Accurate determination of $\text{Fe}^{3+}/\Sigma\text{Fe}$ of andesitic glass by Mössbauer spectroscopy

Revision 1

Hongluo L. Zhang¹*, Peat A. Solheid², Rebecca A. Lange³, Anette von der Handt¹, Marc M. Hirschmann¹,

¹Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA
²Institute for Rock Magnetism, University of Minnesota, Minneapolis, MN 55455, USA
³Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

To evaluate the accuracy of Fe^{3+} and Fe^{2+} ratios in silicate glasses determined by Mössbauer spectroscopy, we examine in detail the temperature (47-293 K) of Mössbauer spectra for two andesitic glasses, one quenched at 1 atm, 1400 °C (VF3) and the other at 3.5 GPa, 1600 °C (M544). Variable-temperature Mössbauer spectra of these two glasses are used to characterize the recoilless fraction, f, by two different methods – a relative method (RM) based on the temperature dependence of the ratios of Fe^{3+} and Fe^{2+} Mössbauer doublets and the second based on the temperature dependence of the center shift (CS) of the doublets. The ratio of the recoilless fractions for Fe^{3+} and Fe^{2+}, C_T, can then be used to adjust the observed area of the Mössbauer doublets into the $\text{Fe}^{3+}/\Sigma\text{Fe}$ ratio in the sample. We also evaluated the
contributions of non-paramagnetic components to the Fe in the glasses by determining the
influence of applied magnetic field on sample magnetization. Finally, for the VF3 glass, we
determined the Fe$^{3+}$/ΣFe independently by wet chemical determination of the FeO content
combined with careful electron microprobe analyses of total Fe. Recoilless fractions
determined with the CS method (CSM) are significantly smaller than those determined with
the relative method and suggest larger corrections to room temperature Fe$^{3+}$/ΣFe ratios.
However, the RM determinations are believed to be more accurate because they depend less
on the assumption of the Debye harmonic model and because they produce more nearly
temperature-independent estimates of Fe$^{3+}$/ΣFe ratios. Non-linear responses of sample
magnetizations to applied magnetic fields indicate that the glasses contain a small (0.4-1.1 %
for VF3) superparamagnetic component that is most likely to be nanophase precipitates of
(Fe,Mg)Fe$_2$O$_4$ oxide, but corrections for this component have negligible influence on the total
Fe$^{3+}$/ΣFe determined for the glass. For the VF3 glass, the Fe$^{3+}$/ΣFe produced by uncorrected
room temperature Mössbauer spectroscopy (0.685±0.014 in two standard deviation (2σ))
agrees within 3% of that determined by wet chemistry (0.666±0.030 in 2σ). The Fe$^{3+}$/ΣFe
corrected for recoilless fraction contributions is 0.634±0.078(2σ), which is 7.5% lower than
the uncorrected room temperature ratio, but also agrees within 5% of wet chemical ratio. At
least for this andesitic glass, the room temperature determination of Fe$^{3+}$/ΣFe is accurate
within analytical uncertainty, but room temperature Mössbauer determinations of Fe$^{3+}$/ΣFe
are always systematically higher compared to recoilless-fraction corrected ratios.

1 Introduction

The proportion of Fe$^{3+}$ and Fe$^{2+}$ in natural and experimental silicate glasses is one of the most important measures of the oxygen fugacity of magmatic materials, and consequently has been the subject of intensive study for more than 30 years (Sack et al., 1981; Mysen et al., 1985; Christie et al., 1986; Mysen and Virgo, 1986; Carmichael and Kress, 1988; Jayasuriya et al., 2004; Bézos and Humler, 2005; O'Neill et al., 2006; Wilke et al., 2006; Rossano et al., 2008; Cottrell et al., 2009; Kelley and Cottrell, 2009; Cottrell and Kelley, 2011; Cottrell and Kelley, 2013). Analytical techniques employed to determine Fe$^{3+}$/ΣFe in silicate glasses include wet chemistry (Wilson, 1960; Sack et al., 1981; Mysen et al., 1985; Christie et al., 1986; Carmichael and Kress, 1991; Bézos and Humler, 2005), and, increasingly, XANES (Wilke et al., 2001; Berry et al., 2008; Cottrell et al., 2009; Kelley and Cottrell, 2009; Cottrell and Kelley, 2011; Cottrell and Kelley, 2013), but the most commonly applied technique is Mössbauer spectroscopy (Mysen et al., 1985; Mysen and Virgo, 1985; Mysen and Virgo, 1986; Dyar et al., 1987; Dingwell, 1991; Jayasuriya et al., 2004; O'Neill et al., 2006; Rossano et al., 2008; Cottrell et al., 2009; Borisov and McCammon, 2010; Righter et al., 2013). However, some controversy has persisted about the relative accuracies of these different techniques, and in particular, about the veracity of Fe$^{3+}$/ΣFe determined by Mössbauer spectroscopy (Lange and Carmichael, 1989; Ottonello et al., 2001; Righter et al., 2013).
Recoilless interactions between 57Co 14.4 keV gamma quanta and the nuclei of 57Fe$^{3+}$ and 57Fe$^{2+}$ ions occur at distinct energies and produce significant separation in Doppler-shifted velocities, potentially allowing precise quantification of Fe$^{3+}$/ΣFe in Fe-bearing materials, including silicate glasses (McCammon and Kopylova, 2004). However, the accuracy of such determinations depends on corrections for several effects. The most important is the relative proportion of recoilless fractions of Fe$^{3+}$ and Fe$^{2+}$ ions, $(f(Fe^{3+})_T, f(Fe^{2+})_T)$, which represent the temperature-dependent fractions of 14.4 keV gamma rays interacting resonantly with the 57Fe$^{3+}$ and 57Fe$^{2+}$ ions. The absorption areas of Mössbauer doublets produced by Fe$^{3+}$ and Fe$^{2+}$ in an analyte ($AA(Fe^{3+})_T, AA(Fe^{2+})_T$) are related to the abundances of the ions ($N(Fe^{3+})_T, N(Fe^{2+})_T$) and the recoilless fraction of each ion, according to

$$\frac{AA(Fe^{3+})_T}{AA(Fe^{2+})_T} = C_T \frac{N(Fe^{3+})}{N(Fe^{2+})} \quad (1)$$

where C_T is correction number, equals $f(Fe^{3+})_T/f(Fe^{2+})_T$, and the T subscripts highlight quantities that are temperature-dependent. As the recoilless interaction depends on bond strength and is affected by lattice vibrations (Chen and Yang, 2007), values of f_T are usually not the same for Fe$^{3+}$ and Fe$^{2+}$ in minerals or glasses. Indeed, studies of silicate and oxide minerals have found values of C_T at room temperature ranging from 1.0 in biotite (Bancroft and Brown, 1975) to 1.4 in garnet (Woodland and Ross II, 1994; Dyar et al., 2012), but typical values average near 1.2 (De Grave and Van Alboom, 1991).
Despite the demonstrated importance of recoilless fractions for Fe3+/\Sigma Fe determinations in silicate minerals, Mössbauer analyses of Fe3+/\Sigma Fe in silicate glasses are commonly conducted at room temperature without correction for recoil-free effects (Mysen et al., 1985; Dyar et al., 1987; Dingwell, 1991; Jayasuriya et al., 2004; O’Neill et al., 2006; Rossano et al., 2008; Cottrell et al., 2009; Borisov and McCammon, 2010). This simplification may be justified because some comparisons between uncorrected room temperature Mössbauer measurements and Fe3+/\Sigma Fe determined by other methods have found good agreement with wet chemical determinations (Mysen et al., 1985; Dingwell, 1991; Wilke et al., 2006). Dyar et al. (1987) found good agreement for a basalt and an andesite, but significant discrepancies for a rhyolite, although the overall uncertainties (±6%) in their study are comparatively high. Also, some studies have found good agreement between room temperature and cryogenic Mössbauer analyses of glasses (Helgason et al., 1989; Jayasuriya et al., 2004). As recoilless fraction should be temperature-dependent (Chen and Yang, 2007), this implies recoilless fraction effects on Fe3+/Fe2+ determinations at room temperature could be small.

In contrast to these encouraging results, several studies have found discrepancies in application of uncorrected room temperature Mössbauer spectra to Fe3+/\Sigma Fe determinations. Lange and Carmichael (1989) reexamined the analyses of Mysen et al. (1985) and concluded that they show systematic discrepancies for Fe-rich glasses. In fact, compared to wet chemical analyses, there is a systematic 6% bias to greater Fe3+/\Sigma Fe for all Mössbauer data.
presented by Mysen et al. (1985) and Dingwell (1991). Similarly, Righter et al. (2013) pointed out that the data of Wilke et al. (2006) actually suggest systematically greater Fe\(^{3+}/\Sigma\)Fe from Mössbauer spectroscopy than from wet chemical analyses. We note that the wet chemical analyses for Fe\(^{3+}/\Sigma\)Fe in glasses do not always agree with other methods or with microbeam determinations, but discrepancies are thought to be owing chiefly to the effects of dissolution of microphenocrysts and are therefore applicable to natural, but not synthetic, glasses (Bézos and Humler, 2005; Cottrell and Kelley, 2011). Mysen and Dubinsky (2004) used a Lorentzian absorption line shape to fit their Mössbauer spectra and found an 8% difference between Fe\(^{3+}/\Sigma\)Fe measured on a synthetic basalt at 298 and 150 K. Finally, Ottonello et al. (2001) performed a thermodynamic analysis of the Fe\(^{3+}\) and Fe\(^{2+}\) contents of a wide array of glasses as a function of bulk composition, temperature, and oxygen fugacity and found that those analyzed by Mössbauer spectroscopy had a 14% bias to greater Fe\(^{3+}/\Sigma\)Fe compared to glasses determined by wet chemistry. Owing to these observations, uncertainty lingers as to the accuracy of Mössbauer determinations of Fe\(^{3+}/\Sigma\)Fe in glasses.

Fe\(^{2+}\) and Fe\(^{3+}\) are predominantly paramagnetic in silicate glasses, but Mössbauer spectra of some glasses also indicate a non-paramagnetic Fe component (Jayasuriya et al., 2004; O'Neill et al., 2006; Borisov and McCammon, 2010). In some cases, non-paramagnetic features are evident as well-resolved sextets, indicating either the presence of minor ferromagnetic precipitates or unrelaxed ferromagnetic interactions between Fe\(^{3+}\) ions in the
glass and incident γ rays. In other materials, the non-paramagnetic features are expressed only as a broadened absorption, and these occur owing to a super-paramagnetic phase with intermediate interactions (Borisov and McCammon, 2010). If these non-paramagnetic components are neglected or are too small to be quantified accurately from the Mössbauer spectra, the derived $\text{Fe}^{3+}/\Sigma \text{Fe}$ ratio may not be accurate.

To further investigate the accuracy of Mössbauer analyses of $\text{Fe}^{3+}/\Sigma \text{Fe}$ in silicate glasses, we conducted detailed low temperature Mössbauer investigations of andesitic glass. These allow us to determine directly the recoilless free fractions of Fe ions. To span glasses produced under different experimental conditions, we investigated a glass quenched from 1 atmosphere and one quenched from a high pressure device. For the low pressure glass, we also compared the results of our analysis to wet chemical determinations. Finally, because our initial results raised some questions about the structure of Fe ions in the quenched material, we also conducted magnetic susceptibility measurements to characterize non-magnetic components potentially present.

2 The Mössbauer Recoilless Fraction

The intensity or resonant absorption area of a particular component in a Mössbauer spectrum is determined by its recoilless fraction (f_T), which is the probability that a γ quantum will be absorbed resonantly. From both classical and quantum mechanical theories, $f(T)$ is given by
where $<x^2>$ is the temperature-dependent mean-square atomic displacement, and k is the wavenumber of the γ quantum (Chen and Yang, 2007). For a harmonic solid, the Debye model for the vibrational modes of the lattice (Schroeder, 2000), $<x^2>$, $f(T)$ can be expressed as

$$f(T) = e^{-\frac{k^2}{2}} \int_0^\infty \frac{x}{e^x - 1} dx,$$

where θ_D is the Debye temperature, k_B is the Boltzmann constant, E_R is the recoil energy, which in turn is given by $E_R = E_\gamma / 2Mc^2$, in which E_γ is the energy of the gamma rays (14.412 keV to excite 57Fe), M is the mass of the absorber (57Fe=56.935 amu), and c the velocity of light ($c=299792458$ m/s).

A popular method to quantify recoilless fractions is to calculate them via Eqn. 3 using Debye temperatures derived from the change of the Mössbauer center shift (CS) with temperature (Niemantsverdriet et al., 1984b; De Grave et al., 1985; Dyar et al., 2012). The center shift (CS), which is the location of the centroid of Mössbauer peaks in velocity relative to a standard (α-iron in our case), has two components (Eqn. 4), the isomer shift (δ_{IS}), and the second order Doppler shift (δ_{SOD}) (Niemantsverdriet et al., 1984b),

$$\text{CS}(T) = \delta_{\text{IS}} + \delta_{\text{SOD}}(T).$$

The isomer shift is determined by the difference of s-electron density at the nucleus between the source and the absorber, and is temperature independent, while the second-order Doppler
shift is dependent of the mean-square atomic velocity difference between the source and the
absorber. Because the source is kept at room temperature, \(\delta_{SOD} \) varies significantly with
absorber temperature and can be parameterized with a Debye model (Pound and Rebka Jr, 1960),

\[
CS(T) = \delta_{IS} - \frac{9k_B}{2Mc_T} \left(\frac{T}{\theta_D} \right)^3 \int_0^{\theta_D} \left(1 + \frac{x^3}{e^x - 1} \right) dx \quad (5)
\]

The values of \(\delta_{IS} \) and \(\theta_D \) can be obtained from the CS of spectra measured over a range of
temperatures using Eqn. 5, and then the recoilless fraction calculated from \(\theta_D \) using Eqn. 3.

This center-shift method (CSM) for estimating recoilless fractions has been applied to
Fe\(^{2+}\) and Fe\(^{3+}\) in a wide range of minerals (De Grave and Van Alboom, 1991) and most
recently has been employed for detailed evaluation of Fe\(^{3+}/\Sigma\text{Fe}\) in garnet (Dyar et al., 2012)
and Fe\(^{2+}\) site occupancies in pyroxenes (Dyar et al., 2013). However, it may not be as
accurate when applied to glasses, as the Debye model assumes harmonic behavior and
therefore does not account for anharmonic contributions to atomic displacements, which are
generally greater for amorphous materials (Kieffer, 1979). Studies comparing \(\theta_D \) of glasses
inferred from CS variations to \(\theta_D \) determined directly from recoilless fractions deduced by
other means have yielded mixed results. Komatsu and Soga (1980) found good agreement for
a Na\(_2\)O-FeO-NiO-SiO\(_2\) glass, but Oohata et al. (1994) found significant discrepancies for
glassy V\(_2\)O\(_5\)-Fe\(_2\)O\(_3\)-P\(_2\)O\(_5\). Thus, at least for glasses the center-shift method should be
approached with caution.
A more direct method to quantify the recoilless fractions (f) is the relative method (RM) (Chen and Yang, 2007). For a thin sample in which the sample geometry does not change, the observed peak absorption area (AA) for each absorption are proportional to the concentration of the absorbing ion, N,

$$AA_T = f_T N$$ \hspace{1cm} \text{(6)}

Consequently, so long as a phase transition or change in magnetic state is not traversed, the change in absorption area with temperature is only owing to the change in recoil-free fraction. If peak areas are normalized to that observed at a particular fixed temperature (T_0), $AA(T)/AA(T_0)$, which is equal to $f(T)/f(T_0)$, the ratio of recoilless-free fractions, depends only on the Debye temperature based on Eqn. (7)

$$\frac{AA(T)}{AA(T_0)} = \frac{f(T)}{f(T_0)} = \exp \left\{ -\frac{6E_R}{k_B\theta_D} \left[\frac{T}{\theta_D} \right]^2 \int_0^{\theta_D/T} \frac{x}{e^x - 1} \, dx - \left(\frac{T_0}{\theta_D} \right)^2 \int_0^{\theta_D/T_0} \frac{x}{e^x - 1} \, dx \right\}$$ \hspace{1cm} \text{(7)}

Fitting the Debye temperature to values of $A(T)/A(T_0)$ from data collected over a range of temperatures allows calculations of the recoilless fraction at any temperature via Eqn. 3. Technically, application of this method to anharmonic solids is subject to the same uncertainty as the center shift method described above. However, so long as the measurements of $A(T)/A(T_0)$ span a significant fraction of the temperatures between 0 K and the temperature of interest (in this case, room temperature), the effect of anharmonicity on calculated absolute values of $f(T)$ will be small, as interpolation of the harmonic approximation (Eqn. 7) will empirically capture any anharmonic effects expressed over the
range of temperatures for which data are available.

3 Methods

3.1 Sample synthesis

Two different andesitic glasses were analyzed, both with essentially the same major element composition (Table 1), similar to that used by O'Neill et al. (2006), but quenched from different conditions. One, M544, was quenched at 3.5 GPa, 1600 °C as part of the high pressure study of Zhang and Hirschmann (in prep.), whereas the second, VF3, was quenched at 1 atm, 1400 °C and was produced expressly for this study.

The starting materials were prepared from reagent oxides (SiO$_2$, Al$_2$O$_3$, Fe$_2$O$_3$, TiO$_2$, MgO, FeO), silicates (CaSiO$_3$, Na$_2$SiO$_3$) and stoichiometric glasses (sanidine). For M544, all iron was added as Fe$_2$O$_3$ and 30% of the Fe$_2$O$_3$ consisted of 57Fe$_2$O$_3$ (Isoflex, Inc), with the balance derived from normal reagent oxide. For VF3, similar proportions of isotopically normal FeO and Fe$_2$O$_3$ were added. Prior to weighing, the SiO$_2$, Al$_2$O$_3$, TiO$_2$, and MgO were devolatilized by heating in a furnace at 1000 °C overnight. These reagents were then weighed and mixed with the silicates and sanidine by grinding in an agate mortar under ethanol at least one hour and then devolatilized a second time by annealing at 1000 °C for 48 hrs. Finally, the Fe$_2$O$_3$, previously at 800 °C for 1 hour and for VF3, with weighed FeO were added to the silicate mix by grinding under ethanol.
For the high pressure experiment, the starting material was loaded in a 2 mm diameter Pt capsule together with a mixture of Ru and RuO₂ which produces an oxygen fugacity similar to that of the magnetite/hematite buffer (O'Neill and Nell, 1997). Under these conditions, loss of Fe to the Pt capsule is negligible and dissolution of RuO₂ in the silicate melt is limited to <100 ppm (O'Neill et al., 2006). Further details of the capsule design are described in O'Neill et al. (2006) and Zhang and Hirschmann (in prep.). The experiment was performed at 3.5 GPa and 1600 °C for 4hrs in a 1000-ton Walker-style multi-anvil device with an 18/12 (octahedral edge length/WC truncation edge length) assembly (Dasgupta et al., 2004).

Temperature was controlled with a Type D (W₉₇Re₃/W₇₅Re₂₅) thermocouple that was positioned immediately above the capsule and oriented axially with respect to the heater. Pressure uncertainties are believed to be ±0.3 GPa, and temperature uncertainties are believed to be ±10 °C (Dasgupta et al., 2004).

The VF3 glass was fused at 1400 °C for 24 hrs in a Deltech VT28 vertical gas mixing furnace in a Pt crucible with oxygen fugacity controlled using a mixture of O₂ and Ar and temperature monitored with a Type S (Pt₉₀Rh₁₀/Pt₁₀₀) thermocouple. Temperature uncertainties are believed to be ±5 °C based on a thermocouple calibration which yielded 1059 °C for melting of Au, which compares to 1064 °C value given by ITS90. The VF3 glass was quenched in a few seconds by being dropped into water. Electron microprobe analysis of
a section spanning the furthest and closest positions relative to the Pt hanging wire indicated
that the major element concentrations of the glass are homogeneous.

3.2 Analytical Methods

3.2.1 Electron microprobe

Textures of the quenched glasses were examined by back-scattered electron (BSE) and secondary electron imaging (SEI) using the JEOL JXA-8900R electron microprobe (EPMA) at the University of Minnesota. Major element concentrations were quantified by wave-length-dispersive analysis using a 15kV acceleration voltage, 20 nA beam current and a beam focused to 5 μm diameter. Peak and background counting times were 15 s for standard analyses and 30 s for unknown samples. Data were acquired using the following diffractometer crystals: LiF for Ti kα, LiFH for Mn kα, Fe kα, PETJ for K kα, Ca kα, and TAP for Al kα, Mg kα, Si kα, and Na kα. Mineral and glass standards from (Jarosewich et al., 1980) were used, including basaltic glass for Mg kα, Ca kα, ilmenite for Ti kα, albite for Si kα, Al kα, Na kα, Mn-olivine for Fe kα, Mn kα, and microcline for K kα, and matrix corrections were computed with Probe for Windows software.

Besides VF3 and M544, MPI-DING glass ATHO-G (Jochum et al., 2006) and USGS glasses BCR-2G and BIR-1G (Jochum et al., 2005) were analyzed several glasses as secondary standards. Each of these was analyzed before VF3, between VF3 and M544 and after M544. The intensity data of standards and unknown samples, including secondary
standards were checked for time dependent intensity (TDI) changes. Si kα and Na kα using a
self-calibrated TDI correction and detected no TDI effect on other elements. Corrections
were also applied for minor Si and Al drift that occurred during the analysis period.

3.2.2 Mössbauer spectroscopy

Mössbauer spectroscopy was conducted with a constant acceleration spectrometer (Web
Research (currently SeeCo)) equipped with a Janis Nitrogen shielded Helium dewar at the
Institute for Rock Magnetism, University of Minnesota. A 57Co/Rh source and Reuter Stokes
proportional Ar gas counter was employed. Data were collected over 512 channels, which
were then folded to produce 256 unique channels. Calibration was relative to a pure α-Fe foil
for which data were collected at room temperature (293 K). As M544 includes ~3% 57Fe$_2$O$_3$,
the M544 glass was crushed into fine powder with ethanol then diluted with powdered sugar,
while VF3 was analyzed as a pure powdered glass. The 57Fe in both samples’ was evenly
distributed in an approximately circular mount 12.7 mm in diameter, confined by Kapton tape.

To verify the precision of the center shifts and peak areas determined at the conditions of
data acquisition (collection times) at low temperature conditions, additional Mössbauer
spectra were collected for sample VF3 at room temperature for durations ranging from 1 to
72 hours both at with 6 mm/s and 12 mm/s velocity scales. As shown in Figs. S1 and S2, both
the Center Shift (CS) of Fe$^{3+}$ and Fe$^{2+}$, and the Fe$^{3+}/\Sigma$Fe determined from peak area ratios,
are consistent between 6 mm/s and 12 mm/s scale and almost same when background counts
exceed \(\sim 0.3 \times 10^6 \), irrespective of velocity scales, all parameters are listed in Table S1. All other spectra were collected over at least one day and sufficient counts (>550000 cts/channel for M544 and >220000 cts/channel for VF3) were accumulated to get reasonable statistical error. Mössbauer thicknesses for M544 and VF3 were estimated to be \(\sim 1.91 \) and \(\sim 4.08 \) mg/cm\(^2\) Fe, respectively, using the RECOIL algorithm (Rancourt et al., 1993) and assuming a recoilless free fraction equal to unity.

The spectra were collected from 47 K to room temperature (298 K). A silicon diode was used as cryogenic temperature sensor. A 50 Watt constant-current-source heater, controlled by a Neocera LTC-21 temperature controller was used to adjust the sample temperature. All Mössbauer spectra were fitted with the RECOIL software package (Lagarec and Rancourt, 1997).

3.2.3 Wet Chemistry

The FeO* content of VF3 was determined using the micro-colorimetric procedure, improved by Wilson (1960). Analyses were carried out blind at the University of Michigan.

USGS standards QL and W-2a powdered rock standards (Govindaraju, 1994) were analyzed as part of the same procedure.

3.2.4 Magnetization Measurements

Magnetic hysteresis loops determining the relationship between applied magnetic field and sample magnetization (Tauxe, 1998) were determined at room temperature (293 K) using
a Princeton Measurements Corp. vibrating sample magnetometer in the Institute for Rock
Magnetism, University of Minnesota, with maximum field of 1.5 T. Sample VF3, was
analyzed as a powdered glass and M544 as a powdered glass mixed with powdered sugar.
Hysteresis parameters were calculated using software developed at the Institute for Rock
Magnetism and described fully in (Jackson and Solheid, 2010).

4 Results

4.1 Wet Chemical and EMPA determinations.
Electron microprobe analyses of the glasses and secondary standards established FeO*.
Analyses reproduced the accepted FeO* concentrations of the standards almost perfectly with
the largest discrepancy being 0.03 wt.% (Table 1), and so the resulting FeO* of the unknown
glasses (VF3 9.29±0.22 wt.%; M544 8.92±0.12 wt.%; 2σ) are believed to have high
accuracy.
Wet chemical analysis of VF3 glass was repeated 4 times, resulting in FeO of 2.99±0.12
wt%, (2σ). Analyses of USGS standards, QL and W-2a, performed at the same time resulted
in FeO contents that were systematically lower than accepted values (Govindaraju, 1994) by
4%, and so the results of VF3 have been adjusted accordingly, to 3.10±0.24 wt%, (2σ)
(Table 2). We believe that the systematic discrepancy may be owing to the finely powdered
standards, which were ground to grain sizes similar to the unknowns. The fine powdering
results in some retention of starting material in the holding beaker. Combining the FeO* from
EMPA with FeO from wet chemistry, the resulting Fe\(^{3+}/\Sigma\)Fe in VF3 is 0.666±0.030 (2\(\sigma\)) (Table 2).

4.2 Mössbauer Spectroscopy

Mössbauer spectra of VF3 and M544 have broadened line-shapes typical of silicate glasses and can be well-accommodated by distribution fitting methods (Alberto et al., 1996; Rossano et al., 1999; O'Neill et al., 2006; Rossano et al., 2008; Borisov and McCammon, 2010). Spectra consist chiefly of two quadrupole doublets, one originating from paramagnetic ferric and the other from ferrous iron. There is no obvious evidence of sextets in the spectra with velocity scale up to 12 mm/s. Such sextets are commonly present in quenched mafic glasses (Jayasuriya et al., 2004; O'Neill et al., 2006; Borisov and McCammon, 2010) and are indicative of a ferromagnetic component. Thus, the Fe in the glasses is dominantly paramagnetic Fe\(^{2+}\) and Fe\(^{3+}\). The Fe thicknesses estimated for M544 and VF3 are expected to have negligible effect on determined Mössbauer parameters, and this was verified by comparing uncorrected spectra with those corrected using the pre-analysis thickness calculation available in the RECOIL package.

Preliminary fitting of the Mössbauer data was performed by treating the spectra solely as the result of two paramagnetic doublets by assuming that the Lorentzian half widths at half maximum (L HWHM) for all sub-spectra are the same (Lagarec and Rancourt, 1997). Each doublet was fit with as a two dimensional (2D) distribution, whose parameters consist of the
center shift (CS), the quadrupole splitting (QS), and their respective Gaussian widths, δ_{CS} and δ_{QS}. We did not consider the correlation between CS and QS for Fe$^{3+}$, (θ), or the correlation between the CS distribution and the QS distribution of QS, because the analysis of Alberto et al. (1996) showed that these should be effectively negligible for Fe$^{3+}$ in silicate glasses in low concentrations (5~15 wt.% Fe$_2$O$_3$), (θ). The fit of the Fe$^{2+}$ paramagnetic component considers these correlations. All the hyperfine parameters and their uncertainties were calculated based on a bootstrap method and are cataloged in Table S2. The quality of these fits is characterized by reduced chi squared (χ^2) values, which are also listed in Table S2 and demonstrates that the fitting is robust.

From the Mössbauer spectra collected at room temperature (Fig. 1a and Fig. 1c), for Fe$^{3+}$ in M544, CS = 0.334 mm/s and QS = 1.166 mm/s, and for Fe$^{3+}$ in VF3, CS = 0.283 mm/s and QS = 1.148 mm/s, whilst for Fe$^{2+}$ in M544, CS = 1.080 mm/s and QS = 2.013 mm/s, for Fe$^{2+}$ in VF3, CS = 0.994 mm/s and QS = 1.754 mm/s. These parameters are similar to those previously reported for silicate glasses (Alberto et al., 1996; Jayasuriya et al., 2004; O'Neill et al., 2006; Borisov and McCammon, 2010). Proportions of Fe$^{3+}$/ΣFe in M544 and VF3, judged solely from the area ratios of the 293 K paramagnetic doublets are 0.6001±0.0083, 2σ, and 0.685±0.014, 2σ, respectively.

Low temperature Mössbauer spectra show features similar to those at room temperature, as illustrated at 67K for M544 and VF3 (Fig. 1b and 1d). With increasing temperature, the
relative area under the Fe$^{2+}$ doublet diminishes compared to that of Fe$^{3+}$ (Table S3), and the normalized area ratios decrease for both Fe$^{3+}$ and Fe$^{2+}$ (Fig. 2). As the Fe$^{3+}$/Fe$^{2+}$ ratio of the sample does not change, this temperature dependence is best understood as a change in the relative recoilless fractions for Fe$^{3+}$ and Fe$^{2+}$, as expected from Eqn. 1. Also, center shifts (CS) increase with decreasing temperature, consistent with the contributions of the second order Doppler shift (Eqns. 4, 5) (Fig. 3). Each of these observations can be used to determine Mössbauer Debye temperatures and in turn can be used to model the relationship between temperature and recoilless fraction for these glasses.

Mössbauer Debye temperatures determined by direct measurement of the temperature dependent relative areas of the Mössbauer doublets (Eqn. 7) are calculated by normalizing to measurements at low temperature (47K). Least squares analysis of normalized peak areas gives Mössbauer Debye temperatures (θ_D) of 373±39 K and 305±30 K, in 2σ, for Fe$^{3+}$ and Fe$^{2+}$ respectively for M544 and 352±30 K and 269±27 K, in 2σ, respectively for VF3.

Similarly, Mössbauer Debye temperatures and intrinsic isomer shifts, δ_{IS}, can be determined from a least squares fit to the CS versus temperature trends (Fig. 3) (Eqn. 5), yielding, for M544, δ_{IS}=0.576±0.026 mm/s and θ_D=506±114 K (Fe$^{3+}$) and δ_{IS}=1.314±0.016 mm/s and θ_D=295 ± 89 K (Fe$^{2+}$) and for VF3, δ_{IS}=0.524±0.016 mm/s and θ_D=466±78 K (Fe$^{3+}$) and δ_{IS}=1.233±0.017 mm/s and θ_D=235±114 K, all uncertainties are 2σ.
From these determinations of Mössbauer Debye temperatures and Eqn. 3, recoilless fractions can be calculated as a function of temperature (Table S3). At 293 K, the value of C in Eqn. 1, calculated with θ_D derived from the relative method (C_{RM}) is 1.151±0.118 and 1.256±0.0153, for M544 and VF3 respectively. Values calculated at 293 K from CS data (C_{CSM}) are distinctly higher: C_{CSM}, is 1.305±0.146 for M544 and 1.762±1.188 for VF3 (Table S3). Resulting calculated values of Fe$^{3+}/\Sigma$ Fe, based on these values and 293 K area ratios are, for M544, 0.569 (RM) and 0.532 (CSM) and, for VF3, 0.634 (RM) and 0.552 (CSM).

4.3 Magnetic hysteresis

Measurements of sample magnetization versus applied field (hysteresis loops) reveal hysteresis in both glasses, indicating a minor ferromagnetic component (Fig. 5) with superparamagnetic behavior in addition to a paramagnetic component. A purely paramagnetic material would produce a simple linear relationship between applied field and magnetic moment. A small ferromagnetic contribution would saturate in lower fields (0.3 Tesla for magnetite) and typically has magnetization intensities several orders of magnitude higher than a paramagnetic material in a 1.5 Tesla field. For glass M544, the sigmoidal shape of the magnetization curves shown in Fig. 5a, with saturation around 500 mT are indicative of superparamagnetic behavior, as is treated Fig 2.19c in Tauxe (1998). This contrasts with the observed Mössbauer spectrum (Fig. 1), which shows only simple paramagnetic doublets.
This seeming discrepancy is in large part owing to the admixture of sugar (which is diamagnetic) with glass in the M544 sample mount (Fig. S3).

For VF3, the raw data produces a nearly linear relationship between magnetization and applied field (Fig. 5b), indicating very little ferromagnetic contribution to the hysteresis loop (Dunlop and Özdemir, 2001). Yet, the small deviation from linearity, evident in the slope-corrected loop, shows that a minor superparamagnetic component is also present (Dunlop and Özdemir, 2001) This component is not clearly evident in the Mössbauer spectra (Fig. 1), presumably because it is small, but failure to account for its contribution may lead to overestimation or underestimation of the Fe\(^{3+}/\Sigma\text{Fe}\) ratio determined from Mössbauer spectra, depending on the ratio of Fe\(^{3+}/\Sigma\text{Fe}\) in this minor phase. Note that unrelaxed Fe\(^{3+}\) in the silicate glass cannot account for the magnetic hysteresis behavior of the sample, as the time constant of applied magnetic field is far greater than the relaxation time of isolated Fe\(^{3+}\) ions (Chen and Yang, 2007). Sample M544 has a stronger ferromagnetic signal, but again with near zero coercivity indicating a superparamagnetic phase.

Based on the measured saturation magnetizations (\(\sigma_s\)) (M544: 0.5235 Am\(^2/\text{kg}\); VF3: 0.0426 Am\(^2/\text{kg}\), Fig. 5), the fraction of nonparamagnetic nanophase present can be estimated provided that the identity and magnetic characteristics of the ferromagnetic nanophase are known. Although several possibilities exist, the most likely phase is a Fe-Mg ferrite (Fe\(_3\)O\(_4\) - MgFe\(_2\)O\(_4\) solid solution. For VF3, if we assume the ferromagnetic nanophase is pure Fe\(_3\)O\(_4\),
for which the saturation magnetization, \(\sigma_s = 92 \text{ Am}^2/\text{kg} \) (Li et al., 2006), the resulting Fe in the ferromagnetic nanophase \([\text{Fe}^{2+}+\text{Fe}^{3+}]_{\text{Fe}_3\text{O}_4}/\Sigma \text{Fe}\) is 0.0043. If we assume it is pure MgFe\(_2\)O\(_4\), whose \(\sigma_s = 33.4 \text{ Am}^2/\text{kg} \) (Šepelák et al., 2007), Fe\(^{3+}\)\(_{\text{MgFe}_2\text{O}_4}/\Sigma \text{Fe}\) is 0.0118. Ferrite solid solutions will be intermediate between these bounds, and so the contribution of the non-paramagnetic material to Fe\(^{3+}/\Sigma \text{Fe}\) of the bulk material is small but constrained.

5 Discussion

5.1 Estimating recoilless fractions from center shift versus relative methods

For both the VF3 and M544 glasses, estimates of ferric Debye temperatures are much greater from the CS method than from the relative method, while estimates of ferrous Debye temperatures from the two methods are similar, as also was observed in previous studies (Niemantsverdriet et al., 1984a; Oohata et al., 1994). These discrepancies are presumably owing to anharmonicity in the glasses, and the resulting inaccuracy of the Debye model. The differences in the two methods produce significant differences in recoilless fraction estimates of Fe\(^{3+}/\Sigma \text{Fe}\) of the glasses (Fig. 4). We argue that the RM yields more accurate estimates for these glasses and that the CS method is in this case less reliable. First, as previously mentioned, the RM is based on the effect of temperature on the areas of the observed Mössbauer doublets (Fig. 2), and so the Debye model functions chiefly as an empirical method to interpolate measured changes in recoilless fraction as a function of temperature. Translation of the temperature dependence of the CS to recoilless fraction is more reliant on
the accuracy of the Debye theory. Second, because the Fe$^{3+}/\Sigma$Fe of the silicate does not vary
with temperature, an accurate recoilless fraction correction should produce a nearly constant
ratio at all temperatures. Those determined using the CS method vary with temperature,
whereas those from the RM method are more nearly temperature-independent (Fig. 4).
Accurate values of recoilless fraction should produce the same calculated Fe$^{3+}/\Sigma$Fe at all
temperatures (Eqn.1), suggesting that the values of C_T calculated with the RM method are
more accurate and that those calculated with the CS method overestimate recoilless effects on
Fe$^{3+}/\Sigma$Fe determinations for these andesitic glasses (Fig. 4).

5.2 Modeling nonparamagnetic effects on Fe$^{3+}/\Sigma$Fe of the quenched glasses

Correction for recoilless effects on paramagnetic Mössbauer doublets does not address
the influence of non-paramagnetic nanophases on the accuracy of room temperature
Mössbauer determinations of Fe$^{3+}/\Sigma$Fe. Consequently, we refit the room temperature
Mössbauer spectrum for VF3 by including superparamagnetic phase of fixed proportion
based on the magnetic hysteresis loop analysis above (0.43% Fe$_3$O$_4$ or 1.18% MgFe$_2$O$_4$ for
VF3, respectively). As superparamagnetic material will show six peaks at low temperature
and collapse to one peak as temperature increases (Mørup et al., 1976; Mørup and Tronc,
1994). To investigate whether the superparamagnetic material observed in the hysteresis
measurements adds uncertainty to Fe$^{3+}/\Sigma$Fe ratios calculated from Mössbauer spectra, we
included a superparamagnetic component to the fit paramagnetic spectrum, the extra phase is
expected to produce an extra single absorption peak in a magnetic site centered at CS=0 mm/s at room temperature. Because the xVBF method is applied, the Lorentzian half width at half maximum (L HWHM) for all sub-spectra is the same (Lagarec and Rancourt, 1997) and so no Gaussian width is required to fit this extra absorption peak. Resulting fits are shown in Figs. 1e and 1f, and the detailed fitting parameters are given in Table S4. The resulting Fe$_3^+/\Sigma$Fe ratios are essentially indistinguishable regardless of whether the nanophase is assumed to be Fe$_3$O$_4$ or MgFe$_2$O$_4$. Specifically, the resulting Fe$_3^+/\Sigma$Fe ratios are 0.685 if the ferrite is pure Fe$_3$O$_4$ and 0.684 if it is MgFe$_2$O$_4$. These are not distinguishable from one another or from the ratio (0.685) derived by neglecting the nonparamagnetic component, indicating that the influence of the non-paramagnetic component on Fe$_3^+/\Sigma$Fe on this glass is small.

The Fe$_3^+/\Sigma$Fe ratios in the previous paragraph neglect the effects of recoilless fractions. Although the overall effect of the non-paramagnetic phase is small, for thoroughness it is appropriate to consider recoilless fractions not only for the paramagnetic doublets, as already described, but also for the nanophase oxides. For Fe$_3$O$_4$, θ_D=334±10 K for Fe$_3^+$ and θ_D=314±10 K for Fe$_2^+$ (Sawatzky et al., 1969), giving recoilless fractions at room temperature (calculated from Eqn. 3) of $f(\text{Fe}^{3+})_{\text{Fe}_3\text{O}_4}$=0.693 and $f(\text{Fe}^{2+})_{\text{Fe}_3\text{O}_4}$=0.661. No similar data are available for MgFe$_2$O$_4$, so we assume that θ_D for Fe$_3^+$ is the same as in Fe$_3$O$_4$. The
The magnetic hysteresis of the quenched glasses establish that a small fraction of the Fe is present as a superparamagnetic phase, which suggests that nanometer-scale precipitates of Fe-oxide were produced during quench of the silicate liquid. The formation of such precipitates may have been promoted by the comparatively high Fe$_2$O$_3$ content (~6 wt%) of the melt. There is little reason to believe that their formation affected the Fe$^{3+}$/ΣFe of the aggregate quenched material, and so long as the nanophase is accounted for in the fitting of the spectrum, it should not compromise the accuracy of the inferred Fe$^{3+}$/ΣFe of the silicate liquid present prior to quench.

Superparamagnetic behavior has been documented in otherwise fresh natural basaltic glasses (Pick and Tauxe, 1994), and in Fe-rich basaltic glasses quenched in the laboratory (Bowles et al., 2011) but is not generally considered to contribute to Mössbauer spectra of laboratory-quenched glasses. Non-paramagnetic components of Mössbauer spectra, including broad absorptions approximately symmetric about CS=0 mm/s as well as sextets, are a common feature in such glasses, in many cases comprising a larger fraction of the Fe than documented for VF3 or M544 (Jayasuriya et al., 2004; O’Neill et al., 2006; Borisov and McCammon, 2010; Weigel et al., 2010). These non-paramagnetic components are commonly
attributed to unrelaxed ferromagnetic behavior of Fe$^{3+}$ ions in the glass, in part because of skepticism that superparamagnetic precipitates form from rapidly cooled glasses (Weigel et al., 2010). Documentation of nanophase oxides from rapidly cooled glasses in this study suggests that superparamagnetic components may be more common contributors to Mössbauer spectra of laboratory-quenched glasses than previously supposed, particularly in cases where a single symmetric peak is observed, but also in cases when non-paramagnetic features are not obvious from casual inspection of the Mössbauer results. Depending on the size and domain structure of the particles, such precipitates could also contribute to ferromagnetic sextets in Mössbauer spectra. This would be of particular concern, as such phases, presumably rich in Fe$_3$O$_4$, would contain both Fe$^{2+}$ and Fe$^{3+}$, whereas normal attribution as unrelaxed ions considers them to consist solely as Fe$^{3+}$.

5.4 Wet chemical vs. Mössbauer determination of Fe$^{3+}$/ΣFe

Returning to the controversy of the accuracy of Fe$^{3+}$/ΣFe ratio determined from Mössbauer spectra collected at room temperature (Mysen et al., 1985; Dyar et al., 1987; Helgason et al., 1989; Lange and Carmichael, 1989; Dingwell, 1991; Ottonello et al., 2001; Jayasuriya et al., 2004; Mysen and Dubinsky, 2004; Rossano et al., 2008; Righter et al., 2013), Fig. 6 compares combined wet chemical/microprobe determination of Fe$^{3+}$/ΣFe for andesitic glass VF3 with different treatments of the Mössbauer spectra. In general, distinctions in Fe$^{3+}$/ΣFe ratio determined from different treatments of the Mössbauer spectra
and wet chemistry are small and within 2σ analytical uncertainty envelopes. The $\text{Fe}^{3+}/\Sigma\text{Fe}$ ratio derived from temperature uncorrected for recoilless effects or for non-paramagnetic components agrees with that determined by wet chemistry with a relative difference about 3%. However, $\text{Fe}^{3+}/\Sigma\text{Fe}$ values corrected for recoilless fraction have a large uncertainties at 2σ. One possible reason for these uncertainties could be owing to insufficient constraints on the Debye temperatures, due to too few measurements made as a function of temperature (Fig. 2), or because of insufficient precision in peak locations and areas due to poor counting statistics. The latter may indicate that the error bands in $\text{Fe}^{3+}/\Sigma\text{Fe}$ propagated from the uncertainties in individual parameter determinations are exaggerated, as the stability of determined Mössbauer parameters as a function of counting time (Figs. S1 and S2) suggests that longer counting times results in smaller errors without appreciable changes in values of determined parameters. A more general factor that may apply beyond the details of data collection in this particular study is that Mössbauer spectra of glasses have comparatively broad peaks, making precise determinations of CSs and peak areas more challenging than for minerals. The former reasons indicate that high uncertainty in recoilless fractions, and therefore $\text{Fe}^{3+}/\Sigma\text{Fe}$ are specific to the conditions of this study, whereas the last reason highlights a more general challenge to application of Mössbauer spectroscopy to $\text{Fe}^{3+}/\Sigma\text{Fe}$ determinations in glass.

Implication
Room temperature Mössbauer spectroscopy yields accurate Fe$^{3+}$/ΣFe ratios in silicate glasses within normal analytical uncertainties, but with a small systematic bias to higher values compared to wet chemical or recoilless fraction-corrected determinations. A common method for estimating recoilless fractions by measurement of the temperature dependence of the Mössbauer center-shift may not be accurate for glasses, but relative peak height methods appear to be more robust. Nanophase magnetic precipitates can form in rapidly quenched glasses and, if not accounted for properly, can bias Mössbauer-determined Fe$^{3+}$/ΣFe ratios. Therefore, accurate determination of Fe$^{3+}$/ΣFe ratios in silicate glasses by Mössbauer spectroscopy requires consideration of the recoilless fraction.

Acknowledgments

We are grateful for conversations with B. Moskowitz regarding the magnetic features of the glasses. We are also grateful to Tony Withers and Jed Mosenfelder for assistance and support in the experimental petrology laboratory. This work supported by the NASA Cosmochemistry program grant NNX11AG64G. And this is publication 1503 of the Institute for Rock Magnetism, which is supported by grants from the Instruments and Facilities Program, Division of Earth Science, National Science Foundation.

Reference

30

- (1986) Volatiles in silicate melts at high pressure and temperature: 1. Interaction between OH groups and Si⁴⁺, Al³⁺, Ca²⁺, Na⁺ and H⁺. Chemical Geology, 57, 303-331.

Woodland, A.B., and Ross II, C.R. (1994) A crystallographic and Mössbauer spectroscopy study of Fe$_3^{2+}$Al$_2$Si$_3$O$_{12}$-Fe$_3^{2+}$Fe$_2^{3+}$Si$_3$O$_{12}$, (almandine-“skiagite”) and Ca$_3$Fe$_2^{3+}$Si$_3$O$_{12}$-Fe$_3^{2+}$Fe$_2^{3+}$Si$_3$O$_{12}$ (andradite-“skiagite”) garnet solid solutions. Physics and Chemistry of Minerals, 21(3), 117-132.

Zhang, H.L., and Hirschmann, M.M. (in prep.) Fe$_3^{3+}$/ΣFe changes with pressure and its application to the early magma ocean.

Captions

Fig 1: Examples of Mössbauer spectra and their fits. a) M544 data collected at room temperature; b) M544 data collected at 67 K; c) VF3 data collected at room temperature; d) VF3 data collected at 67 K; e) VF3 data collected at room temperature fitted by assuming nanophase being Fe$_3$O$_4$; f) VF3 data collected at room temperature fitted by assuming nanophase being MgFe$_2$O$_4$. For all spectra, the pink curves refer to the paramagnetic Fe$^{3+}$ doublets, the green curves refer to the paramagnetic Fe$^{2+}$ doublets, and the blue curves are the superposition of all the sites. For e) and f), the orange curves refer to the superparamagnetic site.
Fig 2: Normalized absorption areas (AA) from M544 and VF3 Mössbauer spectra fit with xVBF methods as a function of temperature. Normalized area is the background-removed AA normalized by the AA at 47 K. a) and b) respectively show the normalized AAs for M544 and VF3 (normalized to AA at 47K). Dashed curves are normalized AA at 47 K from recoilless fractions calculated at different Debye temperatures.

Fig 3: Center shift (CS) from M544 and VF3 Mössbauer spectra fit with xVBF methods. a) and b) respectively show the CS changes with temperature in M544 and VF3. The blue curve, \((\text{Fe}^{2+})\) and green curves \((\text{Fe}^{3+})\), are fitted from Eqn. 3.

Fig 4: a) and b) respectively show \(\frac{\text{Fe}^{3+}}{\Sigma \text{Fe}}\) ratios determined for M544 and VF3. The black squares refer to results obtained directly from uncorrected Mössbauer spectra. The red dots show \(\frac{\text{Fe}^{3+}}{\Sigma \text{Fe}}\) ratios corrected by the relative method (RM), which is the recoilless fraction based on the Debye temperature obtained from the normalized area ratio changes with temperature, and the blue diamonds, refer to the \(\frac{\text{Fe}^{3+}}{\Sigma \text{Fe}}\) ratios corrected by the recoilless fraction based on the Debye temperature obtained from the CS changes with temperature (CSM). For b), the orange star is the \(\frac{\text{Fe}^{3+}}{\Sigma \text{Fe}}\) ratio determined by wet chemistry and electron microprobe.
Fig 5: a) and b) respectively show the hysteresis between applied magnetic field and sample magnetization determined for M544 and VF3, both measured at 293 K. Orange curves refer to the raw data and blue curves to the slope-corrected loop, derived from a regression line subtracted through the outermost data points using the nonlinear high-field fitting at 70%. Both slope-corrected curves saturate at high field intensity, indicating superparamagnetic behavior.

Fig 6 Comparison of Fe$^{3+}$/ΣFe ratios for VF3 calculated with different methods with 2σ uncertainties 1: Wet chemistry and Electron microprobe. 2: Uncorrected room temperature Mössbauer spectra. 3: Room temperature Mössbauer spectra corrected with recoilless fraction (f_{RM}) generated by the relative method (RM). 4: Uncorrected room temperature Mössbauer spectra including a fit to the nanophase assumed to be pure MgFe$_2$O$_4$. 4.2: Uncorrected room temperature Mössbauer spectra including a fit to the nanophase assumed to be pure Fe$_3$O$_4$. 5: Room temperature Mössbauer spectra corrected with f_{RM} and including a fit to the nanophase assumed to be pure MgFe$_2$O$_4$ and. 5.2: Room temperature Mössbauer spectra corrected with f_{RM} and including a fit to the nanophase assumed to be pure Fe$_3$O$_4$.
Figure 1a
Figure 1b
Figure 1c
Figure 1d
Figure 1e
Figure 1f
Figure 2a

Normalized Area Ratio vs Temperature (K)

- M544
- Fe^{3+}
- Fe^{2+}
Figure 2b

![Graph showing normalized area ratio vs. temperature for different iron states (Fe$^{3+}$ and Fe$^{2+}$) at various temperatures (250 K, 300 K, 350 K, 400 K, 450 K). The graph illustrates the decrease in normalized area ratio with increasing temperature.]
Figure 3a
Figure 3b

The graph shows the dependence of CS_{Fe^3+} and CS_{Fe^2+} (in mm/s) on temperature (K). The data points for Fe^3+ are represented by green circles, and the data points for Fe^2+ are represented by blue squares. The green line represents the trend for CS_{Fe^3+}, and the blue line represents the trend for CS_{Fe^2+}. The error bars indicate the variability in the data.
Figure 5a

Figure 5b
Figure 6

Mössbauer spectra collected at 293 K

Methods #

Fe$^{3+}$/∑Fe

0.70
0.65
0.60
0.55

Wet chemistry
uncorrected
corrected with f_W
corrected with f_W with addition Fe$_3$O$_4$ site
corrected with f_W with addition Mg$_2$O$_4$ site
<table>
<thead>
<tr>
<th></th>
<th>ATHO-G(11)</th>
<th>ATHO-G</th>
<th>BCR-2G(9)</th>
<th>BCR-2G</th>
<th>BIR-1G(9)</th>
<th>BIR-1G</th>
<th>VF3(10)</th>
<th>M544(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>75.50±0.92</td>
<td>75.60±1.40</td>
<td>54.35±0.74</td>
<td>54.40±0.80</td>
<td>47.32±0.74</td>
<td>47.50±0.60</td>
<td>56.89±1.38</td>
<td>57.89±1.76</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.24±0.08</td>
<td>0.255±0.032</td>
<td>2.16±0.26</td>
<td>2.27±0.08</td>
<td>0.90±0.12</td>
<td>1.04±0.14</td>
<td>2.80±0.16</td>
<td>2.68±0.12</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.10±0.26</td>
<td>12.20±0.40</td>
<td>13.31±0.24</td>
<td>13.40±0.80</td>
<td>15.45±0.20</td>
<td>15.50±0.40</td>
<td>14.89±0.38</td>
<td>15.09±0.64</td>
</tr>
<tr>
<td>FeO*</td>
<td>3.28±0.10</td>
<td>3.27±0.20</td>
<td>12.50±0.36</td>
<td>12.50±0.60</td>
<td>10.37±0.14</td>
<td>10.40±0.20</td>
<td>9.29±0.22</td>
<td>8.92±0.12</td>
</tr>
<tr>
<td>MnO</td>
<td>0.10±0.02</td>
<td>0.11±0.010</td>
<td>0.20±0.02</td>
<td>0.19±0.02</td>
<td>0.17±0.04</td>
<td>0.19±0.02</td>
<td>0.06±0.02</td>
<td>0.03±0.04</td>
</tr>
<tr>
<td>MgO</td>
<td>0.11±0.02</td>
<td>0.10±0.02</td>
<td>3.73±0.18</td>
<td>3.56±0.18</td>
<td>9.95±0.22</td>
<td>9.40±0.20</td>
<td>2.26±0.08</td>
<td>2.24±0.08</td>
</tr>
<tr>
<td>CaO</td>
<td>1.78±0.04</td>
<td>1.70±0.06</td>
<td>7.20±0.12</td>
<td>7.06±0.22</td>
<td>13.39±0.24</td>
<td>13.30±0.40</td>
<td>7.60±0.10</td>
<td>7.40±0.08</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.63±0.40</td>
<td>3.75±0.62</td>
<td>3.05±0.36</td>
<td>3.23±0.14</td>
<td>1.76±0.16</td>
<td>1.85±0.14</td>
<td>4.21±0.32</td>
<td>4.34±0.12</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.72±0.08</td>
<td>2.64±0.18</td>
<td>1.78±0.08</td>
<td>1.74±0.08</td>
<td>0.02±0.02</td>
<td>0.03±0.010</td>
<td>1.06±0.06</td>
<td>1.06±0.02</td>
</tr>
<tr>
<td>Total</td>
<td>99.46</td>
<td>99.62</td>
<td>98.27</td>
<td>98.35</td>
<td>99.33</td>
<td>99.21</td>
<td>99.06</td>
<td>99.65</td>
</tr>
</tbody>
</table>

Notes: 1: Electron microprobe analyses. Number in parentheses indicates the number of analyses averaged. r: BIR-1G and BCR-2G reference values from Jochum et al. (2005) and ATHO-G reference values from Jochum et al. (2006). FeO*: Total Iron contents. All uncertainties are in two sigma range standard deviation (2σ).
Table 2: Wet chemical determinations of FeO

<table>
<thead>
<tr>
<th></th>
<th>Measured</th>
<th>Accepted</th>
</tr>
</thead>
<tbody>
<tr>
<td>USGS standards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QL</td>
<td>2.84</td>
<td>2.97#</td>
</tr>
<tr>
<td>W-2a</td>
<td>8.1</td>
<td>8.34&</td>
</tr>
<tr>
<td>Replicates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VF3</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>VF3</td>
<td>2.99</td>
<td></td>
</tr>
<tr>
<td>VF3</td>
<td>3.03</td>
<td></td>
</tr>
<tr>
<td>VF3</td>
<td>3.02</td>
<td></td>
</tr>
<tr>
<td>Average VF3</td>
<td>2.99</td>
<td>3.10##±0.24###</td>
</tr>
<tr>
<td>$\text{Fe}^{3+}/\Sigma\text{Fe}$</td>
<td></td>
<td>0.666###±0.030###</td>
</tr>
</tbody>
</table>

Notes: #: QL and W-2a reference values from Govindaraju(1994). ##: Average VF3 value corrected accounting for the bias in the analyses of the USGS standards. ###: $\text{Fe}^{3+}/\Sigma\text{Fe}$ calculated from FeO* = 9.29 wt% (Table1). ####: Uncertainties are in two sigma range standard deviation (2σ)