Chemical interactions between a sedimentary diapir and surrounding magma: evidence
from the Phepane Dome and Bushveld Complex, South Africa
Revision 1
Rachel H. P. Ireland ¹ and Sarah C. Penniston-Dorland ^{1,*}
¹ Department of Geology, University of Maryland, College Park, MD 20742, USA
*To whom correspondence should be directed: <u>sarahpd@umd.edu</u>
Keywords: STABLE ISOTOPES: lithium isotopes, oxygen isotopes, FLUID PHASE:
intergranular partial melt, aqueous fluid, DIFFUSION: lithium and oxygen, METAMORPHIC
PETROLOGY, IGNEOUS PETROLOGY

Abstract

21 The Phepane Dome is a circular outcrop of metasedimentary rock within the Eastern 22 Lobe of the Bushveld Complex hypothesized to have formed as a diapir, when underlying 23 wallrock rose into the overlying magma body. Interactions between the metasedimentary rock of 24 the Phepane Dome and the magma of the Bushveld Complex were investigated through 25 measurements of oxygen and lithium isotopic compositions, determination of mineral modes and 26 major-element mineral compositions, cathodoluminescence imaging, and dihedral angle analysis. 27 Evidence from cathodoluminescence imaging and dihedral angle analysis suggest that heat 28 transfer during diapirism caused partial melting and complete recrystallization of the Phepane 29 Dome metasedimentary rock. Oxygen isotope analysis of samples from traverses spanning the 30 contact between metasedimentary and igneous rocks demonstrates that relatively minimal 31 exchange of oxygen (over distance ~4 m) occurred across the contact between the Phepane 32 Dome and the surrounding Bushveld magma. The lithium concentrations and isotopic 33 compositions of metasedimentary rock are significantly different from the associated igneous 34 rocks. Lithium isotope analysis of samples from traverses across the contact demonstrates 35 exchange of Li over somewhat greater distances (~60 m) than oxygen, consistent with evidence 36 that suggests a higher diffusivity of Li than most major elements. Models of oxygen diffusion 37 through intergranular melt and aqueous fluid are used to place maximum constraints on the 38 duration of diffusive exchange across the contact, resulting in estimates ranging from 5 kyrs to 5 39 Myrs. These values are consistent with previous estimates of the duration of crystallization of the 40 Bushveld Complex and Phepane diapir development.

41

19

20

Introduction

43	The largest layered mafic intrusion in the world, the Bushveld Complex of South Africa,
44	formed as mafic to ultramafic magma intruded sedimentary rocks of the Transvaal Supergroup
45	~2054 Ma (Walraven et al., 1990; Buick et al., 2001) (Figure 1a). Metasedimentary domes
46	found within the mafic rock of the Eastern Lobe of the Bushveld Complex are interpreted to have
47	formed as diapirs of partially melted, sedimentary footwall rock that rose through the denser
48	mafic magma (Uken and Watkeys, 1997) (Figure 1b). Evidence for this sedimentary diapirism
49	comes from gravity and structural data (Molyneux and Klinkert, 1978). The Phepane Dome
50	crops out as one of these domal structures of metasedimentary rock surrounded by Bushveld
51	Complex rock in the northern Eastern Lobe and shows both structural and mineralogic evidence
52	for a diapiric origin (Johnson et al., 2004).
53	Gerya et al. (2003, 2004) described the formation of the Phepane Dome as "cold
54	diapirism," since cooler, less dense sedimentary rock rose into the hotter, denser Bushveld
55	Complex crystallizing magma. Similar "cold diapirism" is hypothesized to occur in subduction
56	zones (Hall and Kincaid, 2001; Gerya and Yuen, 2003). To better understand this cold diapirism
57	within the Bushveld Complex magma, studies have modeled the growth of the Phepane diapir
58	(Gerya et al., 2004) and documented the metamorphic reactions that occurred in the sedimentary
59	rock at the center of the Phepane Dome (Johnson et al., 2004). However, there is limited study of
60	these thermally dynamic settings where chemical buoyancy plays such an important role. This
61	study investigates chemical interaction between the Bushveld Complex magma and the
62	sedimentary rock that rose as the Phepane diapir using Li and O isotopes as chemical tracers.
63	The properties of Li, a fluid-mobile element with a $\sim 17\%$ mass difference between the
64	two stable isotopes (⁶ Li and ⁷ Li), make it a useful tracer for settings where fluids and rock

65	interact. Recent studies have reported Li isotopic compositions and concentrations in contact
66	metamorphic settings (e.g., Teng et al. 2006a; Marks et al., 2007), and O isotope data has been
67	used in previous studies of intrusion-wallrock contacts (e.g., Shieh and Taylor, 1969; Cartwright
68	and Valley, 1991; Park et al., 1999; Baumgartner and Valley, 2001). During contact
69	metamorphism, the juxtaposition of two chemically disparate rock types at relatively high
70	temperatures can lead to chemical or isotopic exchange across the contact. Such mass transfer
71	between the two reservoirs is facilitated by diffusion due to gradients in chemical potential. The
72	extent of the transfer relies on a number of physical properties of the exchange media as well as
73	on the length of time the two reservoirs are in contact at high temperatures. Therefore, analysis
74	of the diffusive distance across the contact can elucidate information about the time the two
75	reservoirs were able to exchange. This study measures Li compositions and O isotopic
76	compositions across the Phepane Dome-Bushveld Complex contact in order to determine the
77	extent of diffusive exchange and constrain the timescale of diffusion and diapiric formation. It is
78	the first to use both Li and O as chemical tracers of diffusion, directly comparing the two
79	systems and providing an important assessment of each system at the same contact metamorphic
80	setting. It is also an important corollary to the experimental studies that show that Li will diffuse
81	orders of magnitude faster than other components in basaltic and rhyolitic melts (Richter et al.,
82	2003).
83	
84	Geologic Background
85	Bushveld Complex
86	The mafic-ultramafic Rustenburg Layered Suite of the Bushveld Complex intruded into
87	the Transvaal Basin of South Africa (Figure 1a) at ~2054 Ma in stages of multiple magma

88	injections into the clastic and chemical sedimentary rocks of the Transvaal Supergroup
89	(Cawthorn and Walraven, 1998; Walraven et al., 1990; Buick et al., 2001; Scoates and Friedman,
90	2008). The stages resulted in five compositional zones: the Marginal, Lower, Critical, Main, and
91	Upper Zones. During crystallization of each stage, the magma fractionated to form layers of
92	variable mafic compositions (Cawthorn and Walraven, 1998). The Lebowa Granite Suite and
93	Rashoop Granophyre are adjacent to the Rustenburg Layered Suite and comprise the more felsic
94	intrusive portion of the Bushveld Complex (Hill et al., 1996; Schweitzer et al., 1997; Fourie and
95	Harris, 2011). A minimum preferred age of 2049 +69/-75 Ma for the Lebowa Granite Suite is
96	resolved from separate intrusions with similar Pb-Pb isochron ages (Walraven et al., 1990).
97	Important ore concentrations are found throughout the Bushveld Complex, including 75% of the
98	world's Pt reserves and 50% of the world's Pd reserves (Cawthorn, 1999).
99	The Transvaal Supergroup sediments were deposited onto the Kaapvaal Craton, and
100	consist of Archean protobasinal rocks overlain by the Black Reef Formation, the Chuniespoort
101	Group carbonates and banded iron formation, and the Proterozoic age Pretoria Group (Eriksson
102	et al., 2001). The depositional age of Pretoria Group sedimentary rocks is constrained by a Re-Os
103	age of pyrite from carbonaceous shale of the Timeball Hill Formation of 2316 ± 17 Ma (Hannah
104	et al., 2004).
105	
106	Phepane Dome

Within the Eastern Lobe of the Bushveld Complex, the eroded Phepane Dome forms a
topographic bowl-like structure of meta-sedimentary rocks (Figure 2). These rocks have been
correlated to the Pretoria Group formations of the Transvaal Supergroup (Johnson et al., 2004).
The outer quartzite directly in contact with the Bushveld Complex igneous rocks has been

111 correlated to the Lakenvalei Formation. The Lakenvalei is in contact with Upper Zone mafic 112 rocks on the western side of the Phepane Dome, while the Lakenvalei on the eastern and 113 southern sides is in contact with felsic rocks, likely of the Lebowa Granite Suite. The timing of 114 the felsic magmatism compared to the mafic magmatism at the Phepane Dome is uncertain. 115 Continuing towards the center of the Phepane Dome, the Vermont, Magaliesburg, and Silverton 116 Formations are observed (Johnson et al., 2004). The Vermont Formation consists of metapelitic 117 rock with calc-silicate layers. The top of the Phepane Dome bowl-like ridge is the resistant 118 Magaliesburg quartzite, with the less resistant Silverton pelitic hornfels in the middle of the 119 bowl. 120 121 **Diapirism in the Eastern Lobe** 122 The contact aureole of the Bushveld Complex is thickest in the northern part of the 123 Eastern Lobe, extending 5 km down into the underlying sedimentary rock (Uken and Watkeys, 124 1997; Clarke et al., 2005). It is thought that the thickness of the contact aureole directly relates to 125 the occurrence of pericline folding and meta-sedimentary domes (Clarke et al., 2005). Water 126 released from the sedimentary rocks farthest away in the aureole caused anatexis in the overlying 127 suprasolidus rock closest to the contact (Harris et al., 2003; Johnson et al., 2003). Partial melting 128 of the sedimentary rock combined with the finger-like intrusion style of the Lower Zone created 129 nucleation points for diapirism, e.g. the Phepane Dome, and caused folding of the partially 130 melted sedimentary rocks, e.g. the Steelpoort and Derde Gelid periclines at the Burgersfort Bulge 131 (Clarke et al., 2005) (See Figure 1b). Diapirism is believed to be triggered by crustal loading 132 under the long finger-shaped injections of denser mafic magma, with diapirs initiating in the 133 sedimentary rock inter-finger areas (Uken and Watkeys, 1997).

6

134	Evidence for diapirism comes from the combination of structural, gravity, and
135	mineralogic data. Molyneux and Klinkert (1978) concluded that mafic rock exists beneath the
136	sedimentary rocks of the Malope Dome and the Marble Hall structure in the southern region of
137	the Eastern Lobe based on gravity data. Combining this gravity data with structural data at the
138	Malope Dome, Molyneux and Klinkert (1978) concluded that the 30° outward dip was too
139	shallow to explain the underlying mafic rock if Malope formed as a simple dome and inferred a
140	diapiric origin of the structure. At the Phepane Dome, the almost vertical alignment of curtain
141	folds and lineations in the core compared to shallow alignments in the outer layers indicates
142	bulbous formation as a diapir (Uken and Watkeys, 1997; Johnson et al., 2004). Additionally, the
143	mineral assemblage of the meta-sedimentary rocks in the core of the Phepane Dome is consistent
144	with the occurrence of partial melting within the dome at temperatures greater than 720°C
145	(Johnson et al., 2004). The preserved spinel and cordierite symplectites replacing andalusite in
146	the core of the Phepane Dome suggests that decompression occurred during the thermal peak as
147	the diapir rose into the Bushveld Complex magma (Johnson et al., 2004).
148	

149 **Timescale of diapirism**

Previous studies have estimated the timescales of Bushveld Complex formation and cooling (Cawthorn and Walraven, 1998; Nomade et al., 2004; Scoates and Friedman, 2008) and Phepane diapirism (Gerya et al., 2004). Cawthorn and Walraven (1998) use a thermal model to determine the amount of time a 7.5 km thick intrusion the size of the Bushveld Complex would require to cool and crystallize. In their model, they simulated a series of intrusions by adding layers of magma into wallrock and used equations of conductive heat flow to determine the vertical changes in heat content across these layers for small increments of time. After 180 kyrs,

157	the entire intrusion cooled to less than the assumed solidus temperature of 900°C, rendering the
158	intrusion completely crystallized by 200 kyrs. This would prohibit further diapiric rise, indicating
159	that the Phepane Dome diapir would have formed within the 200 kyr time period. Gerya et al.
160	(2004) use inferred viscosity and thermal properties of the sedimentary rock and heat flow
161	associated with the Bushveld Complex magma to predict the development of the Phepane diapir.
162	Their preferred model results in a 200-300°C gradient from the cooler core to hotter rim of the
163	diapir. The termination of diapir growth occurs when the viscosity of the Bushveld magma
164	becomes too great as solidification occurs at less than 900°C. Gerya et al. (2004) found the
165	formation of the diapir within the hotter mafic rock to be plausible in one million years.
166	Measurements of overlapping U-Pb crystallization ages of zircon (closure temperature > 950°C;
167	Cherniak and Watson, 2000) and rutile (closure temperature ~720-800°C, using formulation of
168	Dodson, 1973, and Pb diffusion data of Cherniak, 2000) are consistent with rapid cooling of
169	100°C to 1000°C/m.y. (Scoates and Friedman, 2008). Also, ⁴⁰ Ar/ ³⁹ Ar ages of biotite suggest that
170	cooling from 700 to <500°C is also rapid (Nomade, et al., 2004).
171	The two models described above present time estimates for the Phepane Dome formation
172	as a diapir (cooled to ~900°C) in 200 kyrs and 1 Myrs. This study evaluates the plausibility of
173	the two given time estimates by measuring O and Li isotopic compositions across a contact
174	between the Phepane Dome and the Bushveld Complex to determine the extent of diffusive
175	exchange. If sufficient cross-contact exchange has occurred, the results can be fit with a
176	numerical diffusion model. The best fit model to the data will constrain the amount of time that
177	lithium and oxygen exchange occurred in this system, and therefore provide a maximum
178	constraint to the duration of the Phepane diapir formation.

179	Analytical Methods
180	Samples were collected in four transects across the contact between the Phepane Dome
181	and the Bushveld Complex; two each on the eastern and western sides (Figure 2). Samples were
182	also collected from the Pretoria Group in the outer aureole of the Eastern Lobe (See Figure 1b).
183	Four samples were collected from the Lakenvalei Formation, and one sample was taken from the
184	Vermont Formation. The locations of samples were recorded as GPS coordinates at the time of
185	sampling, with smaller-scale distances measured relative to the contact between igneous rock
186	and metasedimentary rock using measuring tape oriented perpendicular to the quartzite-igneous
187	rock contact (Table 1).
188	Modal abundances of minerals in representative samples were determined by point
189	counting of thin sections from each rock type on the JXA-8900 Electron Probe Microanalyzer
190	(EPMA) at the University of Maryland. Backscatter electron imaging was used with an energy
191	dispersive X-ray spectrometer to identify each phase. For each sample, ~2000 points were
192	counted in a grid of 0.5 mm spacing. Major element compositions of plagioclase were also
193	obtained using the EPMA. Plagioclase was analyzed using a beam current of ~ 20 nA with an
194	accelerating voltage of 15 keV and a 10 μ m spot size. The weight percent of each element was
195	calculated from raw intensities using a ZAF correction. Natural silicate mineral standards were
196	analyzed at the beginning and end of an analytical day for standardization.
197	Samples of Lakenvalei Quartzite and Sandstone were analyzed by Cathodoluminescence
198	(CL) imaging at the Smithsonian Institute Department of Mineral Sciences. The CL system
199	utilizes an ELM 3R Luminoscope with a 17 kV electron beam and 500 μA current, connected to
200	an optical microscope. Pictures were taken using the program MagnaFIRE with an Olympus
201	camera that allows for an extended exposure time to acquire the low luminescence of quartz.

202	The oxygen isotopic compositions of quartz and feldspar mineral separates and whole
203	rock powders were measured for samples from the East Phepane 06 and the West Phepane Small
204	Scale Transects. Quartz separates were rinsed in concentrated HF for 30 seconds and dried to
205	check for feldspar contamination. The feldspar separates were crushed to powder and analyzed
206	using X-ray diffraction at the University of Maryland X-ray Crystallographic Center to ensure
207	purity. Samples were then measured for oxygen isotopic composition at the University of
208	Wisconsin-Madison Stable Isotope Laboratory. Between 1 and 2 mg of material for each sample
209	was treated overnight at room temperature in the sample chamber with BrF5, then individually
210	heated with a CO ₂ laser in the presence of BrF ₅ to release O ₂ , which was cryogenically purified,
211	converted into CO ₂ and analyzed on a dual inlet five collector Finnigan MAT 251 mass
212	spectrometer. Results are reported as δ^{18} O relative to standard mean ocean water (VSMOW).
213	Accuracy and analytical precision were verified during each set of analyses by multiple analyses
214	of the Gore Mountain garnet standard (UWG-2). Raw standard δ^{18} O values for each session were
215	corrected to the accepted value for UWG-2 ($\delta^{18}O= 5.8\%$, Valley et al., 1995). The average
216	uncorrected δ^{18} O value (± 2 S.D.) of UWG-2 for the two run sessions were 5.63±0.08‰ and
217	5.81±0.05‰.
218	The lithium concentrations and isotopic compositions of each sample were determined by
219	measuring whole rock powders. Each sample was cut to find the freshest piece and powdered in
220	the Mixer Mill 8000 using a tungsten carbide container in the Geochemistry Labs at the
221	University of Maryland. Dissolution of the powders was conducted using the method of Rudnick
222	et al. (2004), with an additional concentrated hydrochloric and nitric acid aqua-regia step. Using
223	a method similar to Moriguti and Nakamura (1998), the resultant solution is passed through three
224	cation exchange columns in order to separate Li for analysis. Finally, the samples were analyzed

225	using the Nu Plasma Multi Collector-Inductively Coupled Plasma-Mass Spectrometers (MC-
226	ICP-MS) at the University of Maryland and the Carnegie Institution of Washington according to
227	the method described in Teng et al. (2004). Results are reported as $\delta^7 Li$ relative to the standard
228	L-SVEC. Long-term reproducibility of Li isotopic measurements is within $\pm 1\%$ (2 σ) as
229	determined by Teng et al. (2004), and verified through analysis of Li solution standards UMD-1
230	(+54.7‰) and IRMM-016 (-0.1‰) during each analytical run. The average δ^7 Li value for all
231	measurements at the University of Maryland of UMD-1 is 54.7 \pm 0.9‰ (2 σ , n=26) and for
232	IRMM-016 it is 0.5±1.0‰ (n=21). The average δ^7 Li value for all measurements at the Carnegie
233	Institution of Washington of UMD-1 is 55.0 \pm 0.4‰ (2 σ , n=2) and for IRMM-016 it is -0.1 \pm 0.3‰
234	(n=5). Measured ⁷ Li voltages for samples are compared to the ⁷ Li voltage measured for the 50
235	ppb L-SVEC standard to determine the concentration of Li in solution and then adjusted for the
236	mass of each sample powder dissolved to determine the rock Li concentration. This results in
237	values for Li concentration with 2σ uncertainties of <±10% (Teng et al., 2006b) for standard
238	materials. Variations in concentration above that uncertainty were measured in replicate analyses
239	of samples for this study. This variation is most likely due to heterogeneity of the rock samples
240	and could result from incorporation of different amounts of relatively Li-rich low-abundance
241	phases, such as chlorite or even fluid inclusions. Isotopic compositions were more homogeneous
242	than Li concentrations with all measurements falling within 1‰ uncertainty (2σ) of the average.
243	Two basalt standards (BHVO-1 and BHVO-2) were dissolved and processed through the
244	cation exchange columns. Two measurements of BHVO-1 at the University of Maryland resulted
245	in an average δ^7 Li of 4.1‰ and Li concentration of 5.2 ppm. Three BHVO-2 analyses at the
246	University of Maryland resulted in an average δ^7 Li of 3.6‰ and Li concentration of 4.9 ppm.
247	One BHVO-2 analysis at the Carnegie Institution of Washington resulted in a δ^7 Li of 4.4‰ and

248	Li concentration of 4.4 ppm. These results fall within uncertainty of previous measurements of
249	the Li concentration and δ^7 Li of these standards. Previously reported measurements of δ^7 Li for
250	BHVO-1 range from +4.0 to +6.1‰ and from 4.0 to 5.4 ppm and for BHVO-2 from +4.0 to
251	+5.5‰ with reported concentrations ranging from 4.1 to 4.8 ppm in the literature (see GeoReM
252	database, http://georem.mpch-mainz.gwdg.de/).
253	
254	Results
255	Petrology
256	Quartzite samples from the East and West side of the Phepane Dome consist
257	predominantly of quartz with <15% alkali feldspar and plagioclase feldspar, minor (<3%)
258	amounts of muscovite and chlorite and trace calcite, zircon, apatite, rutile and monazite (Table
259	2). The Bushveld Complex felsic igneous rock is hornblende-bearing granite with a small
260	amount of biotite and trace amounts of zircon, Fe-Ti oxides and phosphates. The mafic rock is
261	amphibolitized gabbro or quartz gabbro comprised mostly of labradorite (average plagioclase
262	composition of An_{68} , see Table 3) and hornblende \pm pyroxene.
263	
264	Quartz Cathodoluminescence
265	Cathodoluminescence (CL) exposes growth zoning and annealed micro-cracks and
266	fractures in quartz that are not optically visible, revealing evidence for the history of mineral
267	growth and/or late stage fluid infiltration events (Valley and Graham, 1996; Penniston-Dorland,
268	2001; Harris et al., 2003). Recrystallization events can change the trace element abundance and

- 269 defects in the crystal lattice of the quartz, two properties thought to be activators of luminescence
- 270 (Götze et al., 2001). Examination under CL can show if the quartz from the Lakenvalei quartzite

271 in the Phepane Dome has retained its original sedimentary CL response, has been partially or 272 completely recrystallized due to the contact metamorphism, and whether there was later 273 recrystallization due to a late stage fluid infiltration. 274 To identify the characteristic CL response of Lakevalei sedimentary protoliths, sample 275 LV4 from the Lakenvalei Sandstone was imaged (Figure 3a,b). This sample has mostly non-276 luminescing detrital quartz grains, with occasional heterogeneous blue luminescing detrital 277 grains. Bright red-luminescing authigenic quartz is seen between detrital grains and along some 278 grain boundaries, and a non-luminescent cement is visible. The mixture of detrital grains and 279 low- or red-luminescent cement is common for sedimentary rocks (Götze et al., 2001). 280 In contrast, quartz grains from the Lakenvalei Quartzite generally luminesce bright blue 281 (Figure 3c: regions labeled B), showing no evidence of the sedimentary signature. There is also a 282 darker blue luminescence that usually occurs in within grains, separating multiple regions of 283 smaller bright blue luminescence within individual quartz grains (Figure 3c, regions labeled L). 284 Non-luminescent quartz is also recognized both in association with abundant fluid inclusions and 285 along fractures with few or no fluid inclusions (Figure 3c-h). The non-luminescent quartz 286 associated with fluid inclusions appears in samples from both sides of the Phepane Dome, 287 occurring within grains, at grain boundaries and following fractures. Most non-luminescent 288 zones are relatively narrow compared to the size of the grains. The non-luminescent quartz not 289 associated with fluid inclusion trails in some cases cuts both feldspars and quartz and is only 290 found in samples from the East side (Figure 3g-h). These fractures must have occurred late, 291 because they are associated with visible fracturing and have relatively few or no fluid inclusions. 292 There are few appearances of this texture. 293

294 Dihedral angle analysis

295	To confirm that these Phepane Dome samples could indeed have been partially melted,
296	the measurement of quartz-quartz-feldspar dihedral angles in thin sections from all transects was
297	used. This method was used by Harris et al. (2003) to recognize the former presence of melt in
298	the outer aureole of the Bushveld Complex Eastern Lobe. Harris et al. (2003) measured more
299	than 25 dihedral angles at quartz-quartz-feldspar grain junctions in thin sections of the
300	Lakenvalei and Magaliesburg Quartzites, observing a two peaked distribution: one peak of
301	angles in the $\sim 90^{\circ}$ range, and one peak of angles in the 105-110° range. Feldspar angles of 105-
302	110° are representative of solid state equilibrium between phases (Vernon, 1968), while angles
303	less than this are associated with partial melt and subsequent crystallization (Holness, 2006).
304	Harris et al. (2003) concluded that the distribution of angles they observed corresponds to a
305	solid-state equilibrium dihedral angle and a lower, melted feldspar dihedral angle. This
306	represents heterogeneous melting of feldspars at the grain scale in their rocks.
307	Thin section analysis of six Lakenvalei quartzites shows both populations of dihedral
308	angles with a similar two peaked distribution, indicating that melt was present during the
309	formation of the Phepane diapir (Figures 4, 5). Two thin sections (P06-18 and P07-26) show two
310	obvious peaks in the angle measurements, with a peak in the lower range at $\sim 50^{\circ}$ indicative of
311	partial melting and a peak at $\sim 105^{\circ}$ indicative of solid state equilibrium. The dihedral angles
312	measured in thin sections from samples closest to the contact (P06-15 and P07-30) are more
313	scattered. This could be due to the optical measurement of thin sections that only records 2-D
314	angles and not the true 3-D dihedral angle. Harris et al. (2003) reported that the median of >25
315	measured 2-D angles in one thin section is within 1° of the 3-D angle. The 3-D dihedral angles of
316	two samples were measured using a universal stage and compared to the results from the 2-D

317	measurements to verify this accuracy. The results of measurements with the universal stage
318	revealed an abundance of low angles with a peak at $\sim 40^{\circ}$, indicating that the 2-D measurement
319	method has spread these angles over 20-90°. In addition, measurements of angles in P06-18
320	using both the 2-D method and the universal stage show the same two-peaked distribution
321	(Figure 5). Thus, the dihedral quartz-quartz-feldspar angles in metasedimentary rocks of the
322	Phepane diapir record partial melting during formation.
323	
324	Oxygen isotopic compositions
325	The oxygen isotopic compositions of samples from each rock type are shown in Table 4
326	and Figure 6. The average δ^{18} O of the Lakenvalei quartz is 11.2 ± 0.4‰ on the East side and
327	$10.9 \pm 0.6\%$ on the West side (all ranges are 2 standard deviations). These values fall within the
328	range determined by Harris et al. (2003) for quartz from the Lakenvalei and Magaliesburg
329	Quartzites in the outer aureole of the Eastern Lobe (11.8±0.5‰) and the one Lakenvalei
330	Quartzite sample (11.06 \pm 0.2‰) measured by Schiffries and Rye (1989). Quartz from the felsic
331	Bushveld Complex igneous rock adjacent to the Phepane Dome has δ^{18} O values of 7.3 ± 0.8‰.
332	This value is consistent with $\delta^{18}O$ values of quartz in Bushveld granites and granophyres (7.95 \pm
333	1.03 ‰) reported by Fourie and Harris (2011). On the West side, the feldspar and whole rock
334	powders of the mafic Bushveld Complex igneous rock yielded similar δ^{18} O of 8.1 ± 0.6‰ and

- 335 7.6 ± 1.2‰ respectively. The δ^{18} O range of plagioclase separates from this study (8.1 ± 0.6‰) is
- 336 within the range of Bushveld plagioclase $(7.5 \pm 1.2\%)$ measured by Harris et al. (2005) and the
- 337 range (7.6 ± 0.3‰) measured by Schiffries and Rye (1989). These studies interpreted the oxygen
- 338 isotope compositions as unaltered by a secondary fluid, since the fractionation between pyroxene
- and plagioclase δ^{18} O values resulted in the calculation of magmatic temperatures (~1000°C).

340	The oxygen isotopic compositions of the minerals in each rock type appear to be mostly
341	homogeneous, with constant δ^{18} O far from the contact (see Figure 6). Samples closest to the
342	contact on either side of the contact exhibit variations consistent with isotopic exchange across
343	the contact (i.e. elevated $\delta^{18}O$ in igneous rock and lowered $\delta^{18}O$ in the metasedimentary rock
344	adjacent to the contact). To compare the $\delta^{18}O$ of quartz from the Lakenvalei Quartzite with the
345	$\delta^{18}O$ values of plagioclase in the mafic rock, the oxygen isotope composition of fictive quartz in
346	equilibrium with the mafic Bushveld Complex rock can be calculated from the measured
347	plagioclase values in the West Small Scale Transect using the fractionation factors for quartz-
348	anorthite and quartz-albite from Clayton and Kiefer (1991) and using mass balance to calculate
349	the fractionation for quartz-labradorite. For likely temperatures in the Phepane Dome (>720°C;
350	Johnson et al., 2004), the fictive quartz would be ~9.5‰. At 900°C, just under magmatic
351	temperatures, the fictive quartz in the mafic rock is $\sim 9\%$.
352	This temperature of 900°C is used as the solidus temperature at which the Bushveld
353	Complex magma would be completely crystallized in the model of Bushveld Complex cooling
354	and crystallization (Cawthorn and Walraven, 1998). It also represents the temperature of
355	"freezing in" of the diapir, as determined by the model of the formation of the Phepane diapir
356	(Gerya et al., 2004). Assuming that there was no hydrothermal alteration, and that the addition of
357	the cooler Phepane diapir rock would aid in a locally rapid cooling of the Bushveld magma, the
358	preferred δ^{18} O values for quartz are the calculated values at 900°C. Subsolidus exchange
359	between minerals is possible, but exchange is likely halted as the system cooled quickly due to
360	the influence of the cooler Phepane diapir. Thus, the minerals would record a higher temperature
361	fractionation compared to slowly cooled systems (e.g., Giletti, 1986). Schiffries and Rye (1989)
362	found two Upper Zone samples with differences in plagioclase and orthopyroxene $\delta^{18}O$ values

that suggest temperatures of 960°C and 1040°C. Samples measured by Harris et al. (2005) for

364 Upper Zone rocks show a similar range in inferred temperatures. Therefore, using a temperature

365 of 900°C is supported by these studies.

366

367 Lithium compositions

368 Results of the Li whole rock concentrations and isotopic compositions are reported in 369 Table 5 and illustrated in Figures 7 and 8. The felsic Bushveld Complex has the lowest 370 concentration of Li, with a relatively constrained range of 5.0 ± 4.0 ppm (all ranges are 2 371 standard deviations). This differs from the mafic Bushveld Complex rock, which is more varied 372 in concentration (30 ± 36 ppm). The Lakenvalei Quartzite has a range of Li concentrations of 15 373 ± 7 ppm (see Figure 7 for plots of the East and West sides). The Vermont Metapelite is the most 374 heterogeneous with Li concentrations ranging from 14 to 105 ppm, with an average Li 375 concentration of 67 ppm. This variation is likely due to preservation of the initial heterogeneity 376 in the protolith Vermont Shale, which is known to have sandstone- and calc-silicate-rich layers. 377 Lastly, two analyses of the Magaliesburg Quartzite resulted in Li concentrations of 13 and 8.8 378 ppm. 379 The δ^7 Li values in each rock type are variable, resulting in large ranges (see Table 5 for 380 compositions and Figure 8 for plots of δ^7 Li with distance in each transect). The felsic rock has an 381 average δ^7 Li value of 5.9 ± 5.8‰ (all ranges are 2 standard deviations), the Vermont Metapelite 382 has an average of $3.5 \pm 8.2\%$, and the mafic rock has a similar average value of $3.7 \pm 3.6\%$. The

Lakenvalei Quartzite is higher on the East side with an average δ^7 Li of $19 \pm 7\%$ on the East side and $13 \pm 8\%$ on the West side.

17

385	Measurements of the sedimentary protolith concentrations (Table 5) correlate with their
386	respective metasedimentary concentrations in the Phepane Dome. Four analyses of the
387	Lakenvalei Sandstone gave δ^7 Li values of 9.8‰, 12.4‰, 21.7‰ and 17.3‰ and concentrations
388	of 2.3, 8.3, 9.1 and 13 ppm. The δ^7 Li values are all within the range of Lakenvalei Quartzite δ^7 Li
389	compositions, but the Lakenvalei Sandstone Li concentrations are slightly lower overall
390	compared to the Lakenvalei Quartzite concentrations. One analysis of the Vermont Shale
391	resulted in a concentration of 142 ppm, consistent with the high concentrations found in the
392	Vermont Metapelite. The δ^7 Li of the Vermont Shale is 0.3‰, lower than most metapelite
393	samples, but this is only one sample and cannot be extrapolated to the entire Vermont Shale $\delta^7 Li$
394	composition.
395	Measurements of quartz mineral separates from the Lakenvalei Quartzite resulted in Li
396	concentrations (20 ± 7 ppm) and δ^7 Li values (19.4 ± 6.0‰). These values overlap with whole
397	rock Li compositions (Table 5).
398	
399	Discussion
400	Intergranular media and crystallization history: evidence from dihedral angles and
401	cathodoluminescence
402	Diffusion that occurs due to a sharp compositional discontinuity across a contact requires
403	chemical transport through the rock (Watson and Baxter, 2007). In the absence of advection, this
404	is likely to be diffusive transport of the element or isotope of interest through an intergranular
405	medium; volume diffusion through the solid would be too slow for a near surface contact
406	metamorphic event (Cartwright and Valley, 1991). The type of intergranular medium (dry grain

407	boundaries, fluid, or melt) will affect the diffusivity of the element or isotope, so the potential
408	intergranular media at the Bushveld Complex-Phepane Dome contact are investigated.
409	The dihedral angle analysis of Lakenvalei quartzite samples from both sides of the
410	Phepane Dome indicates that the Lakenvalei had partially melted at the grain-scale during
411	formation. If partial melt was present and interconnected at the contact between the Phepane
412	Dome and the Bushveld Complex, it would have facilitated diffusive exchange. Holness (1998)
413	determined that dihedral angles must be lower than 60° for the intergranular melt to be
414	connected. The low angle peak of dihedral angles measured by the 3-D method is $\sim 40^{\circ}$ ($\sim 50^{\circ}$ by
415	the 2-D method). This suggests that partial melt in the Lakenvalei would have been connected
416	along grain boundaries, allowing for across-contact diffusive exchange.
417	The numerous fluid inclusions in quartz and feldspar from both the Phepane Dome and
418	the Bushveld Complex rock indicate the presence of a fluid. Thin section analysis shows that
419	fluid inclusions are commonly secondary, concentrating along fractures that cut across multiple
420	quartz grains. In some cases these late, planar fluid inclusions are also associated with non-
421	luminescing quartz, suggesting a later, low-temperature interaction of the rocks with fluids.
422	However, these late non-luminescing bands are not abundant, suggesting that low-temperature
423	recrystallization of quartz was not a significant event in the history of these rocks.
424	Cathodoluminescence imaging shows that some of the fluid inclusions can be related to a
425	recrystallization event during contact metamorphism. As seen in Figures 3c-d fluid inclusions
426	follow the curved region of darker luminescent blue that surrounds a region of bright blue. Since
427	this assemblage of fluid inclusions is not linear, it is unlikely that the fluid inclusions formed in
428	response to a fracture-healing event. Instead, the inclusions were likely a pore fluid that was
429	trapped, indicating that the bright blue represents an earlier-formed quartz grain and the darker

430 blue is an overgrowth during recrystallization in the presence of fluid. A similar darker blue 431 luminescence occurs along grain boundaries of bright blue luminescent quartz in grains without 432 fluid inclusions. Because the fluid inclusion density and the abundance of darker luminescence 433 increase in samples closer to the contact (e.g. Figures 3g-h), it is likely that the darker 434 luminescence is related to recrystallization at grain edges in the presence of fluid, with the 435 samples near the contact experiencing more fluid and/or recrystallization during this stage than 436 samples farther from the contact. 437 The colors and textures of CL are indicative of three different stages of metamorphism. 438 The first is related to the bright blue luminescence and probably occurred as the Lakenvalei 439 sandstone partially melted and metamorphosed during Bushveld Complex intrusion. Bright blue 440 luminescence is thought to be related to crystallization or recrystallization at high temperature. 441 Sprunt et al. (1978) found that quartz from contact metamorphic rocks in the Bergell Alps 442 luminesced the most blue of metamorphic rocks, and Boggs et al. (2002) found that volcanic, 443 plutonic, and contact metamorphic quartz all luminesced bright blue. More recent studies (e.g., 444 Rusk et al., 2008) have hypothesized that Ti causes the bright blue luminescence because it 445 preferentially substitutes for Si in quartz at higher temperatures and is abundant in magmatic 446 settings. The bright blue luminescence and lack of a preserved sedimentary signature in the 447 Lakenvalei quartzite suggests complete recrystallization of the quartz during contact 448 metamorphism. 449 The second stage of quartz recrystallization formed the darker blue luminescence that is 450 found within large grains separating regions of brighter luminescence. This recrystallization is 451 likely related to contact metamorphism as well, and could have occurred as a fluid was released

452 during crystallization of the magmas. This is supported by the greater abundance of fluid

20

453 inclusions coinciding with darker blue luminescence in samples closer to the contact on the East 454 side. In addition, quartz grains adjacent to aggregates of sheet silicates and feldspar usually only 455 show the darker blue luminescence, suggesting that the fluid is also related to the formation of 456 chlorite in the Lakenvalei Quartzite. The final recrystallization stage created the fracture-related 457 non-luminescent quartz and is not as widespread as the other stages, suggesting minor late-stage 458 fluid infiltration. The maximum abundance of this type of quartz CL is \sim 5% near the contact. 459 The associated fracturing must have occurred after complete crystallization, since fractures cross 460 cut both feldspars and quartz. This small amount of late stage fluid infiltration is negligible 461 compared to the dominant recrystallization texture of blue luminescence. Thus, it is likely that 462 both fluid and a partial melt were present as intergranular media during high-temperature contact 463 metamorphism and diapirism of the Phepane Dome, and since late stage fluid infiltration appears 464 to have been relatively minor, earlier across-contact diffusive exchange would not have been 465 significantly affected by it.

466

467 Oxygen isotopic compositions

The δ^{18} O values of these Bushveld Complex mafic rocks (whole-rock average δ^{18} O = 468 7.6‰) are higher than typical mantle derived rocks (~5.7‰, Ito et al., 1987; Eiler, 2001) 469 indicating interaction of the mafic rock with crustal rocks or fluids. However, these ¹⁸O-enriched 470 471 compositions are found in mafic rocks throughout the entire Bushveld Complex and have been 472 interpreted to be a product of crustal contamination (Schiffries and Rye, 1989; Harris et al., 473 2005). Although the concurrent felsic magmatism could have been derived from the mafic 474 Bushveld Complex or sedimentary rocks of the contact aureole, the oxygen isotopic 475 compositions do not support either of these hypotheses (Fourie and Harris, 2011). The marked

476 difference between the measured δ^{18} O of quartz in the metasedimentary rock (average 11.2‰) 477 and that of the felsic rock (average 7.3‰) precludes the sedimentary aureole rocks as a source 478 for this magma, consistent with the conclusions of Fourie and Harris (2011). Additionally, the 479 oxygen isotope composition of quartz separates from the felsic rock (7.3‰) does not agree with 480 the fictive quartz values in the mafic rock, which must be greater than the measured plagioclase values ($\delta^{18}O = -8.1\%$) and are likely -9.2%. Thus, the oxygen isotopic composition of the 481 482 metasedimentary rocks of the Phepane Dome do not suggest large-scale interaction of the dome 483 with the Bushveld Complex, and the oxygen isotopic composition of the felsic rock suggests it is 484 not genetically related to either the Phepane Dome metasedimentary rock or the mafic Bushveld 485 rock. 486 The distinct oxygen isotopic compositions of the Lakenvalei Quartzite and the Bushveld Complex igneous rock show a relatively small-scale gradient in δ^{18} O that suggests diffusion of 487 488 oxygen through an intergranular medium across the Bushveld Complex-Phepane Dome contact 489 (Fig. 6). Evidence from quartz CL suggests that there was not significant late-stage fluid infiltration that might have overprinted δ^{18} O compositions of these rocks. The lack of significant 490 491 secondary alteration implies that a high-temperature diffusive profile in δ^{18} O compositions 492 across the contact of the Bushveld Complex and Phepane Dome would have been preserved. 493 The CL evidence also suggests that minerals were completely recrystallized by the high-494 temperature event and therefore the minerals would have recorded the isotopic composition 495 present within an intergranular fluid (or fluids) due to across-contact exchange. While it is 496 possible that there was isotopic exchange between quartz and other minerals during cooling, it is 497 not a likely explanation for the observed isotopic gradient. Closure temperatures for quartz were

498 calculated following Dodson (1973) with the following assumptions: a grain radius of 1 mm, a

499	cooling rate of 100°C/Myr, grains are spheres, values for D ₀ and E taken from Giletti and Yund
500	(1984) for α -quartz. The closure temperature using these values is ~515°C which suggests that
501	the oxygen isotopes in quartz could be open to post-crystallization exchange during cooling.
502	However such post-crystallization exchange would affect mineral compositions but by itself
503	would not affect whole-rock $\delta^{18}O$ values. The presence of a gradient in whole-rock $\delta^{18}O$ in mafic
504	rocks along the West small-scale traverse argues against post-crystallization isotopic exchange as
505	the cause for the observed isotopic gradients. Therefore this possibility is not considered in the
506	following models.
507	The distinctly different oxygen isotopic compositions of the Lakenvalei Quartzite and the
508	Bushveld Complex igneous rock and the similarity in isotopic composition of the igneous rocks
509	to other unaltered rocks from the region preclude large-scale (> \sim 4 m) interaction between these
510	rocks. These characteristics also suggest that significant fluid advection across the contact did
511	not occur during or after the intrusive event. Other studies of oxygen isotopic compositions at
512	wallrock-intrusion contacts measured diffusive exchange occurring at distances of 1-5 m from
513	the contact (Cartwright and Valley, 1991; Park et al., 1999).
514	

515 Lithium compositions

516If there was oxygen isotopic exchange across the Phepane Dome-Bushveld Complex517contact, it occurred over distances of < 4 m. Because Li is a fluid-mobile element with a greater</td>518diffusivity than most other major elements (Richter et al., 1999), the same samples were519measured for their Li concentration and isotopic composition to see if Li exchange had reached520farther from the contact. Although the Li data are variable within each rock type, the Li521concentrations and isotopic compositions of adjacent rock types exhibit distinct differences.

522	Lithium concentrations and isotopic compositions of the Bushveld Complex rocks are
523	similar to those of corresponding lithologies worldwide. The Li compositions of the felsic
524	Bushveld Complex rock fall within the range in composition of both A-type granites from China
525	(Li concentrations from 2.8 to 80 ppm, δ^7 Li from -1.8 to 6.9‰; Teng et al., 2009) and I-type
526	granites from Greenland (5 to 13 ppm, 0.4 to 6.3%; Marks et al., 2007). The isotopic
527	composition of the mafic rock is consistent with the average of the deep continental crust
528	(average $\delta^7 \text{Li} = 2.5\%$; Teng et al., 2008) and measurements of unaltered MORB (1.5 to 5.6‰;
529	Tomascak et al., 2008), however concentrations are higher than unaltered MORB (3-8 ppm,
530	Ryan and Langmuir, 1987) and lower continental crust (average 8 ppm).
531	The Bushveld Complex mafic rock has up to ten times as much Li as the felsic rock,
532	which is unusual considering that more differentiation is thought to concentrate the moderately
533	incompatible element Li. It implies that the mafic and felsic rock have different sources, which is
534	also suggested by the oxygen isotopic compositions. Lithium isotopic compositions have been
535	shown to remain constant during differentiation (Tomascak et al., 1999; Marks et al., 2007; Teng
536	et al., 2009) and therefore do not support or preclude a different source for the mafic and felsic
537	Bushveld Complex rock.
538	Lithium compositions of the metasedimentary rocks in the Phepane Dome for the most
539	part fall within the ranges defined by protolith rocks distal from the contact of the Bushveld. The
540	sandstones and quartzites have higher $\delta^7 Li$ compared to the shales and metapelites, which is
541	consistent with the observation that quartz is usually enriched in ⁷ Li relative to clay minerals
542	(Chan et al., 2006). However, it is difficult to correlate the Li compositions of the
543	unmetamorphosed Lakenvalei Sandstones to the Lakenvalei Quartzite in the Phepane Dome,

because there is considerable variability in concentration (2.3 to 13 ppm) and δ^7 Li values (12.4 to

545 21.7‰).

546

547	Modeling of isotopic exchange between Phepane Dome and Bushveld Complex
548	The process of isotopic exchange between the metasedimentary diapir and the
549	surrounding Bushveld magma should occur over the same general timeframe as the process of
550	diapir formation. The diapiric rise of the Phepane Dome occurred due to the heating and cooling
551	of the Transvaal Sedimentary rocks; these are the same processes that control recrystallization
552	and isotopic exchange between magma and metasedimentary rock. Both the Cawthorn and
553	Walraven (1998) and the Gerya et al. (2004) models use a solidus temperature for the Bushveld
554	Complex magma of ~900°C. This is well above the closure temperature for quartz in these rocks
555	(see discussion above). While the closure temperature for Li in these minerals is not known,
556	diffusion of Li has been documented at temperatures from \sim 350° to 600°C in the contact
557	metamorphic setting of the Tin Mountain pegmatite (Teng et al., 2006a). Thus a duration
558	estimate determined based on diffusion of both O and Li will likely provide a maximum estimate
559	of the time of formation of the Phepane Dome.
560	Profiles were fit to the measured O and Li compositions using a one-dimensional solution
561	to the mass continuity equation:

562
$$\frac{\partial C}{\partial t}K_e + v\phi\frac{\partial C}{\partial x} = D_e\frac{\partial^2 C}{\partial x^2}$$
(1)

where *C* is concentration, *x* is distance from the contact, *t* is time, *v* is the Darcy velocity, ϕ is the porosity, D_e is the effective diffusivity, and K_e is the effective partition coefficient. The effective partition coefficient takes into account the porosity (ϕ) of the rocks as well as the fractionation of the elements into the solid or fluid (Cartwright and Valley, 1991):

567
$$K_e = \frac{\rho_s K_c}{\rho_f} (1 - \phi) + \phi \tag{2}$$

where ρ_s and ρ_f are the density of the solid and fluid respectively and K_c is the partition coefficient between the mineral and fluid. Isotopic exchange of O and Li is assumed to occur within an intergranular medium. The effective diffusivity D_e is defined as (Cartwright and Valley, 1991):

572 $D_e = \phi D \tau$ (3)

where τ is the tortuosity of the system and *D* is the diffusivity of the element or isotope in the medium (aqueous fluid or melt).

Values for densities of the rock ($\rho_s = 2700 \text{ kg/m}^2$) and melt ($\rho_f = 2400 \text{ kg/m}^2$) are taken 575 576 from estimates for densities of the solid and molten rock in the Gerya et al. (2004) model. The 577 porosity for diffusion through a partial melt ($\varphi = 0.01$) used in the models was estimated from the 578 abundance of cuspate plagioclase in the Lakenvalei Quartzite as a proxy for the amount of melt. 579 This is likely a minimum constraint and will lead to a calculation of a maximum duration of 580 diffusion. A range of porosities for diffusion through an intergranular aqueous fluid was used, from 10⁻³ to 10⁻⁵ (e.g. Norton and Knapp, 1977; Bickle and Baker, 1990; Baxter and DePaolo, 581 582 2002). Tortuosity is estimated as $\tau = 1$ for metamorphic rocks of these porosities (Cartwright and 583 Valley, 1991). 584 In three of the four traverses, the best-fit solution to the mass continuity equation for Li

was found using a model with no advection, only diffusion. The two of these three traverses for which O isotope exchange was also modeled also were fit best by diffusion-only solutions. The modeled profiles were matched to the data to solve for the diffusive distance $\sqrt{D_e t K_e^{-1}}$ and to resolve the duration (*t*) of a metamorphic event from the diffusive distance. In the West Large-

scale traverse, however, an advective component was required to satisfactorily model the Li data

590 (there is no O isotope data for this traverse). In this traverse, the modeled profiles were also

stance
$$z^* = \frac{v \phi t}{K_e}$$
.

591 matched to the data to solve for the advective distance

592 It is recognized that ${}^{6}Li$ diffuses faster than ${}^{7}Li$, and this difference in diffusivity is

593 quantified through the empirical term β (Richter et al., 2003), where

594
$$\frac{D_{\epsilon_{Li}}}{D_{\gamma_{Li}}} = \left(\frac{m_{\gamma_{Li}}}{m_{\epsilon_{Li}}}\right)^{\beta}$$
(5)

595 and $D_{x_{Li}}$ and $m_{x_{Li}}$ refer to the diffusivity and mass of the specific (x) isotopes of Li (6 and 7). For

596 condensed material, β is <0.5, with studies finding β = 0.215 for silicate melts, β = 0.12 for

597 aqueous fluid, and β < 0.071 for Li diffusion in water (Richter et al, 2003; Teng et al., 2006, Fritz,

598 1992, and Penniston-Dorland et al., 2010; and Richter et al., 2006; respectively). To model Li

599 diffusion with differing isotopic diffusivities, the ⁷Li and ⁶Li concentrations are modeled

600 separately, with the ratio of D_{Li} for ⁷Li and ⁶Li calculated from β . The δ^{7} Li at each distance from

601 the contact can be calculated from the modeled isotopic concentrations at that distance. In the

602 case of oxygen isotopes, the diffusion is modeled as self diffusion in which the δ^{18} O values are

603 modeled as concentration.

604 Oxygen Models

605 The best fit to the O isotope data is shown in Figure 6 and in Table 6. The solution to the 606 model equation for the East Phepane traverse is a characteristic diffusion distance $\sqrt{D_e t K_e^{-1}} = 1.1$

607 m. The best fit for this model and all models in this study is determined using the statistical χ^2

test (from Bevington and Robinson, 1992). Because the desired result of this model is the

609 maximum duration of diffusion, the greatest possible diffusive distance that can still fit the data

610 is also considered, as this will produce a greater time estimate. The greatest diffusive distance is

611 $\sqrt{D_e t K_e^{-1}} = 1.4 \text{ m}$ (Figure 6a).

623

4.2 Myrs.

612 Using these model results and estimates from empirical data to calculate D_e and K_e 613 constrains the duration of diffusion (t). For oxygen diffusion through melt, the estimated porosity 614 and a partition coefficient (K_c) for oxygen of 0.55 (Cartwright and Valley, 1992), result in a K_e of 615 0.62. Partial melting of the Phepane sedimentary rock likely occurred at $T \sim 800^{\circ}$ C because the 616 felsic melt would have a lower solidus temperature than the mafic magma, and the temperature 617 of the partially melted core of the Phepane Dome was determined to be $>720^{\circ}$ C (Johnson et al., 618 2004). Melting of the Phepane rock at these lower temperatures was likely fluid assisted, and 619 therefore the experimentally determined diffusivity of oxygen through rhyolite in the presence of water was used (D=9x10⁻¹³ m²/s at ~800°C, Behrens et al., 2007) resulting in a D_e for O 620 diffusion through melt of 9×10^{-15} m²/s. The resulting estimate for the duration of O isotopic 621 622 exchange through melt using the best-fit model is 2.6 Myrs, while the maximum time estimate is

624 Diffusion may have occurred over part of the exchange history through an aqueous fluid, 625 and the range of time estimates for diffusion through aqueous fluid can also be calculated. Using the diffusivity of oxygen through aqueous fluid ($D_O=10^{-8}$ m²/s; Bickle and McKenzie, 1987) and 626 the lowest porosity of 10⁻⁵, the slowest effective diffusivity through aqueous fluid is calculated 627 for the East Phepane traverse ($D_e=10^{-13}$ m²/s). The effective partition coefficient utilizes the same 628 629 K_{c_2} but is larger for solid-fluid partitioning because the density of the fluid is now lower (800 kg/m²; $K_e = 1.86$) compared to the density of the melt. These parameters result in a maximum 630 631 estimate of the duration of exchange through an intergranular aqueous fluid of 1.2 Myrs (lowest

632 porosity, highest $\sqrt{D_e t K_e^{-1}}$). Varying the porosity and the $\sqrt{D_e t K_e^{-1}}$ results in estimates of

633 duration as short as 7 kyrs (Table 6).

While these calculations are informative, since the igneous rock in contact with the quartzite in the East is a felsic rock, it may not provide a true estimate of the cooling history of the mafic Bushveld Complex. For that we need to turn to the west side traverses, in which the igneous rock is mafic.

638 Since there is no quartz in the mafic Bushveld rock, modeling of the West Small Scale 639 Transect requires the calculation of compositions of fictive quartz in the mafic rock to constrain 640 the extent of across-contact oxygen isotopic exchange with the Lakenvalei Quartzite. The 641 compositions of the fictive quartz are calculated at 900°C, which is the preferred temperature for 642 the mafic magma as discussed above. Modeling was calculated similar to that for the East Phepane traverse, with the best-fit model resulting in a diffusive distance of $\sqrt{D_e t K_e^{-1}} = 0.9$ m. and 643 the maximum diffusive distance is 1.5 m (Figure 6b). Similar values were used for parameters 644 645 (D_e, K_e) used to calculate time from these results as for the East Phepane. The values for 646 porosity, tortuosity, partition coefficients and diffusion coefficient for Li through aqueous fluid 647 would all be the same across the contact with a mafic melt as they would be for a felsic melt. The 648 one parameter that could potentially be different would be the effective diffusivity for diffusion 649 of Li through mafic magma. We calculate this value using the diffusivity of oxygen through basalt melt at 900°C of 9x10⁻¹³ m²/s (Wendlandt, 1991), which combined with porosity and 650 tortuosity produce an effective diffusivity of $D_e=9x10^{-15}$ m²/s. For oxygen diffusion through 651 652 melt, the best fit model results in a time estimate of 1.8 Myrs and the maximum diffusive 653 distance results in a time estimate of 4.9 Myrs. For O diffusion through aqueous fluid, the

654	maximum duration estimate is 1.3 Myrs (lowest porosity, highest $\sqrt{D_e t K_e^{-1}}$). Varying the
655	porosity and the $\sqrt{D_e t K_e^{-1}}$ results in estimates of duration as short as 3 kyrs (Table 6).
656	As there is evidence for both partial melt and aqueous fluid in the Phepane Dome rocks,
657	the constraint that can be placed on the oxygen isotopic exchange between the Phepane Dome
658	and the Bushveld Complex is a maximum duration of 4.9 Myrs. This maximum time estimate is
659	constrained by the maximum diffusive distance for the West Phepane Large scale traverse using
660	the relatively slow diffusivity of oxygen through melt. This amount of time is consistent with the
661	estimates of both Cawthorn and Walraven (1998) and Gerya et al. (2004).
662	
663	Lithium models

664	Since Li is a moderately incompatible and fluid-mobile element, Li concentrations and
665	δ^7 Li are also likely to be modified by exchange due to melt- and aqueous fluid-rock interactions
666	at the contact between the Bushveld and the Phepane Dome. The lithium concentrations and $\delta^7 Li$
667	values of the various rock types are more variable than the oxygen isotopic compositions.
668	Lithium substitutes readily for Mg in octahedral sites due to their similar ionic radius. Mafic
669	minerals such as amphiboles, pyroxenes, and chlorite may therefore have the highest
670	concentrations of Li in these rocks. While variability in Li concentration is likely due to the
671	processes of diffusion investigated here, some variability is also likely due to varying proportions
672	of these minerals. For this reason, determination of the best-fit model profiles to the data was
673	primarily based on the isotope data.
674	In the West small-scale traverse there is a distinct jump in δ^7 Li and Li concentration over
675	a relatively short distance (1 m) across the contact. The Li concentration of the mafic rock is
676	higher than that in the quartzite (19 ppm vs. 16 ppm), and the isotopic composition of the mafic

30

677 rock is significantly lower than that of the quartzite (3.4‰ vs. 8.1‰). The results for each rock 678 type moving away from the contact show a more gradational variation in Li concentration and 679 isotopic composition. The dramatic difference at the contact is over such a short distance that it 680 cannot be explained by exchange of Li by either diffusion or advection through an intergranular 681 fluid. One possible explanation is that the two rock types exchanged Li through an intergranular 682 fluid, but the mineral phases in each of the rock types partitioned and fractionated Li differently. 683 Thus, the fluid composition that was in equilibrium with the two rocks would have been the 684 same across the contact, but the two different rock types would have different bulk rock isotopic 685 compositions and concentrations due to fractionation/partitioning between the fluid and the 686 different mineral assemblages. Differences in δ^7 Li and Li concentration between samples across 687 the other contacts are consistent with this hypothesis (e.g., the mafic rocks adjacent to the contact all have consistently higher concentrations of Li and have lower δ^7 Li compared to the quartzite). 688 689 To account for differences in fractionation and partitioning in the models, the Li concentration 690 and δ' Li of the modeled igneous rocks were adjusted for fractionation and partitioning by a 691 constant amount, defined by the difference between the closest samples of quartzite and each of 692 the igneous rocks. In the models for the west-side traverses, the model mafic rock compositions 693 were adjusted for fractionation and partitioning: $\Delta^7 Li_{sed-mafic} = 4.7\%$, $D_{sed/mafic}^{Li} = 0.6$ where $\Delta^{7}Li_{sed-mafic} = \delta^{7}Li_{sed} - \delta^{7}Li_{mafic} \text{ and } D_{sed/mafic}^{Li} = \frac{C_{sed}^{Li}}{C_{mafic}^{Li}}.$ In the model for the east-side traverse, the 694 695 model felsic rock compositions were adjusted for partitioning by $D_{sed/felsic}^{Li}$ =1.6. However, the 696 δ^7 Li of the closest samples on either side of the contact from the east side (the East '07 traverse) 697 are within uncertainty of having the same δ^7 Li value (+12.8% and +12.1%), so no adjustment 698 was made for isotopic fractionation on the east traverses.

699	While the data from both traverses on the east and the small-scale traverse on the west
700	can be explained by diffusion of Li through an intergranular fluid across the contact, the west
701	large-scale traverse is best explained by a model including diffusion along with a minor
702	advective component (~20 m advective distance in the direction of the mafic rock).
703	Diffusion profiles were fit to all four traverses (Figure 8, Table 6). Initial Li isotopic
704	compositions and concentrations were taken from the average compositions of samples farthest
705	from the contact. The best-fit model solutions for the diffusive distances range from $\sqrt{D_e t K_e^{-1}}$ =
706	2.4 to 10.6 m. The β value used in these models is 0.17, which is the value that best fits the data.
707	This value is consistent with previously determined β values. It is greater than the β values used
708	by Teng et al. (2006) for Li diffusion through a magmatic fluid (0.12 to 0.15), but less than the β
709	value determined by Richter et al. (2003) for Li diffusion through melt (0.215).
710	The diffusivities of Li at high temperatures through an intergranular melt or aqueous fluid
711	are not well constrained. The greater diffusive distances for Li compared to those for O is
712	predicted by experimental data, which suggests that the diffusivity of Li can be up to 3 orders of
713	magnitude greater than major elements (Richter et al., 2003). The data provide the opportunity to
714	evaluate the relative diffusivity of O and Li. In order to evaluate the relative diffusivities, the
715	partition coefficient for Li must be characterized. The same density parameters of the Phepane
716	Dome and Bushveld Complex rocks are used in the calculation of the effective partition
717	coefficient, but the solid-melt partition coefficient (K_c) of Li must be quantified. A K _c of 0.1 is
718	used (Brenan et al., 1998) with the caveat that it is for cpx-melt and not the rock compositions or
719	minerals of this transect. The effective partition coefficient solid-melt partition coefficient (K _c) is
720	calculated to be 0.12, compared to an effective partition coefficient for oxygen of 0.62.
721	Assuming that the time for diffusion of O and Li was the same, this value can be used with the

722	effective partition coefficient for rock-melt for O described above and the different diffusive
723	distances along the west small-scale contact to calculate the relative diffusivities of Li and O.
724	Since the diffusive distance for Li in the West small scale traverse is 10 times greater than for O
725	(10.6 compared to 0.91), the diffusivity of Li scales as the square of the ratio of the diffusive
726	distances (100) multiplied by the ratio of the two partition coefficients, resulting in a diffusivity
727	of Li that is ~ 20 times greater than the diffusivity of O.
728	
729	Implications
730	Evidence from petrographic and cathodoluminescence analysis in the Phepane Dome
731	indicates that the quartzites recrystallized and experienced partial melting at the peak of
732	metamorphism. The dihedral angle analysis of Lakenvalei quartzite samples from both sides of
733	the Phepane Dome indicates the presence of a low-angle peak at ~40-50°. This range of angles is
734	consistent with partial melting of the Lakenvalei at the grain-scale and suggests that partial melt
735	in the Lakenvalei was connected along grain boundaries, allowing for across-contact diffusive
736	exchange. Cathodoluminescence imaging of the quartzite indicates three different stages of
737	metamorphism and interaction with fluids: an early high-temperature recrystallization of quartz
738	indicated by bright blue luminescing quartz cores (in contrast to the dark red luminescence of the
739	protolith sandstone); a later, lower-temperature further recrystallization of quartz indicated by a
740	darker blue luminescence on the edges of grains, associated with fluid inclusions; and a
741	volumetrically minor late-stage crystallization of quartz along fractures that cross-cut earlier
742	formed quartz and feldspars.
743	There is a significant difference in the oxygen isotopic composition of the three different
744	rock types analyzed for this study. The change in isotopic composition across the contact

745	between quartzite and igneous rock occurs over distances of $< \sim 4$ m. The two samples closest to
746	the contact in each of the two traverses show evidence for isotopic exchange between the two
747	reservoirs. One-dimensional solutions to the mass continuity equation show that the isotopic
748	variations in both traverses can be explained by diffusion of oxygen across the boundary between
749	the two disparate rock types. Estimates of the parameters involved in the modeling suggest that
750	this exchange occurred for less than 5 Myrs, which is consistent with the amount of time
751	predicted by both models (Cawthorn and Walraven, 1998; Gerya et al., 2004) for the
752	crystallization of the Bushveld and formation of the Phepane Dome. This result is also consistent
753	with the results of Letts et al. (2009) which estimated the total time of cooling of the Bushveld
754	based on paleomagnetic measurements to be a minimum of ~1.4 million years. At a minimum,
755	the time recorded by the diffusion profile represents exchange between the diapir and its
756	surrounding igneous rock after diapiric rise. It is possible that the time may also encompass an
757	earlier part of the exchange between diapir and the Bushveld during its ascent, however, the data
758	do not permit speculation about this.
759	The igneous rocks of the Bushveld Complex have elevated δ^{18} O relative to mantle-
760	derived rocks (Schiffries and Rye, 1989; Harris et al., 2005). Some of the igneous rocks of the
761	Bushveld show signs of isotopic alteration, for example surrounding hydrothermal veins
762	(Schiffries and Rye, 1990), however the isotopic evidence from mineral pairs suggest that most
763	of the igneous rocks record magmatic isotopic compositions (Harris et al., 2005) with little
764	evidence for exchange with local country rocks. Samples of the same quartzite units that have
765	been analyzed in this study (Lakenvalei and Magaliesburg) from the northeastern edge of the
766	Bushveld Complex have δ^{18} O values that show no change in δ^{18} O related to the distance from
767	the contact (Harris et al., 2003), and are interpreted to result from infiltration of fluids derived

768 from dehydration of dehydrating metasedimentary rocks. Elsewhere in the eastern lobe of the 769 Bushveld, at an external contact with the Steenkampsberg Quartzite, Schiffries and Rye (1990) 770 documented a decrease in δ^{18} O in the quartzite approaching the contact with the igneous rock 771 over a distance of at least 2 km. This isotopic variation was attributed to pervasive fluid 772 infiltration within the quartzite by externally-derived fluids (either from other country rocks or 773 from the Bushveld). The O isotopic compositions of calcareous country rocks and xenoliths in the Bushveld also demonstrate a decrease in δ^{18} O approaching the Bushveld (Buick et al., 2000) 774 775 which is interpreted as the result of interaction with fluids derived from adjacent dehydrating 776 country rocks. 777 There are relatively few contact aureoles in which there is documented isotopic alteration 778 consistent with diffusion alone across the contact between igneous rock and the wall rock 779 (without requiring significant fluid infiltration). One example is adjacent to a granite body in the 780 Adirondacks, where oxygen isotope alteration is restricted to relatively small scales, < 5 m 781 (Cartwright and Valley, 1991). In another example, at Quérigut in the Eastern Pyrenees of 782 France, contacts between the granite and internal septa exhibited exchange dominated by 783 diffusion on a scale of ~ 2 m (Durand et al., 2006). In this locality traverses across an outer 784 contact of the same granite with carbonate country rock exhibited extensive oxygen isotopic 785 alteration, consistent with fluid infiltration. 786 The results from the Phepane Dome suggest that while heat transfer caused complete 787 recrystallization and partial melting of the metasedimentary rock, relatively minimal chemical 788 exchange occurred during interaction between the Phepane Dome and the surrounding Bushveld 789 magma. This limited exchange is in contrast to the large-scale isotopic variability observed in 790 country rocks surrounding the Bushveld which is attributed to advection by fluids during high

35

temperature metamorphism. These results suggest that the Phepane Dome experienced relatively

793 The lithium concentrations and δ^7 Li values of the various rock types are more variable 794 than the oxygen isotopic compositions. There is some systematic variation in Li concentration 795 and isotopic composition along the profiles that is due to the processes of diffusion investigated 796 here, however some variability in Li concentration is likely due to varying proportions of Li-rich 797 minerals. Very small-scale "jumps" in concentration and isotopic composition across lithologic 798 contacts are attributed to partitioning and fractionation of Li between the different minerals 799 existing in each rock type and the coexisting melt or aqueous fluid. Taking all these factors into 800 consideration, the modeling profiles suggest diffusion of Li over distances of < 60 m. The 801 calculated diffusive distance for Li is one order of magnitude greater than for O in the same 802 samples. Correcting for the different partition coefficients of O and Li results in a Li diffusivity 803 that is about 20 times greater than the associated O diffusivity. This supports the experimental 804 evidence that suggests that Li has a greater diffusivity than other major elements. 805 806 Acknowledgements. 807 We thank the Geological Society of America for a student research grant awarded to RI. We 808 thank Mike Spicuzza and John Valley for assistance with oxygen isotope analysis at UW-809 Madison and Tim Mock and Steve Shirey for assistance with lithium isotope analysis at 810 Carnegie. We thank Ethan Baxter for conversations about diffusion modeling and John Valley

- 811 for comments on an early draft of this manuscript. Chris Harris and Taras Gerya are thanked for
- their constructive reviews, and Dionysis Foustoukos is thanked for his patient handling of the
- 813 manuscript. We thank Sorena Sorensen for use of the CL instrumentation at the National

- 814 Museum of Natural History. Thanks to Phil Piccoli, Richard Ash, and Igor Puchtel for assistance
- 815 with the EPMA, ICP-MS, and the clean lab at Maryland, respectively. Boz Wing, Roberta
- 816 Rudnick, and James Farquhar are thanked for fruitful discussions. Boz and Tim Johnson are
- 817 thanked for help with fieldwork, and we thank Paul Nex and Judith Kinnaird for help with field
- 818 logistics. We acknowledge the support of the Maryland NanoCenter and its NISPLab.

821 822	References
823	Baumgartner L.P., and Valley J.W. (2001) Stable Isotope Transport and contact Metamorphic
824	Fluid Flow. In Valley J.W. and Cole D.R. (eds.) Stable Isotope Geochemistry. Reviews
825	In Mineralogy and Geochemistry. 43. 415-468.
826	Baxter, E.F., and D.J. DePaolo (2002) Field measurement of high temperature bulk reaction rates
827	II: Interpretation of results from a field site near Simplon Pass, Switzerland. American
828	Journal of Science. 304. 465-316.
829	Behrens, H., Zhang, Y., Leschik, M., Wiedenbeck, M., Heide, G., and Frischat, G.H. (2007)
830	Molecular H ₂ O as a carrier for oxygen diffusion in hydrous silicate melts. Earth and
831	Planetary Science Letters. 254. 69-76.
832	Bevington, P.R., and Robinson, D.K. (1992) Data reduction and error analysis for the physical
833	sciences. The McGraw-Hill Companies, Inc. New York City, 219 p.
834	Bickle, M.J., and Baker, J. (1990) Advective-diffusive transport of isotopic fronts: an example
835	from Naxos, Greece. Earth and Planetary Science Letters. 97. 78-93.
836	Bickle, M.J., and McKenzie, D. (1987) The transport of heat and matter by fluids during
837	metamorphism. Contributions to Mineralogy and Petrology. 95. 384-392.
838	Boggs Jr., S., Kwon, YI., Goles, G.G., Rusk, B.G., Krinsley, D., and Seyedolali, A. (2002) Is
839	quartz cathodoluminscence color a reliable provenance tool? A quantitative examination.
840	Journal of Sedimentary Research. 72. 408-415.
841	Brenan, J.M., Ryerson, F.J., and Shaw, H.F. (1998) The role of aqueous fluids in the slab-to-
842	mantle transfer of boron, beryllium, and lithium during subduction. Geochimica et
843	Cosmochimica Acta. 62. 3337-3347.
844	Buick, I.S., Gibson, R.L., Cartwright, I., Maas, R., Wallmach, T., and Uken, R. (2000) Fluid
845	flow in metacarbonates associated with emplacement of the Bushveld Complex, South
846	Africa. Journal of Geochemical Exploration. 69-70. 391-395.
847	Buick, I.S., Maas, R., and Gibson, R. (2001) Precise U-Pb titanite age constraints on the
848	emplacement of the Bushveld Complex, South Africa. Journal of the Geological Society
849	(London, U.K.). 158. 3-6.
850	Cartwright, I., and Valley, J.W. (1991) Steep oxygen-isotope gradients at marble-metagranite
851	contacts in the northwestern Adirondack Mountains, New York, USA: products of fluid-
852	hosted diffusion. Earth and Planetary Science Letters. 107. 148-163

853	Cawthorn, R.G., and Walraven, F. (1998) Emplacement and Crystallization Time for the
854	Bushveld Complex. Journal of Petrology. 39. 1669-1687.
855	Cawthorn, R.G. (1999) The platinum and palladium resources of the Bushveld Complex. South
856	African Journal of Science. 95. 481-489.
857	Chan, L.H., Leeman, W.P., and Plank, T. (2006) Lithium isotopic composition of marine
858	sediments. Geochemistry Geophysics and Geosystems. 7. Q06005.
859	Cherniak, D.J. (2000) Pb diffusion in rutile: Contributions to Mineralogy and Petrology. 139.
860	198–207.
861	Cherniak, D.J., and Watson, E.B. (2000) Pb diffusion in zircon: Chemical Geology. 172. 5–24.
862	Clarke, B.M., Uken, R., Watkeys, M.K., and Reinhardt, J. (2005) Folding of the Rustenburg
863	Layered Suite adjacent to the Steelpoort pericline: implications for syn-Bushveld
864	tectonism in the Eastern Bushveld Complex. South African Journal of Geology. 108.
865	397-412.
866	Clayton, R.N., and Kiefer, S.W. (1991) Oxygen isotope thermometer calibrations. In Taylor, Jr.,
867	H.P., O'Neil, J.R., and I.R. Kaplan, (eds.) Stable Isotope Geochemistry: A Tribute to
868	Samuel Epstein. Special Publication. 3. 3-10.
869	Dodson, M.H. (1973) Closure temperature in cooling geochronological and petrological systems.
870	Contributions to Mineralogy and Petrology. 40. 259-274.
871	Durand, C., Boulvais, P., Marquer, D., and Rossy, M. (2006) Stable isotope transfer in open and
872	closed system across chemically contrasted boundaries: metacarbonate-granitoid contacts
873	in the Quérigut magmatic complex (Eastern Pyrenees, France). Journal of the Geological
874	Society, London. 163, 827-836.
875	Eiler, J.M. (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. In Valley,
876	J.W., and Cole, D.R., (eds.) Stable Isotope Geochemistry. Reviews in Mineralogy. 43.
877	319-364.
878	Eriksson, P.G., Altermann W., Catuneanu, O., van der Merwe, R., and Bumby, A.J. (2001)
879	Major influences on the evolution of the 2.67-2.1 Ga Transvaal basin, Kaapvaal craton.
880	Sedimentary Geology Special Issue. 241. 205-231.
881	Fourie, D.S., and Harris, C. (2011) O-isotope study of the Bushveld Complex granites and
882	granophyres: Constraints on source composition, and assimilation. Journal of Petrology,
883	52, 2221-2242.

884	Fritz, S.J. (1992) Measuring the ratio of aqueous diffusion-coefficients between ⁷ LiCl and ⁶ LiCl
885	by osmometry. Geochimica et Cosmochimica Acta. 56. 3781-3789.
886	Gerya, T.V., and Yuen, D.A. (2003) Rayleigh-Taylor instabilities from hydration and melting
887	propel 'cold plumes' at subduction zones. Earth and Planetary Science Letters 212. 47-
888	62.
889	Gerya, T.V., Uken R, Reinhardt J, Watkeys M.K., Maresch W.V., and Clarke, B.M. (2003) Cold
890	fingers in a hot magma: Numerical modeling of country-rock diapirs in the Bushveld
891	Complex, South Africa. Geology. 39. 753-756.
892	Gerya, T.V., Uken, R., Reinhardt, J., Watkeys, M.K., Maresch, W.V., and Clarke, B.M. (2004)
893	"Cold" diapirs triggered by intrusion of the Bushveld Complex: Insight from two-
894	dimensional numerical modeling. Geological Society of America Special Paper 380.
895	Giletti, B.J. (1986) Diffusion effects on oxygen isotopic temperatures of slowly cooled igneous
896	and metamorphic rocks. Earth and Planetary Science Letters. 77. 218-228.
897	Giletti, B.J. and Yund, R.A. (1984) Oxygen diffusion in quartz. Journal of Geophysical Research
898	89, B6. 4039-4046.
899	Götze, J., Plotze, M., and Habermann, D. (2001) Origin, spectral characteristics and practical
900	applications of the cathodoluminescence (CL) of quartz- a review. Mineralogy and
901	Petrology. 71. 225-250.
902	Hall, P.S., and Kincaid, C. (2001) Diapiric Flow at Subduction Zones: A Recipe for Rapid
903	Transport. Science. 292. 2472-2475.
904	Hannah, J.L., Bekker, A., Stein, H.J., Markey, R.J., and Holland, H. (2004) Primitive Os and
905	2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the
906	rise of atmospheric oxygen. Earth and Planetary Science Letters. 225. 43-52.
907	Harris, N., McMillan, A., Holness, M., Uken, R., Watkeys, M., Rogers, N., and Fallick, A.
908	(2003) Melt Generation and Fluid Flow in the Thermal Aureole of the Bushveld
909	Complex. Journal of Petrology. 44. 1031-1054.
910	Harris, C., Pronost, J.J.M., Ashwal, L.D., and Cawthorn, R.G. (2005) Oxygen and Hydrogen
911	Isotope Stratigraphy of the Rustenburg Layered Suite, Bushveld Complex: Constraints on
912	Crustal Contamination. Journal of Petrology. 46. 575-601.

913	Hill, M., Barker, F., Hunter, D., and R. Knight (1996) Geochemical Characteristics and Origin of
914	the Lebowa Granite Suite, Bushveld Complex. International Geology Review. 38. 195-
915	227.
916	Holness, M.B. (1998) Contrasting rock permeability in the aureole of the Ballachulish igneous
917	complex, Scottish Highlands: the influence of surface energy? Contributions to
918	Mineralogy and Petrology. 131. 86-94.
919	Holness, M.B. (2006) Melt-solid dihedral angles of common minerals in natural rocks. Journal of
920	Petrology. 47. 791-800.
921	Ito, E., White, W.M., and Gopel, C. (1987) The O, Sr, Nd, and Pb isotope geochemistry of
922	MORB. Chemical Geology. 62. 157-176.
923	Johnson, T.E., Gibson, R.L., Brown, M., Buick, I.S., and Cartwright, I. (2003) Partial melting of
924	metapelitic rocks beneath the Bushveld Complex, South Africa. Journal of Petrology. 44.
925	789-813.
926	Johnson, T., Brown, M., Gibson, R., and Wing, B. (2004) Spinel-cordierite symplectites
927	replacing andalusite: evidence for melt-assisted diapirism in the Bushveld Complex,
928	South Africa. Journal of Metamorphic Geology. 22. 529-545.
929	Kinnaird, J.A., Hutchinson, D., Schurmann, L., Nex, P.A.M., and de Lange, R. (2005) Petrology
930	and mineralization of the southern Platreef: northern limb of the Bushveld Complex,
931	South Africa. Mineralium Deposita. 40. 576-597.
932	Letts, S., Torsvik, T.H., Webb, S.J., and Ashwal, L.D. (2009) Palaeomagnetism of the 2054 Ma
933	Bushveld Complex (South Africa): implications for emplacement and cooling.
934	Geophysical Journal International. 179. 850-872.
935	Marks, M.A.W., Rudnick, R.L., McCammon, C., Vennemann, T., and Markl, G. (2007) Arrested
936	kinetic Li isotope fractionation at the margin of the Ilimaussaq complex, South
937	Greenland: Evidence for open-system processes during the final cooling of per-alkaline
938	igneous rocks. Chemical Geology. 246. 207-230.
939	Molyneux, T.G., and Klinkert, P.S. (1978) A structural interpretation of part of the eastern mafic
940	lobe of the Bushveld Complex and its surrounds. Transactions of the Geological Society
941	of South Africa. 81. 359-368.
942	Moriguti, T., and Nakamura, E. (1998) High-yield lithium separation and the precise isotopic
943	analysis for natural rock and aqueous samples. Chemical Geology. 145. 91-104.

944	Nomade, S., Renne, P.R., and Merkle, R.K.W. (2004) 40Ar/39Ar constraints on ore deposition
945	and cooling of the Bushveld Complex, South Africa. Journal of the Geological Society
946	London. 161. 411-420.
947	Norton, D., and Knapp, R. (1977) Transport phenomena in hydrothermal systems: The nature of
948	porosity. American Journal of Science. 277. 913-936.
949	Park, W.R., Ripley, E.M., Severson, M., and Hauck, S. (1999) Stable isotopic studies of mafic
950	sills and Proterozoic metasedimentary rocks located beneath the Duluth Complex,
951	Minnesota. Geochimica et Cosmochimica Acta. 6. 657-674.
952	Penniston-Dorland, S. (2001) Illumination of vein quartz textures in a porphyry copper ore
953	deposit using scanned cathodoluminescence: Grasberg Igneous Complex, Irian Jaya,
954	Indonesia. American Mineralogist. 86. 652-666.
955	Penniston-Dorland, S.C., Sorensen, S.S., Ash, R.D., and Khadke, S.V. (2010) Lithium isotopes
956	as a tracer of fluids in a subduction zone mélange: Franciscan Complex, CA. Earth and
957	Planetary Science Letters. 292. 181-190.
958	Richter, F.M., Liang, Y., and Davis, A.M. (1999) Isotope fractionation by diffusion in molten
959	oxides. Geochimica et Cosmochimica Acta. 63. 2853-2861.
960	Richter, F.M., Davis, A.M., DePaolo, D.M., and Watson, E.B. (2003) Isotope fractionation by
961	chemical diffusion between molten basalt and rhyolite. Geochimica et Cosmochimica
962	Acta. 67. 3905-3923.
963	Richter, F.M., Mendybaev, R.A., Christensen, J.N., Hutcheon, I.D., Williams, R.W., Sturchio,
964	N.C., and Beloso Jr., A.D., 2006. Kinetic isotopic fractionation during diffusion of ionic
965	species in water. Geochimica et Cosmochimica Acta. 70. 277-289.
966	Rudnick, R.L., Tomascak, P.B., Njo, H.B., and Gardner, R.L. (2004) Extreme lithium isotopic
967	fractionation during continental weathering revealed in saprolites from South Carolina.
968	Chemical Geology. 212. 45-57.
969	Rusk, B.G., Lowers, H.A., and Reed, M.H. (2008) Trace elements in hydrothermal quartz:
970	Relationships to cathodoluminescent textures and insights into vein formation. Geology.
971	36. 547-550.
972	Ryan, J.G., and Langmuir, C.H. (1987) The systematics of lithium abundances in young volcanic
973	rocks. Geochimica et Cosmochimica Acta. 51. 1727-1741.

974	Schiffries, C.M., and Rye, D.M. (1989) Stable isotopic systematics of the Bushveld Complex: I.
975	Constraints on magmatic processes in layered intrusions. American Journal of Science.
976	289. 841-873.
977	Schiffries, C.M., and Rye, D.M. (1990) Stable isotopic systematics of the Bushveld Complex: II.
978	Constraints on hydrothermal processes in layered intrusions. American Journal of
979	Science. 290. 209-245.
980	Schweitzer, J.K., Hatton, C.J., and de Waal, S.A. (1997) Link between the granitic and volcanic
981	rocks of the Bushveld Complex, South Africa. Journal of African Earth Sciences. 24. 95-
982	104.
983	Scoates, J.S., and Friedman, R.M. (2008) Precise age of the platiniferous Merensky Reef,
984	Bushveld Complex, South Africa, by the U-Pb zircon chemical abrasion ID-TIMS
985	technique. Economic Geology. 103. 465-471.
986	Shieh, Y.N., and Taylor, Jr., H.P. (1969) Oxygen and carbon isotope studies of contact
987	metamorphism of carbonate rocks. Journal of Petrology. 10. 307-331.
988	Sprunt, E., Dengler, L., and Sloan, D. (1978) Effects of metamorphism on quartz
989	cathodoluminescence. Geology. 6. 305-308.
990	Teng, F.Z., McDonough, W.F., Rudnick, R.L., Dalpe, C., Tomascak, P.B., Chappell, B.W., and
991	Gao, S. (2004) Lithium isotopic composition and concentration of the upper continental
992	crust. Geochimica et Cosmochimica Acta. 68. 4167-4178
993	Teng, F.Z., McDonough, W.F., Rudnick, R.L., and Walker, R.J. (2006a) Diffusion-driven
994	extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite.
995	Earth and Planetary Science Letters. 243. 701-710.
996	Teng, F.Z., McDonough, W.F., Rudnick, R.L., Walker, R. J., and Sirbescu, M.C. (2006b)
997	Lithium isotopic systematics of granites and pegmatites from the Black Hills, South
998	Dakota. American Mineralogist. 91. 1488-1498.
999	Teng, FZ., Rudnick, R.L., McDonough, W.F., Gao, S., Tomascak, P.B., and Liu, Y. (2008)
1000	Lithium isotopic composition and concentration of the deep continental crust. Chemical
1001	Geology. 255. 47-59.
1002	Teng, FZ., Rudnick, R.L., McDonough, W.F., and Wu, FY. (2009) Lithium isotopic
1003	systematics of A-type granites and their mafic enclaves: Further constraints on the Li

1005	Tomascak, P.B., Tera, F., Helz, R.T., and Walker, R.J. (1999) The absence of lithium isotope
1006	fractionation during basalt differentiation: New measurements by multicollector sector
1007	ICP-MS. Geochimica et Cosmochimica Acta. 63. 907-910.
1008	Tomascak, P.B., Langmuir, C.H., le Roux, P.J., and Shirey, S.B. (2008) Lithium isotopes in
1009	global mid-ocean ridge basalts. Geochimica et Cosmochimica Acta. 72. 1626-1637.
1010	Uken, R., and Watkeys, M.K., 1997. Diapirism initiated by the Bushveld Complex, South Africa.
1011	Geology. 25. 723-726.
1012	Valley, J.W., Kitchen, N., Kohn, M.J., Niendorf, C.R., and Spicuzza, M.J. (1995) UWG-2, a
1013	garnet standard for oxygen isotopic ratios: Strategies for high precision and accuracy
1014	with laser heating. Geochimica et Cosmochimica Acta. 59. 5223-5231.
1015	Valley, J.W., and Graham, C.M. (1996) Ion microprobe analysis of oxygen isotope ratios in
1016	quartz from Skye granite: Healed micro-cracks, fluid flow, and hydrothermal exchange.
1017	Contributions to Mineralogy and Petrology 124. 225-234.
1018	Vernon, R.H. (1968) Microstructures of high-grade metamorphic rocks at Broken Hill Australia.
1019	Journal of Petrology. 9. 1-22.
1020	Walraven, F., Armstrong, R.A., and Kruger, F.J. (1990) A chronostratigraphic framework for the
1021	north-central Kaapvaal craton, the Bushveld Complex and Vredefort structure.
1022	Tectonophysics. 171. 23-48.
1023	Watson, E.B, and Baxter, E.F. (2007) Diffusion in solid Earth systems. Earth Planet. Sci. Lett.
1024	253. 307-327.
1025	Wendlandt, R.W. (1991) Oxygen diffusion in basalt and andesite melts: Experimental results of
1026	chemical versus tracer diffusion. Contributions to Mineralogy and Petrology. 108. 463-
1027	471.
1028	
1029	

1030 **Table 1**. Sample locations

Sample	Lithology	Latitude, Longitude	Distance from contact (m)*
		East Phepane 06 Transec	t
P06-1	felsic rock	S 24° 29.876' E 029° 52.833'	
P06-2	felsic rock	S 24° 29.882' E 029° 52.819'	
P06-3	felsic rock	S 24° 29.886' E 029° 52.813'	
P06-4	felsic rock	S 24° 29.887' E 029° 52.813'	
P06-5	felsic rock	S 24° 29.900' E 029° 52.805'	
P06-6	felsic rock	S 24° 29.897' E 029° 52.808'	
P06-7	felsic rock	S 24° 29.911' E 029° 52.794'	23.6 E
P06-8	felsic rock	S 24° 29.909' E 029° 52.795'	27.9 E
P06-9	felsic rock	S 24° 29.917' E 029° 52.795'	13.5 E
P06-10	felsic rock	S 24° 29.922' E 029° 52.794'	8.6 E
P06-11	felsic rock	S 24° 29.921' E 029° 52.795'	5.0 E
P06-12	felsic rock	S 24° 29.922' E 029° 52.795'	3.7 E
P06-13	felsic rock	S 24° 29.925' E 029° 52.792'	1.5 E
P06-14	felsic rock	S 24° 29.919' E 029° 52.783'	4.3 E
P06-15	quartzite		2.8 W
P06-16	quartzite		7.6 W
P06-17	quartzite		8.6 W
P06-18	quartzite		9.6 W
P06-19	quartzite		13.3 W
P06-20	metapelite	S 24° 29.960' E 029° 52.783'	
	1	West Phepane Large Transe	ect
P07-1	quartzite	S 24° 30.860' E 029° 51.076'	
P07-2	metapelite	S 24° 29.868' E 029° 51.090'	
P07-3	quartzite	S 24° 29.883' E 029° 51.077'	
P07-4	quartzite	S 24° 29.887' E 029° 51.078'	
P07-5	metapelite	S 24° 29.903' E 029° 51.074'	
P07-6	mafic rock	S 24° 29.900' E 029° 51.035'	
P07-7	mafic rock	S 24° 29.896' E 029° 51.026'	
P07-8	mafic rock	S 24° 29.890' E 029° 51.011'	
P07-9	mafic rock	S 24° 29.892' E 029° 51.002'	
P07-10	mafic rock	S 24° 29.887' E 029° 51.001'	
P07-11	mafic rock	S 24° 29.880' E 029° 50.971'	
P07-12	mafic rock	S 24° 29.800' E 029° 50.909'	
P07-13	mafic rock	S 24° 29.810' E 029° 50.907'	
P07-14	quartzite	S 24° 29.845' E 029° 51.058'	
P07-15	mafic rock	S 24° 29.872' E 029° 51.046'	
P07-16	metapelite	S 24° 29.849' E 029° 51.088'	
P07-17	quartzite	S 24° 29.861' E 029° 51.052'	
P07-18	metapelite	S 24° 29.868' E 029° 51.103'	
P07-19	calcsilicate	S 24° 29.861' E 029° 51.114'	
P07-20	metapelite	S 24° 29.875' E 029° 51.125'	
P07-21	quartzite	S 24° 29.867' E 029° 51.140'	
P07-22	quartzite	S 24° 29.856' E 029° 51.160'	

Sample	Lithology	Latitude, Longitude	Distance from contact (m)*
		West Phepane Large Trans	sect
P07-23	metapelite	S 24° 29.864' E 029° 51.198'	
P07-24	metapelite	S 24° 29.886' E 029° 51.220'	
P07-25	quartzite	S 24° 29.891' E 029° 51.263'	
		West Phepane Small Trans	sect
P07-26	quartzite	S 24° 30.423' E 029° 51.090'	
P07-27	metapelite	S 24° 29.415' E 029° 51.109'	
P07-28	quartzite	S 24° 29.424' E 029° 51.094'	
P07-29	quartzite	S 24° 29.433' E 029° 51.077'	
P07-30	quartzite	S 24° 29.422' E 029° 51.065'	
P07-31	mafic rock	S 24° 29.424' E 029° 51.064'	9.0 W
P07-32	mafic rock	S 24° 29.423' E 029° 51.053'	14.0 W
P07-33	mafic rock	S 24° 29.414' E 029° 51.048'	23.2 W
P07-34	mafic rock	S 24° 29.427' E 029° 51.045'	32.6 W
		East Phepane 07 Transec	et
P07-49	felsic rock	S 24° 29.731' E 029° 52.621'	
P07-50	quartzite	S 24° 29.753' E 029° 52.582'	0.2 W
P07-51	quartzite	S 24° 29.753' E 029° 52.582'	4.3 W
P07-52	felsic rock	S 24° 29.753' E 029° 52.582'	9.3 E
P07-53	felsic rock	S 24° 29.753' E 029° 52.582'	5.2 E
P07-54	metapelite	S 24° 29.786' E 029° 52.551'	
P07-55	metapelite	S 24° 29.757' E 029° 52.581'	
P07-56	metapelite	S 24° 29.763' E 029° 52.564'	
P07-57	quartzite	S 24° 29.799' E 029° 52.502'	
P07-58	felsic rock	S 24° 29.748' E 029° 52.599'	
P07-59	felsic rock	S 24° 29.738' E 029° 52.602'	
		Sedimentary rocks	
LV2	sandstone	S 25° 01.335' E 030° 13.485'	
LV3	sandstone	S 25° 02.437' E 030° 13.461'	
LV4	sandstone	S 25° 21.315' E 030° 10.240'	
LV6	sandstone	S 24° 56.978' E 030° 13.395'	
VT1a	shale	S 25° 15.170' E 030° 15.654'	

1032 * Distance measured using steel measuring tape oriented perpendicular to the contact.

1033 W=distance on the west side of the contact, E=distance on the east side of the contact

Sample	P06-19	P07-28	P06-2	P07-32	P07-6
Туре	Lakenvalei	Lakenvalei	Felsic	Mafic	Mafic
	Quartzite	Quartzite	Rock	Rock	Rock
	East	West	East	West	West
Quartz	83.0	87.3	20.9	8.55	0.56
K-feldspar	8.97	8.89	31.8	1.64	0.17
Plagioclase	5.30	3.39	32.2	78.7	64.5
Hornblende	0	0	13.3	7.20	23.9
Clinopyroxene	0	0	0	0.68	3.77
Orthopyroxene	0	0	0	0	5.57
Muscovite	2.56	0.38	0	0.05	0.17
Biotite	0	0	1.4	tr	0
Chlorite	0.19	0.05	0	2.00	1.16
Calcite	0	0.09	0	0.59	0
Zircon	tr*	tr	tr	tr	0
Apatite	tr	tr	0.05	0.55	0
Monazite	tr	0	0.05	0	0
Ilmenite	0	0	0.05	tr	0.13
Magnetite	0	0	0.14	0	tr
Titanite	0	0	0	tr	0
Rutile	0	tr	tr	0	0
Total points	2152	2126	2174	2200	2335
			* tr = tra	ce amount,	<0.05%

Table 2. Mineral modes (volume percentage) of representative rock types

1044 **Table 3. Plagioclase major element compositions (wt.%)**

	0				· /		
Sample	P07-32	P07-32	P07-32	P07-32	P07-32	P07-6	P07-6
SiO ₂	51.80	51.55	50.81	50.57	52.53	49.52	50.15
TiO ₂	0.00	0.01	0.00	0.00	0.00	0.00	0.00
Al_2O_3	31.17	31.46	30.86	30.67	29.34	31.95	31.59
FeO	0.08	0.11	0.08	0.01	0.07	0.08	0.06
MnO	0.00	0.01	0.00	0.00	0.02	0.01	0.00
MgO	0.02	0.04	0.01	0.04	0.00	0.00	0.00
CaO	13.27	13.58	14.60	13.27	12.95	16.03	15.50
Na ₂ O	3.83	3.69	3.73	4.18	3.92	3.03	3.33
K ₂ O	0.11	0.20	0.10	0.08	1.39	0.10	0.09
Total	100.3	100.6	100.2	98.81	100.2	100.7	100.7
X _{An}	0.65	0.66	0.68	0.63	0.60	0.72	0.74
X _{Ab}	0.34	0.33	0.32	0.36	0.33	0.28	0.25
X _{Or}	0.01	0.01	0.00	0.00	0.08	0.00	0.01

			$\delta^{18}O_{atz}$	$\delta^{18}O_{pl}$	$\delta^{18}O_{wr}$				
Sample	Rock Type	Distance (m)§	(‰)	(‰)	(‰)				
East Phepane 06 Transect									
P06-1	Felsic rock	108	6.93						
P06-2	Felsic rock	89	7.92						
P06-6	Felsic rock	58	7.09						
P06-8	Felsic rock	30	7.37						
P06-9	Felsic rock	17	7.33						
P06-14	Felsic rock	4.8	6.90						
P06-13	Felsic rock	2.1	7.80						
P06-15	Lakenvalei Quartzite	2.4	10.85						
			11.05*						
P06-16	Lakenvalei Quartzite	7.1	11.34						
P06-18	Lakenvalei Quartzite	9.0	11.27						
			11.41*						
P06-19	Lakenvalei Quartzite	12	11.21						
	West Phepa	ne Small Scale Tra	ansect						
P07-34	Mafic rock	33		8.02	6.60				
					7.05*				
P07-33a	Mafic rock	26		8.04	7.39				
P07-33b	Mafic rock	26			7.39*				
P07-32	Mafic rock	19		7.95	7.90				
				7.89†	8.08*				
P07-31	Mafic rock	0.8		8.59	8.27				
				8.59*	8.12*				
				8.54†					
P07-30	Lakenvalei Quartzite	0.6	10.59						
			10.47*						
			10.57†						
P07-26	Lakenvalei Quartzite	42	11.05						
			10.83*						
P07-28	Lakenvalei Quartzite	51	11.06						
			11.08*						
			11.30†						
			11 09+*						

1047 Table 4. Oxygen Isotopic Compositions

 1048
 § Measured distances corrected for dip of contact and for variations in elevation

1049 * Same sample aliquot measured again

1050 † Different aliquot of same sample

1051

1052

Sample	Rock Type* Distance (m) [§]		δ ⁷ Li (‰)	Li (ppm)
	East Phepane 0	6 and 07 Transe	ects	
P06-1	Felsic rock (2)	108	5.7	2.8
P06-2	Felsic rock (2)	89	8.2	3.3
P06-3	Felsic rock	79	4.7	4.4
P06-6	Felsic rock	58	8.0	9.1
P06-8	Felsic rock	30	2.5	4.7
P06-9	Felsic rock (3)	17	5.2	4.9
P06-14	Felsic rock	4.8	5.4	4.5
P06-13	Felsic rock	2.1	1.5	1.5
P06-15	Lakenvalei Quartzite (2)	2.4	18.9	18
P06-16	Lakenvalei Quartzite (2)	7.1	21.5	11
P06-18	Lakenvalei Quartzite (4)	9.0	17.6	18
P06-19	Lakenvalei Quartzite	12	21.2	14
P06-20	Vermont Metapelite (2)	80	2.3	48
P07-49	Felsic rock (2)	67	8.1	5.7
P07-59	Felsic rock	39	2.3	7.0
P07-58	Felsic rock	27	5.1	6.4
P07-52	Felsic rock	8.2	7.7	3.8
P07-53	Felsic rock (2)	4.9	12.1	6.8
P07-50	Lakenvalei Quartzite	0.1	12.8	19
P07-51	Lakenvalei Quartzite (3)	3.5	21.0	12
P07-55	Vermont Metapelite	3.6	7.4	44
P07-56	Vermont Metapelite	34	3.2	105
P07-54	Vermont Metapelite	69	8.2	94
P07-57	Magaliesburg Quartzite	149	22.1	13
	West Phepane S	mall Scale Tran	sect	
P07-34	Mafic rock (2)	33	3.6	10
P07-33a	Mafic rock	26	3.6	12
P07-33b	Mafic rock (2)	26	2.1	12
P07-32	Mafic rock (3)	19	5.3	26
P07-31	Mafic rock	0.8	3.4	19
P07-30	Lakenvalei Quartzite	0.6	8.1	16
P07-29	Lakenvalei Quartzite	19	9.5	13
P07-26	Lakenvalei Quartzite	42	16.1	9.9
P07-28	Lakenvalei Quartzite	51	19.3	17
P07-27	Vermont Metapelite	74	5.4	44

1053 **Table 5. Lithium Isotope Compositions and Concentrations**

1050

Sample	Rock Type	Distance (m)§	δ ⁷ Li (‰)	Li (ppm)
	West Phepane Large Scale			
P07-12	Mafic rock	241	-0.2	19
P07-11	Mafic rock	124	4.9	59
P07-9	Mafic rock (3)	75	1.7	34
P07-8	Mafic rock	60	3.3	56
P07-7	Mafic rock(2)	35	5.0	51
P07-6	Mafic rock(2)	20	6.0	41
P07-15	Mafic rock	afic rock 2.6		19
P07-17	Lakenvalei Quartzite (2)	cenvalei Quartzite (2) 7.7		12
P07-14	Lakenvalei Quartzite (2)	10	13.2	22
P07-1	Lakenvalei Quartzite	50	10.6	19
P07-3	Lakenvalei Quartzite (2)	52	9.2	14
P07-5	Vermont Metapelite (2)	54	-6.7	104
P07-16	Vermont Metapelite 71		1.9	85
P07-18	Vermont Metapelite	98	4.0	14
P07-23	Vermont Metapelite	264	4.0	70
P07-24	Vermont Metapelite	303	4.9	67
P07-25	Magaliesburg Quartzite	aliesburg Quartzite 372		8.8
Sedimentary Samples				
LV2	Lakenvalei Sandstone		21.7	9.1
LV3	Lakenvalei Sandstone		12.4	8.3
LV4	Lakenvalei Sandstone		9.8	2.3
LV6	Lakenvalei Sandstone	17.3		13
VT1a	Vermont Shale		0.3	142
Mineral Separates				
P06-18	Quartz separate		20.7	25
P06-19	Quartz separate		22.7	21
P07-26	Quartz separate	15.7 16		16
P07-28	Quartz separate		18.4	18

1058 **Table 5. Lithium Isotope Compositions and Concentrations (cont.)**

1059 * Numbers in parentheses indicate the number of measurements (where greater than 1) made on

1060 the sample. The numbers reported are averages from the measurements made on each sample.

1061 [§] Measured distances corrected for dip of contact and for variations in elevation.

1062

Table 6. Constraints from Diffusion Models

Traverse	Oxygen best fit $\sqrt{DtK^{-1}}$ (m)	Lithium best fit $\sqrt{DtK^{-1}}$ (m)
East Phepane 06	1.1	2.4
East Phepane 07		6.1
West Phepane small-scale	0.9	9.1
West Phepane large-scale		10.6

1065

1066

East Phepane 06					
	Oxygen				
$\sqrt{DtK^{-1}}$			1.1 m*	1.4 m^{\dagger}	
	$D(m^2/s)$	porosity	Ke	t (kyrs)	t (kyrs)
D _{melt}	$9x10^{-13}$	10 ⁻²	0.62	2600	4200
D_{fluid}	10 ⁻⁸	10 ⁻³	1.86	7.1	12
D _{fluid}	10 ⁻⁸	10 ⁻⁵	1.86	710	1200
West Phepane small					
$\sqrt{DtK^{-1}}$			0.9 m*	1.5 m [†]	
	$D(m^2/s)$	porosity	K _e	t (kyrs)	t (kyrs)
D _{melt}	$9x10^{-13}$	10 ⁻²	0.62	1800	4900
D_{fluid}	10 ⁻⁸	10 ⁻³	1.86	3.4	13
D_{fluid}	10 ⁻⁸	10 ⁻⁵	1.86	340	1300

*Best fit diffusive distances. *Maximum diffusive distances.

1071	Figure Captions
1072	
1073	Figure 1. (a) Map of the Bushveld Complex in South Africa modified from Kinnaird et al.
1074	(2005), (b) Close-up map of Eastern Lobe (dotted line in Figure 1a) showing each igneous zone,
1075	the sedimentary rocks of the aureole, and the metasedimentary domes within the Bushveld
1076	Complex modified from Clarke et al. (2005).
1077	
1078	Figure 2: Google Earth image of the Phepane Dome (dashed area in Figure 1b) showing the
1079	location and topography as well as the rock types of the four transects collected.
1080	
1081	Figure 3: CL images on left, plane polarized light (PPL) on right. (a,b) Image of LV4,
1082	Lakenvalei Sandstone. Arrow points to red luminescent authigenic quartz surrounded by non-
1083	luminescent cement. Three feldspar grains (F) show brighter (yellow) luminescence. (c,d) P07-
1084	14: showing bright blue regions (B) surrounded by darker blue luminescence (L) within larger
1085	quartz grains. Note fluid inclusions at bottom (arrow) that coincide with the darker blue
1086	luminescent overgrowth. (e,f) P06-19: non-luminescent (N) fracture cutting brighter luminescing
1087	yellow feldspar and blue quartz. Fracturing is visible in PPL, but extent of recrystallization is
1088	not. (g,h) P06-16: non-luminescent quartz (N) in fluid inclusion-free fractures (arrows).
1089	
1090	Figure 4: (a) Photo in crossed polarized light of texture with cuspate plagioclase indicating the
1091	presence of partial melt and (b) photo of an equilibrium plagioclase (solid-state) with a dihedral
1092	angle of 115 degrees. qtz= quartz, pl= plagioclase.
1093 1094	Figure 5: Histograms of dihedral angle measurements. (top) 2-D angle measurements for
1095	samples from the East (left) and West (right) side of the Phepane Dome. The samples in the top

row (P06-15 and P07-30) are within 2 m of the contact, the next two (P06-18 and P07-26) are

 $1097 \sim 10$ m from the contact, and the third row has a sample at 13 m from the contact (P06-19) and 50

1098 m from the contact (P07-1). (bottom) 3-D angle measurements using a universal stage.

1099

1100 **Figure 6:** Oxygen isotopic compositions are plotted with distance from the contact (at x=0) for

1101 (a) the East Phepane 06 Transect and (b) the West Phepane Small Scale Transect. For both

1102 graphs open squares represent measured δ^{18} O values of quartz in quartzite. For the felsic rock,

1103 filled triangles represent measured δ^{18} O values of quartz in felsic rock. For the mafic rock, filled

1104 squares represent calculated δ^{18} O of quartz that would be in equilibrium with the measured δ^{18} O

1105 values of plagioclase at temperatures of 900°C. Measurement uncertainty shown is 2SD. If no

1106 error bars are shown on a data point, the uncertainty is less than or equal to the size of the

1107 symbol. Smaller inset graphs show the measurements and profiles modeled immediately adjacent

to the contact for each traverse. Diffusive distance results $(\sqrt{D_e t K_e^{-1}})$ from the models are shown which best fit to the data and these best fit model profiles for each traverse are shown as black solid lines. The light gray solid lines represent model profiles with the greatest diffusive distance permitted by the data.

1112

Figure 7: Li concentrations of the Bushveld Complex igneous rock (right) and Lakenvalei Quartzite (left) (contact at x=0) in the combined transects on the (a) east side of the Phepane Dome and (b) west side of the Phepane Dome. Points are averages of multiple concentration measurements where available. Error bars are minimum of 10% of measured concentration. Where multiple measurements were made and measured variability was greater, error bars represent the range of the measured concentrations. If no error bars are shown on data point, error is less than or equal to the size of the symbol.

54

- 1121 Figure 8: Li isotopic compositions of the Bushveld Complex igneous rock (right) and
- 1122 Lakenvalei Quartzite (left) in the four transects (contact at x=0). Error bars represent 2SD
- 1123 uncertainty. a) East Phepane traverse 06, b) East Phepane traverse 07, c) West Phepane large-
- scale traverse, d) West Phepane small-scale traverse. The black lines represent model profiles
- 1125 that best fit the data.
- 1126
- 1127

Figure 1b Ireland and Penniston-Dorland

M= Malope; Z= Zaaikloof; K= Katkloof; Sc= Schwerin; P= Phepane; St= Steelpoort; D= Derde Gelid

Axial trace of Dome

Lakenvalei Samples

Figure 2 Ireland and Penniston-Dorland

Magaliesburg

2 km

Figure 3 Ireland and Penniston-Dorland

Figure 4 Ireland and Penniston-Dorland

Figure 5 Ireland and Penniston-Dorland

Figure 6 Ireland and Penniston-Dorland

Figure 7a Ireland and Penniston-Dorland

Figure 8 Ireland and Penniston-Dorland

