} 0.1 and 10 (Fig. 2c). Therefore, assuming that D_{Fe} and D_{Mg} are 219 constant, different diffusion profile shapes and lengths can be expected depending on D_{Fe}/D_{Mg} and the 220

221	initial chemical gradient as defined by the diffusion couple in the experiment. If $D_{Fe}/D_{Mg} > 100$ for the
222	diffusion couple Sp2/thin film, D_{Fe-Mg} would be effectively constant and equal to D_{Mg} . However, if in
223	addition $D_{Fe}/D_{Mg} < 10000$ (i.e. $100 < D_{Fe}/D_{Mg} < 10000$), then for the diffusion couple Sp1/thin film
224	D_{Fe-Mg} would depend strongly on composition. D_{Fe-Mg} changes by about two orders of magnitude
225	between Sp1 and the thin film ends of the diffusion couple and distinctly asymmetric profile shapes
226	would be observed. In addition D_{Fe-Mg} of Sp1 would depend on D_{Fe} and D_{Mg} and the two quantities
227	cannot be constrained independently of each other. At $X_{Fe} \sim 0.999$, the roles of D_{Mg} and D_{Fe} are
228	reversed from that discussed for $X_{Fe} \sim 0.001$ (Fig. 2d).
229	
230	Results and discussion
231	
232	Sample characterization: Stoichiometry, structure and topography
233	Surface topography, film thickness and stoichiometry of the samples were analysed before and after the
234	diffusion anneal using reflected light spectroscopy, scanning electron microscopy, EBSD, white light
235	interference microscopy, and RBS.
236	No substantial differences have been observed between the surfaces of the polished single crystals and
237	the coated samples using reflected light microscopy and white light interference microscopy (Fig. 3 a
238	and b). Structural characterization of the samples before and after the diffusion anneal have been
239	performed using EBSD. Distinct diffraction patterns obtained from the annealed samples show that the
240	initially amorphous thin film crystallized during the diffusion anneal. SEM images show that when rare
241	scratches were present on the sample surface, these are still visible after coating and subsequent
242	annealing. This implies that the thin film follows the surface topography of the substrate (single crystal)
243	and that crystallization does not change the surface topography of the sample. Measurement of
244	topographic variations using white light interference microscopy in different regions of the surfaces of
245	samples (e.g. two examples shown in Fig. 3 a and b) reveal that the total variation of topography is on
	10

the order of \pm 1.5 nm (Sp1) to \pm 6-10 nm (Sp2). The film thickness, measured by RBS analysis, varied in the range 25-85 nm (Table 2) in different samples. Compositional analysis of the nominally pure spinels (Sp1) revealed moreover that these contain minor Fe (X_{Fe}=0.001) that could be detected using RBS.

250

251 **Diffusion Profiles**

Fe²⁺ concentration profiles found in the diffusion couples of Sp1 (Fig. 4a) show a marked asymmetry 252 253around the inflection point (where the sign of the second derivative of C(x) changes), whereas profiles 254in Sp2 (Fig. 4b) are less asymmetric. The asymmetry indicates a compositional dependence of D_{Fe-Mg} . In both cases, Fe²⁺-Mg interdiffusion appears to be faster (i.e. slopes of concentration profiles are 255 256 gentler) on the iron-poor side of the diffusion couple. This behaviour is opposite of the behaviour seen 257 in silicates such as olivine or garnet, where diffusion rates tend to increase with Fe-content. The 258 difference may arise because diffusion in spinel can occur by vacancy as well as interstitial 259 mechanisms; this aspect will be discussed in more detail below. The asymmetric diffusion profile 260 shapes could be reproduced by assuming constant self diffusion coefficients (insensitive to 261 compositional changes) in Eqn. (2), with D_{Fe} greater than D_{Mg} . It is found that fits to the observed 262 profile shapes can be obtained for $D_{Fe}/D_{Mg} \ge 100$ for Sp1 and $D_{Fe}/D_{Mg} \ge 10$ for Sp2, as discussed above. 263 Under these circumstances the diffusion couple Sp2/thin film does not provide a strong constraint on compositional dependence of diffusion coefficients. Fig. 2 indicates that for Sp1, if $D_{Fe}/D_{Mg} \sim 100$, then 264 $D_{Fe-Mg} \sim D_{Fe}$; if $D_{Fe}/D_{Mg} > 10000$, then $D_{Fe-Mg} \sim D_{Mg}$. It is not possible to distinguish between these 265 266 scenarios (i.e. whether D_{Fe} or D_{Mg} or both control the observed profiles) based on our data, although D_{Fe-Mg} itself can be determined robustly. For Sp2, with $D_{Fe} > D_{Mg}$ as indicated by the asymmetry of the 267 profile, D_{Fe-Mg} lies within an order of magnitude of D_{Mg} (Fig. 2). The values of D_{Fe-Mg} that are obtained 268 269 from calculated profiles that best describe the observed profile lengths and shapes for both 270 compositions are reported in Table 2. Variations in D values obtained from different crystals annealed

5/6

at the same conditions over different lengths of time indicate a reproducibility of $0.11 \log_{10}$ units for the measured D values (Fig. 5) and this provides a useful estimate of the uncertainty in D.

273

274 Dependence of diffusion coefficients (*D_{Fe-Mg}*) on oxygen fugacity and temperature

The retrieved D_{Fe-Mg} values as a function of oxygen fugacity (log₁₀ ($fO_2[Pa]$) = -14 to -10 at constant

276 pressure (10^5 Pa) and temperature (800 °C) are shown in Fig 6. In the nominally pure spinel Sp1

277 diffusion coefficients are independent of oxygen fugacity within the uncertainty of the data. In the Fe-

bearing spinel Sp2 there is a clear dependence of diffusion rates on oxygen fugacity and the

279 dependence of $\log_{10} D$ on $\log_{10} fO_2$ is not linear (Fig. 6).

280 While there is extensive work in the literature on cation diffusion in magnetite-based spinels. comparably little is known about Fe^{2+} -Mg interdiffusion in aluminous spinels (e.g. Van Orman and 281 282 Crispin, 2010). Because there are two different cation sublattices in spinel, a number of different 283 migration mechanisms are possible (Dieckmann and Schmalzried, 1977a,b; Murphy et al., 2009). A 284 direct comparison of the point defect chemistry of magnetite and (Fe,Mg)Al₂O₄ should therefore be 285 considered with caution because magnetite and aluminous spinel have different crystal structures. In MgAl₂O₄-spinel, Mg²⁺ occupies the tetrahedral and Al³⁺ the octahedral sites. Magnetite, on the other 286 hand, has an inverse spinel structure at low temperatures. Fe^{2+} and Fe^{3+} occupy the octahedral sites in 287 equal proportions, and Fe^{3+} is the sole occupant of the tetrahedral sites (e.g. Verwey, 1947). Bearing 288 289 this caveat in mind, it is worthwhile nevertheless to compare the dependence of diffusion rates found in 290 this study with those obtained for magnetite. Diffusivities in magnetite have been reported to vary non-291 linearly as a function of oxygen fugacity according to the expression of the form:

292

293
$$D = D_v(T) f O_2^{2/3} + D_i(T) f O_2^{-2/3}$$
 (3)

295	where D is the total diffusivity and $D_{\nu}(T)$ and $D_i(T)$ refer to temperature dependent components of
296	diffusivity by the vacancy (v) and interstitial (i) mechanisms, respectively. The inferred fO_2 exponents
297	of $-\frac{2}{3}$ at low and $\frac{2}{3}$ at high oxygen fugacities were used to demonstrate that cation vacancies and
298	cation interstitials were the majority defects at high and low oxygen fugacities, respectively
299	(Dieckmann and Schmalzried, 1977a,b; Hallron and Bowen, 1980; Dieckmann, 1982; Dieckmann and
300	Schmalzried, 1986; Dieckmann et al., 1987; Töpfer et al., 1995; Aggarwal and Dieckmann, 2002a,
301	Aggarwal and Dieckmann, 2002b; see also Van Orman and Crispin, 2010 for a review). Our data on
302	Fe ²⁺ -Mg diffusion in Sp2 shows a dependence on oxygen fugacity that is practically identical to the
303	dependence observed for magnetite (Fig. 6) – lines drawn according to Eqn. 3 with slopes of $^{2}/_{3}$ and $^{-2}/_{3}$
304	describe the data set very well, indicating that in spite of the structural differences between magnetite
305	and Fe ²⁺ -Mg spinel, diffusion by an interstitial mechanism at low oxygen fugacities and by a vacancy
306	mechanism at higher oxygen fugacities occurs in (Fe ²⁺ ,Mg)Al ₂ O ₄ as well. Therefore, unlike in other
307	systems such as olivine, it is not possible to use a single fO_2 -exponent to correct for the effect of fO_2 on
308	diffusion rates in spinels over the entire range of their stability. In contrast to the behaviour of Sp2, the
309	data on nominally Fe-free spinel Sp1 show no resolvable dependence on fO_2 (Fig. 6), showing that
310	diffusion occurs in the two spinels by different mechanisms.

311

The temperature dependence of diffusion coefficients obtained from all experiments on Mg-spinel (Sp1) and the natural Fe-bearing spinel (Sp2) at $\log_{10} [fO_2 Pa] = -12$ are shown in Fig. 7 in the form of an Arrhenius plot (750-900 °C). It is seen that over the experimental range of temperature, diffusion in the Mg-rich spinel Sp1 is faster than in the Fe-bearing spinel Sp2. The slopes of the best-fit lines to the data indicate that the activation energy for diffusion in Sp1 is higher than for diffusion in Sp2. The difference in activation energy implies that there will be a crossover at lower temperatures where diffusion in the Fe-bearing spinel may become faster. A linear least squares fit yields the following

values of the pre-exponential factor, D_0 , and the activation energy, Q, in the Arrhenius relation: D =

320 $D_0 exp(-Q/RT)$, where R is the gas constant and T is the absolute temperature:

321

- 322 Synthetic magnesium spinel (Sp1)
- $323 \qquad Q_{FeMg} = 213 \pm 14 \text{ kJ/mol}$
- 324 $\text{Log}_{10}(\text{D}_{0\text{FeMg}}[\text{m}^2/\text{s}]) = -8.02\pm0.67$
- 325
- 326 Natural Fe-bearing spinel (Sp2)
- $327 \quad Q_{FeMg} = 139 \pm 18 \text{ kJ/mol}$
- 328 $\text{Log}_{10}(\text{D}_{0\text{FeMg}}[\text{m}^2/\text{s}]) = -12.33 \pm 0.85$
- 329

The activation energies in the two spinels differ, as has been found in other studies as well (e.g. Sheng et al., 1992, Liermann and Ganguly, 2002), because diffusion occurs by different mechanisms in the two spinels, as discussed above. Similar differences in diffusion behaviour between Fe-bearing and Fefree crystals have also been found in the olivine solid solution series (e.g. see Chakraborty et al., 1994; Chakraborty, 2010). Consequently, an interim conclusion is that for applications dealing with natural, Fe-bearing spinels, the Arrhenius relation obtained for Sp2 should be used. This aspect is considered in more detail below.

337 Comparison with Fe, Mg, Cr and Al diffusion rates in spinels from other studies

Fig. 8 shows a comparison of the Arrhenius relations reported in different studies on D_{Mg} and D_{Fe-Mg} in

aluminous spinel. Sheng et al (1992) determined Mg tracer diffusion coefficients in pure Mg-spinel at

- temperatures between 1260 1550 °C with an activation energy of 384 kJ/mol. Our data on D_{Fe-Mg} in
- 341 pure Mg-spinel at lower temperatures yield a much lower activation energy of 219 kJ/mol. This
- 342 difference can result from one of three reasons: (a) If $D_{Fe}/D_{Mg} \sim 100$, then $D_{Fe-Mg} \sim D_{Fe}$ (Fig. 2) and we
- have no information on D_{Mg} , or (b) the addition of Fe during diffusion in our experiments alters the

point defect chemistry and diffusion mechanism, or (c) If $D_{Fe}/D_{Mg} > 300$, then $D_{Fe-Mg} \sim D_{Mg}$ (Fig. 2), and the difference could result from a transition from an intrinsic diffusion mechanism at high temperatures (Sheng et al., 1992) to extrinsic diffusion at lower temperatures (this study). To choose between these alternatives it is necessary to obtain data at intermediate temperatures or determine D_{Mg} directly at low temperatures.

349 Liermann and Ganguly (2002) determined D_{Fe-Mg} at high temperatures and pressures in a spinel 350 of very similar composition to Sp2, whereas Freer and O'Reilly (1980) determined D_{Fe-Mg} as a function 351 of composition using diffusion couples made of pure Mg- and Fe-spinels enclosed in evacuated silica 352 tubes. Van Orman and Crispin (2010) and Liermann and Ganguly (2002) argue that the presence of 353 oxidizing conditions and extended defects in the crystals may have affected the results of the study of 354 Freer and O'Reilly (1980). Liermann and Ganguly (2002) fit their interdiffusion profiles using D_{Fe} and 355 D_{Mg} that were related by Equation (2). Based on the observed symmetry of their profile shapes, they 356 inferred that there was no significant compositional dependence and that $D_{Fe} \sim D_{Mg}$. However, our 357 analysis above indicates that $D_{Fe} \sim D_{Mg}$ need not be necessarily fulfilled for spinels of composition Sp2, and that symmetric profile shapes may be produced even when $D_{Fe} \neq D_{Mg}$ (Fig. 2). To illustrate this 358 aspect (Fig. 9), we have calculated a synthetic profile (points in Fig. 9) with $D_{Fe} = D_{Mg}$ using one of 359 the data points of Liermann and Ganguly (2002): 21.4x10⁸ Pa, 1125 °C, 51 hours (Sp-diff05d). Next, 360 we have produced "best fit" profiles to this data set (Fig. 9) using (a) $D_{Fe}/D_{Mg} = 1$, (b) $D_{Fe}/D_{Mg} = 10$ 361 362 and (c) $D_{Fe}/D_{Mg} = 100$. It is seen that there is very little difference in the calculated profile shapes and in particular, there is no pronounced asymmetry even when $D_{Fe}/D_{Mg} = 100$. Although it is possible to 363 364 distinguish the quality of fit in this perfectly ideal calculated profile shape, it is conceivable that with 365 real analytical data showing some scatter it would be difficult to distinguish between these possibilities. This happens because at these conditions (X_{Fe} ~ 0.01, D_{Fe} > D_{Mg}), D_{Fe-Mg} is always essentially equal to 366 D_{Mg} and is insensitive to the value of D_{Fe} (Fig. 2). Therefore, the data set of Liermann and Ganguly 367 368 (2002) is also consistent with our inference that $D_{Fe} > D_{Mg}$, by a factor of 100 or more. In the subsequent

15

369	discussion, therefore, we consider the D_{Fe-Mg} values obtained by Liermann and Ganguly (2002) and not
370	the D_{Fe} and D_{Mg} values that they extracted from the profiles (see discussion above related to profile
371	shape and length in an interdiffusion experiment and the role of D_{Fe-Mg} , D_{Fe} and D_{Mg}).
372	As the study of Liermann and Ganguly (2002) was carried out in graphite capsules in a piston
373	cylinder apparatus, the oxygen fugacity of their experiments was constrained to be between the C-O
374	buffer and the fO_2 given in the C-O-H system with H:O = 2:1 (i.e. constrained by the presence of some
375	water and graphite in the piston cylinder cell); see Chakraborty and Ganguly (1992) for more details for
376	a similar setup. However, oxygen fugacity along a buffer reaction curve is not constant at different
377	temperatures and therefore the temperature dependence of the buffer reaction gets incorporated into the
378	calculated apparent activation energy of diffusion. Moreover, as seen above, the oxygen fugacity
379	dependence of D_{Fe-Mg} is non-linear. This makes it difficult to compare the Arrhenius relation of
380	Liermann and Ganguly (2002) directly with our data. We have chosen an alternative option to analyse
381	the data. Considering the nature of fO_2 dependence of D_{Fe-Mg} in Fe-bearing spinel (Fig. 6), which can be
382	rationalized by a point defect thermodynamic model, we have explored whether it is possible to
383	describe both sets of D_{Fe-Mg} data taken together (i.e. Liermann and Ganguly, 2002; this study) in the
384	framework of one comprehensive model:
385	

386
$$D[m^2/s] = D_v[m^2/s]fO_2[Pa]^m exp(-Q_v[J/mol]/RT[K]) + D_i[m^2/s]fO_2[Pa]^{-m}exp(-Q_i[J/mol]/RT[K])$$
 (4)
387

388 We obtain the following fit parameters:

389
$$D_v = 1.07 \times 10^{-09} \pm 1.55 \times 10^{-09} \text{ m}^2/\text{s} \log_{10} D_v = -9.0 \text{ [m}^2/\text{s]}$$

- $390 \quad Q_v = 131 \pm 66 \text{ kJ/mol}$
- $391 \qquad D_i = 1.03 x 10^{-17} \pm 7.32 x 10^{-17} \ m^2/s \quad log_{10} D_i = -17.0 \ [m^2/s]$
- $392 \quad Q_v = 130 \pm 80 \text{ kJ/mol}$
- 393 m=0.34 ±0.18,

394 where R $[J K^{-1}mol^{-1}]$ is the universal gas constant.

395 The resulting fit to the data is shown in Fig. 10. In spite of the relatively large uncertainties resulting 396 from the limited body and spread of data, it is seen that the results are consistent with the general 397 behaviour predicted by the point defect model. In particular, the fit parameters also describe other data 398 sets (e.g. Freer and O'Reilly, 1980 and Suzuki et al., 2008), that were not included in the fitting 399 procedure, quite well (see below). The best fit fO_2 exponent is different from 2/3 in the magnetite 400 model. This could be because Fe-Mg spinel behaves differently from magnetite, or simply the result of 401 scatter of our data – detailed experiments as a function of fO_2 at several temperatures would be required 402 to adequately quantify this aspect. The limited spread of data in T-fO₂ space results in high 403 uncertainties in the fit-parameters so that these are not suitable for calculation of diffusion coefficients 404 at extrapolated conditions. However, the mean values of the fit-parameters provide several important 405 insights into the diffusion behaviour of Fe-Mg in Fe-bearing spinel. For example, a consequence of this analysis is the recognition that although the fO_2 dependence of D_{Fe-Mg} in spinel is non-linear, for the 406 407 range of temperatures and oxygen fugacity conditions that are relevant for at least most applications to 408 terrestrial samples, a positive dependence of D_{Fe-Mg} on fO_2 (corresponding to diffusion by dominantly a 409 vacancy mechanism) is adequate. The activation energy of 130 kJ/mol is slightly higher than the 50 -410 100 kJ/mol migration energy of diffusion that is calculated in computer simulations (e.g. Murphy et al., 411 2009). This fact, combined with the observed dependence of diffusion rates on oxygen fugacity (i.e. an 412 externally imposed chemical potential), indicates that Fe-Mg diffusion in spinels occurs by a transition 413 metal extrinsic diffusion (TaMED) mechanism (see Chakraborty, 1997 for details on the characteristics 414 of TaMED mechanism).

Fig. 10 shows calculated diffusion coefficients using the mean values of the fit parameters as a function of temperature and oxygen fugacity with the experimentally measured data points from different studies shown as well for comparison. Fig. 10a shows individual data points from our study as well as all earlier studies in Fe-bearing spinel (Freer and O'Reilly, 1980; Liermann and Ganguly, 2002;

419 Suzuki et al., 2008) as a function of temperature in an Arrhenius diagram. For the inferred fO_2 420 condition of each study, we have calculated diffusion coefficients at each experimental condition using 421 the fit parameters above (shown as red squares in Fig. 10a). It is seen that all of the experimentally 422 measured data are consistent with the above relationship. Moreover, we have fit Arrhenius type 423 relationships to the calculated dataset for each study (i.e. Freer and O'Reilly, 1980, Liermann and 424 Ganguly, 2002, and for Sp2 data from this study), shown as dashed red lines. It is seen that the apparent 425 mismatch between studies and the scatter seen in Fig. 8 is almost completely reproduced. This indicates 426 that results from all experimental studies are in fact consistent with each other and may be described by 427 the model above; there is no need to invoke enhanced diffusion due to artefacts such as oxidation of 428 spinels. This exercise also underscores the need to consider the effect of oxygen fugacity in dealing 429 with diffusion in Fe-bearing spinels – the non-linear dependence can lead to a wide range of behaviour 430 so that simple linear extrapolations in Arrhenius plots can lead to incorrect results.

431 The diffusivities reported by Freer and O'Reilly (1980) (for a spinel composition of FeO= 25 432 wt% and FeO= 5 wt%) are 3 to 4 orders of magnitude higher than those obtained in this study (Fig. 8, 433 10a) but can be reproduced using the relationship given above (Eqn. 4, Fig. 10). Suzuki et al (2008) 434 obtained two data points for D_{Fe-Mg} (Fig. 8, 10a) which indicates that in addition to the factors 435 considered here, D_{Fe-Mg} also depends on Cr-content of spinel. D_{Fe-Mg} in Cr-free spinel is about a factor 436 of 7.5 smaller than in spinel with Cr# (= Cr/Cr+Al) = 0.9. Their diffusion coefficient for Cr-free spinel 437 can be reproduced using our expression (Eqn. 4). Therefore, for applications to mantle spinels 438 containing Cr, it should be considered that diffusion coefficients calculated using our expression could 439 be slightly smaller than the real values. Suzuki et al. (2008) measured Al-Cr interdiffusion in chromite 440 spinel at high pressure (9-7 GPa) and temperatures ranging from 1400-1700 °C by using diffusion 441 couples of natural single crystals of MgAl₂O₄ spinel and chromite. Fig. 8 shows a comparison of the 442 diffusivities obtained in this study with the Al-Cr interdiffusion coefficients for Cr#=0.8 and self 443 diffusion coefficients for Cr in spinel (Cr#=0) obtained by Suzuki et al. (2008). Extrapolation of the

data implies that Fe-Mg interdiffusion is faster than Al-Cr interdiffusion or Cr self diffusion in spinel at temperatures relevant for the upper mantle. Empirical observations on diffusion in spinel at upper mantle conditions confirm that Cr is the slowest diffusing species among all the cations (e.g. Ozawa, 1984; Suzuki et al., 2008). However one should note in view of the non-linear dependencies described above that these relationships could be reversed at certain $T-fO_2$ conditions. Notwithstanding the excellent consistency of diffusion behavior calculated using the mean values of the fit parameters and various experimental data sets, the large uncertainties on the fit parameters make them poorly suited for

- 451 large extrapolations. Therefore, for the purpose of cooling rate or closure temperature calculations, we
- 452 recommend the direct fit to our data ($Q_{FeMg}=139 \pm 18 \text{ kJ/mol}$, $Log_{10} (D_{0FeMg} [m^2/s]) = -12.33 \pm 0.85$) for
- 453 Fe-bearing spinel, to be used for compositions and fO_2 conditions similar to those of the experiments,
- until availability of more data allow the model based on point defects to be better constrained.

455

456 **Comparison with Fe-Mg diffusion in other related minerals (olivine, pyroxene and garnet)**

Data for diffusion of Fe-Mg in all the phases that might coexist with spinel in the mantle are now available. We compare the rates of Fe-Mg diffusion in Mg-Al spinel, olivine, garnet, clinopyroxene and orthopyroxene in Fig. 11. For the purpose of comparison, we have calculated diffusion rates at a constant composition of $X_{Fe} = 0.07$ where composition dependence is known to play a role (e.g. olivine, garnet), although these are not necessarily the compositions that coexist in nature. It is found that Fe-Mg diffusion in spinel is among the fastest among these under most circumstances.

463 Fe^{2+} -Mg interdiffusion in olivine has recently been summarized by Dohmen et al. (2007), 464 Dohmen and Chakraborty (2007) and Chakraborty (2010). The set of experiments presented in 465 Dohmen et al. (2007) was carried out following the same experimental procedure as described in this 466 study. Their data for diffusion along the c-axis are shown in Fig. 11 for an olivine composition of X_{Fe} = 467 0.07 (Fo93) at oxygen fugacities less than log [fO_2 Pa] = -10, by using the Arrhenian relation given by 468 these authors (Dohmen and Chakraborty, 2007). Diffusion in olivine is anisotropic and to obtain

469	diffusion coefficients parallel to the a and b axis one needs to substract log(6) from the relation shown
470	in Fig.11., which decreases the $Log D_{Fe-Mg}$ values for olivine by 0.78 log units. Thus, at temperatures
471	less than 900 °C interdiffusion of Fe ²⁺ and Mg is faster in spinel than in olivine (given X_{Fe} =0.07). Only
472	at temperatures above 900 °C D_{Fe2^+-Mg} may become faster in olivine, depending on the ambient fO_2 .
473	Based on an empirical study of compositional gradients in olivine and coexisting spinel, Ozawa (1984)
474	concluded that D_{Fe-Mg} in spinel (Cr#<0.6) is a factor of 100 greater than that of olivine and that only for
475	Cr rich spinels (Cr#>0.7) Fe-Mg interdiffusion in spinel is the same order or smaller than that of
476	olivine. Depending on the ambient fO_2 and crystallographic orientation of olivine, this observation
477	could be consistent with the experimental data from this study, although more recent findings (Suzuki
478	et al., 2008) suggest that diffusion in Cr-bearing spinel is actually faster than in Cr-free spinel; the
479	influence of Cr on Fe-Mg diffusion needs to be studied through further detailed experiments.
480	Fe-Mg diffusion in spinel is at least two orders of magnitude faster than diffusion rates of Fe-
481	Mg in garnets (Borinski et al., 2012) and pyroxenes (Müller et al., 2013, Dohmen et al., 2014),
482	although the difference decreases at higher temperatures because of the low activation energy of D_{Fe-Mg}
483	in spinel (~ 130 kJ/mol) compared to those in other phases (> 200 kJ/mol).
484	
485	Conclusions
486	We have carried out a set of diffusion experiments on Fe ²⁺ -Mg interdiffusion in a pure Mg-spinel and a
487	natural spinel from Sri Lanka ($X_{Fe} \sim 0.07$). The measured concentration profiles were treated using an
488	explicit finite difference scheme to obtain diffusion coefficient as a function of temperature (750-900
489	°C), oxygen fugacity (log [fO_2 Pa] = -14 to -10) and composition. The main findings are as follows:
490	1) D_{Fe-Mg} in spinel is faster in more Mg-rich compositions.
491	2) Although it is not possible to constrain the exact values of the tracer diffusion coefficients D_{Fe}
492	and D_{Mg} , results from both crystals indicate that $D_{Fe}/D_{Mg} > 100$.

 3) Diffusion rates are independent of oxygen fugacity in the nominally pure Mg-spinel (although contains detectable amounts of Fe) within the resolution of measurement of this study. In contrast, diffusion rates in the Fe-bearing spinel are a non-linear function of oxygen fugacity. The dependence is consistent with models that predict that diffusion occurs by an interstitial mechanism at low oxygen fugacities and by a vacancy mechanism at high oxygen fugacities. 4) The consequence of the above observations is that the mechanism of diffusion is different in F free spinel from that in Fe-bearing spinel at low vs. high oxygen fugacities. For most terrestrial processes, the vacancy mechanism of diffusion should dominate. 5) A comprehensive model (Eqn. 4) accounting for variations caused by all these factors is able t reproduce all existing experimental data on Fe-Mg diffusion in Fe-bearing spinels (this study, Liermann and Ganguly, 2002, Freer and O'Reilly, 1980). 6) The model developed in this study (Eqn. 4) may be used to calculate <i>D_{Fe-Mg}</i> for modelling natural processes. In addition, it should be considered that <i>D_{Fe-Mg}</i> depends substantially on the Cr-content of spinel (Cr-#), as discussed above. As diffusion by the vacancy mechanism shoul
494contains detectable amounts of Fe) within the resolution of measurement of this study. In495contrast, diffusion rates in the Fe-bearing spinel are a non-linear function of oxygen fugacity.496The dependence is consistent with models that predict that diffusion occurs by an interstitial497mechanism at low oxygen fugacities and by a vacancy mechanism at high oxygen fugacities.4984)The consequence of the above observations is that the mechanism of diffusion is different in F499free spinel from that in Fe-bearing spinel (different activation energy and Arrhenius500parameters); and different in Fe-bearing spinel at low vs. high oxygen fugacities. For most501terrestrial processes, the vacancy mechanism of diffusion should dominate.5025)A comprehensive model (Eqn. 4) accounting for variations caused by all these factors is able t503reproduce all existing experimental data on Fe-Mg diffusion in Fe-bearing spinels (this study,504Liermann and Ganguly, 2002, Freer and O'Reilly, 1980).5056)The model developed in this study (Eqn. 4) may be used to calculate D_{Fe-Mg} for modelling506natural processes. In addition, it should be considered that D_{Fe-Mg} depends substantially on the507Cr-content of spinel (Cr-#), as discussed above. As diffusion by the vacancy mechanism shoul
495contrast, diffusion rates in the Fe-bearing spinel are a non-linear function of oxygen fugacity.496The dependence is consistent with models that predict that diffusion occurs by an interstitial497mechanism at low oxygen fugacities and by a vacancy mechanism at high oxygen fugacities.4984)The consequence of the above observations is that the mechanism of diffusion is different in F499free spinel from that in Fe-bearing spinel (different activation energy and Arrhenius500parameters); and different in Fe-bearing spinel at low vs. high oxygen fugacities. For most501terrestrial processes, the vacancy mechanism of diffusion should dominate.5025)A comprehensive model (Eqn. 4) accounting for variations caused by all these factors is able t503reproduce all existing experimental data on Fe-Mg diffusion in Fe-bearing spinels (this study,504Liermann and Ganguly, 2002, Freer and O'Reilly, 1980).5056)The model developed in this study (Eqn. 4) may be used to calculate D_{Fe-Mg} for modelling506natural processes. In addition, it should be considered that D_{Fe-Mg} depends substantially on the507Cr-content of spinel (Cr-#), as discussed above. As diffusion by the vacancy mechanism shoul508dominate in meet terrestrial analyses diffusion gates in reinels should increase with owners
496The dependence is consistent with models that predict that diffusion occurs by an interstitial mechanism at low oxygen fugacities and by a vacancy mechanism at high oxygen fugacities.4974)4984)494)499free of the above observations is that the mechanism of diffusion is different in F free spinel from that in Fe-bearing spinel (different activation energy and Arrhenius parameters); and different in Fe-bearing spinel at low vs. high oxygen fugacities. For most terrestrial processes, the vacancy mechanism of diffusion should dominate.5025)503A comprehensive model (Eqn. 4) accounting for variations caused by all these factors is able t reproduce all existing experimental data on Fe-Mg diffusion in Fe-bearing spinels (this study, Liermann and Ganguly, 2002, Freer and O'Reilly, 1980).5056)506The model developed in this study (Eqn. 4) may be used to calculate D_{Fe-Mg} for modelling natural processes. In addition, it should be considered that D_{Fe-Mg} depends substantially on the Cr-content of spinel (Cr-#), as discussed above. As diffusion by the vacancy mechanism shoul 200
 mechanism at low oxygen fugacities and by a vacancy mechanism at high oxygen fugacities. The consequence of the above observations is that the mechanism of diffusion is different in F free spinel from that in Fe-bearing spinel (different activation energy and Arrhenius parameters); and different in Fe-bearing spinel at low vs. high oxygen fugacities. For most terrestrial processes, the vacancy mechanism of diffusion should dominate. A comprehensive model (Eqn. 4) accounting for variations caused by all these factors is able t reproduce all existing experimental data on Fe-Mg diffusion in Fe-bearing spinels (this study, Liermann and Ganguly, 2002, Freer and O'Reilly, 1980). The model developed in this study (Eqn. 4) may be used to calculate <i>D_{Fe-Mg}</i> for modelling natural processes. In addition, it should be considered that <i>D_{Fe-Mg}</i> depends substantially on the Cr-content of spinel (Cr-#), as discussed above. As diffusion by the vacancy mechanism shoul
 4) The consequence of the above observations is that the mechanism of diffusion is different in F free spinel from that in Fe-bearing spinel (different activation energy and Arrhenius parameters); and different in Fe-bearing spinel at low vs. high oxygen fugacities. For most terrestrial processes, the vacancy mechanism of diffusion should dominate. 5) A comprehensive model (Eqn. 4) accounting for variations caused by all these factors is able t reproduce all existing experimental data on Fe-Mg diffusion in Fe-bearing spinels (this study, Liermann and Ganguly, 2002, Freer and O'Reilly, 1980). 6) The model developed in this study (Eqn. 4) may be used to calculate <i>D_{Fe-Mg}</i> for modelling natural processes. In addition, it should be considered that <i>D_{Fe-Mg}</i> depends substantially on the Cr-content of spinel (Cr-#), as discussed above. As diffusion by the vacancy mechanism shoul
499free spinel from that in Fe-bearing spinel (different activation energy and Arrhenius500parameters); and different in Fe-bearing spinel at low vs. high oxygen fugacities. For most501terrestrial processes, the vacancy mechanism of diffusion should dominate.5025)A comprehensive model (Eqn. 4) accounting for variations caused by all these factors is able t503reproduce all existing experimental data on Fe-Mg diffusion in Fe-bearing spinels (this study,504Liermann and Ganguly, 2002, Freer and O'Reilly, 1980).5056)The model developed in this study (Eqn. 4) may be used to calculate D_{Fe-Mg} for modelling506natural processes. In addition, it should be considered that D_{Fe-Mg} depends substantially on the507Cr-content of spinel (Cr-#), as discussed above. As diffusion by the vacancy mechanism should
 parameters); and different in Fe-bearing spinel at low vs. high oxygen fugacities. For most terrestrial processes, the vacancy mechanism of diffusion should dominate. A comprehensive model (Eqn. 4) accounting for variations caused by all these factors is able t reproduce all existing experimental data on Fe-Mg diffusion in Fe-bearing spinels (this study, Liermann and Ganguly, 2002, Freer and O'Reilly, 1980). The model developed in this study (Eqn. 4) may be used to calculate <i>D_{Fe-Mg}</i> for modelling natural processes. In addition, it should be considered that <i>D_{Fe-Mg}</i> depends substantially on the Cr-content of spinel (Cr-#), as discussed above. As diffusion by the vacancy mechanism shoul
 terrestrial processes, the vacancy mechanism of diffusion should dominate. A comprehensive model (Eqn. 4) accounting for variations caused by all these factors is able t reproduce all existing experimental data on Fe-Mg diffusion in Fe-bearing spinels (this study, Liermann and Ganguly, 2002, Freer and O'Reilly, 1980). The model developed in this study (Eqn. 4) may be used to calculate <i>D_{Fe-Mg}</i> for modelling natural processes. In addition, it should be considered that <i>D_{Fe-Mg}</i> depends substantially on the Cr-content of spinel (Cr-#), as discussed above. As diffusion by the vacancy mechanism shoul
 5) A comprehensive model (Eqn. 4) accounting for variations caused by all these factors is able t reproduce all existing experimental data on Fe-Mg diffusion in Fe-bearing spinels (this study, Liermann and Ganguly, 2002, Freer and O'Reilly, 1980). 6) The model developed in this study (Eqn. 4) may be used to calculate <i>D_{Fe-Mg}</i> for modelling natural processes. In addition, it should be considered that <i>D_{Fe-Mg}</i> depends substantially on the Cr-content of spinel (Cr-#), as discussed above. As diffusion by the vacancy mechanism shoul
reproduce all existing experimental data on Fe-Mg diffusion in Fe-bearing spinels (this study, Liermann and Ganguly, 2002, Freer and O'Reilly, 1980). 6) The model developed in this study (Eqn. 4) may be used to calculate D_{Fe-Mg} for modelling natural processes. In addition, it should be considered that D_{Fe-Mg} depends substantially on the Cr-content of spinel (Cr-#), as discussed above. As diffusion by the vacancy mechanism shoul deminate in most terrestrial processes.
504 Liermann and Ganguly, 2002, Freer and O'Reilly, 1980). 505 6) The model developed in this study (Eqn. 4) may be used to calculate D_{Fe-Mg} for modelling 506 natural processes. In addition, it should be considered that D_{Fe-Mg} depends substantially on the 507 Cr-content of spinel (Cr-#), as discussed above. As diffusion by the vacancy mechanism shoul 508 dominate in most terrestrial processes diffusion rates in gainals should increase with average
505 6) The model developed in this study (Eqn. 4) may be used to calculate D_{Fe-Mg} for modelling 506 natural processes. In addition, it should be considered that D_{Fe-Mg} depends substantially on the 507 Cr-content of spinel (Cr-#), as discussed above. As diffusion by the vacancy mechanism shoul 508 dominate in most terrestrial processes, diffusion rates in gainals should increase with average
506 natural processes. In addition, it should be considered that D_{Fe-Mg} depends substantially on the 507 Cr-content of spinel (Cr-#), as discussed above. As diffusion by the vacancy mechanism shoul 508 dominate in most terrestrial processes diffusion rates in spinals should increase with supre-
507 Cr-content of spinel (Cr-#), as discussed above. As diffusion by the vacancy mechanism shoul
509 dominate in most terrestrial processes diffusion rates in grinals should increase with avvicen
dominate in most terrestrial processes, diffusion rates in spinels should increase with oxygen
509 fugacity. In most circumstances, diffusion rates of Fe-Mg in spinels will be faster than that in
510 coexisting mafic minerals (olivines, orthopyroxenes, clinopyroxenes and garnets).
511 Implications
512 The new diffusion data on Fe-Mg spinel and the point defect model that evolved from these data
513 help to explain earlier diffusion data that were apparently discrepant, and provides a means of
514 calculating diffusion related properties (closure temperatures, timescales from modelling
515 concentration gradients) that vary over a considerable range depending on the Fe concentration of
516 the spinel crystal and oxygen fugacity in the environment, in addition to factors such as temperatu
517 and likely, pressure.

518	Acknowledgment
519	This study evolved from the M.Sc thesis of KV and was supported by funds from the Ruhr Universität
520	Bochum. Hans-Werner Becker helped with the RBS analyses and Rolf Neuser with the SEM
521	observations. Joana Polednia took the photographs with the interference microscope. We thank
522	Katherine Crispin, Daniele Cherniak and associate editor John Ferry for their constructive reviews and
523	comments.
524	References
525	Aggarwal, S., and Dieckmann, R. (2002a) Point defects and cation tracer diffusion in $(Ti_xFe_{1-x})_{3-\delta}O_4$. 1.
526	Non-stoichiometry and point defects. Physics and Chemistry of Minerals, 29, 695-706.
527	Aggarwal, S., and Dieckmann, R. (2002b) Point defects and cation tracer diffusion in $(Ti_xFe_{1-x})_{3-\delta}O_4$.
528	II Cation tracer diffusion. Physics and Chemistry of Minerals, 29, 707-718.
529	Ballhaus, C, Berry, R.F., and Green, D.H. (1991) High pressure experimental calibration of the olivine
530	orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper
531	mantle. Contributions to Mineralogy and Petrology, 107, 27-40.
532	Barrer, R.M., Bartholomew, R.F., and Rees, L.V.C. (1963) Ion exchange in porous crystals, part II:
533	The relationship between self – and exchange diffusion coefficients. Journal of Physics and
534	Chemistry of Solids 24, 309 – 317.
535	Borinski, S.A, Hoppe, U., Chakraborty, S., Ganguly, J., and Bhowmik, S.K. (2012)
536	Multicomponent diffusion in garnets I: general theoretical considerations and experimental data
537	for Fe-Mg systems. Contributions to Mineralogy and Petrology, 164, 571-586.
538	Chakraborty, S. (2010) Diffusion coefficients in olivine, wadsleyite and ringwoodite, Reviews in
539	Mineralogy and Geochemistry, 72, 603-639.
540	Chakraborty, S., and Ganguly, J. (1992) Cation diffusion in aluminosilicate garnets: experimental
541	determination in spessartine-almandine diffusion couples, evaluation of effective binary
542	diffusion coefficients, and applications. Contributions to Mineralogy and Petrology, 111, 74-86.

- 543 Chakraborty, S., Farver, J.R., Yund, R.A., and Rubie D.C. (1994) Mg tracer diffusion in synthetic
- 544 forsterite and San Carlos olivine as a function of P, T and fO₂. Physics and Chemistry of
- 545 Minerals, 21, 489-500.
- 546 Chakraborty, S. (1997) Rates and mechanisms of Fe-Mg interdiffusion in olivine at 980°
- 547 1300°C. Journal of Geophysical Research: Solid Earth, 102, 12317–12331.
- 548 Cherniak, D.J., Lanford, W.A., and Ryerson, F.J. (1991) Lead diffusion in apatite and zircon using
- 549 ion implantation and Rutherford Backscattering techniques. Geochimica et Cosmochimica Acta,
 550 55, 1663–1673.
- 551 Coogan, L.A., Jenkin, G.R.T., and Wilson, R.N. (2007) Contrasting cooling rates in the oceanic
- lithosphere at fast- and slow-spreading mid-ocean ridges derived from geospeedometry. Journal
 of Petrology, 48, 2211-2231.
- 554 Costa, F., Dohmen, R., and Chakraborty, S. (2008) Time Scales of magmatic Processes from
- modeling the zoning patterns of crystals. Reviews in Mineralogy and Geochemistry, 69, 545
 594.
- 557 Dieckmann, R., and Schmalzried, H. (1977a) Defects and Cation Diffusion in Magnetite (I).
- 558 Berichte der Bunsengesellschaft für physikalische Chemie, 81, 344-347.
- 559 Dieckmann, R., and Schmalzried, H. (1977b) Defects and Cation Diffusion in Magnetite (II).
 560 Berichte der Bunsengesellschaft für physikalische Chemie, 81, 414-419.
- 561 Dieckmann, R., and Schmalzried, H. (1986) Defects and Cation Diffusion in Magnetite (VI): Point
- 562 Defect Relaxation and Correlation in Cation Tracer Diffusion. Berichte der Bunsengesellschaft
 563 für physikalische Chemie, 90, 564–575.
- 564 Dieckmann, R., Hilton, M.R., and Mason, T.O. (1987) Defects and cation diffusion in magnetite
- 565 (VIII): Migration enthalpies for iron and impurity cations. Berichte der Bunsengesellschaft für
- 566 physikalische Chemie, 91, 59-66.

- 567 Dieckmann, R. (1982) Defects and Cation Diffusion in Magnetite (IV): Nonstoichiometry and Point
 568 Defect Structure of Magnetite (Fe_{3-δ}O₄) Berichte der Bunsengesellschaft für physikalische
- 569 Chemie, 86, 112-118.
- 570 Dohmen, R., Becker, H.-W., Meissner, E., Etzel, T., and Chakraborty, S. (2002) Production of silicate
- 571 thin films using pulsed laser deposition (PLD) and applications to studies in mineral kinetics.
- 572 European Journal of Mineralogy, 14, 1155–1168.
- 573 Dohmen, R., Becker, H.-W., and Chakraborty, S. (2007) Fe-Mg diffusion in olivine I: experimental
- determination between 700 and 1,200 °C as a function of composition, crystal orientation and
- 575 oxygen fugacity. Physics and Chemistry of Minerals, 34, 389-407.
- 576 Dohmen, R., and Chakraborty, S. (2007) Fe-Mg diffusion in olivine II: point defect chemistry, change
- of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine.
 Physics and Chemistry of Minerals, 34, 409-430.
- 579 Dohmen et al. (2014) [pers. comm.].
- 580 Freer, R. and O'Reilly, W. (1980) The diffusion of Fe^{2+} ions in spinels with relevance to the process of 581 maghemitization. Mineralogical Magazine, 43, 889-899.
- Hallron, J.W, and Bowen, H.K. (1980) Iron Diffusion in Iron-Aluminate Spinels. Journal of the
 American Ceramic Society, 63, 58-65.
- Irvine, T. N. (1965) Chromian spinel as a petrogenetic indicator. Part 1, Theory. Canadian Journal of
 Earth Sciences, 2, 648-672.
- Jaoul, O., Sautter, V., and Abel, F. (1991) Nuclear Microanalysis: A Powerful Tool for Measuring
- 587 Low Atomic Diffusivity with Mineralogical Applications. In Diffusion, atomic ordering, and
- 588 mass transport: Advances in Physical Geochemistry, 8 (ed. J. Ganguly), 198-220, Spinger
- 589 Verlag, New-York.

- Kessel, R., Beckett, J.R., and Stolper, E.M. (2006) The thermal history of equilibrated ordinary
 chondrites and the relationship between textural maturity and temperature, Geochimica et
 Cosmochimica Acta, 71, 1855–1881
- 593 Kótai, E. (1994) Computer methods for analysis and simulation of RBS and ERDA spectra. Nuclear
- 594 Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and
- 595Atoms, 85, 588–596
- Lehmann, J. (1983) Diffusion between olivine and spinel: application to geothermometry. Earth and
 Planetary Science Letters, 64, 123-138.
- 598 Liermann, H.-P., and Ganguly, J. (1999) Thermodynamics and kinetics of Fe Mg exchange
- 599 between spinel and orthopyroxene: Experimental determination and applications to cooling
- 600 rates. 62nd Annual Meeting of the Meteoritical Society, Meteoritics & Planetary Science,
- 601 **34**, Supplement, A75
- Liermann, H.-P., and Ganguly, J. (2001) Compositional properties of coexisting orthopyroxene and
- spinel in some Antarctic diogenites: Implications for thermal history. Meteoritics & Planetary
 Science, 36, 155-166.
- Liermann, H.-P. and Ganguly, J. (2002) Diffusion kinetics of Fe and Mg in aluminous spinel:
- Experimental determination and applications. Geochim et Cosmochim Acta 66, 2903-2913.
- 607 Liermann, H.-P. and Ganguly, J. (2003) Fe-Mg fractionation between orthopyroxene and spinel:
- Experimental calibration in the system FeO-MgO-Al₂O₃-Cr₂O₃-SiO₂, and applications.
- 609 Contributions to Mineralogy and Petrology 145, 217-227.
- 610 Müller, T., Dohmen, R., Becker, H.-W., Ter Heege, J., and Chakraborty, S. (2013) Fe-Mg
- 611 interdiffusion rates in clinopyroxene: experimental data and implications for Fe-Mg exchange
 612 geothermometers. Contributions to Mineralogy and Petrology, 166, 1563-1576.
- Murphy S.T, Uberuaga, B.P., Ball, J.B., Cleave, A.R., Sickafus, K.E., Smith, R., and Grimes, R.W.
- 614 (2009) Cation diffusion in magnesium aluminate spinel. Solid State Ionics, 180, 1-8.

- O'Neill, H.St.C and Wall, V.J (1987) The Olivine-Orthopyroxene-Spinel oxygen geobarometer, the
 nickel precipitation curve, and the oxygen fugacity of the Earth's Upper Mantle. Journal of
- 617 Petrology, 28, 1169-1191.
- Ozawa, K. (1983) Evaluation of olivine-spinel geothermometry as an indicator of thermal history for
 peridotites. Contributions to Mineralogy and Petrology, 82, 52-65.
- 620 Ozawa, K. (1984) Olivine-spinel geospeedometry: Analysis of diffusion-controlled Mg-Fe²⁺
- 621 exchange. Geochimica et Cosmochimica Acta, 48, 2597-2611.
- 622 Sheng, Y.J., Wasserburg, G.J., and Hutcheon I.D. (1992) Self- diffusion of magnesium in spinel and in
- 623 equilibrium melts: Constraints on flash heating of silicates. Geochimica et Cosmochimica Acta,
- 62456, 2535-2546.
- Suzuki, A.M., Yasuda, A., and Ozawa, K. (2008) Cr and Al diffusion in chromite spinel: experimental
 determination and its implication for diffusion creep. Physics and Chemistry of Minerals 35,
 433-445.
- 628Töpfer, J., Aggarwal, S., and Dieckmann, R. (1995) Point defects and cation tracer diffusion in629 $(Cr_xFe_{1-x})_{3-\delta}O_4$ spinels. Solid State Ionics 81, 251 266.
- 630 Van Orman, J.A., and Crispin K.L. (2010) Diffusion in Oxides. Reviews in Mineralogy and
 631 Geochemistry, 72, 757-825.
- 632 Verwey, W., and Heilmann, L. (1947) Physical Properties and Cation Arrangement of Oxides with
 633 Spinel Structure I. Cation Arrangement in Spinels. Journal of physical Chemistry, 15, 174.
- 634
- 635

Figure captions

- Figure 1. RBS spectra of sample number Sp2Her50-3 (annealed at 10^{05} Pa, T= 800 °C, Log₁₀fO₂ = -12
- 637 Pa) and the corresponding reference (i.e. unannealed sample showing the initial condition) showing
- normalized counts vs. energy of backscattered alpha particles (grey circles: reference sample; blue
- 639 circles: Sp2Her50-3). Simulations of the spectra are shown as solid lines (yellow: reference sample,

640 red: Sp2Her50-3). The marked region in a) is drawn to a larger scale in b). Note the decrease of Fe in 641 the thin layer after the diffusion anneal.

642

643	Figure 2. Calculated interdiffusion coefficients D_{Fe-Mg} as a function of varying iron content and
644	differing self-diffusion coefficients D_{Fe} and D_{Mg} using Eqn. (2) for an ideal solid solution. The plots
645	show a variation in the relationship over ten orders of magnitude of each self-diffusion coefficient. The
646	color gradient represents $\log_{10} D_{\text{Fe-Mg}}$, with warmer colors representing higher values. Contour lines
647	denote interdiffusion coefficients of equal value. The white band represents an area, where $D_{\text{Fe-Mg}}$ is
648	represented by both D_{Fe} and D_{Mg} . Red solid lines denote equal ratios of D_{Fe}/D_{Mg} . a) X_{Fe} =0.001, b)
649	$X_{Fe}=0.07$, c) $X_{Fe}=0.5$, d) $X_{Fe}=0.999$.
650	
651	Figure 3. Reflected light microscopy and white light interference microscopy images of a) Sp1 and b)
652	Sp2. Total variations of topography measured in different regions are shown to be on the order of ± 1.5
653	nm (Sp1) to \pm 6-10 nm (Sp2).
654	
655	Figure 4. Experimental data (symbols) and simulations (solid lines) of diffusion profiles in a) Sp1
656	(Sample no. Sp1Her50-10, 10^{05} Pa, T= 900 °C, $log_{10}fO_2 = -10$ [Pa]) and b) Sp2 (Sp2Her50-13, 10^{05} Pa,
657	T= 800 °C, $\log_{10} fO_2 = -12$ [Pa]). Both diffusion profiles are matched assuming constant self-diffusion
658	coefficients, where $D_{Fe} > D_{Mg}$. The asymmetric profile in a) is best described for $D_{Fe}/D_{Mg} \ge 100$. The
659	less asymmetric profile shown in b) is well described for $D_{Fe}/D_{Mg} \ge 100$ as well.
660	
661	Figure 5. Time sequence. Variations in D_{Fe-Mg} values obtained from different crystals annealed at the
662	same conditions over different lengths of time (Sp2Her50-1,-2,-3,-14). The data indicate a
663	reproducibility of $1\sigma = 0.11 \log_{10}$ units for the measured D_{Fe-Mg} values.
664	
	97

665	Figure 6. $D_{\text{Fe-Mg}}$ in Sp1 and Sp2 at T= 800 °C and 10 ⁰⁵ Pa as a function of oxygen fugacity: $\log_{10} fO_2$ in
666	$Pa = 10^{-14} - 10^{-10}$. Diffusion coefficients in Sp1 are independent of oxygen fugacity within the
667	uncertainty of the data. In contrast, diffusion coefficients in Sp2 are dependent on oxygen fugacity in a
668	non-linear manner. The blue dashed line represents a constant value of $Log_{10}D=-18.37$ [m ² /s], which
669	describes $D_{\text{Fe-Mg}}$ in Sp1 within the uncertainty of the data. The red dashed line represents the "best fit"
670	to $D_{\text{Fe-Mg}}$ in Sp2, based on Eqn. 3. The inferred fO_2 exponents of $-^2/_3$ at low and $^2/_3$ at high oxygen
671	fugacities were used in accordance to the fO_2 dependence described for magnetite (e.g. Dieckmann and
672	Schmalzried, 1977a,b). See text for further discussion.
673	

Figure 7. Arrhenius plot showing diffusion coefficients (D_{Fe-Mg}) retrieved from Sp1 and Sp2. All

675 experiments were performed at atmospheric pressure and controlled oxygen fugacity. Because

diffusion in Sp1 is independent of oxygen fugacity, all data are plotted in this figure. Diffusion in Sp2

677 is shown for $\log_{10} fO_2 = -12$ [Pa]. Dashed lines denote self-diffusion coefficients D_{Fe} and D_{Mg} , solid lines

678 represent best fits to the interdiffuion coefficients for a given composition of $X_{Fe}=0.001$ (Sp1) and

679 X_{Fe}=0.07 (Sp2).

680

681 Figure 8. Arrhenius diagram showing diffusion coefficients determined in aluminous spinel in earlier 682 studies: Fe-Mg interdiffusion (dots), Mg self-diffusion (squares) and Cr-Al interdiffusion (stars) 683 coefficients. The symbols represent the experimental data. The data by Freer and O'Reilly (1980) is shown for a composition of FeO = 5 wt% and FeO = 25 wt%, respectively. Data obtained from Suzuki 684 et al (2008) is shown for Cr#=0 and Cr#=0.9 at 3×10^{09} [Pa]. For a better comparison of the 685 interdiffusion data given by Liermann and Ganguly (2002) with those obtained in this study, all data 686 are shown for a composition of $X_{Fe}=0.07$ (dots). Note that Liermann and Ganguly (2002) performed 687 their study in the presence of graphite at an oxygen fugacity of approx. 2×10^{09} [Pa] (black dashed line). 688

689 The black solid line denotes the Arrhenius relation obtained by Liermann and Ganguly (2002) at 690 atmospheric pressure.

691

692 Figure 9. Synthetic profile (dots) based on one of the best fit data points of Liermann and Ganguly

(2002): 21.4x10⁸ Pa, 1125 °C, 51 hours (Sp-diff05d). Solid lines represent "best fit" profiles to this 693

694 data for $D_{Fe}/D_{Mg}=1,10$ and 100, with D_{Fe-Mg} determined using Eqn. (2) in the text.

695

696	Figure 10. Fe-Mg diffusion coefficients calculated using the best fit parameters in the point defect
697	model (Eqn. 4) compared to measured data from different studies. a) Arrhenius relation showing the
698	diffusion data measured by Liermann and Ganguly (2002) (grey dots), Freer and O'Reilly (1980)
699	(green dots), Suzuki et al. (2008) (blue dots) and our data on interdiffusion in Sp2 (red dots) for a given
700	composition of X_{Fe} =0.07. Red lines are calculated using equation 4. b) D_{Fe-Mg} in Sp2 at T= 800 °C and
701	10^{05} Pa as a function of oxygen fugacity (red dots) in comparison to the calculated value according to
702	equation 4. c) is a 3D plot, to illustrate the dependence of the interdiffusion coefficient $\log_{10} D_{\text{Fe-Mg}}$
703	$[m^2/s]$ on temperature and oxygen fugacity based on equation 4.
704	
705	Figure 11. Comparison of the Fe-Mg interdiffusion data in spinel obtained in this study with those in
706	olivine [Dohmen et al. (2007a)], garnet [Borinski et al., 2012], clinopyroxene [Müller et al., 2012] and

707 orthopyroxene [Dohmen et al., 2014].

708

Table 1.

Sample	Substrate	Target	Laser energy [mJ]	time [min]	Vacuum [bar]
Α	Sp1	Her50	156	20	3.30E-06
В	Sp1	Her50	156	20	3.50E-06
С	Sp1	Her50	144	12	6.00E-06
D	Sp2	Her50	144	10	3.50E-06
E	Sp2	Her50	152	15	4.00E-06
F	Sp2	Her50	152	15	3.50E-06
G	Sp2	Her50	152	15	6.00E-06
Н	Sp2	Her50	120	30	6.60E-06

	XFe=0.001]
Sample	Temp	fO₂ [bar]	time [s]	film [nm]	DFe [m2/s]	DMg [m²/s]	DFeMg [m²/s]	Log ₁₀ (DFeMg)	
Sp1Her50-5	<u> </u>	[Dai]	[3]	80	6 0E 10	6.0⊑ 21	5 5 5 10	10.2	1.
Sp1Her50-6	002	-15	7200	85	0.0E-19		0.0E-19	-10.3	
Sp1Hor50 7	803	-10	7200	85	5.0E-19	5.0E-21	4.5E-19	-18.3	
Spiller50.9	804	-18	7200	05	4.0E-19	4.0E-21	3.6E-19	-18.4	- 1
Spiller50-8	805	-19	7200	80	4.0E-19	4.0E-21	3.6E-19	-18.4	B
Spiller50-9	855	-15	1800	80 70	1.4E-18	1.4E-20	1.3E-18	-17.9	
Sp1Her50-10	900	-15	1800	70	2.6E-18	2.6E-20	2.4E-18	-17.6	-
Sp1Her50-g	750	-17	81000	35	1.0E-19	1.0E-21	9.1E-20	-19.0	C
Sp1Her50-h	850	-17	3600	30	1.5E-18	1.5E-20	1.4E-18	-17.9	
SP2	XFe=0.07								
Sample	Temp	fO ₂	time	film	DFe	DMg	DFeMg	Log₁₀(DFeMg)	
	[°C]	[bar]	[s]	[nm]	[m2/s]	[m²/s]	[m²/s]	[m²/s]	
Sp2Her50-1	805	-17	1800	25	1.10E-18	1.10E-20	1.39E-19	-18.9	
Sp2Her50-2	805	-17	7200	25	8.00E-19	8.00E-21	1.01E-19	-19.0	
Sp2Her50-3	805	-17	29160	25	6.50E-19	6.50E-21	8.20E-20	-19.1	
Sp2Her50-12	801	-15	21600	40	1.20E-18	1.20E-20	1.51E-19	-18.8] е
Sp2Her50-13	801	-16	21600	50	6.00E-19	6.00E-21	7.57E-20	-19.1	
Sp2Her50-14	801	-17	21600	45	7.00E-19	7.00E-21	8.83E-20	-19.1	
Sp2Her50-15	801	-18	21600	40	2.50E-18	2.50E-20	3.15E-19	-18.5	F
Sp2Her50-16	801	-15.5	21600	45	1.10E-18	1.10E-20	1.39E-19	-18.9	
Sp2Her50-17	797	-16.5	21600	35	7.00E-19	7.00E-21	8.83E-20	-19.1	
Sp2Her50-c	750	-17	90000	35	3.00E-19	3.00E-21	3.78E-20	-19.4	İG
Sp2Her50-d	750	-17	52000	40	2.10E-19	2.10E-21	2.65E-20	-19.6	
Sp2Her50-19	800	-17.5	21600	30	1.20E-18	1.20E-20	1.51E-19	-18.8	
Sp2Her50-e	850	-17	4320	35	1.10E-18	1.10E-20	1.39E-19	-18.9	ĺн
Sp2Her50-f	900	-17	3780	30	2.10E-18	2.10E-20	2.65E-19	-18.6	1.
Sp2Her50-g	760	-17	81000	35	3.60E-19	3.60E-21	4.54E-20	-19.3	

Table 2.

Sp1-Her50-ref-B

Sp1-Her50-10

Sp2-Her50-ref-E

Sp2-Her50-13

White light interference microscopy

