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ABSTRACT 7 

Diffusion modeling in olivine is a useful tool to resolve the timescales of various magmatic 8 

processes. Practical olivine geospeedometry applications employ 1D chemical transects across 9 

sections that are randomly sampled from a given 3D crystal population, but the accuracy and 10 

precision with which timescales can be retrieved from this procedure are not well constrained. 11 

Here, we use numerical 3D diffusion models of Fe-Mg to evaluate and quantify the uncertainties 12 

associated with their 1D counterparts. The 3D diffusion models were built using both simple and 13 

realistic olivine morphologies, and incorporate diffusion anisotropy as well as different zoning 14 

styles. The 3D model crystals were sectioned along ideal or random planes, which were used to 15 

perform 1D models and timescale comparisons. Results show that the timescales retrieved from 16 

1D profiles are highly inaccurate and can vary by factors of 0.1-25 if diffusion anisotropy is not 17 

taken into account. Even when anisotropy is corrected for, timescales can still vary between 0.2-18 

10 times the true 3D diffusion time due to crystal shape and sectioning effects. Simple grain 19 

selection procedures are described to reduce the misfit between calculated and actual diffusion 20 

times, and achieve an accuracy and precision of ~5% and ~15-25% relative respectively. 21 
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Provided that the grains are carefully selected, about 20 concentration profiles and associated 1D 22 

models suffice to achieve this accuracy.  23 

 24 

Keywords: olivine, geospeedometry, diffusion modeling, numerical modeling, crystal 25 

morphology, random sectioning 26 
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 28 

INTRODUCTION 29 

The diffusion of atoms during magmatic reactions (e.g. melting, crystallization, solid-30 

state re-equilibration) can be broadly described as the random jumps or movements of particles 31 

relative to other particles in a region of many particles (Onsager 1945, Chakraborty 2008). 32 

Because these movements occur at different rates for different chemical components and 33 

thermodynamic conditions, modeling of element diffusion can be used for geospeedometry, i.e., 34 

to backtrack the durations of geological processes (cf. Watson 1994; Chakraborty 1995, 2008; 35 

Ganguly 2002; Watson and Baxter 2007; Costa et al. 2008; Zhang 2010 for reviews). Diffusion 36 

modeling is thus becoming an essential utensil of the earth scientist’s toolbox.  37 

This investigation focuses on modeling chemical diffusion in minerals, a technique now 38 

regularly used to decipher magma residence times beneath volcanoes (e.g. Zellmer et al., 1999; 39 

Costa el al. 2003; Costa et al. 2008; Kahl et al. 2011; Kent and Cooper 2014), magma 40 

mixing/recharge events (Morgan et al. 2006; Druitt et al. 2012; Ruprecht and Cooper 2012), 41 

ascent times from the mantle (Demouchy et al. 2006; Ruprecht and Plank 2013) and assimilation 42 

of crustal material (Bindeman et al. 2006). In particular, olivine is well suited for diffusion 43 

studies involving mafic to intermediate magmas, because the diffusion coefficients (D) for major 44 
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(Mg, Fe) and trace (Ca, Mn, Cr, Co, Ni) elements are well constrained with respect to 45 

temperature (T), forsterite component (XFo), crystallographic orientation, and oxygen fugacity (46 

2Of ) (e.g. Chakraborty 1997, 2010; Petry et al. 2004; Coogan et al. 2005; Dohmen and 47 

Chakraborty 2007; Spandler and O’Neill 2010). As a result, several studies have used diffusion 48 

modeling within olivine to decipher the durations associated with a variety of magmatic 49 

processes (Nakamura 1995; Coombs et al. 2000; Pan and Batiza 2002; Costa and Chakraborty 50 

2004; Costa and Dungan 2005; Ito and Ganguly 2006; Kahl et al 2011, 2013; Martí et al. 2013; 51 

Ruprecht and Plank 2013; Longpre et al. 2014), and user-friendly diffusion modeling algorithms 52 

are becoming available (e.g. DIPRA, Girona and Costa 2013). To date, however, diffusion 53 

modeling has been applied to natural magmatic crystals using almost exclusively one-54 

dimensional chemical profiles. Analyses are typically performed along crystals exposed within 55 

two-dimensional thin sections, meaning that there are several potential sources of uncertainty: 56 

(1) diffusion occurs along the 3 spatial dimensions of a complex volume (e.g. Costa et al. 2003, 57 

2008); (2) diffusion may occur anisotropically within the mineral, implying that a 1D profile 58 

may sample the crystal along a fast or slow direction, or anywhere in between (e.g. Chakraborty 59 

1997); (3) thin sections intersect crystals randomly, meaning that concentration gradient 60 

geometry may be dependent on section orientation and distance from the crystal core (Pearce 61 

1984; Wallace and Bergantz 2004).  62 

In their investigation of Mg in plagioclase, Costa et al. (2003) found that adding a second 63 

dimension resulted in shorter calculated diffusion timescales (i.e. in their case, magma residence 64 

times) compared to 1D models. It was also noted that the 1D-derived times were sensitive to the 65 

position of the profile with respect to the center of the crystal. The effects of diffusion anisotropy 66 

in olivine were also studied in 2D by Costa and Chakraborty (2004), who determined that 67 
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sections cutting the crystal close to the fast diffusion direction were under certain circumstances 68 

more reliable for the retrieval of diffusion timescales. Pan and Batiza (2002) briefly examined 69 

the sectioning effect by numerically slicing a sphere containing an artificial diffusion profile, and 70 

showed that the recovered timescales followed an exponential distribution, with a low 71 

occurrence of durations shorter than the real input time, and a much higher incidence of 72 

durations close to the real time. 73 

In this contribution, 3D numerical diffusion models are developed to explore the influence of 74 

spatial dimensions, crystal morphology, diffusion anisotropy, and sectioning on the timescales 75 

recovered. After examining cases with simple geometries, we allow models to progressively 76 

incorporate more complexity. The primary objective is to answer the simple question: how 77 

reliable are diffusion timescales retrieved from olivine crystals as measured in typical thin 78 

sections? The importance of this inquiry is illustrated by constructing a numerical thin section 79 

containing 200 identical normally-zoned olivine crystals that have been randomly sectioned after 80 

diffusing for a certain time (Fig. 1). Despite being constructed from the same crystal template, 81 

the virtual thin section displays olivine slices that vary significantly in sizes, habits, and apparent 82 

concentration gradients. Thus, the diffusion times modeled from 1D profiles sampled within 83 

different olivines from this thin section may also differ. In this study, we examine the potential 84 

sources of variability in timescales retrieved from 1D diffusion models, and provide olivine 85 

crystal selection guidelines to maximize the accuracy and precision. Because parameters 86 

affecting timescales are numerous and complexly intertwined, a large number of methods, results 87 

and interpretations sections are provided as Supplementary Material in order to keep this 88 

contribution focused on the essential. 89 

 90 
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METHODS 91 

This section describes the 1D and 3D models used to simulate diffusion in olivine. After 92 

detailing the governing equations and the choice of diffusing components, the numerical 93 

implementation and the parameters investigated are described.  94 

 95 

Diffusion equation 96 

According to Fick’s second law, and if the diffusion coefficient D depends on the 97 

composition C of an element i in olivine (see below), the time-dependent 3D diffusion equation 98 

(with spatial dimensions x, y and z, and time t) takes the form (Crank 1975): 99 
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If diffusion is isotropic, a single diffusion coefficient Dx=Dy=Dz suffices to define 101 

element mobility within the whole volume. In contrast, if diffusion is anisotropic, and for a 102 

crystal belonging to the orthorhombic system with crystallographic axes a, b and c, the 103 

diffusivity tensor takes the form (e.g. Zhang 2010): 104 
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105 

For the 3D expression given by Eq. 1, the diffusivities are therefore defined as Dx=Da, 106 

Dy=Db, Dz=Dc. The 1D equivalent is simply obtained by removing the y and z components, and 107 

replacing Dx by Da, Db, Dc, or by an intermediate diffusivity term (e.g. anisotropy-corrected DV
* , 108 

see below).  109 

 110 
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Choice of elements and diffusion coefficients 111 

The models in this contribution focus on Fe-Mg in olivine, treated here as the mole fraction 112 

of forsteritic component Fo = Mg
Mg + Fe

, with (Fo+Fa =1, with Fa the fraction fayalite). These 113 

elements are commonly used for diffusion modeling (Nakamura 1995; Costa and Chakraborty 114 

2004; Costa and Dungan 2005; Kahl et al. 2011, 2013; Ruprecht and Plank 2013; Longpre et al. 115 

2014), and easy to measure with an electron microprobe. The diffusion coefficient DFe-Mg is well 116 

established for a variety of P, T, ƒO2 conditions (cf. Chakraborty 2010 and references therein) 117 

and known to be strongly anisotropic ( Da
Fe−Mg = Db

Fe−Mg = 1
6

Dc
Fe−Mg Chakraborty 1997). Along the c 118 

axis, the diffusion coefficient Dc
Fe−Mg  (m2 s-1) is expressed as (Dohmen et al. 2007; Costa et al. 119 

2008; Chakraborty 2010): 120 
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where ƒO2 is the oxygen fugacity (Pa), XFo the fraction forsterite, P the pressure (Pa), T the 122 

temperature (K) and R the gas constant (J K-1 mol-1). In practice, concentration profiles taken 123 

across crystal sections are rarely aligned with the main diffusion directions and crystal axes, and 124 

must be corrected for orientation as well as anisotropy. Assuming a traverse is measured parallel 125 

to the concentration gradient, an anisotropy-corrected diffusivity DV
*  can be calculated providing 126 

that the angles α, β, and γ between the Cartesian coordinates x, y, and z and the crystallographic 127 

axes a, b, and c respectively are known (Costa and Chakraborty 2004): 128 

222* coscoscos γβα cbaV DDDD ++=        (4) 129 
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If, instead, the traverse is oblique to the concentration gradient, a more general form of Eq. 4 is 130 

applicable (Zhang, 2010) (cf. Supplementary Material section S1), but requires knowledge of the 131 

concentration gradient geometry along x, y and z, which is not accessible within typical 2D thin 132 

sections. Because the purpose of this paper is to examine real case scenarios, the simpler form of 133 

the anisotropy correction is used herein.  134 

 135 

Numerical implementation 136 

The diffusion simulations were performed using finite-differences (e.g. Costa et al. 2003; 137 

Kahl et al. 2011; Druitt et al. 2012; Girona and Costa 2013; Pilbeam et al. 2013) (see 138 

Supplementary Material section S2). For all models, atmospheric pressure conditions (P=105 139 

Pa), an oxygen fugacity ƒO2=3×10-12 Pa, and a constant temperature T=1200°C were used. The 140 

simulated duration for most experiments was 6 days (144 h), although a few runs with shorter 141 

(12 and 72 h) and longer (576 and 864 h) durations were also done. The longer duration was 142 

chosen to allow sufficient time for the crystal core compositions to be affected. Olivine crystals 143 

with different shapes (see below) were built within a ‘melt’ volume of 241 voxels/side (or 482 144 

μm, with a step size of 2 μm per voxel), allowing for reasonable computation times in 3D runs. 145 

The boundaries between crystal and melt were considered open, the melt effectively being an 146 

infinite reservoir of Fe-Mg and constant with time. The boundary compositions at the crystal rim 147 

were therefore constantly maintained during the runs (e.g. Costa and Chakraborty 2004).  148 

 149 

Variables incorporated in the model 150 

The main variables that determine how accurate timescales obtained via diffusion 151 

modeling include (1) the number of spatial dimensions, (2) the anisotropy of diffusion, (3) the 152 
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shape/morphology of the crystal, (4) the location of the section or profile (i.e. along or off-153 

crystallographic axis, on- or off-center), and (5) the nature of chemical zoning.  154 

The influence of a given variable is difficult to completely isolate from the others, so we 155 

decided to organize the diffusion models as follows: First, a series of models tested the influence 156 

of crystal shape on retrieved timescales. 1D diffusion models on principal sections along the 157 

crystallographic axes were followed by more realistic scenarios that incorporated the effects of 158 

section orientation and off-center sectioning. Finally, a representative morphology was selected 159 

to explore the effect of variable zoning configurations (normal, reverse, core-rim).  160 

 161 

Spatial dimensions. We focused chiefly on comparisons between 1D vs. 3D diffusion, but a few 162 

2D models were also carried out for comparison, and are reported in the Supplementary Material. 163 

Crystal shape. Three crystal shapes were examined (Fig. 2a): a sphere with a 201 voxel 164 

diameter, a rectangular parallelepiped (hereafter labeled the ‘orthorhombic’ morphology) with 165 

dimensions 95×121×201 voxels (along x, y, z, corresponding to crystallographic axes a, b, and 166 

c), and a realistic olivine morphology (labeled ‘polyhedral’ throughout the text) based on Welsch 167 

et al. (2013) with an aspect ratio identical to that of the orthorhomb. 168 

Diffusion anisotropy. For the spherical crystal models we used an isotropic D, while for the 169 

orthorhombic crystals we used either isotropic or anisotropic diffusion to evaluate this effect on 170 

timescales. The polyhedral crystals were all modeled using anisotropic diffusion (Fig. 2b). The 171 

1D simulations incorporated either a single diffusion coefficient Da, Db, Dc,  (along the axes), or 172 

the orientation-corrected coefficient *
VD  (Eq. 4).  173 

Types of section. The 3D crystal models were sectioned according to four types of planes (Fig. 174 

2c): (1) principal sections (passing through the center, parallel to a-b, b-c, or a-c planes), 175 
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hereafter termed ‘along-axes, on-center’ sections, (2) sections parallel to the crystal axes at 176 

random distances from the center, so-called ‘along-axes, off-center’, (3) sections at random 177 

angles from the crystallographic axes passing through the center, or ‘randomly-oriented, on-178 

center’ and (4) sections at random angles from the axes and distances from the center ‘randomly-179 

oriented, off-center’.  180 

Style of Fo zoning. Six types of compositional zonings were used to simulate a range of 181 

magmatic scenarios (Fig. 2d): (1) ‘normal zoning I’, wherein a crystal of homogeneous 182 

composition 90FoCol =  is placed in contact with a melt with an ‘effective’ composition 183 

70FoCmelt =  (i.e. the equilibrium olivine composition towards which the crystal evolves), (2) 184 

‘normal zoning II’ with a homogenous crystal 75FoCol =  in contact with a similar melt 185 

70FoCmelt = ; These zoning types (1) and (2) mimic the removal of olivine crystals from a mafic 186 

melt, and their incorporation into more evolved magmas without rim growth (e.g., magma 187 

recharge, Costa and Chakraborty 2004; Kahl et al. 2011), (3) ‘reverse zoning’ with an olivine 188 

70FoCol =  and a melt 80FoCmelt = ;  This configuration could represent olivines from the more 189 

evolved magma being incorporated into the mafic recharge magma. (4) Core-rim I configuration 190 

with a core 70FoC coreol =−  and a rim 80FoC rimol =− in contact with a melt 80FoCmelt = ; This type 191 

of zoning could also represent a magma mixing event but the olivine has grown a rim prior to 192 

diffusive equilibration of the core and the surrounding melt,  (5) Core-rim II zoning with a core 193 

75FoC coreol =− , a rim 70FoC rimol =−  in contact with a melt 80FoCmelt = , and (6) Core-rim III 194 

zoning with 70FoC coreol =− , 80FoC rimol =− and 75FoCmelt = . The last two zoning patterns model 195 

more complex magma interactions in which the growth rim has a different equilibrium Fo 196 
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composition from that of the surrounding melt. Note that in all simulations, it is assumed that any 197 

crystal growth has progressed to completion before diffusion starts (i.e. instantaneous growth 198 

with a fixed liquid-crystal boundary).  199 

 200 

Procedure for model comparisons 201 

The numerical models were examined according to a systematic protocol, in which 3D 202 

simulations were used as ground-truth for comparisons with their 1D counterparts (Fig. 3). This 203 

procedure entailed: (1) sectioning the initial 3D olivine crystal before diffusion started, (2) 204 

discarding the smallest unsuitable 2D sections when necessary (i.e. for model series involving 205 

random sectioning), (3) choosing the suitable section(s) to carry out 1D diffusion models, (4) 206 

performing the 3D diffusion simulation, (5) sectioning the 3D ‘diffused’ olivine along the same 207 

plane(s) or transect(s) as in steps (1) and (3), and (6) retrieving the 1D timescales that best match 208 

the concentration maps/profiles from the 3D model. The best-fit 1D calculated times are labeled 209 

*
1Dt , and the true 3D diffusion times Dt3 (i.e. best fit times are marked by asterisks). Values of *

1Dt  210 

were calculated via the root-mean square deviation (RMSD) between the 3D (‘real’) and 1D 211 

(‘measured’) concentration profiles  (e.g. Girona and Costa 2013) (see Supplementary Material 212 

section S3). For a set of parameters, typically one 3D model was used as ground-truth to 213 

compare with two hundred 1D diffusion models. From a set of several hundred sections across 214 

the 3D olivine, those that were too small (i.e. typically <20% in area of the maximum section 215 

size observed) were discarded, and the first one hundred sections from the leftover set were kept 216 

for further analysis (cf. Fig. 1 for an example). For each of these one hundred sections, two 217 

profiles were manually selected across different crystal faces. To mimic real world practices, 1D 218 

transects were always chosen parallel to the concentration gradient within each section. Note that 219 



11 
 

this does not imply, however, that the profiles were parallel to the concentration gradient in the 220 

3rd dimension. 221 

 222 

RESULTS AND INTERPRETATIONS 223 

 224 

For simplicity, and considering the large number of variables incorporated in the various 225 

models (crystal morphology, number of model dimensions, diffusion anisotropy, section 226 

orientation, section distance from the core, zoning configuration), results and interpretations are 227 

presented one after the other. The following paragraphs first explore the role of crystal 228 

morphology and diffusion anisotropy, and later the zoning style. In each case the results are 229 

presented in order of increasing sectioning complexity, typically: (1) along-axes, on-center, (2) 230 

along-axes off-center, (3) randomly-oriented, on-center and (4) randomly-oriented, off-center. 231 

Timescales are reported both as absolute values (in hr) and as relative mismatch, defined as  232 

( )
*
1 3

3

% 100 D D
t

D

t tr
t
−= × . In the latter case, zero implies a perfect match, a positive number 233 

indicates a time overestimate, and a negative number an underestimate. 234 

 235 

Influence of crystal shape and diffusion anisotropy 236 

Two scenarios were tested, with isotropic (for the spherical and orthorhombic crystals) and 237 

anisotropic diffusion (for the orthorhombic and polyhedral crystals). For each situation, two 3D 238 

models with diffusion times of 72 and 144 h were performed, and the results compared with 1D 239 

models. These models were all reversely-zoned, with an initially homogenous Fo70 crystal 240 

equilibrating with a more mafic melt (Fo80).  241 
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Along-axis, on-center sections. For spherical crystals and isotropic D, the best matching 1D 242 

time always overestimated the true diffusion time, with *
1Dt  = 80 and 180 h (+10 and +25% the 243 

true times Dt3  = 72 and 144 h respectively) (Fig. 4a, b, also see Supplementary Material section 244 

S4 for corresponding concentration profiles). Models with orthorhombic crystals reproduced the 245 

true diffusion times correctly, except for the 144 h models run using isotropic D, which result in 246 

slight time overestimates along b and c ( *
1Dt ~ 154h) (Fig. 4b). The polyhedral morphology 247 

yielded 1D times that are either similar to the true times (e.g. *
1Dt = 154 and 160 h along b or c in 248 

the 144 h simulations) or much longer ( *
1Dt = 151 and 297 h along a in the 72 and 144 h runs 249 

respectively, or a relative difference of +110%).  250 

These observations argue for an important control of crystal shape on calculated diffusion 251 

times, interpreted here to be caused by merging element flux from multiple directions. In other 252 

words, if a diffusion front advances perpendicular to a given crystal face, then two diffusion 253 

fronts perpendicular to two faces at an angle lower than 180° from each other will merge (cf. 254 

Supplementary Material section S5). Thus, diffusion fronts in an olivine with sets of parallel 255 

faces (orthorhombic morphology) will generally not intersect in transects collected away from 256 

the corners, leading to accurate timescale predictions (see Supplementary Material section S4). 257 

With increasing duration, however, the diffusion fronts originating from different crystal faces 258 

may reach the core via the shortest crystal dimension (the a-axis), generating differences 259 

between 1D and 3D along the other crystal dimensions, b and c. Compared to orthorhombic 260 

morphologies, polyhedral crystals typically have more faces meeting at angles < 180°, thus 261 

promoting interacting diffusion fronts and leading to systematic differences between 1D and 3D 262 

times, even along perfectly-oriented transects (Fig. A4). The roughly two-fold overestimate in 263 



13 
 

1D times along a in polyhedral models is a good example: the diffusion fronts originating from 264 

{110} converge or diverge (depending on whether Fe or Mg is considered) from/towards the 265 

profile passing through the crystal center along the a-axis, resulting in interactions that cannot be 266 

modeled in 1D (Fig. A3 and A7 in the Supplementary Material for illustrations). Finally, the 267 

surface of a sphere can be considered as an infinite combination of planes at a certain angle from 268 

each other, supporting the notion that even perfect sections or profiles across a sphere never 269 

produce the same results in 1D. 270 

Along-axis, off-center sections. For all non-spherical morphologies, concentration profiles 271 

could be sampled along a given axis using two possible planes (e.g. the a-b or the a-c for along-a 272 

profiles). Here, the plane allowing for the longer sampling distance from the core was chosen 273 

(e.g., a-c was selected over a-b for the a-axis, b-c selected over a-b for the b-axis, and b-c chosen 274 

over a-c for the c-axis, Fig. 5). Furthermore, for off-center transects, the initial composition may 275 

only be apparent (i.e., different from the true initial Fo) (Costa and Chakraborty 2004; Costa et 276 

al. 2008). There are two possibilities to run the models: (A) using the true initial composition 277 

known from the 3D model, or (B) using the apparent extremum composition displayed by the 278 

off-center profile (the maximum or minimum Fo concentration, depending on whether zoning is 279 

normal or reverse). We initially tested the two possibilities for the spherical model (Fig. 5a). 280 

Using the initial composition as known, the difference between the true and the best-fit diffusion 281 

times ( DDDD ttt 3
*
131 −=Δ − ) increased from +40 to +800 h (or +25 to +550% relative) with 282 

increasing sampling distance from the crystal center, until roughly 20 μm from the sphere edge. 283 

Then, closer to the edge, DDt 31 −Δ  decreased abruptly. In contrast, if the initial concentration was 284 

taken as the observed maxima or minima Fo in the diffused profile, the 1D−3D discrepancy was 285 

smaller, with values of DDt 13 −Δ  = +200 h (or +140% relative) about 45 μm from the crystal edge, 286 
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and decreasing thereafter to negative values (i.e. 1D timescales became shorter than 3D). For the 287 

orthorhombic and polyhedral crystal, we took the initial concentration as observed (case B 288 

above). Orthorhombic models showed excellent agreement between 1D and 3D times ( DDt 31 −Δ289 

=0) up to distances ~160 μm from the core for transects performed along the a and b axes, and 290 

up to ~80 μm for those selected along the c axis. Closer to the crystal edges, DDt 31 −Δ increased to 291 

+25-50 h depending on whether diffusion anisotropy was accounted for (Fig. 5b and c). We note 292 

that contrary to spherical models, DDt 31 −Δ  did not decrease noticeably as transects were sampled 293 

closer to the crystal faces. Polyhedral models yielded the most variable timescales (Fig. 5d). 294 

From the core to about ~140 μm, transects sampled along the a-axis systematically gave time 295 

overestimates ( DDt 13 −Δ = +150 h or +105%). Closer to the edge, 1D times underestimated the true 296 

diffusion time ( DDt 31 −Δ = −115 h or -80%). Concentration profiles taken along the b-axis showed 297 

good correspondence between 1D and 3D close to the core, rapidly degrading to values DDt 31 −Δ = 298 

+100-700 h at distances larger than 40 μm, then decreasing to negative values at the crystal edge. 299 

In contrast, transects along c produced timescales that agreed better with the known diffusion 300 

time. The topology of profiles obtained in polyhedral crystals were similar to those from the 301 

orthorhombic model along a, but closer to that of spherical models along b and c.  302 

The effects of sampling distance from the core and choice of initial concentrations on 303 

calculated timescales can be interpreted as follows: if the initial Fo concentration is known, 304 

shortening of the profiles with increasing distance from core leads to longer calculated times, as 305 

the model requires additional total element transfer to reach the same final concentration gradient 306 

(cf. Supplementary Material section S6). With increasing distance from the center, however, this 307 

shortening induces a decrease in calculated times because the apparent element transfer becomes 308 
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very small. This trade-off between profile length and element transfer required to attain a given 309 

concentration explains the increase and subsequent decrease in best-matching 1D times with 310 

increasing sampling distance from the core of spherical crystals (Fig. 5a). If the observed Fo 311 

extremum is chosen as the initial value, the same trade-off is observed, although a much smaller 312 

total flux is required to reach the final profile (Fig. 5a, b, c, and d), potentially leading to shorter 313 

calculated times and even time underestimates closer to the crystal edge (Fig. 5a, d). Overall, we 314 

emphasize that models employing the polyhedral shape display the most complex behavior with 315 

respect to transect distance from core, with no apparent systematic shifts in time mismatch 316 

common to the three sampling directions.  317 

Randomly oriented, on-center sections. To isolate the influence of diffusion anisotropy from 318 

that of crystal geometry, the models were first run assuming isotropic diffusion (using D=Dc), 319 

and later incorporated the anisotropy correction (Eq. 4). Because transects were collected within 320 

sections passing through the core, the initial Fo concentration was generally preserved, except 321 

for the isotropic rectangular models run for 144 h, in which the core composition was slightly 322 

affected. 323 

Sections obtained by slicing crystals through their cores generally showed a high degree 324 

of symmetry, with matching concentration gradients for faces of the same form (e.g. {110} and 325 

{021}, Fig. 6a, b). Sets of traverses selected across opposite crystal faces displayed a similar 326 

topology, and anisotropy-corrected 1D models yielded timescales close to the true time (Fig. 6a). 327 

On the other hand, transects taken across section corners (Fig. 6b), despite maintaining fairly 328 

good symmetry, resulted in large time overestimates. Thus, for the rest of this study, all 1D 329 

models were sampled away from corners in a given olivine section (however note that the 330 

section may still have been close to an edge or corner in the 3rd dimension). 331 
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Two-hundred 1D models performed in orthorhombic crystals (isotropic diffusion) 332 

displayed minor time mismatches for profiles taken perpendicular to the crystal faces (Fig. 7a). 333 

In comparison, oblique transects and those collected towards edges and corners typically 334 

produced time overestimates DDt 31 −Δ > +100 h (with a maximum of +750 h, 520% of the true 335 

time). Similar models incorporating anisotropic diffusion showed good agreement between 1D 336 

and 3D times for profiles that were perpendicular to crystal faces (Fig. 7b). Edges or near corner 337 

transects result in time underestimates DDt 31 −Δ < -20 h (-15%), while transects that are oblique to 338 

crystal faces also gave overestimates DDt 31 −Δ > +20−100 h (+15-70%). For polyhedral 339 

morphologies with anisotropic diffusion, the best time estimates were still derived from transects 340 

perpendicular to crystal faces (Fig. 7c). Transects oriented close to the a, b and c axes resulted in 341 

DDt 31 −Δ > +20−100 h, the worst cases were for profiles parallel to a and at slight angles from b 342 

and c.  343 

We attribute the emergence of time underestimates, which only appear in the anisotropic 344 

1D models (Fig. 7b and c), to the fact that a number of transects are not sampled perfectly 345 

parallel to the concentration gradient in all 3 dimensions. Along these directions, the anisotropy 346 

correction expression (Eq. 4) tends to overcorrect diffusivities (e.g. Supplementary Material 347 

section S7 for details). These time underestimates are indeed clustered near crystal edges 348 

(orthorhombic crystal, Fig. 7b) or crystal faces that are oblique to the main diffusion axes 349 

(polyhedral crystal, Fig. 7c). On the other hand, time overestimates typically result from artificial 350 

lengthening of the concentration gradients. This lengthening may be caused by either sectioning 351 

a concentration gradient at an angle, and/or sampling locations affected by diffusion front 352 

interactions (corners and edges) (Fig. 7a, b and c). 353 
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The consequences of adding section orientation as a free parameter in our simulations 354 

was also examined by displaying the same models as time-frequency histograms (Fig. 8). 355 

Timescales all fell within the 180-220 h range with a mode at *
1Dt =200 h (+40% the true 3D time 356 

of 144h; Fig. 8a). In contrast, isotropic models from orthorhombic crystals produced a broad 357 

distribution with a mode at *
1Dt =140 h, heavily skewed towards high values (up to 875 h or 358 

+500% the true time, Fig. 8b). The 1D models with no D-correction replicated timescales 359 

produced by the orthorhombic models that incorporated anisotopropic D poorly, with a bimodal 360 

time distribution (modes at *
1Dt =40 and 140 h). Correcting for D in these models resulted in a 361 

mostly unimodal distribution (mode at *
1Dt =140 h and shoulder at 80 h), with a wide range of 362 

times 69 < *
1Dt <490 h (Fig. 8c). Polyhedral crystals yielded trimodal distributions (modes at *

1Dt363 

=20, 80, and 160 h) for uncorrected D, while the same models generated unimodal, positively 364 

skewed distributions when the correction was applied (mode between *
1Dt =120-140 h and range 365 

of timescales 86 < *
1Dt <460 h; Fig. 8d).  366 

Overall, if we don’t correct for anisotropy in 3D models we find multimodal time 367 

distributions. The number of modes largely depends on the probability that a transect is taken 368 

across a given set of faces. For orthorhombic crystals (Fig. 8c), uncorrected bimodal time 369 

distributions correspond to the main diffusion directions: the mode at short times *
1Dt  =20 h (-370 

85% the true time) can be associated with profiles taken along the slower a and b axes (i.e. 371 

across faces belonging to the {100} and {010} forms), and the mode around the true 3D time *
1Dt  372 

=140 h corresponds to those collected along the faster c-axis profiles (i.e. across {001}). The 373 

well-defined third mode in polyhedral crystals (Fig. 8d) probably corresponds to transects taken 374 
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across the prismatic faces of the olivine (i.e. faces belonging to the {110} or {021} forms, cf. 375 

Fig. 2a), which are absent in the rectangular shape.  376 

Randomly oriented, off-center sections. The effects of random sectioning were first examined 377 

on a single section. Compared to center-cut crystals (Fig. 6a and b), an off-center section often 378 

showed asymmetrical concentration gradients across the different faces (Fig. 6c). Diffusion 379 

models performed using four such transects produced timescales that span a wide range *
1Dt  =72-380 

989 h (-50 to +590%), with important time under- and over-estimates. 381 

Unlike previous cases where crystal sections were along-axis off-center (Fig. 5) or on-382 

center but randomly oriented (Fig. 7a, b, and c), identifying systematic behaviors when both 383 

orientation and off-center distance are randomized was more difficult (Fig. 7d, e, f). Compared to 384 

center-cut models (Fig. 7a), transects sampled from off-center sections in orthorhombic crystals 385 

with isotropic D (Fig. 7d) showed a less well organized distribution of time overestimates with 386 

respect to orientation, in addition to producing time underestimates. Orthorhombic crystal runs 387 

using anisotropic D (Fig. 7e) also resulted in time underestimates more frequently compared to 388 

the center-cut version (Fig. 7b). Finally, off-center polyhedral models displayed much more 389 

randomness in the distribution of timescales with respect to transect orientation (Fig. 7f).  390 

When shown on time vs. frequency histograms, spherical crystals (Fig. 8e) displayed a 391 

clear mode at *
1Dt  =180 h (range of 180-912 h, or +25 to +530% the true time of 144 h) rapidly 392 

decaying towards high values when the initial Fo concentration was set to the known initial 393 

value (Fo70). Imposing the apparent observed Fo concentration as the initial value eliminated the 394 

1D times greater than 400 h, but generated a few models with much lower durations with *
1Dt  395 

=20 h (-85% relative). New secondary modes also appeared at *
1Dt  =220 and 300 h. Distributions 396 

from orthorhombic crystal simulations with isotropic D are unimodal (Fig. 8f), the mode 397 
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corresponding to the 3D time only when the initial Fo is taken as the apparent measured value. 398 

Anisotropic models using a rectangular or polyhedral geometry yielded bi- to tri-modal 399 

distributions with modes at *
1Dt = 20 h when a unique value of D is used, while those that are 400 

corrected for anisotropy gave mostly unimodal curves with modes at *
1Dt  =140 h (Fig. 8g and h). 401 

Globally, when initial concentrations are lost due to sectioning, models that use the 402 

extremum Fo as an initial value produce timescales that may underestimate or overestimate the 403 

true value by factors of 4-5 (Fig. 5, Fig. 8e and f).  If instead the known initial profile is used, 404 

timescales are typically longer, and do not show any improvement on overall accuracy (Fig. 5a 405 

and Fig. 8e and f). In most cases the apparent measured Fo is used as initial concentration since 406 

in practice, estimating the composition before diffusion occurred is not straightforward; these 407 

results demonstrate that when initial compositions are lost due to sectioning effects, using the 408 

measured apparent Fo can actually be better than using the true initial composition, which is a 409 

counterintuitive result. 410 

In summary, models testing the influence of section orientation and position on time scales 411 

show some trends (Fig. 5 and Fig. 7a, b and c), but mainly complex patterns, particularly for 412 

olivines with realistic shapes (e.g. Fig. 7f). Profiles near the edge of a 3D crystal always result in 413 

inaccurate 1D timescales, independent of section orientation.  414 

 415 

Influence of zoning configuration 416 

We also examined the role of zoning style on the timescale distributions obtained from 1D 417 

models collected along random orientation and/or distances from the olivine core. Additional 418 

sets of 1D and 2D models performed along principal sections and crystal axes were also carried 419 
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out to examine whether such ideal locations are better or worse for timescale extraction, and are 420 

presented in the Supplementary Material (section S9). 421 

Randomly oriented, on-center sections. Zoning style seems to have little effect on the 422 

distribution of timescales when sections were sampled on-center but along random directions 423 

(Fig. 9a). For the 6 zoning styles examined, models that did not take into account diffusion 424 

anisotropy generally produced trimodal distributions with modes at  *
1Dt  =20 h, 60 h, and  around 425 

120-160 h (at -85, -60 and -15 to +10% relative). The distributions became mostly unimodal 426 

(except for the core-rim I configuration, which has two apparent modes) and centered on the true 427 

time when we corrected for diffusion anisotropy. Maximum timescales calculated range from 428 

300 to 400 h (+110-+180% of Dt3 ). It should be noted that after a duration Dt3 =144 h, core-rim 429 

zoning types II and III (normal-reverse and reverse-normal, respectively) did not preserve the 430 

initial Fo concentrations at the core or at the rim (see Supplementary Material section S8). The 431 

initial rim compositions were erased after merely 12-24 h within core-rim model II. For these 432 

center cut sections, however, there is little difference between the accuracy of timescales 433 

retrieved at Dt3 =12 h or Dt3 =144 h (i.e., both have unimodal distributions centered on the 434 

correct time). 435 

Overall, incorporating random section/profile orientation into the simple zoning models 436 

(Fig. 9a) still allows for accurate diffusion timescale predictions in 1D, provided that the 437 

anisotropy of diffusion is accounted for. This implies that the large mismatches encountered 438 

along a (Fig. 4a, b) are an exception. However, even with anisotropy correction, some 1D 439 

models actually underestimated the true time because D was likely over-corrected in certain 440 

combinations of section orientation and sampling directions (also see Fig. 7). The time 441 
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distributions produced from core-rim zoning types are fairly similar to simple normal- or 442 

reverse-zoned runs (Fig. 9a), with, nevertheless, a more prominent secondary peak of timescales 443 

underestimates. 444 

Randomly oriented, off-center sections. For the six zoning styles, three types of simulations 445 

were examined: (1) no diffusion anisotropy correction and the initial Fo content was known, (2) 446 

the same as #1 but with correction for diffusion anisotropy, and (3) with diffusion anisotropy 447 

correction and initial Fo taken as apparent observed extremum value.  448 

Similarly to the center-cut models, off-center models uncorrected for diffusion anisotropy always 449 

displayed multimodal distributions (Fig. 9b). Also like center-cut models, simulations performed 450 

using anisotropy-corrected diffusion coefficients gave mostly unimodal distributions, with tails 451 

of longer durations, whether initial Fo was known or not. For the three simple crystal-melt 452 

zoning configurations (normal I, normal II and reverse), as well as for the core-rim I scenario, 453 

knowledge of the initial composition had a minor effect on the shape of the distributions or on 454 

the position of the main distribution mode, systematically located at the true time *
1Dt ≈ Dt3455 

=140h. In contrast, knowledge of initial Fo strongly influenced the location of the primary mode 456 

for zoning configurations core-rim II and III: if the initial composition was known, the 457 

distribution modes agreed with the true diffusion times, but if the initial Fo was taken as the 458 

apparent observed composition, those modes shifted towards lower timescales *
1Dt  =60 h (-60% 459 

relative). This discrepancy arises from diffusive loss of the initial core and rim concentrations in 460 

the 3D models, meaning that apparent extremum concentrations used as initial profiles for 1D 461 

models are very different from the real initial concentrations and result in unrealistic timescales 462 

(see Supplementary Material section S8). In general, nevertheless, possessing information on 463 

initial concentrations resulted in broader time distributions than when information on initial Fo 464 
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was lacking. For the core-rim I model, for example, 1D diffusion times reached values up to 465 

1440 h (+900% of Dt3 ) when the initial Fo was known, while maximum values only attained 540 466 

h when the apparent observed Fo was used.  467 

In summary, when off-center sections were allowed in the simulations, the narrow time 468 

distribution previously obtained for on-center sections (Fig. 9a) became wider in both longer and 469 

shorter times, and gained a large tail towards longer timescales (Fig. 9b). The time overestimates 470 

mostly stemmed from off-center sections (Fig. 5), as well as orientations that favor locations of 471 

diffusion front interactions (Fig. 7). For core-rim models sectioned randomly after t3D=144 h 472 

(Fig. 9b), the contrasting tendency for 1D  time distributions to shift towards lower timescales 473 

can be ascribed to a loss of initial concentrations both at the rim and at the core. Therefore, 474 

overall, poor quality time scales were obtained from models with core-rim zoning patterns that 475 

no longer displayed compositional plateaus.  476 

 477 

DISCUSSION 478 

 479 

In the following sections, we successively discuss the importance of considering spatial 480 

dimensions, compositional plateaus, diffusion anisotropy, and crystal morphology for 481 

applications aiming to extract timescales from diffusion modeling. Finally, we also examine the 482 

extent to which these considerations may apply to other elements and minerals. 483 

 484 

Sectioning zoned crystals: perspectives from the 3rd dimensions 485 

Irrespective of the specific crystal morphology, and whether diffusion is isotropic or not, it is 486 

very important to consider the effects of three dimensions in kinetic modeling. Pearce (1984) 487 
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demonstrated that randomly sampling a zoned equidimensional olivine leads to a variety of 488 

concentration profiles, from perfectly symmetrical to largely asymmetrical, from short to long (in 489 

terms of transect dimension along x), and with preservation or loss of initial compositional 490 

plateaus. Our 3D models confirm the variability of concentration profiles obtained by sectioning, 491 

particularly for those that are collected far from the core.  492 

Costa et al. (2003) and Costa and Chakraborty (2004) incorporated 2D models within their 493 

investigation of diffusion in plagioclase and olivine in order to investigate the dimensional 494 

effects on retrieved timescales. For both types of minerals, they sampled the concentration 495 

profiles parallel to the crystallographic axes, and found that ignoring the element flux originating 496 

from other dimensions can lengthen the 1D-derived times by a factor of three if the profiles are 497 

taken on-center, and by a factor of five off-center. These conclusions are supported by our 498 

models, with the added complexity that when the core Fo content is lost or the crystal geometry 499 

is non-rectangular (i.e. with narrowing across-crystal distances away from the core, Fig. 5), 500 

simulations may actually underestimate the true times. Whether the diffusion times are under- or 501 

over-estimated in these cases depends purely on the apparent total mass transferred, and the 502 

direction of this discrepancy is hard to anticipate.  503 

 504 

The role of initial concentration plateaus 505 

In our study we focused on applying realistic initial boundary conditions (i.e. using the 506 

extremum observed concentration to build the initial Fo profile), and also explored cases where 507 

the true initial concentration was known. Interestingly, for simple zoning patterns (i.e. normal or 508 

reverse without rim), knowledge of the initial Fo was not advantageous for retrieving accurate 509 

timescales, as the 1D-3D time differences typically worsened in cases where we used the known 510 



24 
 

initial composition. This is because in the initial 3D model, off-center locations will transfer Fo 511 

more rapidly than towards the core, and ascribing the ‘true’ initial Fo to a 1D model artificially 512 

lengthens the total diffusion time. When the initial concentration has been lost to a significant 513 

extent at the core or at the rim, however, timescales are typically underestimated (see 514 

Supplementary Material sections S8 and S10). In these situations, calculations of diffusion times 515 

should be tested for a variety of plausible initial core and/or rim concentrations to determine 516 

potential uncertainties. An alternative approach used to infer the topology of the initial 517 

concentration for olivine or other phases such as plagioclase, is to measure slow-diffusing 518 

elements (e.g., Ca, P or Al in olivine, CaAl-NaSi in plagioclase) concurrently with the elements 519 

of interest (Costa et al. 2003; Millman-Barris et al. 2008; Kahl et al. 2011; Druitt et al. 2012). A 520 

relationship between the main diffusing elements and the slow diffusers is calculated, and the 521 

initial concentration can be inferred. This type of calculation works if the crystal grew in near 522 

equilibrium conditions (e.g., using the melt P and the Fo component in olivine or Mg and An 523 

component in plagioclase) (e.g. Albarede and Bottinga 1972; Costa et al. 2010; Ruprecht and 524 

Plank 2013), yet sufficiently rapid compared to diffusion that the diffusive re-equilibration is 525 

distinct from growth.  526 

 527 

An imperfect but adequate anisotropy correction 528 

The equation used to correct for diffusion anisotropy (Eq. 4) requires knowledge of section 529 

orientation with respect to the crystallographic axes, which is readily obtainable using Electron 530 

Backscatter Diffraction (EBSD) analysis (Prior et al. 1999; Costa and Chakraborty 2004; Costa 531 

and Dungan 2005; Hammer et al. 2010; Kahl et al. 2011; Sio et al. 2013). Without this 532 

correction, calculated timescales are likely to be inaccurate and imprecise (e.g. Fig. 8). Even 533 
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when D is anisotropy-corrected, and sections are taken along the crystal center, 1D models do 534 

not result in a single timescale, but rather in a distribution around the true 3D time. This issue 535 

occurs because Eq. 4 is strictly applicable to transects perfectly parallel to the concentration 536 

gradient, which is not necessarily the case in our simulations (or in nature) despite appearing 537 

parallel on a section. The geometrically-correct, generalized equation is not easily applicable in 538 

practice since concentration variations in the third dimension are not known. The rapidly 539 

advancing field of X-ray micro-tomography analysis may allow an accurate 3D characterization 540 

of Fo in olivine in the near future (e.g. Pankhurst et al. 2014). Until then, using the simpler 541 

anisotropy correction formula already improves the accuracy and precision of timescales 542 

considerably.  543 

We note that the quality of 1D model fits from uncorrected D are just as satisfactory as those 544 

obtained using a corrected D, implying that the goodness of fit is not necessarily a solid indicator 545 

of the timescale accuracy. Recent works have derived timescales in anisotropic minerals using 546 

diffusion coefficients along the slowest and/or the fastest crystal directions, and argued that those 547 

provide minimum or maximum estimates, or potentially encompass the possible range in 548 

diffusion times (e.g. Pan and Batiza 2002; Ruprecht and Plank 2013; Longpre et al. 2014). 549 

However, even when using the fastest diffusion coefficient Dc, our randomly sectioned crystals 550 

with real diffusion times t3D=144h yielded best-fit 1D durations of anywhere between 10-600 h 551 

(cf. Fig. 9). Using the slowest diffusion coefficient Da (= Db) would change this range by a factor 552 

of 6 (i.e. 60-3600 h). Therefore, without correcting for diffusion anisotropy, calculated 553 

timescales from randomly sectioned olivines can actually span anywhere from ~0.1-25 times the 554 

true diffusion time. 555 

 556 
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Importance of considering crystal morphology 557 

Multidimensional effects on calculated times are generally examined using simple 558 

geometries and analytical solutions (i.e., spheres, cylinders and rectangular parallelepiped; Pan 559 

and Batiza 2002; Costa and Chakraborty 2004, 2008; Watson et al. 2010), but the addition of 560 

morphological complexity of natural crystals combined with random sectioning during thin 561 

section preparation affects the calculated timescales considerably.  562 

The results from our numerical models involving randomly sectioned spherical crystals yield 563 

longer timescales (cf. Fig. 8) is opposite to that observed by Pan and Batiza (2002), who found 564 

that calculated times exponentially decreased towards small values, presumably as sections were 565 

sampled away from their centers. Such shorter times were rarely obtained in our simulations 566 

because the length of an apparent concentration gradient in a given random transect is always 567 

equal or longer than the true concentration gradient length. Only in cases where the transect 568 

width shortened closer to the edges did 1D diffusion times underestimate the true time in 569 

spherical models (Fig. 5).  570 

For other geometries (rectangular and polyhedral), the convergence of diffusion fronts from 571 

different faces typically results in a longer apparent concentration gradient, and whether 1D 572 

modeling of such gradients yields shorter or longer timescales also depends on the relationship 573 

between apparent composition (whether initial plateaus are preserved or not) and the apparent 574 

width of the profile across the crystal. Zones of interacting diffusion fronts, typically crystal 575 

corners, are not good for kinetic modeling of time scales.  576 

 577 

Relevance of results for other elements, crystal shapes and minerals 578 
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The diffusion and crystal sectioning exercise we have done for Fe-Mg in olivine is also 579 

relevant for other elements, such as Ca, Ti, V, Cr, Mn, Co, Ni since they also show diffusion 580 

anisotropy (faster in the c direction; e.g. Petry et al. 2004; Coogan et al. 2005; Chakraborty 2010; 581 

Spandler and O’Neill 2010).  Moreover, the provisions dictated by dimensional, interacting 582 

diffusion fronts and sectioning effects highlighted above will also apply.  583 

The polyhedral morphology we have used contains the most common crystal faces of olivines 584 

crystallizing in the laboratory or in nature (e.g. Faure et al. 2007; Welsch et al. 2009, 2013). 585 

Nevertheless, even this fairly archetypal olivine can appear in a wide variety of aspect ratios, 586 

which will presumably influence where the zones of interacting diffusion fronts occur, in 587 

addition to the rate at which the crystal core concentration will be affected by the diffusion 588 

process (e.g. the short axis of a highly elongate olivine). Even more complex morphologies 589 

resulting from rapid growth (e.g. spinifex, skeletal or dendritic, Bryan 1972; Faure et al. 2003, 590 

2006; Shea et al. 2013; Welsch et al. 2013) will host more regions of interacting diffusion fronts; 591 

therefore additional caution is warranted when attempting to perform 1D diffusion modeling in 592 

such crystals. Our models involving spherical shapes also displayed departures from the true 593 

diffusion times; olivines that have rounded rather than faceted habits are thus also susceptible to 594 

providing less accurate results.  595 

Diffusion modeling of elements has also been recently used in feldspars (e.g. Mg, Sr, Ba) and 596 

pyroxenes (e.g. Fe-Mg) to decipher timescales of magmatic processes (e.g. Costa et al. 2003; 597 

Morgan et al. 2004, 2006; Cherniak 2010; Druitt et al. 2012; Saunders et al. 2012; Ruprecht and 598 

Cooper 2012). Diffusion anisotropy for most elements in these minerals is not well characterized 599 

or appears to be moderate and should not be an important source of uncertainty in calculated 600 
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times. Other issues of merging diffusion fronts and added flux from other dimensions identified 601 

in this study are nevertheless expected to apply to feldspars and pyroxenes in the same fashion.  602 

 603 

IMPLICATIONS: GUIDELINES FOR CRYSTAL AND TRAVERSE SELECTION IN 604 

THE CONTEXT OF DIFFUSION STUDIES 605 

 606 

Which sections/profiles are most adequate?  607 

While a suitable correction can be applied for diffusion anisotropy in olivine, there is no general 608 

quantitative adjustment to correct for problems associated with crystal sectioning or dimensional 609 

effects because their influence on calculated timescales is too dependent on morphology (number 610 

and relationship between faces, aspect ratio, roundness). Consequently, rather than attempting to 611 

find a posteriori empirical corrections for intersection and 3rd dimension issues, attention should 612 

be focused on identifying the best suitable sections for diffusion modeling. In their investigation 613 

of diffusion in natural garnets, Ganguly et al. (2000) noted that uncertainty in calculated 614 

timescales can partly derive from the profile not being perfectly parallel to the 3D concentration 615 

gradient. Our results support this notion, although the influence of less-than-perfect transect 616 

orientation on retrieved timescales is less important than not correcting for anisotropy or other 617 

sectioning and/or second and third dimension effects (i.e. diffusion front interactions). Typically, 618 

the largest errors appear in sections that are oblique to crystal faces and generate extended 619 

concentration gradients. Such gradients are rarely observed in center-cut sections but much more 620 

common in highly off-center cuts. Because off-center sections often intersect sets of faces at very 621 

different angles, they also result in apparent concentration gradients with different widths from 622 

face to face, and thus often asymmetric. Yet another related symptom of off-center cuts is the 623 
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presence of dipping plateaus in the observed gradients (also see Pearce 1984), and even in certain 624 

cases, the absence of any compositional plateau despite the fact that diffusion has not reached the 625 

crystal core (also see Costa et al. 2003; Costa and Chakraborty 2004).  626 

Aside from problems of intersections, crystals that have no compositional plateau at the 627 

core (or at the rim in the case of more complex zonings) are more susceptible to give inaccurate 628 

timescales (both under- and overestimates are possible, Supplementary Material sections S6, S7, 629 

S8 and S10) because they are likely to be: (1) either sectioned largely off-center, in which case 630 

using the apparent observed extremum composition as initial is no worse than knowing the initial 631 

concentration, or (2) sectioned through their center but having diffused long enough to lose the 632 

initial concentration. Nonetheless, if no better sections are available, an analysis of timescale 633 

variability and goodness-of-fit as a function of initial concentration can be carried out.  634 

We also showed that profiles measured across crystal regions containing corners or near face 635 

intersections are likely to yield incorrect timescales due to interacting diffusion fronts. While one 636 

it is difficult to ensure that a given section does not cut through such a region, it is at least 637 

possible to select a profile away from any apparent face intersection. The same rule applies to 638 

any zones of the olivine displaying rounding.  639 

In summary, when numerous crystals are available within a thin section, simple olivine 640 

selection guidelines can be followed (examples of suitable and unsuitable thin sections are given 641 

in Figs. 1 and 10). Note that it is assumed here that the work of identifying distinct populations 642 

with different crystallization/diffusion histories has already been performed (i.e., populations 643 

with different zoning styles, e.g. Pan and Batiza 2002; Costa and Chakraborty 2004; Kahl et al. 644 

2011, 2013), and those guidelines apply to selection of the most suitable crystals within one such 645 

population: 646 
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1. When looking for good crystals disregard the smallest ones, which have a higher 647 

probability of being off-center sections. Note that small sections may also be center cuts 648 

through smaller crystal populations (e.g. Saltikov 1967) since olivine sizes vary in real 649 

rocks. Even so, smaller populations are more likely to experience other issues (loss of 650 

initial concentration) and it is better to avoid them.  651 

2. Profiles should be obtained away from crystal corners and locations of obvious 652 

concentration gradient ‘rounding’ since these regions likely experienced merging 653 

diffusion fronts. This means that complex morphologies (e.g. skeletal olivines) should 654 

be avoided for 1D modeling considering their propensity to host numerous crystal edges 655 

and corners. Polyhedral, nicely faceted crystals are therefore preferable. More complex 656 

morphologies can be used but 2D and/or 3D models are probably required to recover 657 

robust timescales. 658 

3. If possible, choose olivines that display a clear concentration plateau but discard 659 

those that display dipping plateaus, since they are highly off center and/or oblique cuts.  660 

Identifying these sections is straightforward for Fo zoning since acquiring Backscatter 661 

Electron (BSE) images usually suffice to image relative variations in major element 662 

composition (see Supplementary Material section S11 for examples). In any case, it is 663 

recommended to check for core compositions using EDS (Energy-Dispersive x-ray 664 

Spectroscopy) spots or transects. 665 

4. Avoid olivine sections that completely lack any concentration gradient symmetry 666 

across the different faces (i.e. different gradient widths). Such cuts are often oblique to 667 

most faces and concentration gradients.  668 
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5. If possible, find crystals that contain at least 2 suitable transect directions 669 

perpendicular to two different faces (cf. Fig. 10). Finding such sections can help (1) 670 

verify that diffusion occurred anisotropically, and thus that gradients are not related to 671 

growth (Costa et al. 2008), and (2) test the variability of obtained timescales within a 672 

single olivine. 673 

 674 

Providing that a sufficient number of crystal sections are available, these selection criteria are 675 

fairly easy to apply for modeling of Fo diffusion. The same is not necessarily true for trace 676 

elements since compositional variations are not resolved by BSE images. Nevertheless, the 677 

symptoms of unsuitable olivine sections will be the same, and the Fe-Mg content can still be 678 

used to perform the initial crystal selection process. Finally, once a set of adequate sections is 679 

identified, the analyst should determine grain orientation using EBSD (e.g. Costa and 680 

Chakraborty 2004) or other techniques such as microRaman (Ishibashi et al. 2008), since 681 

correcting for anisotropy is sine qua non to obtaining accurate 1D timescales.  682 

 683 

What is the accuracy and precision that can be expected from 1D modeling? 684 

If the olivine selection criteria described above are applied to the sections obtained from the 685 

models in this study (100 olivine cuts, 2 traverses per crystal), the number of suitable sections 686 

typically ranges from ~30 to 70% of the total (Fig. 11). The ‘filtered’ sections give few time 687 

overestimations and also show less prominent secondary modes or shoulders. Gaussian curves 688 

can be fitted to these distributions, and give mean values that are very close to the true 3D time 689 

for the three simple zoning styles (normal I and II and reverse) as well as the rim-core I zoning, 690 

(from 145 to 152 h, or an accuracy of 1-2% the total time, Fig. 11). For core-rim zonings II and 691 
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III, as well as for longer duration (~1152 h) normal zoning II models (Supplementary Material 692 

section 10), the mean value underestimates the true value by about half. This result is expected 693 

since the issues of underestimating timescales for these zonings stems from loss of rim plateau 694 

concentrations and not from poor selection of olivine sections. Irrespective of zoning style, the 695 

standard deviations or ‘precision’ varies between 18-32 h, or typically ~15-25% the mean times. 696 

Therefore, providing the crystal sections are carefully selected, it can be estimated that 1D 697 

timescales will replicate the true diffusion times with a very high degree of accuracy (<5% from 698 

the true time) and reasonable precision (15-25% the calculated mean time).  699 

 700 

How many sections/profiles are necessary to obtain accurate results?  701 

The numerical models from this study also allow estimating the minimum number of 702 

concentration profiles required to establish the timescale of diffusion in a single olivine 703 

population accurately. The series of 200 one-dimensional models performed using the ‘reverse’ 704 

zoning configuration (‘raw data’) as well as the 66 models that adhered to the criteria above 705 

(‘filtered data’) were used for this exercise. From the raw and filtered data, sets of 5, 10, 20, 40 706 

and 60 timescales obtained by 1D models were sampled 20 times in a random fashion, and the 707 

mean time was computed for each subset. This random sampling provides a notion of variability, 708 

expressed by the mean of a given distribution of timescales as a function of the total number of 709 

traverses. For the raw dataset, increasing the number of analytical profiles decreases the 710 

variability of obtained mean diffusion times, but only for a large number of profiles (40 profiles) 711 

(Fig. 12). In addition, the calculated means converge around a time *
1Dt  = 170-250 hours, which 712 

is largely over the true diffusion time of 144 h. This result is somewhat expected considering the 713 

large number of time overestimates within the raw data, in addition to the non-normal nature of 714 
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the timescale distribution (cf. Fig. 9b). In contrast, the filtered data yields timescales close to the 715 

true value when at least 20 profiles are used (Fig. 12). Thus, in addition to following the olivine 716 

section guidelines detailed above, it is recommended that for a given crystal population about 20 717 

analytical profiles should be obtained to ensure timescale accuracy. Even though the numerical 718 

experiments were constructed to represent nature inasmuch as practically feasible, the crystal 719 

populations investigated all derived from one single crystal size, and a homogeneously well-720 

recorded diffusion event of 144 h. Therefore, more complex natural cases may warrant more than 721 

20 transects. 722 

 723 

ACKNOWLEDGEMENTS 724 

TS and JH are thankful for NSF EAR grants 1321890 and 0948728, which funded this 725 

project. FC and DK work was funded by NRF-MoE Singapore “Magma Plumbing systems” 726 

grant. Many ideas developed for this paper originated from the invaluable lectures, practicals, 727 

and discussions that took place during the 2012 Diffusion Workshop at the Ruhr-Universität 728 

Bochum, organized by Sumit Chakraborty, Ralf Dohmen, Thomas Müller, Sascha Borinski, 729 

Maren Kahl, Sabrina Schwinger and Kathrin Faak. Bruce Watson is thanked for the sensible 730 

editorial handling, and two anonymous reviewers are thanked for the constructive comments that 731 

enhanced this contribution in many ways.  732 

 733 

REFERENCES CITED 734 

Albarède, F. and Bottinga, Y. (1972). Kinetic disequilibrium in trace element partitioning 735 

between phenocrysts and host lava. Geochimica et Cosmochimica Acta, 36, 141-156. 736 



34 
 

Bindeman, I.N., Sigmarsson, O. and Eiler, J. (2006) Time constraints on the origin of large 737 

volume basalts derived from O-isotope and trace element mineral zoning and U-series 738 

disequilibria in the Laki and Grimsvotn volcanic system. Earth Planet Science Letters, 739 

245, 245-259. 740 

Cardozo, N. and Allmendinger, R.W. (2013) Spherical projections with OSX Stereonet. 741 

Computers & Geosciences, 51, 193-205. 742 

Chakraborty, S. (1995) Diffusion in silicate melts. Reviews in Mineralogy and Geochemistry, 743 

32, 411-504. 744 

Chakraborty, S. (1997) Rates and mechanisms of Fe-Mg interdiffusion in olivine at 980°C–745 

1300°C. Journal of Geophysical Research, 102, 12317-12331. 746 

Chakraborty, S. (2008) Diffusion in solid silicates: a tool to track timescales of processes comes 747 

of age. Annual Reviews in Earth and Planetary Sciences, 36, 153-190. 748 

Cherniak, D.J. (2010) Cation diffusion in feldspars. Reviews in Mineralogy and Geochemistry, 749 

72, 691–733. 750 

Coogan, L.A., Hain, A., Stahl, S. snd Chakraborty, S. (2005) Experimental determination of the 751 

diffusion coefficient for calcium in olivine between 900°C and 1500°C. Geochimica et 752 

Cosmochimica Acta, 69:3683-3694 753 

Coombs, M.L., Eichelberger, J.C. and Rutherford, M.J. (2000) Magma storage and mixing 754 

conditions for the 1953-1974 eruptions of Southwest Trident volcano, Katmai National 755 

Park, Alaska. Contributions to Mineralogy and Petrology, 140, 99-118. 756 

Cooper, K.M. and Kent, A.J.R. (2014) Rapid remobilization of magmatic crystals kept in cold 757 

storage. Nature, 506, 480-483. 758 



35 
 

Costa, F. and Chakraborty, S. (2004) Decadal time gaps between mafic intrusion and silicic 759 

eruption obtained from chemical zoning patterns in olivine. Earth and Planetary Science 760 

Letters, 227, 517-530. 761 

Costa, F., Chakraborty, S. and Dohmen, R. (2003) Diffusion coupling between trace and major 762 

elements and a model for calculation of magma residence times using plagioclase. 763 

Geochimica et Cosmochimica Acta, 67, 2189-2200. 764 

Costa, F. and Dungan, M. (2005) Short time scales of magmatic assimilation from diffusion 765 

modelling of multiple elements in olivine. Geology, 33, 837-840. 766 

Costa, F., Dohmen, R. and Chakraborty, S. (2008) Time scales of magmatic processes from 767 

modeling the zoning patterns of crystals. Reviews in Mineralogy and Geochemistry, 69, 768 

545-594. 769 

Costa, F., Coogan, L.A. and Chakraborty, S. (2010) The timescales of magma mixing and 770 

mingling involving primitive melts and melt–mush interaction at mid-ocean ridges, 771 

Contributions to Mineralogy and Petrology, 159, 173–194. 772 

Crank, J. (1975) The Mathematics of Diffusion. 2nd edition, Oxford Science Publication, 773 

Oxford, 414 p. 774 

Demouchy, S., Jacobsen, S.D., Gaillard, F. and Stern, C.R. (2006) Rapid magma ascent recorded 775 

by water diffusion profiles in mantle olivine. Geology, 34, 429-432. 776 

Dohmen, R. and Chakraborty, S. (2007) Fe-Mg diffusion in olivine II: point defect chemistry, 777 

change of diffusion mechanisms and a model for calculation of diffusion coefficients in 778 

natural olivine. Physics and Chemistry of Minerals, 34, 409-430. 779 



36 
 

Druitt, T. H., Costa, F., Deloule, E., Dungan, M. and Scaillet, B. (2012) Decadal to monthly 780 

timescales of magma transfer and reservoir growth at a caldera volcano. Nature, 482, 77–781 

80. 782 

Ganguly, J. (2002) Diffusion kinetics in minerals: principles and applications to tectono-783 

metamorphic processes. European Mineralogical Union, 4, 271-309. 784 

Ganguly, J., Dasgupta, S., Cheng, W. and Neogi, S. (2000) Exhumation history of a section of 785 

the sikkim Himalayas, India: records in the metamorphic mineral equilibria and 786 

compositional zoning of garnet. Earth and Planetary Science Letters, 183, 471-486. 787 

Girona, T. and Costa, F. (2013) DIPRA: A user-friendly program to model multi-element 788 

diffusion in olivine with applications to timescales of magmatic processes. Geochemistry, 789 

Geophysics, Geosystems, 14, 422-431. 790 

Hammer, J.E., Sharp, T.G., and Wessel, P. (2010) Heterogeneous nucleation and epitaxial crystal 791 

growth of magmatic minerals. Geology, 38, 367-370. 792 

Ismail-Zadeh, A. T. and Tackley, P. J. (2010) Computational Methods for Geodynamics, 793 

Cambridge University Press, Cambridge. 794 

Ito, M. and Ganguly, J. (2006) Diffusion kinetics of Cr in olivine and 53Mn-53Cr 795 

thermochronology of early solar system objects. Geochimica et Cosmochimica Acta, 70, 796 

799-809. 797 

Kahl, M., Chakraborty, S., Costa, F. and Pompilio, M. (2011) Dynamic plumbing system 798 

beneath volcanoes revealed by kinetic modeling and the connection to monitoring data: 799 

an example from Mt. Etna. Earth and Planetary Science Letters, 308, 11–22. 800 

Kahl, M., Chakraborty, S., Costa, F., Pompilio, M., Liuzzo, M. and Viccaro, M. (2013). 801 

Compositionally zoned crystals and real-time degassing data reveal changes in magma 802 



37 
 

transfer dynamics during the 2006 summit eruptive episodes of Mt. Etna. Bulletin of 803 

Volcanology, 75, 1-14. 804 

Longpre, M.-A., Klugel, A., Diehl, A. and Stix, J. (2014) Mixing in mantle magma reservoirs 805 

prior to and during the 2011–2012 eruption at El Hierro, Canary Islands. Geology, 42, 806 

315-318. 807 

Martí, J., Castro, A., Rodríguez, C., Costa, F., Carrasquilla, S., Pedreira, R. and Bolos, X. 808 

(2013) Correlation of magma evolution and geophysical monitoring during the 2011–809 

2012 El Hierro (Canary Islands) submarine eruption, Journal of Petrology, 54, 1349–810 

1373. 811 

Milman-Barris, M.S., Beckett, J.R., Michael, M.B., Hofmann, A.E., Morgan, Z., Crowley, M.R., 812 

Vielzeuf, D. and Stolper, E. (2008) zoning of phosphorus in igneous olivine. 813 

Contributions to Mineralogy and Petrology, 155, 739-765. 814 

Morgan, D.J., Blake, S., Rogers, N.W., DeVivo, B., Rolandi, G. and Davidson, J. (2006) Magma 815 

recharge at Vesuvius in the century prior to the eruption AD 79. Geology, 34, 845-848. 816 

Morgan, D.J., Blake, S., Rogers, N.W., DeVivo, B., Rolandi, G., Macdonald, R. and 817 

Hawkesworth, J. (2004) Timescales of crystal residence and magma chamber volume 818 

from modeling of diffusion profiles in phenocrysts: Vesuvius 1944. Earth and Planetary 819 

Science Letters, 222, 933-946. 820 

Nakamura, M. (1995) Residence time and crystallization history of nickeliferous olivine 821 

phenocrysts from the northern Yatsugatake volcanoes, Central Japan: application of a 822 

growth and diffusion model in the system Mg-Fe-Ni. Journal of Volcanology and 823 

Geothermal Research, 66, 81-100. 824 



38 
 

Onsager, L. (1945) Theories and problems of liquid diffusion. Annual NY Academy Science, 46, 825 

241-265. 826 

Pan, Y. and Batiza, R. (2002) Mid-ocean ridge magma chamber processes: Constraints from 827 

olivine zonation in lavas from the East Pacific Rise at 9°30′N and 10°30′N. Journal of 828 

Geophysical Research, 107, B1, 2022. 829 

Pankhurst, M.J., Dobson, K.J., Morgan, D.J., Loughlin, S.C., Thordarson, T., Lee, P.D. and 830 

Courtois, L. (2014) Monitoring the magmas fuelling volcanic eruptions in near-real-time 831 

using X-ray micro-computed tomography. Journal of Petrology, 55, 671-684. 832 

Pearce, T.H. (1984) The analysis of zoning in magmatic crystals with emphasis on olivine. 833 

Contributions to Mineralogy and Petrology, 86, 149-154. 834 

Petry, C., Chakraborty, S. and Palme, H. (2004) Experimental determination of Ni diffusion 835 

coefficients in olivine and their dependence on temperature, composition, oxygen 836 

fugacity, and crystallographic orientation. Geochimica et Cosmochimica Acta, 68, 4179-837 

4188. 838 

Pilbeam, L.H., Nielsen, T.F.D., and Waight, T.E. (2013) Digestion fractional crystallization 839 

(DFC): an important process in the genesis of kimberlites. Evidence from olivine in the 840 

Majuagaa kimberlite, southernwest Greenland. Journal of Petrology, 54, 1399-1425. 841 

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery BP (2007) Numerical Recipes 3rd 842 

Edition: The Art of Scientific Computing, Cambridge University Press, Cambridge, New-843 

York. 844 

Prior, D.J., Boyle, A.P., Brenker, F., Cheadle, M.C., Day, A., Lopez, G., Peruzzo, L., Potts, G.J., 845 

Reddy, S.M., Spiess, R., Timms, N.E., Trimby, P.W., Wheeler, J., and Zetterström, L. 846 

(1999) The application of Electron Backscatter Diffraction and Orientation Contrast 847 



39 
 

Imaging in the SEM to textural problems in rocks. American Mineralogist, 84, 1741-848 

1759. 849 

Ruprecht, P. and Cooper, K.M. (2012) Integrating uranium-series and elemental diffusion 850 

geochronometers in mixed magmas from Volcan Quizapu, Central Chile. Journal of 851 

Petrology, 53, 841–871. 852 

Ruprecht, P. and Plank, T. (2013) Feeding andesitic eruptions with a high-speed connection from 853 

the mantle. Nature, 500, 68–72. 854 

Saltikov, S.A. (1967) The determination of the size distribution of particles in an opaque material 855 

from a measurement of the size distribution of their sections. In: Elias, H. Ed., 856 

Stereology. Springer-Verlag, NY, pp. 163–173. 857 

Saunders, K., Blundy, J., Dohmen, R. and Cashman K. (2012) Linking petrology and seismology 858 

at an active volcano. Science, 336, 1023–1027. 859 

Shea, T. and Hammer, JE. (2013) Kinetics of cooling- and decompression-induced 860 

crystallization in hydrous mafic-intermediate magmas. Journal of Volcanology and 861 

Geothermal Research, 260, 127-145. 862 

Sio, C. K., Dauphas, N., Teng, F.-Z., Chaussidon, M., Helz, R. T. and Roskosz, M. (2013) 863 

Discerning crystal growth from diffusion profiles in zoned olivine by in-situ Mg-Fe 864 

isotopic analyses, Geochimica et Cosmochimica Acta, 123, 302-321. 865 

Spandler C. and O’Neill H. St. C. (2010) Diffusion and partition coefficients of minor and trace 866 

elements in San Carlos olivine at 1,300°C with some geochemical implications. 867 

Contributions to Mineralogy and Petrology 159, 791–818. 868 

Wallace, G.S. and Bergantz G.W. (2004) Constraints on mingling of crystal populations from 869 

off-center zoning profiles: A statistical approach. American Mineralogist, 89, 64-73. 870 



40 
 

Watson, E.B. (1994) Diffusion in volatile-bearing magmas. Reviews in Mineralogy, 30, 371-411. 871 

Watson, E.B. and Baxter, E.F. (2007), Diffusion in solid-Earth systems. Earth and Planetary 872 

Science Letters 253, 307-327. 873 

Watson, E.B., Wanser, K.H. and Farley, K.A. (2010) Anisotropic diffusion in a finite cylinder, 874 

with geochemical applications. Geochimica et Cosmochimica Acta 74, 614-633. 875 

Welsch, B., Faure, F., Bachèlery, P. and Famin, V. (2009) Microcrysts record transient 876 

convection at Piton de la Fournaise volcano (La Reunion hotspot). Journal of 877 

Petrology, 50, 2287-2305. 878 

Welsch, B., Faure, F., Famin, V., Baronnet, A. and Bachèlery, P. (2013) Dendritic 879 

crystallization: a single process for all the textures of olivine in basalts? Journal of 880 

Petrology, 54, 539-574. 881 

Zhang, Y. (2010) Diffusion in minerals and melts: theoretical background. Reviews in 882 

Mineralogy and Geochemistry, 72, 5-59. 883 

 884 

FIGURE CAPTIONS 885 

 886 

Figure 1: 2D Olivine sections within a ‘virtual’ thin section composed of normally-zoned 887 

crystals sliced randomly from the olivine crystal (top-left panel with a, b and c being the 888 

crystallographic axes). The top-right insert displays the color scale and the equivalent Forsterite 889 

content. The blue background represents the surrounding glass/melt with which the olivines were 890 

equilibrating. The sections outlined by red squares were discarded from further analysis due to 891 

their size. The rest were used for timescale comparisons. The green check marks and crosses 892 
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designate the suitable and unsuitable sections for the purpose of 1D diffusion modeling (see 893 

Discussion).  894 

Figure 2: Principal variables examined by the diffusion models. (a) The three different crystal 895 

shapes tested: a sphere, an orthorhomb, and a polyhedron with the same aspect ratio as the 896 

orthorhomb. (b) Anisotropy of Fe-Mg diffusion along the different crystallographic axes (shown 897 

as a ‘diffusivity ellipsoid’ in gray). For the same diffusion time t, profiles sampled along 898 

different directions in a section appear different. Diffusion modeling of such profiles in 1D may 899 

yield different timescales (ta and tc along a and c respectively) if anisotropy is not accounted for 900 

(small inserts on the right). (c) Different types of sections considered; principal sections (along-901 

axes, center-cut), sections sampled away from the core and parallel to the axes (along-axes, off-902 

center), sections passing through the core along any orientation (random orientation, center-cut), 903 

and randomly oriented sections taken at random distances from the core (random orientation, off-904 

center). (d) Six distinct zoning patterns were evaluated, illustrated here through the b-c plane of 905 

the crystal. The corresponding starting Fo concentration profiles are shown below each zoning 906 

style. Note that the melt Fo content is displayed as an equivalent olivine Fo composition (i.e. the 907 

composition the crystal edge is in equilibrium with). 908 

Figure 3: Model comparison procedure. A 3D voxelized olivine with a given initial Fo zoning 909 

pattern (cf. Fig. 2d) is ‘cut’ prior to diffusion, producing a starting Fo section used to perform 1D 910 

diffusion simulations (A-B traverse). The initial 3D olivine diffuses for a certain time, and is 911 

sectioned along the same orientation as before to serve as a ‘ground-truth’ for comparison with 912 

the 1D model. As the 1D simulations are run, each time step t(1) to t(i) is saved and compared 913 

with the ground-truth concentration profile from the 3D model. A minimum misfit is then 914 

calculated to yield the best-matching time *
1Dt . Also see text for details. 915 
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Figure 4: Influence of crystal morphology on timescales recovered from along-axis, on-center 916 

1D models (i.e. a, b, or c axes). (a) Best-fit 1D times for different crystal shapes as a function of 917 

crystallographic axis for a true diffusion time 3Dt  =72 h. (b) Same but for 3Dt  =144 h. 918 

Figure 5: Influence of sectioning distance from the core for the three crystal shapes. (a) Sphere: 919 

profiles are sampled from the 3D model after diffusion for 3Dt =144 h at increasing distances 920 

from the core (illustration at the bottom left). The difference between the true (3D) and best-fit 921 

(1D) times to each profile is plotted against distance from the core (plots at the right), both as 922 

absolute (hours, bottom x-axis) and relative (%, top x-axis). Two scenarios are examined for the 923 

spherical morphology, one where the initial concentration profile is the known 3D initial profile 924 

(‘Initial Fo known’), the other using the apparent observed minimum Fo content (’Initial Fo 925 

unknown’). (b) to (d) Similar plots for the orthorhombic and polyhedral crystals using isotropic 926 

(b) or anisotropic (c and d) diffusion coefficients, sampled along each of the three 927 

crystallographic axes. For these models, the initial Fo was taken as the apparent minimum value. 928 

Note that the orthorhombic model using an isotropic D was only run for 72 h so as to avoid 929 

affecting the concentration at the core (also see Supplementary Material section S4).   930 

Figure 6: Topologies of concentration profiles sampled from (a) and (b) sections passing 931 

through the crystal core, and (c) an off-center section. For each case, the top illustration displays 932 

the section and the traverse locations, and the bottom plots show the corresponding Fo profiles 933 

and best-fit 1D diffusion times (absolute and relative). In all models, the diffusion coefficient D 934 

has been corrected for anisotropy to isolate the influence of section location from anisotropy.  935 

Figure 7: Effects of concentration profile orientation on calculated 1D diffusion times for 936 

transects collected along the crystal center (top row) and for transects sampled at random 937 
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distances from the core (bottom row). Data is displayed as pole figures (equal-angle 938 

stereographic projections, plotted using Stereonet 9 by Cardozo and Allmendinger, 2013), with 939 

the locations of crystal faces and corners indicated as yellow areas and large hollow diamonds 940 

respectively (see small inset on the right). In all cases, the real diffusion time is 3Dt =144h and 1D 941 

model misfits are represented as a color-coded difference DDt 31 −Δ , with symbols containing a 942 

‘plus’ and ‘minus’ sign being associated with time over- and underestimates respectively. (a) 943 

orthorhombic crystal with isotropic D, (b) orthorhombic crystal with anisotropic D and (c) 944 

polyhedral crystal with anisotropic D. (d), (e), (f) are the same but allowed for off-center 945 

sectioning. All the models in this figure used the apparent observed extremum Fo as the initial 946 

concentration, which may or may not correspond to the true initial Fo (i.e. for on or off-center 947 

sections respectively). 948 

Figure 8: Distribution histograms of best-fit 1D timescales for 200 randomly-oriented, on-center 949 

models (left plots), and randomly-oriented, off-center models (right plots). Four different 950 

distributions are shown, corresponding to models performed without anisotropy correction  and 951 

with the known initial Fo profile assumption (black symbols), with isotropic D and an 952 

‘unknown’ initial Fo profile (using the apparent minimum Fo) (gray), with anisotropy correction 953 

and a known Fo profile (blue), or with anisotropy correction and an unknown initial Fo profile 954 

(red). For each of the spherical (a) and (e), orthorhombic (b) (c) (f) and (g), and polyhedral (d) 955 

and (h) morphologies, the most accurate distribution is shaded according to the parameters 956 

assumed (gray, blue or red). The vertical gray band marks the true 3D diffusion time of 144 h 957 

and the top x-axis marks correspond to the relative time difference. 958 



44 
 

Figure 9: Distribution histograms for 200 models testing various initial zoning configurations. 959 

The reference 3D model has a true diffusion time 3Dt =144 h. Distributions obtained for (a) on-960 

center, randomly-oriented models, and (b) off-center, randomly oriented models. Black symbols 961 

designate the set of models performed using a single D value, while blue symbols represent 962 

models corrected for D anisotropy. Distributions in red symbols correspond to anisotropy-963 

corrected runs with no a priori knowledge of the initial concentration profile (‘unknown Fo’). 964 

Gray vertical arrays mark the true 3D times. 965 

Figure 10: Choosing the right section and profile. Ten sections of a normally-zoned olivine 966 

display a variety of habits and concentration gradients. Green check marks and red crosses mark 967 

the suitability or unsuitability of each section for 1D diffusion modeling. Green and red dotted 968 

lines designate adequate and problematic profiles. Discarded profiles are labeled according to the 969 

various symptoms identified. Note that ‘(mf)’ designates fronts originating from the 3rd 970 

dimension, which would not be normally recognized in a section. For example, the two 971 

problematic profiles marked (mf) on the seventh section would likely be missed and considered 972 

appropriate for modeling. 973 

Figure 11: Accuracy and precision of timescales retrieved from 1D models. The time 974 

distributions in gray are the raw histograms with 200 profiles (cf. red curves in Fig. 9) while the 975 

red circles show the same distributions ‘filtered for ‘unsuitable’ olivines (see text for details). 976 

Black curves are best-fit Gaussians with accompanying mean and standard deviation values. 977 

Figure 12: Number of concentration profiles necessary to obtain accurate diffusion timescales 978 

from a given olivine population. Except for the data corresponding to a single traverse (left-most 979 
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points), each symbol represents the average of a set of 5, 10, 20, 30, 40 or 60 traverses. Both the 980 

unfiltered and filtered timescale datasets are shown. 981 
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