Degassing pathways of Cl-, F-, H-, and S-bearing magmas near the lunar surface:

Implications for the composition and Cl isotopic values of lunar apatite

Gokce Ustunisik¹,* Hanna Nekvasil¹, Donald H. Lindsley¹, and Francis M. McCubbin²

¹Department of Geosciences, Stony Brook University, Stony Brook, New York 11794-2100, U.S.A.

²Institute of Meteoritics, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A.

*Present address: Department of Earth and Planetary Sciences, American Museum of Natural History, New York, New York 10024-5192, U.S.A. E-mail: gustunisik@amnh.org

Abstract

Experimental degassing of H-, F-, Cl-, C- and S-bearing species from volatile-bearing magma of lunar composition at low pressure and f_{O_2} close to the quartz-iron-fayalite buffer (QIF) indicates that the composition of the fluid/vapor phase that is lost changes over time. A highly H-rich vapor phase is exsolved within the first 10 minutes of degassing leaving behind a melt that is effectively dehydrated. Some Cl, F, and S is also lost during this time, presumably as HCl, HF, and H₂S gaseous species; however much of the original inventory of Cl, F, and S components are retained in the melt. After 10 minutes, the exsolved vapor is dry and dominated by S- and halogen-bearing phases, presumably consisting of metal halides and sulfides, which evolves over time towards F enrichment. This vapor evolution provides important constraints on the
geochemistry of volatile-bearing lunar phases that form subsequent to or during degassing. The rapidity of H loss suggests that little if any OH-bearing apatite will crystallize from surface or near surface (∼7 m) melts and that degassing of lunar magmas will cause the compositions of apatites to evolve first towards the F-Cl apatite binary and eventually towards end member fluorapatite during crystallization. During the stage of loss of primarily H component from the melt, Cl would have been lost primarily as HCl, which is reported not to fractionate Cl isotopes at magmatic temperatures (Sharp et al. 2010). After the loss of H-bearing species, continued loss of Cl would result in the degassing of metal chlorides, which have been proposed as a mechanism to fractionate Cl isotopes (Sharp et al., 2010). After the onset of metal chloride degassing, the δ^{37}Cl of the melt would necessarily increase to +6 (82% Cl loss), +8 (85% Cl loss), and +20‰ (95% Cl loss) at 1, 4, and 6 hours, respectively, which was approximated using a computed trajectory of δ^{37}Cl values in basalt during degassing of FeCl_2. This strong enrichment of ^{37}Cl in the melt after metal chloride volatilization is fully consistent with values measured for the non-leachates of a variety of lunar samples and would be reflected in apatites crystallized from a degassing melt. Our results suggest that a range in δ^{37}Cl from 0 to > 20‰ is expected in lunar apatite, with heavy enrichment being the norm. While 95% loss in the initial Cl content of the melt (280 ppm Cl left in the melt) would cause an increase to +20‰ in δ^{37}Cl, the ability to measure this increase in a lunar sample is ultimately dependent upon the starting Cl abundances and whether or not a mechanism exists to concentrate the remaining Cl such that it can be subsequently analyzed with sufficient accuracy. Therefore, the higher the starting Cl abundances in the initial melts, the heavier δ^{37}Cl values that can be measurably preserved. Importantly, such enrichments can occur in spite of high initial hydrogen contents, and therefore, our experiments demonstrate that elevated values of δ^{37}Cl cannot be used as supporting evidence for an
anhydrous Moon. Furthermore, if the H-bearing vapor has a significant H\textsubscript{2} component, this process should also result in strong enrichment of δD in the residual magmas that reach the lunar surface or near-surface environment. Apatites within some mare basalts exhibit elevated δD of 1000 per mil depending on the initial value (Tartese and Anand 2013) in addition to the δ37Cl values, but elevated δ37Cl values are accompanied by only modest enrichments in δD in apatites from samples of the highlands crust (McCubbin et al. 2015a).

Keywords: Experimental degassing, Lunar magmas, Magmatic volatiles, Apatite, Chlorine isotopes, Hydrogen isotopes

Introduction

The recent success of detecting measurable amounts of hydroxyl in lunar apatite (Boyce et al. 2010; McCubbin et al. 2010a, 2010b; Greenwood et al. 2011; Barnes et al. 2013, 2014; Tartese et al. 2013, 2014), lunar volcanic glasses (Saal et al. 2008), including “melt” inclusions within olivine crystals of pyroclastic glass (Hauri et al. 2011), and in nominally anhydrous feldspar (Hui et al. 2013) has opened the door to a new paradigm of an H-bearing lunar interior. These observations also raise the obvious question, “How much H is in the lunar interior?” and, because of the importance of other volatiles such as F, Cl, and S, “What were the abundances of magmatic volatiles in lunar parental magmas?” The answers to these questions are not straightforward because degassing could have affected the initial magmatic volatile abundances during ascent. Furthermore, differential degassing of volatile species could have affected the relative abundances of volatiles in these melts (Ustunisik et al. 2011a). The potential for underestimating parental magma volatile contents is not restricted to glasses; apatites may also reflect volatile abundances of degassed melts, through either late-stage growth or modification of
pre-existing apatite. In fact, the mass balance calculations of Nekvasil et al. (2011) for the KREEP-bearing samples analyzed by McCubbin et al. (2010a) suggested that apatites record a degassing process that resulted in both loss of magmatic volatiles and significant changes in the relative volatile contents of the residual liquids, which may affect current interpretations of lunar apatite compositions (McCubbin et al. 2011). We conducted the first set of single-step degassing experiments (Ustunisik et al. 2011a) in order to determine the potential for differential degassing of volatiles of lunar magmas at shallow conditions. The single-step (6 hour) degassing experiments presented in Ustunisik et al. (2011a) determined the absolute and relative change in abundances of volatiles in the melt at shallow levels, simulating what might occur during rapid ascent of lunar magmas from depth without crystallization. Based on the initial and final abundances of the volatiles within the 6 hours of degassing, degassed samples with initially 2.2 and 2.5 wt% H₂O lost 99-100% H₂O, 89-84% Cl, 60-61% F, and 94-92% S respectively (Ustunisik et al. 2011a). These results showed that differential degassing resulted in changes in the relative abundances of volatiles (e.g., the F:Cl ratio) retained in the melt. In reflection of these changes in melt volatile contents, computed apatite composition changed from Cl₂₀F₄₈OH₃₂-apatite to Cl₁₀F₉₀OH₀-apatite (D_F^apat/basalt = 3.4, D_Cl^apat/basalt = 0.8, Mathez and Webster 2005; D_H₂O^apat/basalt = 0.25, McCubbin et al. 2010a), that is, they reflected the dramatic decrease in magmatic water content as well as the decrease in Cl/F ratio. This result indicated that it is not only possible for lunar apatite from surface rocks to contain apatite that is grossly different from apatite in equilibrium with the magma prior to degassing, but use of such apatite compositions can lead to severely underestimated OH contents of the parental magma and underestimated magmatic Cl content. However, this investigation only looked at the final state of degassing; the path to that state remained unknown. Yet the path may indicate relative changes in
the degassing vapor along the route to that final state that could be expected if the process is arrested before completion (i.e., due to rapid cooling through the glass transition temperature), which could provide a guide for interpreting observations from lunar samples.

The degassing pathway may critically affect the compositional characteristics of apatite. It dictates the compositional evolution of apatite that crystallizes from a degassing magma. It also affects apatite compositional characteristics beyond the OH, F, and Cl contents, such as the Cl- and H-isotopic signatures. Sharp et al. (2010) noted a wide range of $\delta^{37}\text{Cl}$ values, from -1 to +24‰, in lunar materials that deviates substantially from the limited range of values exhibited by terrestrial samples, which are typically around 0‰ (Sharp et al. 2007, 2013b). They proposed that the enrichment of ^{37}Cl reflects kinetic loss of ^{35}Cl to the vapor phase in the form of metal chlorides such as NaCl, KCl, MgCl$_2$, and FeCl$_2$. Based on the strong enrichment of ^{37}Cl in the melt (and by extension, in the apatite crystallizing from such melt) they concluded that the parental magmas were anhydrous. Sharp et al. (2013a) later used the work of Ustunisik et al. (2011a, b) to hypothesize that high $\delta^{37}\text{Cl}$ values cannot rule out an earlier stage of preferential loss of H as H$_2$ before significant loss of Cl, although this idea has yet to be tested experimentally. Consequently, the primary objective of the present study is to experimentally determine whether or not degassing of H at low pressure can occur before substantial loss of Cl to reconcile the observations of elevated $\delta^{37}\text{Cl}$ values from rocks that also display evidence of elevated parental melt H$_2$O abundances.

Here a set of experiments were designed and implemented that focused on the degassing pathway of an OH-, F-, Cl-, and S-bearing lunar magma. In these experiments, changes in magmatic volatile-content were assessed from the initial state to the degassed state after specific degassing time intervals, and the vapor given off at each interval was computed based on mass.
balance using the original volatile concentrations of the glass synthesized at high pressure and
the residual glass that was analyzed at the end of each degassing time step. The change in vapor
composition during degassing was then used to compute the effect of degassing on the Cl
isotopic values.

Experimental procedures

Experimental design

The experiments simulated the scenario of volatile-bearing melt formation at depth (100
km) followed by rapid ascent to the lunar surface (≈7m) where devolatilization did not occur
until low pressure (<1 bar). The experiments were also conducted at low oxygen fugacity, close
to the QIF buffer, to match the approximate oxygen fugacity of lunar magmas (Taylor et al.
2004). The synthetic composition used in Ustunisik et al. (2011a) (high-Al basalt 14053 Willis et
al. 1972) was also used in the present study to facilitate direct comparison between both studies.
High-Al basalt 14053 was selected for a number of reasons. Its bulk composition is likely
reflective of a liquid composition (Neal and Kramer 2006). Additionally, it is close in
composition to terrestrial tholeiites, so its degassing behavior can also be compared to terrestrial
basalts. Furthermore, 14053 is among the most well-studied samples in the lunar collection (Neal
et al. 1989; Taylor et al. 2004). The volatile contents of the synthetic 14053 (0.5 wt% Cl, 0.5
wt% F, 0.3 wt% S and 2.3 wt% water) were selected to ensure that analytical uncertainty does
not inhibit detection of changes in volatile concentration.

Volatile-bearing glass was synthesized at 0.5 GPa and 1400 °C in graphite capsules.
Quenched glass from the high pressure synthesis experiments was analyzed for volatile content
by micro-FTIR (for H₂O) and electron probe micro analysis (major elements and F, Cl, and S) to
ensure that the volatile content obtained was that intended in the synthesis. These analyses provided confirmation that loss of volatiles during the quench from the high pressure synthesis conditions did not occur. For the low pressure degassing, care was taken to select synthesized glass pieces that were free of visible graphite (as determined by binocular inspection). However, in view of the likelihood that C-O-H species were present in lunar magmas (e.g., Sato 1979; McKay and Wentworth 1992; Fogel and Rutherford 1995; Rutherford and Papale 2009; Wetzel et al. 2013), small amounts of graphite and any dissolved C-O-H species retained after quench of the original glass were deemed acceptable in the starting material for the degassing experiments. The experimental conditions for degassing included a maximum pressure of approximately one third of a bar, superliquidus temperatures, and selected specific time intervals of 10 minutes, 1 hour, 4 hours, and 6 hours. The degassing experiments were specifically conducted in long evacuated silica glass tubes in order to build up a small partial pressure of exsolved gases locally and to slow the effects of Rayleigh distillation that would come from boiling in an unconfined system. The length of the vacuum-evacuated silica glass tube was computed to provide up to 1/3 of a bar pressure during the experiment, based on the amount of glass loaded, the volatile content of that glass, the assumption of complete loss of all volatiles from the glass, the average temperature in the tube, and the assumption of ideal mixing of components in the vapor phase at high temperature. Since temperature varied along the length of the silica glass tube, the pressure was approximated using the average temperature (725 °C). The actual pressure within the experimental charge likely varied along with the thermal gradient such that the cooler regions of the charge likely had lower pressure, resulting in the deposition of the volatile components on the walls of the sealed silica glass tube.
This experimental setup was designed to simulate degassing under lunar conditions where a
degassed vapor cloud expands, cools, and deposits vapor components in the cooler regions,
which drives further devolutilization from the magma in contact with the vapor (Saal et al., 2008,
Elkins-Tanton et al., 2003; Colson, 1992). Consequently, the degassing is occurring in an
analogous manner to what would be expected during Rayleigh fractionation, but the fractionation
is much slower than it would be in an unconfined open system like that provided by a gas-mixing
furnace with a continuous gas flow. Additionally, this experimental design allows for the
degassing path to be observed at longer time scales than would be provided by unconfined open-
system degassing.

In previous experiments (Ustunisik et al. 2011a), the final degassed state was reached by 6
hours of degassing at low pressure, that is, no further changes were detected for longer degassing
duration. For this reason, degassing periods were less than or equal to 6 hours in the present
study. However, in order to ensure that 6 hours of degassing was sufficient to achieve a final
state and not a path-dependent intermediate step, an additional experiment was conducted in
which the partially degassed glass was quenched after 4 hours and then used for an additional 2-
hour degassing experiment. Also, partially degassed glass that was quenched after 1 hour of
degassing was used for an additional 3-hour degassing experiment to reach a total of 4-hours of
degassing. Since 4-hours is not the final state in degassing, we expect to see slight differences
between two-step 1+3h and one-step bulk 4h experiments.

Experimental details

High-pressure hydrous glass synthesis. The volatile bearing glass that was used as starting
material for the degassing experiments was synthesized at 0.5 GPa in order to ensure significant
volatile solubility to mimic the state of a lunar magma that would be coming from depth. This

target composition is presented in Table 1. The starting material was produced from a mixture of

oxides and silicates by homogenizing the mixture in ethanol in an automatic mortar for 2 hours.

Brucite was added such that the mix would have ~2.3 wt% water; MgCl$_2$, MgF$_2$, and CaSO$_4$ were

added in the last stage and the mixture ground by hand (using minimal amounts of ethanol)

before drying at 175 °C under vacuum to remove adsorbed water. Hydrous glass was synthesized

by melting this powder in a graphite capsule, which was inserted, with dried pyrophyllite

spacers, into a graphite furnace that was inside of a talc sleeve. The sample was pressurized in a

piston-cylinder apparatus at 0.5 GPa and heated to 1400 °C for ~2 hours to ensure complete

melting before quenching and analysis.

Low-pressure evacuated silica glass tube experiments. Irregular glass fragments were

obtained at the end of synthesis experiments and ranged in size from 5 to 450 µm. From these

sizes, glass fragments in the range of 300 to 450 µm were selected for 10 min, 1 hour, 4 hour, 6

hour, 1+3 hour, and 4+2 hour degassing experiments. Similar sizes of glass fragments were

chosen in order to normalize any effects of sample size and/or surface area on the degassing rate.

Selected pieces of the volatile-bearing glasses were placed in Fe0 capsules with slotted lids and

inserted into long silica glass tubes, sealed at one end. Each tube was evacuated for 20 minutes

before completely sealing it. Subsequently, the sealed tube was inserted rapidly into a preheated

vertical Pt-wound furnace such that the sample was in the hotspot. The sample was kept entirely

in the “isothermal” zone throughout the duration of each experiment. This isothermal zone was

determined for the furnace prior to our experimental work. Maintaining a low pressure in spite of

devolatilization was facilitated by use of a long silica glass tube; however, this resulted in the

tube not being fully contained in the isothermal zone. This thermal gradient in the overlying
silica glass tube (1250 °C at the hot spot and 200 °C at the uppermost end) made it impossible to collect, analyze or computationally predict the composition of the vapor phase directly. But the isothermal condition of the melt allowed for careful evaluation of the loss of volatiles from the melt. The sample was held at 1250 °C (that is, above the low pressure liquidus temperature in order to avoid crystallization) for selected time intervals. Time was measured after the furnace regained the set temperature which typically took 10 minutes. Consequently, the shortest experiment duration that we could run was 10 minutes, using our experimental setup. Sublimates were formed on the interior walls of the silica glass tube well above the sample. We did not make predictions regarding the identity of the phases that precipitated from the vapor due to the variable temperature, pressure, and oxygen fugacity within the region that those phases precipitated, although we note that their identity is not a requirement for determining the volatile evolution of the degassing vapor and silicate melt. The presence of a lid on the capsule protected the melt to a great extent from mechanical mixing with any sublimates that were released from the walls and settled downward gravitationally. Each experiment was quenched by dropping the capsule-bearing end of the silica glass tube into cold water.

For the single-step degassing experiments (i.e., degassing of the initial bulk composition) the initial glasses were heated above the liquidus temperature for 10 minutes, 1 hour, 4 hours, and 6 hours before quenching. For the sequential two-step degassing experiment, partly degassed glass at the end of 1 hour was used for degassing an additional 3 hours to reach a nominal total of 4 hours of degassing. Similarly, partly degassed glass at the end of 4 hours was used for degassing an additional 2 hours to reach a final state of 6 hours of degassing. These experiments were used to verify the “final state” of degassing, determined previously by Ustunisik et al., (2011a) to be 6 hours.
Analytical techniques

Pieces of both the crystal-free glass at the end of synthesis and the degassed glasses after the degassing experiments were sliced and prepared as polished mounts for electron probe microanalysis and as free hanging doubly polished wafers for micro-Fourier transform infrared spectroscopy (micro-FTIR) analysis. Polished probe mounts were characterized using a petrographic reflected light microscope at Stony Brook University and JEOL 8200 electron microprobe at the Institute of Meteoritics at the University of New Mexico. Qualitative analysis was performed using both backscattered electron imaging and energy dispersive spectroscopy. Quantitative analyses were performed using wavelength dispersive spectrometers. An accelerating voltage of 15 kV and a nominal probe current of 20 nA was used during each analysis. We analyzed for the elements Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P, S, F, and Cl. F was analyzed using a synthetic light-element LDE1 detector crystal, and the peak was measured in differential mode to avoid the FKα peak overlap with the shoulder of the FeLα peak (i.e., Witter and Kuehner 2004). SrF2 was used as a fluorine standard, and the standardization was checked against a terrestrial kaersutite from Spitsbergen with 1300 ppm F (McCubbin et al. 2015b), measured previously by secondary ion mass spectrometry. Si and Mg were standardized using a synthetic diopside crystal. Ti, Fe, and Mn were standardized using ilmenite. Al and Ca were standardized on anorthite; Na and K were standardized on albite and orthoclase, respectively. A natural fluorapatite from India (Ap020 from McCubbin et al. 2012) was used to standardize P; and Cl was standardized using sodalite. S and Ba were standardized using Taylor barite. In order to reduce or eliminate electron beam damage, a 10 µm spot was used for both standardization and analysis of glass in all the experimental samples. Tests on several secondary standards were
performed throughout the analytical session to verify that standardizations did not drift. The average glass composition for the starting composition is shown by the composition labeled initial (t0) in Table 1.

Water analysis of the starting glass as well as of the degassed glasses was conducted by micro-FTIR on doubly polished free-hanging glass wafers using a Nicolet iN10MX FTIR microscope equipped with a liquid nitrogen-cooled MCT array detector in the Department of Geosciences, Stony Brook University. Total water concentrations were based on the intensity of the broad band at 3570 cm\(^{-1}\) and a molar absorptivity of 62 L/mol*cm via the method of Dixon et al. (1995) and Mandeville et al. (2002). Both the spectrometer and the IR objective were purged with dry nitrogen gas at a rate of 15 L/min. Transmittance IR spectra were collected using a KBr beam splitter, MCT/A detector, and a globar source. Approximately 400 scans were performed for each IR spectrum acquired at a spectral resolution of 8 cm\(^{-1}\) over a spectral range of 4000-715 cm\(^{-1}\). Peak heights were determined using the Omnic Picta software. Backgrounds were collected before each analysis and under the same conditions of air and ambient temperature as the analyses. The stated uncertainty (Table 1) arose primarily from thickness variations within the individual wafers.

Experimental results

Geochemical observations

After degassing and quench, the silica glass tube showed some devitrification and precipitate formation around the Fe\(^0\) capsule at one end, and rings of reaction precipitate some distance from the capsule. The capsule remained shiny in each experiment, suggesting that the silica glass tube retained its integrity for the duration of the experiment. The degassed samples consisted of glass, irregular blobs of metallic iron, and large vesicles (rare). Figure 1 shows the
back-scattered electron (BSE) images of initial and final glasses after 10 minutes, 1 hour, 4 hours, and 6 hours of bulk and 1+3 hour and 4+2 hour two-step (sequential) degassing. Irregular metallic iron blobs were only found in 1, 4, 6, 1+3, and 4+2 hour degassing experiments (Fig.1). The compositions of the initial and final degassed glasses are given in Table 1. Each run product analysis shown is the average of 9 electron microprobe analyses. The 1σ value presented parenthetically represents the standard deviation of the mean for each oxide value, which was larger than the analytical uncertainty determined by counting statistics.

The glass produced at 10 minutes of degassing showed complete loss of all H$_2$O and did not show evidence of either loss or gain of FeO. This latter observation may seem counterintuitive, since the sample synthesis took place at higher fO$_2$ than the degassing experiments. The establishment of a lower ferric:ferrous Fe ratio in the melt would be expected to release oxygen, which would react with the Fe0 capsule to produce FeO. This FeO would dissolve in the silicate melt and reasonably cause a net increase in the FeO$_T$ in the melt. However, the residual graphite in the glass (from the high pressure synthesis in graphite) may have reacted with the oxygen released during this reduction to produce CO. Similarly, graphite could also have become oxidized from the oxygen residual to hydrogen loss during degassing (loss of water component). Some amount of C could have been lost to methane production. Taken together, these reactions could impede the oxidation of the Fe0 capsule and the addition of Fe to the melt.

In contrast, for each of the longer duration degassing experiments there was a significant loss of FeO component from the melt (cf. initial and final compositions of Table 1) that was correlated with the development of metallic Fe droplets along the interior walls of the capsule. This was presumably due to continued oxidation of graphite through the reaction
FeO(m) + C → Fe⁰ + CO(g)

In the absence of water that provided oxygen for the oxidation of C, this resulted in considerable reduction of FeO in the melt.

Mass balance calculations

Determining the amount of volatiles lost from the melt is complicated by the change in silicate melt composition resulting from the formation of metallic iron by FeO reduction. The decrease in amount of silicate melt would lead to an apparent lower computed amount of volatile loss. For this reason, mass balance calculations were conducted in order to convert the system back onto a metallic Fe-free basis.

The proportion of phases (melt, vapor, and metallic Fe) was determined by mass balance through correction of the major oxide constituents of the final degassed melt for FeO₇⁰ loss due to iron reduction as discussed previously (Ustunisik et al. 2011a). The weight fraction of silicate melt after degassing (WFₘ) was computed for each likely refractory oxide (CaO and MgO) as the weight ratio in the initial and final (degassed) silicate glasses. The actual WFₘ used (and listed in Table 2) lies between the values obtained from CaO and MgO and was chosen because it yielded the best overall mass balance for each experiment. The weight fraction of FeO lost as Fe⁰ and oxygen (WFFeO') was computed as

\[
WFFeO' = \frac{(FeO_{\text{initial melt}} - WFm * FeO_{\text{final melt}})}{100},
\]

and the degassed glass composition was corrected for this.

The WFₘ and WFFeO' can be used to obtain the weight fraction of vapor (WFᵥ) through the relation

\[
WFv = 1 - (WFm + WFFeO').
\]
With the consideration of only the chemical components water, Cl, F, and S, the composition of
the vapor phase and the percentage volatile loss are

$$i^v = \frac{(i_{\text{initial melt}} - \text{WFm} \cdot i_{\text{final melt}})}{\text{WFv}}$$

$$\% i \text{ lost} = 100 \frac{(i_{\text{initial melt}} - \text{WFm} \cdot i_{\text{final melt}})}{i_{\text{initial melt}}}$$

respectively, where i^v is the wt% of component i in the vapor, and $i_{\text{initial melt}}$ and $i_{\text{final melt}}$ are in
wt%. The percentage volatile loss for 1+3 h and 4+2h segment of sequential degassing was
calculated with the formula above used for bulk degassing, where the initial melt is the melt at
the end of 1 h and 4h bulk degassing and the final melt is the melt at the end of 1+3h and 4+2h
sequential degassing respectively. The extent of overall degassing for the time segment 1+3h
and 4+2h (for comparison with the bulk degassing) is $\% i \text{ lost} = \% i \text{ lost at the end of 1h or 4h} +$
($\% i \text{ left at the end of 1h or 4h} \times \% i \text{ lost between 1+3h and 4+2h respectively}$). The results of
mass balance calculations for each time interval during bulk and sequential degassing are given
in Table 2.

The loss of FeO from the melt has been computationally attributed here to Fe0 production
and calculated through WFFeOf. This computation ignores the loss of Fe through the formation
of iron halide vapor species such as FeCl$_2$, which would contribute to the mole fraction of vapor
phase (X$_v$). This exclusion of iron halide vapor would only cause a potential problem after
degassing for 10 minutes, since before this there was no detectable Fe loss. In the later stages of
degassing after all H$_2$O component is lost, from 10 minutes to 1h, 1h to 4h, and 4+2h significant
changes in total FeO content occurred by reduction. In the absence of H remaining in the melt,
the loss of Cl was likely in the form of metal chloride vapor complexes, and most likely Fe
chloride complexes. Thus, some of the observed FeO loss should be attributed to vapor phase
production. However, the Wfv is only 0.004, 0.001, 0.003 of the total system during 10min to

15
1h, 1+3h, and 4+2h portions of degassing, respectively; therefore, the neglected Fe loss to the vapor as FeCl₂ has a negligible effect on the computed vapor abundance.

Degassing of volatile components

As shown in Figure 2, after 10 minutes degassing, there was complete loss of water component and loss of about 66% Cl, 38% F, and 70% S to the vapor phase. Between 10 minutes and 6 hours there was a nearly linear loss of volatiles at the rate of approximately 4% per hour for each of the remaining volatile components. For the longest degassing period (6 hours), the percentage loss was 100% water, 95% Cl, 71% F, and 96% S component from the initial melt to the vapor phase. The extent of overall loss in the two-step degassing, 4 hours then 2 additional hours (t4+2h), was computed to be 95% Cl, 64% F, and 95% S respectively (Fig.2). The smaller extent of loss of F in this two-step process in 4+2h (symbols with gray outlines in Fig. 2) suggests that the quenching and re-heating process required additional time to attain the same extent of degassing. The intermediate nature of the extent of degassing in the two step process between 4 and 6 hours can also be seen in the melt volatile contents in Table 2. By examination of the volatile loss curves of Cl and S (Fig. 2), it is approximated that the sequential degassing of 4+2h was the equivalent of approximately 5.4 h bulk (single-step) degassing.

The extent of overall loss in the earlier portion of two-step degassing, 1 hours then 3 additional hours (t1+3h) was computed to be 94% Cl and 66% F (Fig.2). The higher extend of loss of Cl, F, and S for 1+3h two-step process compared to 4h bulk degassing indicates the kinetics of degassing being highly path dependent between 1+3h degassing since 4h is still not the final state of degassing.
The change in volatile phase over each time increment of degassing was computed and is shown schematically in Figure 3 and in detail in Figure 4. As discussed in Ustunisik et al. (2011a), the volatile phase compositions calculated here through mass balance indicate the component abundances only; the gas species likely consisted of HCl, HF, H$_2$S, CO (from graphite), NH$_3$ (from residual trapped air), H$_2$, and some H$_2$O. At fO$_2$’s relevant to lunar volcanism (i.e., IW-1; Herd et al. 2008), H$_2$O would make up a minor component of the degassed vapor in the O-H system, with the dominant vapor species being H$_2$ (Elkins-Tanton and Grove 2011); however, it has been shown experimentally at elevated pressure and at low H concentrations that the silicate melt would have had mostly OH- species (Hirschmann et al. 2012). Consequently, the conversion of water (OH-) to H$_2$ may have facilitated the thorough loss of the water component from the melt during degassing (Zhang and Ni 2010).

The vapor given off at 10 minutes also contains Cl, F, and S. The higher Cl:F ratio in this first vapor phase compared to the initial melt is indicated by the greater drop in melt Cl content than F content in the degassed melt. Higher Cl/F ratio in the initial vapor phase is also consistent with the different roles that F and Cl play in the melt structure (Baker and Balcone-Boissard 2009) as F replaces coordinating oxygen while Cl associates with water and alkali cations and possibly forming a Cl-alkali-H$_2$O outside of a melt structure (Schaller et al. 1992; Zeng and Stebbins 2000; Liu and Nekvasil 2002; Mysen et al. 2004; Sandland et al. 2004; Kiczenski and Stebbins 2006). If the halogen-bearing vapor species formed are HF and HCl, then this indicates a higher volatility of the HCl species under water-rich conditions, as is reflected in its lower melt solubility (e.g., Carroll and Webster 1994; Webster et al. 1999; Signorelli and Carroll 2000, 2002; Webster and De Vivo 2002). If S is given off as H$_2$S, the H$_2$S has about the same volatility as HCl under H-rich conditions. After 10 minutes of degassing, the water content is less than
0.01 wt%, and the volatile phase given off is very different from the initial H-rich composition. The dry volatile phase has a Cl:F:S ratio of approximately 8:7:6, although when these values are normalized to the respective Cl, F, and S concentration in the melt, the Cl:F:S ratio is approximately 18:5:33. This result indicates that S is more volatile than Cl, and Cl is more volatile than F during degassing under lunar conditions. Eventually, as the abundance of Cl and S decrease in the melt, the volatile phase given off at the last stages is dominated by F (Fig. 4).

Figure 5a shows the relative changes in OH, F, and Cl in the melt and Figure 5b shows in the computed volatile phases. This emphasizes that the low pressure degassing path is one of early extensive loss of H-species with some halogen loss, followed by likely metal halide loss with a greater loss of Cl than F from the melt.

Comparison between experimental observations and known diffusivities for F, Cl, S, and H$_2$O

Although little is known regarding the diffusivities of H$_2$O, H$_2$, F, Cl, and S (sulfide) components in silicate liquids, there are some estimates available (e.g., Watson, 1994; Alletti et al., 2007; Baker and Balcone-Boissard, 2009; Dingwell and Scarfe, 1985; Zhang et al., 2010; Zhang and Ni, 2010). Under the conditions of our experiments (basaltic liquids at <1bar and 1250 °C), diffusion coefficients (D) for H$_2$O, Cl, F, and S$^{2-}$ components were calculated and summarized in Table 3. Several of the diffusion coefficients were dependent upon the H$_2$O content of the melt, and so D was calculated for the initial 10 minutes (assuming the starting H$_2$O content of 2.3 wt.% H$_2$O) as well as post 10 minutes (where H$_2$O abundances were approximately 0.01 wt.% H$_2$O). Based on the reported diffusivities for the initial 10 minutes, H$_2$O diffuses faster than F, which is faster than Cl, which is faster than S with an H:F:Cl:S D
ratio of 850:20:16:5. After initial loss of most H (after 10 minutes), F diffuses faster than Cl, which diffuses faster than H, which diffuses faster than S with an H:F:Cl:S D ratio of 6:17:9:3. Based on these results, we conclude that we cannot explain the experimentally observed degassing path strictly by end member diffusion. In a system controlled by diffusive loss, the vapor would have evolved to Cl and S rich compositions rather than F-rich compositions as observed.

Discussion

Evolution of apatite compositions during degassing

Apatite volatile contents reflect those of the magmas from which they crystallize. The changes in relative volatile content during shallow magmatic degassing will strongly affect the composition of apatite crystallizing before or after degassing. Figure 5c shows hypothetical apatite compositions calculated for the initial melts and progressively degassed melts using exchange K_D values for the volatiles between apatite and basaltic liquid ($K_D^{F-Cl}_{Ap/Liq}$=0.20, $K_D^{F-H_2O}_{Ap/Liq}$=0.01, $K_D^{Cl-H_2O}_{Ap/Liq}$=0.04, McCubbin et al. 2013; 2015b; Boyce et al. 2014) during various intervals of bulk degassing. The apatites from the degassed magmas would not only be very low in OH but also have a higher F:Cl ratio than apatites crystallized prior to degassing, as suggested by McCubbin et al. (2011). The ease with which the water component is lost from the melt suggests that apatite formed during degassing would mainly show variable F:Cl ratios but low OH contents. Although rapid ascent has been called upon for some lunar lithologies (i.e., melts that produced the pyroclastic glasses), for a given ascent rate, lunar magmas experience a smaller change in pressure with time relative to terrestrial magmas, making it more likely that extensive degassing will occur before the surface is reached and late-stage apatite crystallizes.
The late-stage of apatite crystallization in most magmas suggests that few hypabyssal or extrusive rocks should contain apatite that has preserved the initial volatile composition of the parental magma. Instead, these apatites should primarily preserve evidence of the residual post-degassing volatile composition. This process would be exacerbated by secondary processes like impact melting, which could cause melting and recrystallization of apatite that would subsequently reflect the volatile composition of the impact melts (e.g., Treiman et al., 2014).

This assertion is supported by electron probe micro analysis of apatite from impact melts that show monovalent anion sites with their stoichiometric fill by F + Cl and hence no evidence for a missing structural component that could be attributed to OH⁻ (i.e., McCubbin et al. 2011, Barnes et al., 2014; Robinson and Taylor, 2014).

Apatites zoned in volatile contents such as described for 15404 and 14053 by Nekvasil et al. (2011) suggest the possibility of crystallization of apatite from volatile-bearing magmas at depth, followed by eruption, followed by impact gardening, and finally impact heating that results in exchange of volatiles from the exterior of the apatite grains. This same variable distribution in apatite chemistry has also been predicted to occur in apatites that crystallize fractionally where apatite is part of the fractionating assemblage (Boyce et al. 2014); however, in the fractional crystallization scenario apatite evolves towards OH-rich compositions as opposed to the F-rich compositions predicted from degassing. Consequently, so careful detail to textural associations of apatite as well as timing of crystallization is required to accurately interpret apatite volatile abundances and their relation to the volatile abundances of the parent liquids.

Implications for Cl isotopes
Sublimates have been found in lunar pyroclastic deposits as coatings on soils and individual glass beads (e.g., Meyer et al. 1975; Colson, 1992; Elkins-Tanton et al., 2003). These sublimates contain both sulfides and chlorides, including NaCl, ZnCl₂, FeCl₂ (e.g., Bell 1974). The potential Cl isotopic effect of the degassing process that produced these metal chlorides was investigated by Sharp et al. (2010) by measuring the Cl isotope abundances in several lunar basalts, volcanic glasses, andapatite grains and looking at the differences in δ³⁷Cl in leachates vs. residual rock. They found a large difference between the water soluble Cl (with lower δ³⁷Cl) and the structurally bound Cl (relatively higher δ³⁷Cl) in several samples, and they attributed this difference to degassing rather than surface processing. They linked the loss of ³⁵Cl to the loss of metal chloride vapor species rather than HCl, the latter of which, using terrestrial analogs, they note results in only minor isotopic fractionation between melt and vapor at magmatic temperatures. Sharp et al. (2010) point out that the formation of metal halide vapor species is predicted from thermodynamic calculations for conditions under which the Cl/H ratio is substantially greater than 1 (Fegley and Swindle 1993).

The nearly bimodal volatile phase compositions computed from these degassing experiments has major implications for lunar Cl isotopic compositions. The early loss of essentially all water and some Cl and F from the melt suggests the likely formation of HCl and HF vapor species early and therefore, no isotopic effect during this initial degassing stage. However, subsequent to rapid H loss, a halide phase with essentially no H-bearing species would result in very strong isotopic fractionation, with strong enrichment in ³⁷Cl in the melt and therefore, in the apatite that formed from it. If loss of the H-rich vapor is much faster than the loss of the halogen-rich phase, as suggested by these experiments, then low-pressure late-stage
apatite would form primarily after water degassing and show therefore, mainly OH-free compositions, regardless of the initial water content.

The change in Cl isotopic composition of the melt after the loss of water and during the degassing of metal chlorides can be approximated using the computed trajectory of $\delta^{37}\text{Cl}$ values in basalt during degassing of FeCl$_2$ (likely to be a major volatile constituent) from Sharp et al. (2010). Figure 6 shows the fraction of Cl remaining in the melt after each degassing experiment relative to the melt Cl content after 10 minutes degassing. It is anticipated that metal chlorides will not have vaporized to any significant extent before 10 minutes of degassing as that is the period of water loss and the likely formation of HCl species. Therefore, the Cl isotopic signature will have stayed at its initial value of approximately zero per mil (Sharp et al. 2010) during the first 10 minutes. As shown in Figure 6, the loss of the volatile chlorides at 1, 4, and 6 hours, however, would yield a $\delta^{37}\text{Cl}$ of +6, +8, and +20‰, respectively, in the residual melt. This strong enrichment of ^{37}Cl in the melt after metal chloride volatilization is fully consistent with values measured by Sharp et al (2010) for the non-leachates of a variety of lunar samples. Unless there is some unexplained isotopic effect between melt and apatite, it is anticipated that the computed ^{37}Cl enrichment of the residual melt, based on these experiments (Fig. 6), would lead to the degree of enrichment of ^{37}Cl in apatite compositions observed by Sharp et al. (2010) for the mare basalts and mare basalt apatites. $\delta^{37}\text{Cl}$ values for the lunar highlands apatites and apatites in some impact melts are considerably higher (+25 to +80‰; Sharp et al. 2010; Wang et al. 2012) and may require secondary processing and melting to reach the observed $\delta^{37}\text{Cl}$ values through degassing of metal chlorides.

The experiments indicate that strong enrichment of $\delta^{37}\text{Cl}$ can occur in magmas that were initially quite hydrous, therefore positive $\delta^{37}\text{Cl}$ values relative to SMOC cannot be used to
support the concept of an anhydrous Moon. These findings are in agreement with the hypothesis of Sharp et al. (2013a). The presence of such Cl isotopic signatures however, may be restricted to the surface and shallow subsurface because low pressures (<1 bar) are required for the extreme disparity between the compositions of initial and later-formed (≥10 minutes of degassing) volatile phases. Furthermore, loss of the H component from the melt primarily as H₂ would result in high δD values (as noted by Saal et al. 2013, Sharp et al. 2013a, and Tartese and Anand 2013), and may explain in part some of the marked heavy isotopic enrichments described for lunar apatite by Greenwood et al. (2011), Barnes et al. (2013, 2014), and Tartese et al. (2013, 2014), although it is not clear that degassing is the sole factor controlling H isotopes (Greenwood et al., 2011, McCubbin et al. 2015a).

Controls on degassing pathway

Several factors can control the evolution of the vapor species and residual melt during degassing including diffusion within the silicate melt, direct exsolution of volatile components into the vapor phase, or nucleation of bubbles within the melt, all of which likely played some role in our experiments. Importantly, our experimental results could not be predicted by published diffusion coefficients for each of the volatile components. In fact, based on the available diffusion coefficients, apatite compositions during degassing would have evolved towards the chlorapatite apex after hitting the F-Cl join instead of towards the fluorapatite apex like was observed in our experiments and in natural lunar apatites (McCubbin et al., 2011; Tartese et al., 2014). Consequently, we conclude that the published diffusivities for F, Cl, and S may not be appropriate for the conditions of our experiments, which are at lower pressures and oxygen fugacities than much of the previous experimental work. Furthermore, our experiments
were conducted using a high-Al lunar basalt, whereas the diffusion coefficients were derived from terrestrial basalt compositions. Alternatively, the degassing of our experiments was predominately controlled by other factors such as solubilities of the individual melt components where super-saturation resulted in rapid loss due to bubble nucleation or direct exsolution from the melt into the vapor phase. Regardless of which is the case, this comparison illustrates the importance of conducting experiments over using solely a modeling approach.

Implications

Recent determinations of OH in lunar apatite have spurred the desire to use apatite to infer volatile contents of lunar magmas and magmatic source regions. The isotopic composition of volatiles (δ\(^{37}\)Cl and δ D values) within these apatites have been used to evaluate the implications and processes involved in reshaping a new lunar paradigm of lunar volatiles. This work successfully addresses three key issues within this context. The first is the extent of degassing and how it may influence apatite growing before or after degassing; the second reconciles observed enrichments of \(^{37}\)Cl and D with a “hydrous” lunar mantle. Lastly, the presence of Cl- and S-rich reduced fluids in the lunar crust have been recently implicated for causing alteration and sulfide replacement textures in several lunar crustal samples (Shearer et al., 2012, 2014, 2015; McCubbin et al., 2015a; Elardo et al., 2012), consistent with the similar volatilities of both elements as observed in this study.

Acknowledgments

Support for this work was provided by the NASA Lunar Advanced Science and Exploration Research (LASER) grant NNX08AZ04G to HN. FMM acknowledges support from the NASA
Lunar Advanced Science and Exploration Research (LASER) grant NNX13AK32G to FMM and NNX11AB30G to Carl Agee during this study Authors benefitted greatly from the detailed and constructive comments by Zachary Sharp, and three anonymous reviewers. We are also grateful for time and effort put forth by the AE Peter Isaacson.

References cited

McCubbin, F.M., Steele, A., Nekvasil, H., Schnieders, A., Rose, T., Fries, M., Carpenter, P. K., and Jolliff, B. L. (2010b) Detection of structurally bound hydroxyl in fluorapatite from Apollo Mare basalt 15058,128 using TOF-SIMS. American Mineralogist, 95, 1141-1150.

Figure Captions

Figure 1. Back-scattered electron (BSE) images of initial (M1) and final degassed glasses after 10 minutes (M10min), 1 hour (M1h), 4 hours (M4h), 6 hours (M6h) of single-step and 1+3 hour (M1+3h) and 4+2 hour (M4+2h) of two-step degassing. Numbers shows the location of point analysis from each run product at single-step degassing experiments. Both initial and final degassed glasses are completely crystal-free. Irregular white blobs around the edges of the experimental glasses in 1, 4 and 6 hours single-step and 1+3h and 4+2h two-step degassing
experiments indicate the metallic Fe (FeO) droplets due to the shift in oxygen fugacity between high-P synthesis and low-P degassing experiments.

Figure 2. Percentage of volatiles lost from the initial melt as a function of degassing time for bulk degassing, PATHs A-D (arrows to solid symbols shown for fluorine). Similar arrows could be drawn for each volatile component. PATH E is the incremental path from 1 to 4 hours. PATH F is the incremental path from 4 to 6 hours. Dashed lines show variation in percentage loss as a function of time along the time segment 10 minutes to 6 hours for bulk degassing. The effective degassing time for Path F is based on consistency with loss of Cl and S in the bulk degassing steps at 4 and 6 hours (symbols with gray outlines).

Figure 3. Schematic indicating changes in the system through the formation of volatile phases (and metallic Fe) during bulk (single-step) degassing (Paths A-D) and sequential (two-step) degassing (Path E and F). Measured volatile contents of melt (M) are given in the gray boxes. Computed sequential contributions to the volatile phase (s) (V), based on the differences in bulk V between sequential time steps from bulk degassing experiments are indicated above each box. The volatile phase V produced along path E reflects that exsolved when the melt from path B is allowed to degas nominally for an additional three hours. The volatile phase V produced along path F reflects that exsolved when the melt from path C is allowed to degas nominally for an additional two hours. All compositions are in ppm. The number of numerical digits shown goes beyond those that are significant for comparative purposes.

Figure 4. Changes in computed incremental volatile phase composition after loss of water (at 10 minutes). Compositions plotted reflect integrated changes in composition over entire time interval between successive bulk degassing times (e.g., the point plotted at 1 hour shows the net
addition of vapor phase exsolved between 10 minutes and 1 hour to the vapor exsolved at 10 minutes). The net time for the two-step process (symbols with gray outline) is that from Figure 2.

Figure 5a. Relative volatile abundances of OH, Cl, and F in initial melt (M_I) and final degassed melt after bulk degassing at 10 minutes (M_{F10min}), 1 hour (M_{F1h}), 4 hours (M_{F4h}), and 6 hours (M_{F6h}) for the paths of Figure 3 (black arrows). Note that M_{F1h} is the initial melt (M_{I1+3h}) for two-step degassing of 1+3h and M_{F4h} is the initial melt (M_{I4+2h}) for two-step degassing of 4+2h. The co-existing melt (M_{F1+3h}) from degassing of M_{I1h} is indicated by pattern-filled triangles. The co-existing melt (M_{F4+2h}) from degassing of M_{I4h} is indicated by solid-filled triangles.

Figure 5b. Computed relative volatile content of the co-existing bulk volatile phase after 10 minutes (V_{10min}), 1 hour (V_{1h}), 4 hours (V_{4h}), and 6 hours (V_{6h}) degassing. The computed incremental volatile phase added to the bulk volatile phase during a specific time interval is indicated by light gray symbols and labeled as ΔV_{com} with the time interval indicated (e.g., ΔV_{com10min-1h}). Note that V_{10min} can also be considered as ΔV_{com0-10min}. Dashed tie-lines show geometrically the relative proportions of the incremental volatile phase (ΔV_{com time a - time b}) added to the bulk volatile phase of the previous time step (V_{time a}). The computed volatile phase (V_{exp1+3h}) from degassing of M_{I1h} is indicated by pattern-filled triangles. The computed volatile phase (V_{exp4+2h}) from degassing of M_{I4h} is indicated by solid-filled triangles.

Figure 5c. Relative volatile abundances of OH, Cl, and F in hypothetical apatites in equilibrium with the initial melt (Ap_I) and final degassed melts (Ap_t) for t=10 minutes, 1 hour, 4 hours, and 6 hours of bulk degassing. The black arrows show the direction of hypothetical apatite evolution from initial to degassed compositions for the bulk degassing paths. The dashed arrow shows the F:Cl ratio of the hypothetical apatite in the undegassed melt.
Figure 6. Estimated $\delta^{37}\text{Cl}$ (open symbols) of melt after 10 minutes, 1 hour, 4 hours, and 6 hours degassing of FeCl$_2$, assuming that within the first 10 minutes Cl was lost as HCl and resulted in no isotopic effect (and hence, retention of the value the bulk rock value of 0‰). The computed fraction of Cl remaining (F), after each degassing experiment is relative to the Cl content of the melt after 10 minutes degassing, and is plotted on the calculated trajectory of $\delta^{37}\text{Cl}$ values during degassing of FeCl$_2$ vapor species from Sharp et al. (2010).
FIGURE 2.
FIGURE 4.
FIGURE 5b.
FIGURE 5c.

TABLE 1. Target composition (14053) and mean compositions of initial, final, and Fe0 corrected (Fe0 corr.) degassed melts.

<table>
<thead>
<tr>
<th>Target a</th>
<th>Initial (0)</th>
<th>Final (t10min)b</th>
<th>Final (t1h)c</th>
<th>Final (t4h)d</th>
<th>Final (t6h)e</th>
<th>Final (t1+3h)f</th>
<th>Final (t4+2h)g</th>
<th>Final (t4h)h</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>45.86</td>
<td>46.04 (0.29)c</td>
<td>46.16 (0.32)</td>
<td>46.90</td>
<td>48.89 (0.41)</td>
<td>46.83</td>
<td>52.5 (0.18)</td>
<td>47.08</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>2.9</td>
<td>2.77 (0.02)</td>
<td>2.49 (0.12)</td>
<td>2.48</td>
<td>2.80 (0.11)</td>
<td>2.68</td>
<td>3.08 (0.03)</td>
<td>2.76</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>12.48</td>
<td>12.74 (0.07)</td>
<td>12.83 (0.06)</td>
<td>13.01</td>
<td>13.59 (0.14)</td>
<td>12.99</td>
<td>14.41 (0.06)</td>
<td>12.92</td>
</tr>
<tr>
<td>FeO</td>
<td>16.89</td>
<td>16.83 (0.17)</td>
<td>16.86 (0.15)</td>
<td>17.21</td>
<td>13.53 (0.86)</td>
<td>17.31</td>
<td>7.80 (0.06)</td>
<td>17.33</td>
</tr>
<tr>
<td>MgO</td>
<td>8.93</td>
<td>9.23 (0.08)</td>
<td>9.69 (0.07)</td>
<td>9.42</td>
<td>9.45 (0.19)</td>
<td>9.03</td>
<td>10.45 (0.09)</td>
<td>9.37</td>
</tr>
<tr>
<td>CaO</td>
<td>11.02</td>
<td>10.39 (0.06)</td>
<td>10.23 (0.08)</td>
<td>10.16</td>
<td>10.88 (0.10)</td>
<td>10.40</td>
<td>11.34 (0.04)</td>
<td>10.17</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>0.44</td>
<td>0.43 (0.01)</td>
<td>0.39 (0.01)</td>
<td>0.33</td>
<td>0.31 (0.01)</td>
<td>0.30</td>
<td>0.17 (0.01)</td>
<td>0.15</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>0.1</td>
<td>0.11 (0.01)</td>
<td>0.09 (0.01)</td>
<td>0.07</td>
<td>0.05 (0.01)</td>
<td>0.05</td>
<td>0.03 (0.00)</td>
<td>0.02</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0.11</td>
<td>0.13 (0.01)</td>
<td>0.09 (0.01)</td>
<td>0.04</td>
<td>0.04 (0.01)</td>
<td>0.04</td>
<td>0.04 (0.01)</td>
<td>0.01</td>
</tr>
<tr>
<td>Cl</td>
<td>5000</td>
<td>4787 (49)</td>
<td>1623 (82)</td>
<td>881 (58)</td>
<td>767 (95)</td>
<td>733</td>
<td>280 (28)</td>
<td>251</td>
</tr>
<tr>
<td>F</td>
<td>5000</td>
<td>5352 (193)</td>
<td>3360 (106)</td>
<td>2758 (115)</td>
<td>2686</td>
<td>2510 (140)</td>
<td>2399</td>
<td>1759 (253)</td>
</tr>
<tr>
<td>S</td>
<td>3000</td>
<td>3115 (326)</td>
<td>951 (820)</td>
<td>369 (73)</td>
<td>360 (50)</td>
<td>344</td>
<td>154 (37)</td>
<td>138</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>-</td>
<td>2.3 (0.1)</td>
<td>0 (0.01)</td>
<td>0 (0.01)</td>
<td>0 (0.01)</td>
<td>0 (0.01)</td>
<td>0 (0.01)</td>
<td>0 (0.01)</td>
</tr>
</tbody>
</table>

Note: aWillis et al. 1972. bOxides and water in wt%; Cl, F, S in ppm. c(1σ). d10 minutes bulk degassing experimental products do not contain metallic Fe (FeO0). eFe0 corrected Final (t1h) is the initial composition for t1+3h sequential degassing. fFe0 corrected Final (t4h) is the initial composition for t4+2h sequential degassing.
<table>
<thead>
<tr>
<th>Time</th>
<th>Vapor Composition (ppm)</th>
<th>WF*</th>
<th>Cl</th>
<th>F</th>
<th>S</th>
<th>H2O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>102832</td>
<td>65445</td>
<td>70289</td>
<td>761434</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final Melt Volatile abundance (ppm)</td>
<td>1623</td>
<td>3360</td>
<td>951</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volatile loss (%)</td>
<td>66</td>
<td>38</td>
<td>70</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contribution to the system (ppm)</td>
<td>Vapor 0.030200</td>
<td>3106</td>
<td>1976</td>
<td>2123</td>
<td>22995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Melt 0.969800</td>
<td>1574</td>
<td>3259</td>
<td>922</td>
<td>0</td>
</tr>
<tr>
<td>t10min</td>
<td>Vapor Composition (ppm)</td>
<td>119535</td>
<td>81592</td>
<td>83801</td>
<td>715072</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final Melt Volatile abundance (ppm)</td>
<td>881</td>
<td>2758</td>
<td>369</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volatile loss (%)</td>
<td>82</td>
<td>50</td>
<td>89</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contribution to the system (ppm)</td>
<td>Vapor 0.032249</td>
<td>3855</td>
<td>2631</td>
<td>2702</td>
<td>23060</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Melt 0.944800</td>
<td>833</td>
<td>2606</td>
<td>348</td>
<td>0</td>
</tr>
<tr>
<td>t1h</td>
<td>Vapor Composition (ppm)</td>
<td>121703</td>
<td>88842</td>
<td>83166</td>
<td>706289</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final Melt Volatile abundance (ppm)</td>
<td>767</td>
<td>2510</td>
<td>360</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volatile loss (%)</td>
<td>85</td>
<td>55</td>
<td>89</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contribution to the system (ppm)</td>
<td>Vapor 0.032586</td>
<td>3966</td>
<td>2895</td>
<td>2710</td>
<td>23015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Melt 0.928640</td>
<td>712</td>
<td>2331</td>
<td>334</td>
<td>0</td>
</tr>
<tr>
<td>t4h</td>
<td>Vapor Composition (ppm)</td>
<td>130235</td>
<td>108582</td>
<td>85472</td>
<td>675711</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final Melt Volatile abundance (ppm)</td>
<td>280</td>
<td>1759</td>
<td>154</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volatile loss (%)</td>
<td>95</td>
<td>71</td>
<td>96</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contribution to the system (ppm)</td>
<td>Vapor 0.034108</td>
<td>4442</td>
<td>3704</td>
<td>2915</td>
<td>23047</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Melt 0.869290</td>
<td>243</td>
<td>1529</td>
<td>134</td>
<td>0</td>
</tr>
<tr>
<td>t6h</td>
<td>Vapor Composition (ppm)</td>
<td>332008</td>
<td>507215</td>
<td>160777</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final Melt Volatile abundance (ppm)</td>
<td>308</td>
<td>2061</td>
<td>83</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volatile loss (%)</td>
<td>69</td>
<td>34</td>
<td>80</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contribution to the system (ppm)</td>
<td>Vapor 0.001517</td>
<td>504</td>
<td>770</td>
<td>244</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Melt 0.856362</td>
<td>263</td>
<td>1765</td>
<td>71</td>
<td>0</td>
</tr>
<tr>
<td>t1+3h</td>
<td>Vapor Composition (ppm)</td>
<td>410040</td>
<td>418807</td>
<td>171153</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final Melt Volatile abundance (ppm)</td>
<td>301</td>
<td>2202</td>
<td>170</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Volatile loss (%)</td>
<td>64</td>
<td>20</td>
<td>57</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contribution to the system (ppm)</td>
<td>Vapor 0.001230</td>
<td>504</td>
<td>515</td>
<td>211</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Melt 0.910100</td>
<td>274</td>
<td>2004</td>
<td>154</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: *weight fraction of phase in system (only vapor and melt are given, not FeO); digits beyond two decimal places are given only for mass balance purposes.
TABLE 3. Compilation of diffusion coefficients (D) from the literature for each of the volatile components (H₂O, F, Cl, S) in our experiments.

<table>
<thead>
<tr>
<th>Melt Composition</th>
<th>H₂O_melt (wt.%)</th>
<th>T (K)</th>
<th>D (m²/s)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂OT</td>
<td>Basalt</td>
<td>2.3</td>
<td>1523</td>
<td>1.57 x 10⁻⁹</td>
</tr>
<tr>
<td>F</td>
<td>Basalt</td>
<td>3.0</td>
<td>1523</td>
<td>3.67 x 10⁻¹¹</td>
</tr>
<tr>
<td>Cl</td>
<td>Basalt</td>
<td>3.0</td>
<td>1523</td>
<td>2.92 x 10⁻¹¹</td>
</tr>
<tr>
<td>S</td>
<td>Basalt</td>
<td>2.3</td>
<td>1523</td>
<td>9.23 x 10⁻¹²</td>
</tr>
<tr>
<td>H₂OT</td>
<td>Basalt</td>
<td>0.01</td>
<td>1523</td>
<td>6.81 x 10⁻¹²</td>
</tr>
<tr>
<td>F</td>
<td>Basalt</td>
<td>0.00</td>
<td>1523</td>
<td>1.94 x 10⁻¹¹</td>
</tr>
<tr>
<td>Cl</td>
<td>Basalt</td>
<td>0.00</td>
<td>1523</td>
<td>1.03 x 10⁻¹¹</td>
</tr>
<tr>
<td>S</td>
<td>Basalt</td>
<td>0.01</td>
<td>1523</td>
<td>3.47 x 10⁻¹²</td>
</tr>
</tbody>
</table>

Note: ¹Includes all molecular forms of H⁺