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Abstract 12 

Determination of gem provenance is a topic of research in the gemological community for 13 

financial, security, and societal reasons.  Laser-Induced Breakdown Spectroscopy (LIBS) and 14 

multivariate analysis have the potential to revolutionize the field of gem provenance. This study 15 

acquired LIBS spectra from 569 rough sapphire and ruby specimens from 21 localities in 11 16 

countries.  The spectra were analyzed using the multivariate technique PLSR (Partial Least 17 

Squares Regression) in separate algorithms for sapphires and rubies.  Each algorithm consists of 18 

a series of PLS models.  Each model compares the spectra from a locality of interest to the 19 

spectra from all other localities in the database.  Success rates, as determined by the percent of 20 

correct provenance identifications, are 98.9% (sapphire) and 96.0% (ruby) for country of origin 21 

and 97.9% (sapphire) and 95.4% (ruby) for deposit of origin.  Individual deposits are not 22 

recognized by the concentrations of a few elements; rather, the unique geochemical signature of 23 

each deposit consists of the ratios of many elements, primarily Ca, Zr, Fe, Ba, Mt, Ti, Sr, Si, Cr, 24 

H, C, and Li, some of which may reside in inclusions.  This work demonstrates that 25 

determination of country or deposit of origin can be related to a quantitative measure with a high 26 

level of success. 27 

Keywords:  ruby, sapphire, provenance, laser-induced breakdown spectroscopy, chemometrics 28 

Introduction 29 

The relationship between gem provenance (i.e., country or deposit of origin) and monetary value, 30 

combined with the difficulties in provenance determination, have fueled decades of gemological 31 

research and limited transparency in the gem industry.  In 1990, Gemological Institute of 32 

America (GIA) chairman Richard T. Liddicoat explained the technical challenges that exist for 33 

determining the source of a gem with any amount of certainty (Liddicoat, 1990).  Despite his 34 
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concerns with the ability and need to accurately determine provenance, demand from both the 35 

gem trade and the public for provenance certification has grown (Rossman, 2009; Shor and 36 

Weldon, 2009).   37 

 38 

Demand has also risen for gem provenance determination because of socio-political concerns.  In 39 

2003, the United States banned trade with Myanmar through the Burmese Freedom and 40 

Democracy Act, citing concerns of human rights abuses in the country (US Dept. of State, 41 

2008a).  In a 2008 amendment, the Tom Lantos Block Burmese Jade Act of 2008 closed a 42 

loophole in the legislation, specifying that any rubies mined in the country could not be legally 43 

imported into the United States for commercial purposes (US Dept. of State, 2008b). In order to 44 

enforce sanctions such as these, a reliable method of determining the provenance of gems is 45 

required. 46 

 47 

Gemstones from different localities possess different characteristics.  Provenance has been 48 

determined using a combination of inclusion analysis, trace element chemistry, special 49 

characteristics, and internal growth structures (Gübelin, 1953; Gübelin and Koivula, 1986; Ward, 50 

1995; Hughes, 1997; Abduriyim and Kitawaki, 2006b; Devouard and Notari, 2009). To gather 51 

this information, one must send a gem in question to a laboratory where a series of tests are 52 

performed. Despite the amount of information obtained from these tests, it is cautioned that 53 

declarations of provenance be regarded only as the professional opinion of the laboratory or 54 

gemologist (Ward, 1995; Abduriyim and Kitawaki, 2006b). It is evident that an objective and 55 

reliable technique needs to be developed to determine provenance. 56 

 57 

Rubies and sapphires are among the most valuable gemstones.  This pilot study uses spectra 58 

acquired with Laser-Induced Breakdown Spectroscopy (LIBS) from 569 ruby and sapphire 59 

specimens from 21 localities in 11 countries to demonstrate a highly successful method for 60 

determining the provenance of corundum samples.  An attempt was made to characterize each 61 

deposit with analysis of 30 samples; however, sample set size ranged from four to 40 samples 62 

per deposit.  The method utilizes the multivariate statistical analysis technique PLSR (Partial 63 

Least Squares Regression) to build a series of models that sequentially compares spectra from 64 

one region to all other regions.  This method has proven successful in distinguishing between 65 
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bacterial pathogens (Multari et al., 2010) and individual limestone beds (McMillan et al., 2012).  66 

Success rates, as determined by the percent of correct provenance identifications, are  greater 67 

than 95% for both country of origin and deposit of origin.  LIBS analysis is also minimally 68 

destructive (similar to Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry, or LA-69 

ICP-MS), simple to use, and portable.  This study demonstrates the potential for LIBS analysis to 70 

quantitatively and reliably introduce a new level of transparency to the gem industry. 71 

 72 

Background 73 

Geochemical analysis of gemstones enhances techniques for provenance determination by 74 

adding to the traditional methods of observations of optical and mineralogic features of the 75 

specimen.  These observations include index of refraction; UV-visible, infrared, and Raman 76 

spectroscopy; fluid and mineral inclusions; and the presence or absence of crystallographic 77 

features unique to a specific deposit (Gübelin, 1953; Gübelin and Koivula, 1986; Ward, 1995; 78 

Hughes, 1997; Abduriyim and Kitawaki, 2006b; Devouard and Notari, 2009).  Because these 79 

optical and mineralogic features may not be observed in every specimen from a locality, this 80 

method has proven to be useful for some samples but not for all (Muhlmeister et al., 1998).   81 

 82 

Early analytical methods applied to ruby and sapphire provenance were PIXE (Particle-Induced 83 

X-ray Emission) and ED-XRF (Energy-Dispersive X-ray Fluorescence).  Both techniques are 84 

non-destructive and determine the concentrations of several elements in the gemstone.  For 85 

instance, Calligaro et al. (1999) were able to positively identify the origin of 41 of 64 rubies set 86 

on an elaborate necklace using multivariate analysis on PIXE analysis of V, Cr, Fe, Ti, and Ga.  87 

A database of 200 analyses of rubies from nine countries was used as a comparative database.  88 

Muhlmeister et al. (1998) demonstrated through ED-XRF analysis that chemical characteristics 89 

of rubies vary from one source to another. The ternary diagram Fe-V-Ga was used to 90 

discriminate rubies from basalt-hosted, metasomatic, and marble-hosted hosts; however, rubies 91 

from various localities exhibit significant overlap on the triangular diagram.  Similarly, Schwarz 92 

and Schmetzer (2001) developed the use of ED-XRF data and the Cr/Ga vs. Fe/Cr diagram to 93 

distinguish rubies from Myanmar (Mong Hsu and Mogok), Madagascar (Vatomandry) and 94 

Thailand-Cambodia.  Rubies from these three areas show good separation on this two-variable 95 

diagram. 96 
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 97 

The development of the Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-98 

ICP-MS) from traditional ICP-MS techniques allowed for minimally destructive trace element 99 

analysis (Gray, 1985; Günther and Kane, 1999). Rankin et al. (2003) applied LA-ICP-MS data to 100 

the Cr/Ga vs. Fe/Cr diagram of Schwarz and Schmetzer (2001) to discriminate between the east 101 

African localities Longido and Chimwdzulu.  Saminpanya et al. (2003) proposed the use of the 102 

Cr2O3/Ga2O3 vs. Fe2O3/TiO2 diagram to differentiate between rubies and sapphires and between 103 

metamorphic and magmatic corundum samples.  This discrimination diagram was employed by 104 

Abduriyim and Kitawaki (2006b), Sutherland et al. (2009) and Sutherland and Abduriyim (2009) 105 

to determine provenance of various suites of gem corundums.  Peucat et al. (2007) proposed that 106 

the Fe vs. Ga/Mg diagram is useful for discriminating between magmatic and metamorphic blue 107 

sapphires in a study with 114 samples from 18 locations. Guillong and Günther (2001) applied 108 

multivariate statistics to LA-ICP-MS analysis of seven elements (Mg, Si, Ti, V, Cr, Fe, and Ga) 109 

of 25 sapphires from five locations to demonstrate provenance determination.  Separation of the 110 

groups was fairly good, but some overlap of fields existed.  Similarly, Pornwilard et al. (2011) 111 

applied multivariate analysis to 10 elements determined by LA-ICP-MS (B, Si, Zn, Ga, Sn, V, 112 

Mg, Ti, Cr, and Fe), using 58 samples from six countries.  Samples from Kenya and Nigeria 113 

were easily distinguished.  However, samples from Madagascar and Tanzania were 114 

indistinguishable from each other, although together they were distinguished from the other 115 

groups.  The same was true for samples from Cambodia and Thailand.  Although high-precision 116 

LA-ICP-MS analysis has proven to be a minimally destructive technique for provenance 117 

determination, the fields for many of the countries of origin overlap on these diagrams.  All of 118 

these diagrams use only a few (three to ten) variables to model a complex chemical system, 119 

resulting in insufficient definition of each provenance group.  In addition, the difficulty and 120 

expense of analysis, combined with the cost of the samples, restricts such studies to relatively 121 

few samples (fewer than 15) typically used to characterize each location.  This sample size may 122 

be insufficient to fully characterize the chemical variability in the deposit, suggesting that the 123 

overlap in compositions might be greater if a larger sample set were to be utilized. 124 

 125 

The laser fluorination technique to analyze oxygen isotopes developed by Sharp (1990) made in 126 

situ analysis of a small amount of sample possible; modifications of this technique were made 127 
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for use with corundum (Yui et al., 2003; Giuliani et al., 2005). Oxygen isotopes have been used 128 

to determine the geologic origin of rubies (Giuliani et al., 2005), and have proved useful in 129 

determining the source lithology of xenocrystic or placer corundum specimens.  Marble-hosted 130 

corundum samples have high δ18O, reported by Guiliani et al. (2005) to range from +16.3 %0 to 131 

+23%0 and by Yui et al. (2008) from +21.6 %0 to +25.7 %0.  Rubies and sapphires from basalts, 132 

igneous rocks, and non-carbonate metamorphic rocks have lower δ18O, ranging from +1.3 %0 to 133 

+13.9 %0 (Yui et al., 2003; Guiliani et al., 2005; Yui et al., 2006; Giuliani et al., 2009; Vysotsky 134 

et al., 2009).  Ruby and sapphire specimens from the same placer deposit have been shown to 135 

have distinct δ18O values (Yui et al., 2006), suggesting different source locations for the placer.  136 

Overall, oxygen isotope analysis of corundum has been able to set some constraints on the source 137 

lithology of rubies and sapphires, despite significant overlap in isotopic composition of samples 138 

from various igneous and non-carbonate metamorphic lithologies (Guiliani et al., 2005).  139 

However, the isotopic compositions of corundum samples are not diagnostic of locality, limiting 140 

the use of this technique for provenance determination. 141 

 142 

Traditional techniques for determining ruby and sapphire provenance, including observation of 143 

inclusions and other mineralogical features, trace element analysis by XRF, PIXE, and LA-ICP-144 

MS, and oxygen isotope analysis have not yet been able to provide a unique fingerprint for each 145 

corundum location.  In addition, analytical techniques like LA-ICP-MS require skilled 146 

technicians in a laboratory environment.  In contrast, Laser-Induced Breakdown Spectroscopy 147 

(LIBS) is a rapid and inexpensive technique that is simple to operate, portable, and does not 148 

require special laboratory conditions.  Thus, provenance of gems using LIBS could be 149 

determined at border crossings, ports and airports, gemological laboratories, gem studios, and 150 

galleries.   151 

 152 

Materials and Methods 153 

Specimen Acquisition.  A large sample set of rough corundum was acquired from vendors at the 154 

Tucson Gem and Mineral Show and mining companies (Table 1).  Heat-treated, chemically-155 

treated, and cut gemstones were not used in this study.  Because acquisition of samples with 156 

known provenance for database development is critical to the study, gems were purchased only 157 

from vendors who were able to cite a chain of possession and were knowledgeable about the 158 
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mines of the region.  Every precaution was taken to ensure the reliability of the vendors.  For the 159 

purposes of this study, corundum with deep pink, fuchsia, maroon, and purple-red colorations 160 

were considered rubies, and all other colors were considered sapphires.  Countries were 161 

characterized by 30 samples, if possible, to capture the chemical variability within the deposits 162 

with statistical significance.  Five sapphire samples from Sri Lanka and two rubies from 163 

Jagdelek, Afghanistan, were originally included; however, there was insufficient information to 164 

fully characterize the deposits, and provenance determination failed for these localities.  165 

Although several of the data sets have fewer than 30 samples (Psudipada, India; Umba Valley, 166 

Tanzania; Mysore, India; Hunza Valley, Pakistan; and Longido, Tanzania; Table 1), provenance 167 

determinations from these localities yielded acceptable accuracies.  However, this work suggests 168 

that a large number of samples (> 30) need to be used to characterize the chemical fingerprint 169 

from a gem locality. 170 

 171 

Sample Analysis.  Samples were analyzed by Laser-Induced Breakdown Spectroscopy (LIBS) 172 

(Fig. 1).  In LIBS, a laser beam is pulsed on a small area of the sample to create a plasma, a 173 

weakly ionized collection of ions, atoms, and free electrons (Cremers and Radziemski, 2006).  174 

The plasma contains atoms ablated from the surface of the sample and atoms in the local 175 

environment (air or a gas selected for analysis).  Due to the high temperature of the plasma (> 176 

10,000 K), electrons are excited to upper orbitals.  As the plasma cools, each electron decays to a 177 

lower-energy orbital, and the difference in energy is emitted as a photon with a discrete 178 

wavelength that corresponds to the energy difference between orbitals.  The photons are 179 

collected by a lens into seven optic fibers.  A spectrometer, which separates the light into 180 

individual wavelengths, is attached to each optic fiber.  The spectra from all seven spectrometers 181 

are compiled to form a single, continuous spectrum (Fig. 2).  The intensities of peaks at specific 182 

wavelengths are proportional to the number of photons emitted by a specific orbital transition 183 

from a specific element (Cremers and Radziemski, 2006).  For example, the 396.1 nm peak for 184 

Al is the result of an excited electron in the 4s orbital decaying to the stable 3p orbital.  This is 185 

statistically the most intense Al peak.  Because many electron orbital transitions occur for each 186 

element, a LIBS spectrum consists of many peaks for each element.  In this work, peaks are 187 

identified using the Handbook of Basic Atomic Spectroscopic Data published by NIST 188 

(Sansonetti and Martin, 2005). 189 
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 190 

The Ocean Optics © 2500+ LIBS instrument was used for this study (Fig. 1).  A 1064 nm 191 

Nd:Yag laser was pulsed at 120 mJ with a Q-switch delay of 1.5 μs for each analysis.  The Q-192 

switch delay is the interval of time between plasma formation and the collection of light.  A 193 

delay in collection is necessary because at the instant of plasma formation, a continuum is 194 

formed from bremsstrahlung processes and recombination events (Cremers and Raziemski, 195 

2006).  During these events, photons are emitted as electrons collide in the plasma.  Photons 196 

emitted from these collisions do not provide elemental data, so it is necessary to delay collection 197 

until these events are no longer significant in the signal.  198 

 199 

Analysis protocol was designed to maximize spectral intensity while minimizing damage to the 200 

sample.  Samples were analyzed inside a sample chamber in an argon atmosphere so that the 201 

laser energy is used to excite atoms from the sample instead of atmospheric nitrogen and oxygen.  202 

At each analyzed spot, a cleaning shot was taken, followed by an analysis shot.  The cleaning 203 

shots were at the same energy level as the analysis shots; the data simply were not recorded.  204 

Ablation craters were 10-100 µm in diameter. 205 

 206 

Each specimen was analyzed at 30 spots; these spectra were averaged to create one spectrum per 207 

specimen.  The Al peaks at 226.9, 236.7, 237.3, 257.5, 281.6, 308.2, 394.4, and 396.1 nm were 208 

removed from the spectra to allow multivariate analysis to focus on trace element distributions.  209 

All wavelengths > 680 nm except for the 854.2 nm Ca peak for rubies (Fig. 2) were also 210 

removed in order to eliminate Ar peaks from the analysis.  The 854.2 nm Ca peak was retained in 211 

the ruby spectra because it was observed to vary between deposits. 212 

 213 

Chemometric Analysis.  Chemometric analysis is a method of processing chemical data using 214 

multivariate statistics in an attempt to recognize ‘hidden phenomena’ (Esbensen, 2007).  Hidden 215 

phenomena are correlations that are not intuitive, or obvious from a simple two-dimensional, or 216 

bivariate, graph. In this study, The Unscrambler ® was the multivariate data analysis software 217 

used to model LIBS data.   218 

 219 
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Partial Least Squares Regression (PLSR) is a multivariate modeling technique that relates two 220 

data matrices by multiple linear regressions (Esbensen, 2007).  In this study, one matrix (X) 221 

contains the LIBS spectra; the other matrix (Y) contains a single integer variable, called the 222 

provenance variable, that takes the value of 1 if the specimen came from the locality under 223 

scrutiny and 0 if the specimen came from any other locality.  PLSR models the X and Y matrices 224 

interdependently during calibration, reducing the influence of large variations in X that are 225 

irrelevant to Y (Wold et al., 2001).  Regression coefficients, the characteristics of X that are 226 

relevant to Y, are used to predict Y-values (provenance variables) from X-values (LIBS spectra).   227 

This is a powerful technique because it uses all channels of the LIBS spectra, which record 228 

emission from nearly all elements from the periodic table. 229 

 230 

In this work, PLSR models are generated and tested in four steps (Fig. 3): 1) training of a model; 231 

2) determination of the Value of Apparent Distinction (VAD) that separates two groups of 232 

samples; 3) prediction of provenance variables for validation samples;  and 4) calculation of 233 

success rate by comparing the predicted provenance to known provenance of validation samples.  234 

In order to validate a model, it is critical to have spectra from a set of samples of known 235 

provenance that can be treated as unknowns.  To accomplish this, half of the samples from each 236 

locality were used to calibrate the models and the remaining half were used in validation to 237 

verify the model and calculate success rates.   238 

 239 

A PLSR model is trained by correlating matrices X (spectra) and Y (provenance variables) using 240 

multiple linear regressions.  The model relates pertinent aspects of the spectra to provenance 241 

variables, 1 or 0, assigned to two groups of samples in the model.  The provenance variable "1" 242 

is assigned to the spectra from the provenance of interest and the variable "0" is assigned to a 243 

group containing all other spectra.  The model consists of a set of regression coefficients, one for 244 

each variable, which relate the spectral data to the provenance variables.  This process is 245 

illustrated in Figure 3A, in which the model is represented by a PLSR score plot.  The axes of the 246 

score plot are PLSR Component 1 (PC1) and PLSR Component 2 (PC2).  These components are 247 

the axes of linear regressions used in the model and consist of contributions from many of the 248 

variables in the model.  Each sample plots with a score, or value, along the principal component; 249 

samples that plot near each other are spectrally, and thus compositionally, similar.  Ideally, the 250 
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provenance groups would plot in mutually exclusive spaces on this diagram, suggesting that their 251 

differences in composition can be completely resolved.   252 

 253 

In detail, modeling was performed using the program The Unscrambler®.  The NIPALS 254 

algorithm was applied with 9 PCs; no weighting was applied to variables.  The model is mean-255 

centered.   256 

 257 

Once a PLSR model has been trained, the model is applied to the training spectra, predicting 258 

whether each sample in the training suite is from the location being tested for or from any other 259 

location.  The predicted value should be close to 1 for stones from the location being examined, 260 

and should be close to 0 for stones not from that location (Fig. 3B).  While 0.5 is the midpoint 261 

between the two target values of the provenance variable, if the distributions of the provenance 262 

variable values for the two populations (i.e., being from the location or not) are not symmetric 263 

and identical distributions, the midpoint may not provide a good cutoff point, or Value of 264 

Apparent Distinction (VAD), for predicting whether the stone is from the location being 265 

considered.  This second step of setting the VAD is illustrated in Figure 3B, where the calculated 266 

provenance predicted values are plotted for samples used to train the Kenya ruby model.  Note 267 

that the Kenya samples, in closed diamonds, have provenance variables greater than the VAD of 268 

0.227 and the samples from all other locations, in open squares, have provenance variables less 269 

than the VAD. 270 

 271 

In considering the determination of a good VAD, the sample distributions of the predicted values 272 

were often not symmetric and were quite variable (Fig. 4).  Hence, a nonparametric kernel 273 

density estimator (Silverman, 1986) was chosen to obtain a density estimate of the predicted 274 

values for each group (Fig. 4).  Kernel densities depend on the selection of a bandwidth 275 

parameter; numerous bandwidth selection strategies were investigated by running simulations to 276 

determine how well the kernel density estimators using various bandwidth selection methods 277 

reproduced the original distribution.  The data used for this process simulated a normal 278 

distribution, but specifically targeted the sample sizes and variances present in the training data 279 

set.  Visually, the biased cross-validation method worked the best, giving fewer false multimode 280 

densities.  At its worst, use of this bandwidth selection method tracked the original distribution 281 
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similar to other methods, and at its best it tracked it substantially better.  Generally, all the 282 

methods resulted in similar VADs, even when they resulted in substantially different looking 283 

densities.   284 

 285 

For any specified VAD, the small area under the right density curve occurring to the left of the 286 

VAD is the estimate of how often misclassification would occur for the population of rubies 287 

from the location under consideration (dark shaded area in Fig. 4).  Similarly, the area under the 288 

left density occurring to the right of the VAD estimates the misclassification rate for the 289 

population not from the location (light shaded area in Fig. 4).  Once density estimates were 290 

obtained, numerical root-finding and numerical integration of the densities were used to solve for 291 

the VAD between 0 and 1 that minimized the sum of these two misclassification rates.  For the 292 

ruby study, VADs ranged from 0.141 to 0.512, and for the sapphire study they ranged from 293 

0.359 to 0.604. 294 

 295 

In the validation step, the model uses the regression coefficients calculated in the training step to 296 

predict Y-values (provenance variables near 0 and 1) from a new set of validation spectra from 297 

samples not used in the training.  For instance, in Figure 3C, provenance variables are calculated 298 

for five samples, two of which are greater than the VAD of 0.227 and three of which are below 299 

the VAD.  Samples with predicted provenance variables greater than the VAD are assigned to 300 

the location being examined; those with predicted provenance variables less than the VAD are 301 

assigned to the group of all other locations.   302 

 303 

The last step is to calculate the success rate of the model (Fig. 3D).  This is illustrated for the 304 

Kenya ruby model in Figure 5.  Spectra from Kenya samples all have predicted provenance 305 

variables greater than the VAD of 0.227; they are all correctly identified as Kenyan.  All but one 306 

of the other spectra, from India, Greenland, Madagascar, Myanmar, Pakistan, Tanzania, and the 307 

USA, have predicted provenance variables less than 0.227; they are correctly identified as 308 

belonging to this large group.  One sample in this group was incorrectly identified as Kenyan.  309 

Because 163 of 164 samples were correctly identified, the model has a 99.4 % success rate.   310 

 311 
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In this study, a series of PLSR models are used to determine provenance.  Each model compares 312 

spectra from one location of interest (provenance integer variable = 1) to spectra from all other 313 

models (provenance integer variable = 0).  Separate matching algorithms for rubies and sapphires 314 

were developed by constructing a sequential arrangement of models that separate spectra from a 315 

single locality from those from all other localities.  These are illustrated by flow charts and 316 

corresponding score and validation plots (Figs. 6 & 7 for sapphires and Figs. 7 & 8 for rubies).  317 

A similar method was developed by Multari et al. (2010) for the identification of bacterial strains 318 

using LIBS data and by McMillan et al. (2012) for identification of individual limestone beds.   319 

In the algorithms, the first model (India in the sapphire model) uses prediction spectra from all 320 

locations.  Each spectrum is determined to be similar either to India or to all the other localities 321 

in the model.  The spectra from this first locality are then removed from all subsequent models.  322 

Thus, the second model sapphire (Sapphire Branch) does not include any spectra from India.  323 

The number of spectra in each model decreases and the spectra become more chemically similar 324 

to each other as one moves through the flow chart.  In some cases, it was not possible to separate 325 

spectra from a single country, and the algorithm branches, as in the Sapphire Branch model.  The 326 

algorithms are discussed in detail in the Results section. 327 

 328 

To determine the order of the models, average spectra of each country were visually inspected 329 

for unique characteristics.  Localities with the most distinct spectra were separated first, allowing 330 

the model to focus on small spectral difference between chemically similar samples later in the 331 

algorithm.  By reducing the number of samples for similar spectra, subtle differences were 332 

emphasized in the later models.   333 

 334 

Success rates can be determined for individual models as well as the entire algorithm.  Table 2 335 

reports the percentage of correct predictions for each model.  These success rates reflect only the 336 

models that predict provenance and not models that cause branching.  Thus, a second method for 337 

calculating success rates counts the total number of correct predictions for all models as a 338 

percent of the total number of spectra.  These overall success rates are shown in Figures 6 & 8.  339 

 340 

Results 341 
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Sapphire Provenance Algorithm.  The sapphire provenance algorithm is illustrated in a flow 342 

chart in Figure 6; the score and validation plots are presented in Figure 7.  Results are shown in 343 

Table 2.  Score plots show the variation in composition in PC1-PC2 space for the samples used 344 

in the model.  Ideally, the two groups of samples should not overlap, but in practice, groups with 345 

some overlap can still be modeled with high success.  Validation plots present the calculated 346 

provenance variables for samples used to validate the model.  Ideally, all samples in the 347 

provenance being modeled should have values greater than or equal to the VAD; samples from 348 

all other locations should have values less than the VAD.  The success rate of the model is 349 

calculated as the percent of samples whose provenance was correctly identified. 350 

 351 

The first locality to be identified in the sapphire algorithm is Psudipada, India.  This model is 352 

100% successful, correctly identifying the provenance of 118 of 118 samples.  The second 353 

model, Sapphire Branch, separates samples from Afghanistan and Vietnam from the remaining 354 

localities (Tanzania, Australia, Madagascar, and USA).  It successfully predicts the origin of 102 355 

of 103 samples (99.0% success).  The Afghanistan model compares samples from Afghanistan to 356 

those from Vietnam.  This model is 96.7% successful, correctly identifying 29 of 30 samples.  357 

Continuing on the main stem of the algorithm, the Tanzania model identifies samples as being 358 

from Tanzania (Songea or Umba Valley) or as being from Australia, Madagascar, or the USA.  It 359 

has a success rate of 97.3% (72 of 74 samples correctly identified).  The Tanzania Deposit model 360 

attempts to predict whether samples are from Songea or the Umba Valley in Tanzania.  It is not 361 

successful, with only 50% success rate.  Note that this study only has ten samples from Songea 362 

and five from Umba Valley.  This is an excellent example of the importance of having a large 363 

number of samples when attempting to determine provenance by chemical fingerprinting.   364 

 365 

The Australia model compares sapphires from Australia to those from Madagascar and Montana 366 

(USA).  The model is 100% successful, with a total of 66 spectra.  The Madagascar model 367 

compares sapphires from Madagascar and Montana, USA.  It, too, is 100% successful; all 45 368 

spectra were correctly identified.  The final model, Madagascar Deposit, distinguishes between 369 

blue and white sapphires from Madagascar.  The model correctly identifies 29 of 30 samples 370 

(96.7% success).   371 

 372 
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Ruby Provenance Algorithm.  Results for the ruby provenance algorithm are presented in a 373 

flow chart (Fig. 8), in score and validation plots (Fig. 9), and in Table 2.  The ruby algorithm 374 

contains complexity not encountered in the sapphire algorithm, probably because the chemical 375 

variation within rubies is less than that within sapphires.  The first model distinguishes rubies 376 

from Kenya from all other localities.  It is 98.2% successful, correctly determining the 377 

provenance of 161 of 164 samples.  Rubies from Mysore, India, that were obtained free from 378 

matrix are separated in the second model, India I.  This model correctly predicts the locality of 379 

137 of 149 samples (91.9% success).  The algorithm bifurcates in the next model, Ruby Branch 380 

I.  It separates the remaining samples into two groups: 1) USA (Wyoming), Pakistan, and 381 

Tanzania; and 2) Greenland, Madagascar, Myanmar, and India (samples in matrix).  This model 382 

is 99.3% successful, correctly identifying 138 of 139 samples. 383 

 384 

Rubies from Wyoming, Pakistan, and Tanzania comprise the algorithm on the right-hand side of 385 

the flow chart (Fig. 8).  These sets are chemically similar; however, it is possible to separate 386 

them with high success rates by allowing the Wyoming samples to be present in the Ruby 387 

Branch II model, but not interpreting their provenance assignments.  In the Ruby Branch II 388 

model, two groups are determined: 1) Wyoming & Pakistan, and 2) Wyoming & Tanzania.  This 389 

model is 92.9% successful and correctly identified 26 of 28 samples (the Wyoming samples were 390 

not counted).  The Pakistan model then discriminates between Wyoming and Pakistan rubies, at 391 

a 100% success rate (26 of 26 correct provenance determinations).  Similarly, the Wyoming 392 

model discriminates between Wyoming and Tanzanian rubies.  It also is 100% successful, 393 

identifying 42 of 42 samples correctly.  Thus, Wyoming rubies can be identified through two 394 

routes: the Pakistan model and the Wyoming model.  The final model on the right-hand side of 395 

the flow chart, the Tanzania Deposit model, discriminates between two Tanzanian regions:  396 

Winza and Longido.  The model was 86.4% successful and correctly determined the provenance 397 

of 19 of 22 samples.  This demonstrates that ruby deposits approximately 450 km apart have 398 

sufficiently distinct LIBS signatures to be identified with a high success rate. 399 

 400 

The left-hand side of the ruby algorithm flow chart concerns rubies from Greenland, 401 

Madagascar, Myanmar, and India (Mysore, samples in matrix).  The Greenland model is 98.9% 402 

successful, positively identifying 92 of 93 samples.  The Madagascar model separates samples 403 
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from Madgascar at a 97.3% success rate; 73 of 75 samples were positively identified.  The 404 

Madagascar Deposit model then attempts to discriminate between a set of Madagascar rubies 405 

free of matrix and rubies in matrix (amphibolite and biotite gneiss).  This model is 100% 406 

successful, correctly identifying 32 of 32 samples.   The Myanmar model is able to positively 407 

identify rubies of Myanmar at a success rate of 86.7% (39 of 45 samples).  The final model is the 408 

India model, which discriminates Mysore rubies in fuchsite matrix from Mysore rubies in biotite 409 

gneiss matrix.  This model has a success rate of only 83.3%, correctly identifying 25 of 30 410 

rubies.   411 

 412 

Success rates are reported in this work in two ways.  First, the success rates for each individual 413 

model are shown on Figures 6 & 8 and in Table 2.  This calculation simply considers the number 414 

of samples involved in the validation model and represents the percentage of samples for which 415 

provenance was correctly identified.  Success rates for individual models range from 100% to 416 

50%.  Although the method of expressing success in terms of individual models is 417 

straightforward, it does not take into account every model in the algorithm.  For instance, the 418 

sapphire  algorithm branches in a model called Sapphire Branch.  The ruby algorithm has two 419 

such branches; the success of all models subsequent to the branches depends on the success of 420 

the branching model.  An alternative method is to calculate the success rate of the total algorithm 421 

as the percent of total correct provenance determinations relative to the total number of 422 

determinations.  Using this method, the overall success rates for sapphire provenance 423 

determination are 98.9% for determination of country of origin and 97.9% for determination of 424 

deposit of origin.  Overall success rates for rubies are similar:  96.0% for country of origin and 425 

95.4% for deposit of origin. 426 

 427 

Necessity of large sample set.  These results demonstrate the need for a large sample set when 428 

attempting to determine mineral provenance.  Table 2 lists success rates for provenance 429 

determination for each locality and the number of samples used in each model.  Success rates are 430 

> 85%, with two exceptions.  One exception is distinguishing between Mysore rubies in fuchsite 431 

matrix and Mysore rubies in biotite gneiss matrix.  The success rate for this model is only 83.3% 432 

success rate, suggesting that the two groups of rubies are similar in composition.  In algorithms 433 

such as these, materials near the end of the flow chart are chemically similar to each other and 434 
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thus more difficult to distinguish from each other.  The other failure in this study is the ability to 435 

distinguish between the Tanzania sapphire localities Songea and Umba Valley.  Note, however, 436 

that the sample set contains only ten samples from Songea and five from Umba Valley (Table 1).  437 

Because half of the samples were used to calibrate the model and half to verify the model, only 438 

eight samples were used in the prediction step, and only half of them were correctly identified 439 

(Table 2).  This suggests that many samples are required to fully capture the chemical variability 440 

of a deposit.  Clearly, the five samples from Umba Valley were not sufficient.  Success rates for 441 

localities with at least 30 samples range between 83.3% and 100%.   442 

 443 

Discussion 444 

Provenance determination is a difficult issue to solve.  Issues such as the large number of 445 

samples necessary to conduct rigorous determinations, the cost and complexity of analytical 446 

instrumentation, and the skill and experience required to make high-quality gemological 447 

observations are obstacles in the attempt to provide quantifiable determinations of country of 448 

origin or deposit of origin.  This study demonstrates that chemometric analysis of LIBS spectra 449 

from a large number of samples makes accurate, rapid provenance determination possible, with 450 

success rates generally higher than 95%.  In addition, LIBS technology is relatively inexpensive, 451 

rugged, portable, and simple to use.  The analyst needs no intense training in spectroscopy or 452 

gemology.   453 

 454 

The method described here could be fully automated and implemented at critical points in the 455 

gem stream, such as border control stations, ports of entry, gem studios, and galleries.  Prior to 456 

widespread application, several issues need further research.  The effect of heat and chemical 457 

treatment on provenance analysis with LIBS spectra and multivariate analysis has not been 458 

studied; this pilot study used only untreated, uncut samples.   Sample library size is critical to the 459 

success of any gem provenance project; ultimately, one would like to build a model with at least 460 

30 samples from every important corundum deposit.  In addition, the number and spatial 461 

distribution of LIBS analytical spots on cut gems would be limited to a few spots on the stone's 462 

girdle; the model would have to be tested using these analytical protocols.  It is possible that 463 

more specimens from each locality would be necessary to capture the compositional diversity of 464 

each deposit with fewer spectra per sample. 465 
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 466 

One goal of provenance determination is to gain an understanding of the chemical differences 467 

between samples from various locations.  In chemometric analysis, loading vectors are used to 468 

determine which chemical elements are important in discriminating between two groups of 469 

samples.  Loading vectors are the contribution of each variable (wavelength) to the linear 470 

regression.  If a linear regression trends in the direction of increasing value for a certain 471 

wavelength variable, for instance increasing intensity of a Ca wavelength, that wavelength, and 472 

thus the concentration of the emitting element, will have a strong positive influence on the linear 473 

regression and a large positive loading vector.  In contrast, if the regression trends in a direction 474 

of decreasing value for a wavelength, that wavelength (and element) will have a negative loading 475 

vector.  Loading vectors for the models were qualitatively inspected to discern which elements 476 

have high positive loading vectors for the deposit being considered in the model (Table 2).  477 

Elements with very high loading vectors were considered to have strong influence; those with 478 

high loading vectors were considered to have lesser but significant influence.  Elements with 479 

moderate and lower loading vectors are not listed in Table 2; they exert lesser influence on the 480 

model and are thus less significant for discrimination purposes.  These elements are important in 481 

discriminating between corundum deposits, in approximate order of decreasing importance: Ca, 482 

Zr, Fe, Ba, Mg, Ti, Sr, Na, V, Si, Cr, H, C, and Li.  Some of these elements may reside in 483 

inclusions in the analyzed samples; however, the inclusions must have been sufficiently 484 

abundant for them to contribute significantly to the loading vectors.  The chemical differences 485 

between corundum deposits are not simple (Table 2); it is the ratios of many elements that 486 

comprise the unique chemical signature of each deposit.  The signature is too complex to be 487 

discerned by traditional geochemical techniques (Abduriyim and Kitawaki, 2006a, 2006b;  488 

Calligaro et al., 1999; Muhlmeister et al., 1998; Peucat et al, 2007; Pornwilard et al., 2011; 489 

Rankin et al., 2003; Saminpanya et al., 2003) because it is inherited from subtle compositional 490 

differences in the host rock during metamorphism.   491 

 492 

It is interesting that most of the elements listed in Table 2 are not chromophores.  This study 493 

indicates that provenance determination using chemometric analysis of LIBS spectra is 494 

independent of the color of the stones.  Some of the sample sets analyzed in this paper have 495 

consistent colors; however, three of the sapphire sets have a wide variety of colors (Table 1).  496 
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The Australian, Umba Valley, and Montana sample sets all exhibit multiple colors.  However, 497 

the Australian and Montana (USA) models are 100% successful, indicating that the models are 498 

independent of color. 499 

 500 

The ideal method for provenance determination would compare spectra of unknown samples to a 501 

database that contains spectra from every known ruby or sapphire deposit.  Obviously, such a 502 

sample collection is prohibited by time and funding.  The finite size of our database opens the 503 

question of how samples from localities other than those present in the calibration are handled in 504 

the algorithms.  There are two possibilities.  First, a sample may be sufficiently similar to 505 

samples from one of the localities in the database that it is classified incorrectly.  In some cases, 506 

such samples can be recognized by using chemometrics to compare the LIBS spectrum of the 507 

unknown sample to those of the known samples.  If the unknown sample is an outlier, it is most 508 

likely from a different location.  However, the possibility exists that the unknown deposit may 509 

actually be similar in composition to one of the localities in the calibration.  In this case, the 510 

sample will be mis-identified; the best method to avoid this is to build a sample base that 511 

contains as many deposits as possible.   512 

 513 

Alternatively, an unknown sample may be unlike any samples from any of the localities in the 514 

calibration.  In this case, the sample will consistently be classified as a "0" and will be identified 515 

as one of the localities at the end of the flow charts (Montana for sapphires; Mysore or Tanzania 516 

for rubies; Figures 6 & 8).  In this case, chemometrics (i.e., Principal Component Analysis) can 517 

be used to compare all of the spectra that are classified in the final localities; if the sample is an 518 

outlier, its provenance is most likely one not found in the calibration sample base.   519 

 520 

If this method were to be used commercially, building the sample base would be a high priority.  521 

As new localities are added, the algorithms would need to be revised.  The order in which the 522 

samples are considered is of primary concern, although there is more than one order that 523 

produces satisfactory results.  The addition of any new locality requires development of an 524 

entirely new algorithm, because the most chemically unique samples are separated out first, 525 

leaving the more chemically similar samples at the end of the process.  While the process of 526 

determining the order of the algorithm is time-consuming, it is not intrinsically difficult. 527 
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 528 

Implications 529 

Provenance determination is an important aspect of gem values as well as a political and national 530 

security issue.  Traditional methods for determining country of origin or deposit of origin include 531 

comparing gemological observations and/or trace concentrations using XRF, PIXE, and ICP-MS 532 

data, of unknown samples to those from known localities.  Results have been promising but no 533 

unique solution has emerged for several reasons.  First, the variety of color, inclusions, and 534 

unique mineralogical features is fairly large in each deposit and not all specimens from a deposit 535 

contain all of the identifying features.  Second, trace element studies have used a relatively small 536 

number of variables (the number of elements analyzed), and in some cases, a relatively small 537 

number of samples.   538 

 539 

Chemometric treatment of Laser-Induced Breakdown Spectroscopy (LIBS) spectra from 540 

sapphires and rubies is a new and successful method for provenance determination.  The main 541 

advantages of LIBS are 1) ease of analysis; 2) rapidity of analysis; and 3) little or no required 542 

sample preparation.  Because of this, it is possible to analyze many (i.e., hundreds) samples 543 

rapidly, creating a data base that closely represents the chemical variation in each locality.    544 

LIBS instruments could be operated at strategic points such as border crossings, international 545 

port facilities, and even military outposts to determine the provenance of gems and conflict 546 

minerals in real time.  Instruments could also be used in gem galleries and studios to insure that 547 

the gem provenance is accurately reported.   548 

 549 

The ability to obtain spectra from large sample sets and to analyze the large resulting data set 550 

provides a new direction for mineral analysis and research.  For instance, the process described 551 

in this paper could be applied to correlation of strata using mineral compositions.  Examples 552 

include correlating ash-flow tuffs by LIBS analysis of phenocryst minerals, or correlating clastic 553 

sedimentary rocks through LIBS analysis of the heavy minerals zircon, tourmaline, and rutile.  In 554 

this case, one would expect to see several populations of each phase; however, analysis of 555 

hundreds or thousands of grains would provide an adequate statistical base for estimation of the 556 

population distribution of each group.  Such a project is daunting in scale using traditional 557 

technology. 558 
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 559 

This study demonstrates that quantifiable, high-precision provenance determination is possible 560 

using technology that is durable, portable, relatively inexpensive, and operable by a range of 561 

end-users.  Overall, the sapphire algorithm correctly identified the provenance in 432 of 437 562 

cases (98.9%) for country of origin and in 465 of 475 cases for deposit of origin (97.9%).  563 

Success rates for rubies are similar.  Overall, 759 of 791 ruby spectra in the algorithm were 564 

correctly identified (96.0%) at the country of origin level; the overall deposit of origin success 565 

rate is 95.4% (835 of 875).  The application of chemometric analysis of LIBS spectra could bring 566 

new transparency to the gem industry. 567 
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Figure Captions 702 
 703 

Figure 1.  LIBS analysis starts with a pulsed laser (B, with control box A), in this case a Nd-704 

YAG laser.  A digital camera (C) allows one to target and photograph specific areas on samples. 705 

A burst of laser light is focused in the sample by lens D, causing atoms to ablate and burn in a 706 

short-lived plasma, or burning gas. Electrons in this high-temperature plasma are excited into 707 

higher-energy orbitals, and give off energy in the form of light as they decay into lower-energy 708 

orbitals during plasma cooling.  This spectrum of light (different wavelengths for each element) 709 

is collected by optic fiber and diffracted by a spectrometer (E) and recorded by a computer (F).   710 

 711 

Figure 2.  Representative ruby and sapphire LIBS spectra (averages of 30 spectra).   Major 712 

elemental emission lines are identified.   713 

 714 

Figure 3.  Partial Least Squares Regression model process.  Half of the spectra from every 715 

locality are used for calibration; the other half are used for validation.  The spectra are divided 716 

into two groups.  One group contains spectra from the locality of interest; the other group 717 

contains spectra from all other localities.  A.  Calibration.  In calibration, the spectra are 718 

regressed against the integers "1" (locality of interest) or "0" (all other localities)  B.  719 

Determination of the VAD (Value of Apparent Distinction), the value of the provenance variable 720 

used to distinguish between the two groups, using provenance variables for each sample 721 

calculated during the calibration stage.  C. Prediction of provenance variables for the validation 722 

samples. D.  Calculation of success rate. 723 

 724 

Figure 4.  Kernel density estimates of the population of predicted values for rubies from Kenya 725 

(on the right) and of the population of predicted values for rubies from other mines (on the left).  726 

The sample predicted values are indicated by the vertical lines below the density curves – dashed 727 

vertical lines are for predicted values for rubies from the Kenya mine; solid lines are for rubies 728 

from other mines.  The VAD (Value of Apparent Distinction) that minimizes the total crossover 729 

areas of the two densities is indicated by the dashed vertical line. 730 

 731 

Figure 5.  The results of the validation step are shown for the Kenya ruby model.  The predicted 732 

provenance value (Y-axis) is shown for each sample in the model.  Rubies from Kenya have 733 

provenance variables greater than the Value of Apparent Distinction (0.29 for this model) and 734 

thus are classified as Kenyan.  The other samples, from India, Greenland, Madagascar, 735 

Myanmar, Pakistan, Tanzania, and USA, yield provenance variables less than 0.29, and are 736 

classified as belonging to this group of countries.  One sample is incorrectly classified, yielding a 737 

success rate of 99.4%. 738 

 739 
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Figure 6.  The matching algorithm for sapphires consists of 8 models.  The model correctly 740 

predicts the country of origin for 98.9% of the validation spectra and the deposit of origin for 741 

97.9% of the validation spectra. 742 

 743 

Figure 7.  Score plots and validation plots for PLSR (Partial Least Squares Regression) models in 744 

the sapphire matching algorithm. 745 

 746 

Figure 8.  The matching algorithm for rubies consists of 12 models.  The model correctly 747 

predicts the country of origin for 96.0% of the validation spectra and the deposit of origin for 748 

95.4% of the validation spectra. 749 

 750 

Figure 9.  Score plots and validation plots for PLSR (Partial Least Squares Regression) models in 751 

the ruby matching algorithm. 752 

 753 

 754 





















Country Deposit Host Lithology Color(s) No. of Sapphires

Afghanistan Badakashan Phologpite Schist blue 30

Australia Queensland Unknown yellow, dark blue 43

India Mysore Unknown black 29

Madagascar Southern Unknown white, beige 30

Madagascar Southern Unknown bluish purple 30

Tanzania Songea Pegmatite grey and black 10

Tanzania Umba Valley Unknown brown & tan with 

blue tint

5

USA Rock Creek, MT Unknown blue, green, yellow 30

Vietnam Unknown Unknown black 30

Country Deposit Host Lithology No. of Rubies

India Mysore Unknown maroon 19

India Mysore Fuchsite fuchsia 30; 8 samples

India Mysore Biotite Gneiss fuchsia 30;  9 samples

Greenland Fiskenaesset Amphibolite maroon 32

Kenya Rift Valley Unknown fuchsia 30

Madagascar Southern Unknown fuchsia 30

Madagascar Southern Amphibolite & 

Biotite Schist

fuchsia 35; 18 samples

Myanmar Unknown Unknown maroon 30

Pakistan Hunza Valley Marble magenta 13; 11 samples

Tanzania Winza Unknown maroon 30

Tanzania Longido Fuchsite/Zoisite fuchsia 14; 6 samples

USA Wyoming Fuchsite purple 39

Sapphire Samples

Ruby
a
 Samples

a
 All pink to purple-red samples were classified as rubies in this study.



Country Deposit of Origin Success 

Rate, %

Correct Predictions Elements Enriched in 

Deposit being Modeled
1

India Psudipada 100 118 of 118 Ca (Zr, V, Na, H)

Afghanistan Badakashan 96.7 29 of 30 Ba (Mg)

Vietnam Unknown 96.7 29 of 30 Sr, Na

Australia Queensland 100 66 of 66 Zr (Ba, Mg, Na)

USA Rock Creek, MT 100 45 of 45 Zr (Mg)

Madagascar
2

country of origin 100 45 of 45 Li (Si, Sr)

Madagascar
3

Southern (White) 96.7 29 of 30 Mg

Madagascar
3

Southern (Blue) 96.7 29 of 30 Ba (Li)

Tanzania
2

Country of origin 97.3 72 of 74 (Fe, Ba)

Tanzania
3

Songea 50 4 of 8 Ba (Na, Li)

Tanzania
3

Umba Valley 50 4 of 8 Ca, Zr

Country Deposit Success Rate, %Correct Predictions

Kenya Rift Valley 98.2 161 of 164 Zr (Ti, Ba, Ca)

India Mysore, unspecified 91.9 137 of 149 Zr, Fe (Ti, Na, Ca, C)

Pakistan Hunza Valley 100 26 of 26 Ca, Na

USA Wyoming 100 42 of 42 (Ba, Sr, Na, Li)

Tanzania
2

country of origin 100 42 of 42 Mg

Tanzania
3

Winza 86.4 19 of 22 Ca (Na, Mg, Fe, Li)

Tanzania
3

Longido 86.4 19 of 22 Zr (Mg, Ti)

Greenland Fiskenaesset 98.9 92 of 93 Ca, Mg (Fe, Ba, Zr, Cr, Na)

Madagascar
2

country of origin 97.3 73 of 75 Mg, Ca, Sr, Zr, Ba (Na, H)

Madagascar
3

Southern, unspecified 100 32 of 32 Zr (Mg, Sr, Ba)

Madagascar
3

Southern, gneiss and amphibolite 100 32 of 32 Ca, Na (Fe)

Myanmar Unknown 86.7 39 of 45  (Mg, Ti, Cr, Ba, C)

India
2

country of origin 86.7 39 of 45 Si, Sr, H, Hf

India
3

Mysore, fuschite 83.3 25 of 30 Ba (Ca, Cr, H)

Ruby
 
Algorithm, listed in model order



India
3

Mysore, gniess 83.3 25 of 30 (Mg, Na)

3
Model identifies deposit of origin.

2
Model identifies country of origin only.

1
Elements with strong influence; those with lesser but significant influence listed in parentheses.
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