1	Revision 1
2	
3	Lightning-induced shock lamellae in quartz
4	
5	Reto Gieré ^{a,*} , Wolfhard Wimmenauer ^b , Hiltrud Müller-Sigmund ^b , Richard Wirth ^c ,
6	Gregory R. Lumpkin ^d , and Katherine L. Smith ^e
7	
8	
9	^a Department of Earth and Environmental Science, University of Pennsylvania,
10	Philadelphia, PA 19104-6316, USA.
11	^b Institut für Geo- und Umweltnaturwissenschaften, Albert-Ludwigs-Universität 79104
12	Freiburg, Germany.
13	^c GeoForschungsZentrum Potsdam, Department 4, Telegrafenberg, 14473 Potsdam,
14	Germany.
15	^d Institute of Materials Engineering, ANSTO, Private Mail Bag 1, Menai, NSW 2234,
16	Australia.
17	^e International Relations, ANSTO, P.O. Box 2001, Kirrawee DC, NSW 2232, Australia.
18	
19	
20	
21	* Corresponding author. Phone: (215) 898-6907.
22	E-mail address: giere@sas.upenn.edu
23	

ABSTRACT 24 Using transmission electron microscopy we show that planar deformation lamellae occur 25 within quartz in the substrate of a rock fulgurite, i.e., a lightning-derived glass. These 26 lamellae exist only in a narrow zone adjacent to the quartz/fulgurite boundary and are 27 comparable to planar deformation features ("shock lamellae") caused by hypervelocity 28 impacts of extra-terrestrial objects. Our observations strongly suggest that the lamellae 29 described here have been formed as a result of the fulgurite-producing lightning strike. 30 31 This event must have generated a transient pressure pulse, whose magnitude, however, is 32 uncertain at this stage. 33 Keywords: shock lamellae, fulgurite, lightning, planar deformation features, 34 transmission electron microscopy 35 36 37 **INTRODUCTION** 38 39 On average, a total of nearly 1.4 billion lightning discharges occur annually around the 40 globe, equivalent to an average of 44 ± 5 lightning flashes per second, of which 41 approximately 10% are typically ground strikes (Christian et al., 2003). Cloud-to-ground 42 lightning strikes are highly energetic and very short events (millisecond range; see Rakov 43 and Uman, 2006; Uman et al., 1978) with peak lightning currents that are typically on the 44 order of tens of kA (MacGorman and Rust, 1998), but may exceed 200 kA (Rakov and Uman, 2006). As the electrical resistance of air at ambient temperature is large, the air is 45 46 rapidly heated when such large currents flow through it (MacGorman and Rust, 1998),

47	leading to instantaneous peak air temperatures of 25,000-30,000 K (Rakov and Uman,
48	2006). Highly energetic lightning can dissipate a total of 1-10 GJ over the extensive
49	channel in a cloud, of which 1-10 MJ are estimated to be delivered to the strike point
50	(Borucki and Chameides, 1984; Rakov and Uman, 2006). This energy transfer may cause
51	rapid heating of the target material to temperatures above 2000 K (Essene and Fisher,
52	1986; Frenzel et al., 1989; Pasek and Block, 2009) as well as rapid physical and chemical
53	changes (Appel et al., 2006; Essene and Fisher, 1986; Frenzel et al., 1989; Pasek and
54	Block, 2009), and results in the formation of fulgurites, i.e., natural glasses produced by
55	fusion of rock, unconsolidated sediments, or soils through cloud-to-ground lightning
56	(Pasek et al., 2012). As the energy transfer is so fast, high-energy lightning flashes may
57	also cause high pressures (> 10 GPa?) when they strike the ground, possibly leading to
58	shock metamorphic effects in the target material (Collins et al., 2012; Frenzel et al., 1989;
59	Wimmenauer, 2003).
60	The aim of this study is to report evidence, collected using transmission electron
61	microscopy (TEM), for the presence of shock lamellae in a quartz crystal, which forms
62	the substrate of a rock fulgurite found at Les Pradals, France. In this brief paper, we will
63	not present the mineralogical and microstructural details of the actual fulgurite.
64	
65	
66	MATERIALS AND METHODS
67	Polished thin sections (~ $30 \mu m$ thick) of a hand specimen from Les Pradals, France
68	were first investigated with a petrographic microscope, using plane-polarized, cross-
69	polarized, and reflected light. Subsequently, one of the thin sections was coated with 20

70	nm of carbon and studied in back-scattered electron (BSE) mode with a CAMECA SX-
71	100 electron microprobe (EMP) equipped with five wavelength-dispersive crystal
72	spectrometers, which were used for quantitative chemical analysis of individual minerals
73	in the granite substrate and of the fulgurite matrix. The analytical conditions were as
74	follows: an acceleration voltage of 15 kV; a beam current of 10 nA, measured on a
75	Faraday cup; and a beam diameter of 3-8 μ m. Synthetic and natural international
76	reference materials were used as standards. Due to the porous structure of the fulgurite
77	matrix, chlorine was analyzed to monitor the influence of the embedding epoxy, but its
78	contents usually lay below the detection limit. Counting time on peak positions was 8-10
79	s (to keep heating of the delicate glass structure as low as possible), and typically half of
80	that on the background positions on either side of the peaks. The raw data were corrected
81	using the PAP procedure (Pouchou and Pichoir, 1984).
82	Foils used for the TEM investigation were cut from one of the studied thin sections
83	using an FEI FIB200 focused ion beam (FIB) milling instrument (Wirth, 2004). The areas
84	to be cut were coated with a 1 μ m thick platinum layer to reduce charging and cut using
85	30 kV gallium ions. The cuts were made perpendicular to the surface of the carbon-
86	coated thin section, yielding TEM-ready foils (~ 15 x 10 x 0.15 μ m), which were placed
87	onto a lacy-carbon copper grid.
88	The TEM investigations were carried out at 200 kV with a FEI Tecnai F20 X-Twin
89	instrument, equipped with a high-angle annular dark field detector and an energy-
90	dispersive X-ray spectrometer, which allowed for qualitative compositional analysis.
91	
92	

RESULTS AND DISCUSSION

94 Field Observations

93

At Les Pradals, Commune de Mons, Département Hérault (France) lightning struck a 95 coarse-grained granitic rock (grain size: 5-10 mm across) consisting of quartz, potassium 96 feldspar, albite, muscovite, and bluish tourmaline (schorl), as well as accessory Mn-rich 97 98 almandine garnet, apatite, and zircon. The studied fulgurite occurrence is one of several similar finds, formed by lightning impact on granite and metamorphic rocks of the 99 100 region, and testifies to the extraordinary violence of such events. The outcrop shown in Figure 1a has been blown apart along earlier fissures, scattering 101 meter-sized angular blocks in the dense brushwood vegetation surrounding it. The rock 102 103 body left in place shows blackish decorations on all prominent edges and fractures and exhibits similar dark crusts on the adjoining surfaces (Fig. 1b, 1c). These crusts terminate 104 105 typically along the edges of quartz or feldspar fracture planes and may be reduced to small droplets on exposed crystal faces (Fig. 1d). Documented lightning strikes have 106 107 produced similar blast characteristics and vitreous surface coatings on silicate rocks and 108 masonry in the Schwarzwald ("Black Forest", Germany), Vosges (France), and other 109 regions (Appel et al., 2006; Müller-Sigmund and Wimmenauer, 2002; Wimmenauer, 110 2003; Wimmenauer, 2006; Wimmenauer and Wilmanns, 2004; Gieré, unpublished 111 work). The continuous surface coatings of the Les Pradals fulgurite cover areas of several 112 square centimeters to square decimeters and exhibit a thickness of only a few tens of 113 micrometers. This appearance is distinct from typical rock fulgurites, which are melt 114 coats limited to small impact spots (Frenzel et al., 1989; Grapes and Müller-Sigmund,

115 2009; Pasek et al., 2012).

116

117 Characterization by optical and scanning electron microscopy

118 Observation with an optical microscope shows the blackish coating noted in the field

119 to be a thin, nearly opaque layer (Fig. 2a) of fairly constant thickness, only locally

120 exceeding 50 µm (Fig. 2b, 2c). The fulgurite layer consists of an optically isotropic

matrix, in which many small ($< 1 \,\mu m$ to several μm across) non-isotropic mineral

122 inclusions are embedded. The matrix also contains black, carbonaceous particles, which

- 123 cause the observed opacity.
- 124 Examination of polished sections by reflected light microscopy revealed that the
- 125 fulgurite layer is highly vesicular, a typical feature of fulgurites caused by vaporization of
- 126 rocks struck by lightning (Essene and Fisher, 1986; Frenzel et al., 1989; Frenzel and

127 Ottemann, 1978; Grapes and Müller-Sigmund, 2009; Martin Crespo et al., 2009). This

128 vesicular appearance is also observed in BSE images, which further reveal that the

129 fulgurite layer is heterogeneous, showing strong grey-scale contrast due to variations in

130 the mean atomic number of the phases present (Fig. 2b, 2c). Fractures cut parts of the

- 131 layer or, in some cases, the entire fulgurite layer (Fig. 2c). In some places the fulgurite
- 132 layer is separated from the granitic substrate by cracks, which are roughly parallel to the

133 substrate surface (Fig. 2b). These cracks were most probably caused by sample

- 134 preparation.
- 135

136 Fulgurite composition

137 The chemical composition of the fulgurite matrix was determined by spot analyses

using an EMP. As a result of the high porosity of the fulgurite layer (Fig. 2c), the

139	analytical totals of the EMP data are low, typically between 80 and 90 wt%. The glassy
140	fulgurite matrix contains on average 69 ± 6 wt% SiO ₂ and is poor in total alkalis (Table
141	1), and thus may be classified as dacite according to the Na ₂ O+K ₂ O vs. SiO ₂
142	nomenclature of Middlemost (1994). The composition of the fulgurite matrix is relatively
143	homogeneous, and the concentrations of CaO, Na2O, and K2O are always low,
144	irrespective of the substrate mineral (quartz, albite, potassium feldspar or muscovite). The
145	elevated contents of P_2O_5 and SO_2 (Table 1) cannot be attributed to these substrate
146	minerals and thus, given the presence of lichen on many surfaces not covered by
147	fulgurite, may result from biogenic material present on the rock surface at the time of the
148	lightning strike. A relatively high phosphorus content, however, is not unusual for
149	fulgurites (Grapes and Müller-Sigmund, 2009; Martin Crespo et al., 2009; Pasek and
150	Block, 2009; Pasek et al., 2012). We were unable to determine the bulk carbon content of
151	the fulgurite layer at Les Pradals due to its extreme thinness. However, another fulgurite
152	we studied from the nearby locality of Bardou contains approximately 18 wt% elemental
153	carbon (determined with a LECO RC-412 multiphase carbon analyzer).
154	
155	Characterization by transmission electron microscopy
156	The TEM investigation showed that the fulgurite matrix is entirely amorphous.
157	Embedded in this non-crystalline matrix, however, are various mineral grains and pores.

- 158 The pores are typically elongated and aligned in a direction that is parallel to the
- 159 boundary between substrate and fulgurite (Fig. 3a). In many areas of the fulgurite matrix,
- 160 the pores are aligned around the embedded crystals, resembling flow textures in volcanic

161	glass (Vernon, 2000). Minerals identified so far in the fulgurite glass include quartz,
162	hematite, magnetite, strontium-bearing barite, chlorite, and a 10-Å sheet silicate.
163	In a quartz grain located at the interface between the fulgurite layer and the substrate
164	(position #1 in Fig. 2b), we observed a set of distinct, sharp, remarkably straight, and
165	parallel lamellae (Fig. 3). These lamellae are comparable in appearance to the planar
166	deformation features (PDFs) observed by TEM in quartz from rocks that were subjected
167	to shock metamorphism as a result of a meteorite or experimental projectile impact at
168	pressures > 10 GPa (Ashworth and Schneider, 1985; French and Koeberl, 2010; Goltrant
169	et al., 1991; Langenhorst and Deutsch, 2012; Stöffler and Langenhorst, 1994). The
170	lamellae studied here are partially crystalline, as seen in dark-field TEM images (Fig. 3b).
171	Lamellae were observed only in a narrow zone (2.8 – 3.2 μ m wide), which extends from
172	the fulgurite/substrate interface into the interior of quartz and terminates in a sharp
173	boundary with a lamella-free zone (left-hand side of Fig. 3c). We interpret this abrupt
174	termination as the boundary between compressed and uncompressed areas (i.e., the shock
175	front) and indicative of where the compressive force dropped below the threshold value
176	for quartz to record it in the form of lamellae.
177	The spacing between adjacent lamellae varies between 51 and 333 nm, with an
178	average of 152 ± 58 nm (28 measurements). Close inspection of Figure 3c reveals that
179	some of the lamellae show bifurcations, implying that not all the lamellae are strictly
180	parallel to each other. However, the planar nature of these lamellae and the absence of
181	dislocation arrays exclude the possibility that they might represent sub-grain boundaries.
182	The lamellae are oriented at an acute angle to the substrate/fulgurite interface. Further

183	away from the fulgurite/substrate boundary, in the interior of the substrate (position #2 in
184	Fig. 2b), the quartz does not display any PDFs.
185	Despite the high susceptibility of quartz to damage by the electron beam, we were able
186	to obtain a high-resolution TEM image of one lamella from the area shown in Figure 3a
187	using very short exposure time (0.2 s). This image (Fig. 4a) was used to create a fast-
188	Fourier-transformation image, which allowed us to index the resulting diffraction spots.
189	Our analysis revealed that the lamellae are oriented parallel to $(01\overline{1}0)$ of quartz (Fig. 4b),
190	which corresponds to one of the prism faces.
191	
192	
193	IMPLICATIONS
194	The orientation of the lamellae described here corresponds to the composition plane of
195	Dauphiné twins, which can be induced by applied pressure, by beta-alpha quartz
196	transition on cooling, and by intense dynamic stresses (e.g., meteorite impacts, seismic
196 197	transition on cooling, and by intense dynamic stresses (e.g., meteorite impacts, seismic rupture; see Wenk et al., 2011). The lamella orientation observed in our sample is
197	rupture; see Wenk et al., 2011). The lamella orientation observed in our sample is
197 198	rupture; see Wenk et al., 2011). The lamella orientation observed in our sample is different from that reported for quartz affected by meteorite impacts or experimental
197 198 199	rupture; see Wenk et al., 2011). The lamella orientation observed in our sample is different from that reported for quartz affected by meteorite impacts or experimental shock load, where the PDFs are most commonly parallel to the {0001} basal planes or, at
197 198 199 200	rupture; see Wenk et al., 2011). The lamella orientation observed in our sample is different from that reported for quartz affected by meteorite impacts or experimental shock load, where the PDFs are most commonly parallel to the {0001} basal planes or, at high pressures, parallel to the ($10\overline{1}n$) rhombohedral planes, where $n = 0$ (rare), 1, 2, 3, and
197 198 199 200 201	rupture; see Wenk et al., 2011). The lamella orientation observed in our sample is different from that reported for quartz affected by meteorite impacts or experimental shock load, where the PDFs are most commonly parallel to the {0001} basal planes or, at high pressures, parallel to the ($10\overline{1}n$) rhombohedral planes, where $n = 0$ (rare), 1, 2, 3, and 4 (Ferrière et al., 2009; Grieve et al., 1996; Stöffler and Langenhorst, 1994). Another
197 198 199 200 201 202	rupture; see Wenk et al., 2011). The lamella orientation observed in our sample is different from that reported for quartz affected by meteorite impacts or experimental shock load, where the PDFs are most commonly parallel to the {0001} basal planes or, at high pressures, parallel to the $(10\overline{1}n)$ rhombohedral planes, where $n = 0$ (rare), 1, 2, 3, and 4 (Ferrière et al., 2009; Grieve et al., 1996; Stöffler and Langenhorst, 1994). Another difference to observations of quartz impacted by a high-velocity solid projectile is that in

206	deformation lamellae, albeit without TEM evidence (see photomicrographs in Frenzel et
207	al., 1989). In combination with the indirect evidence provided by neutron diffraction data
208	(Ende et al., 2012) and with theoretical considerations (Collins et al., 2012), our study
209	shows that lightning is indeed capable of producing shock lamellae in minerals.
210	
211	ACKNOWLEDMENTS
212	R.G. is grateful for the financial support from ANSTO and for access to the TEM facility
213	at GFZ Potsdam. We thank D. Rumble, E. Bruning, M.R. Dury and an anonymous
214	reviewer as well as the editors C. Hetherington and I. Swainson for their criticism and
215	very helpful comments on an earlier version of this manuscript.
216	
217	
217	
217	REFERENCES CITED
	REFERENCES CITED Appel, P.W.U., Abrahamsen, N., and Rasmussen, T.M., 2006. Unusual features caused by
218	
218 219	Appel, P.W.U., Abrahamsen, N., and Rasmussen, T.M., 2006. Unusual features caused by
218 219 220	Appel, P.W.U., Abrahamsen, N., and Rasmussen, T.M., 2006. Unusual features caused by lightning impact in West Greenland. Geological Magazine, 143(5), 737-741.
218219220221	Appel, P.W.U., Abrahamsen, N., and Rasmussen, T.M., 2006. Unusual features caused by lightning impact in West Greenland. Geological Magazine, 143(5), 737-741.Ashworth, J.R., and Schneider, H., 1985. Deformation and transformation in experimentally
 218 219 220 221 222 	 Appel, P.W.U., Abrahamsen, N., and Rasmussen, T.M., 2006. Unusual features caused by lightning impact in West Greenland. Geological Magazine, 143(5), 737-741. Ashworth, J.R., and Schneider, H., 1985. Deformation and transformation in experimentally shock-loaded quartz. Physics and Chemistry of Minerals, 11, 241-249.
 218 219 220 221 222 223 	 Appel, P.W.U., Abrahamsen, N., and Rasmussen, T.M., 2006. Unusual features caused by lightning impact in West Greenland. Geological Magazine, 143(5), 737-741. Ashworth, J.R., and Schneider, H., 1985. Deformation and transformation in experimentally shock-loaded quartz. Physics and Chemistry of Minerals, 11, 241-249. Borucki, W.J., and Chameides, W.L., 1984. Lightning - estimates of the rates of energy
 218 219 220 221 222 223 224 	 Appel, P.W.U., Abrahamsen, N., and Rasmussen, T.M., 2006. Unusual features caused by lightning impact in West Greenland. Geological Magazine, 143(5), 737-741. Ashworth, J.R., and Schneider, H., 1985. Deformation and transformation in experimentally shock-loaded quartz. Physics and Chemistry of Minerals, 11, 241-249. Borucki, W.J., and Chameides, W.L., 1984. Lightning - estimates of the rates of energy dissipation and nitrogen fixation. Reviews of Geophysics and Space Physics, 22, 363-

4/1

frequency and distribution of lightning as observed from space by the Optical Transient
Detector. Journal of Geophysical Research, 108 (D1), ACL-1 – ACL-15.
Collins, G.S., Melosh, H.J., and Pasek, M.A., 2012. Can lightning strikes produce shocked
quartz? 43rd Lunar and Planetary Science Conference Abstract #1160.
Ende, M., Schorr, S., Kloess, G., Franz, A., and Tovar, M., 2012. Shocked quartz in Sahara
fulgurite. European Journal of Mineralogy, 24, 499-507.
Essene, E.J., and Fisher, D.C., 1986. Lightning strike fusion: extreme reduction and metal-silicate
liquid immiscibility. Science, 234, 189-193.
Ferrière, L., Morrow, J.R., Amgaa, T., and Koeberl, C., 2009. Systematic study of universal-stage
measurements of planar deformation features in shocked quartz: Implications for
statistical significance and representation of results. Meteoritics & Planetary Science,
44/6, 925-940.
French, B.M., and Koeberl, C., 2010. The convincing identification of terrestrial meteorite impact
structures: What works, what doesn't, and why. Earth-Science Reviews, 98, 123-170.
Frenzel, G., Irouschek-Zumthor, A., and Stähle, V., 1989. Stoßwellenmetamorphose,
Aufschmelzung und Verdampfung bei Fulguritbildung an exponierten Berggipfeln.
Chemie der Erde, 49, 265-286.
Frenzel, G., and Ottemann, J., 1978. Über Blitzgläser vom Katzenbuckel (Odenwald) und ihre
Ähnlichkeit mit Tektiten. Neues Jahrbuch für Mineralogie – Monatshefte, 439-446.
Goltrant, O., Cordier, P., and Doukhan, JC., 1991. Planar deformation features in shocked
quartz; a transmission electron microscopy investigation. Earth and Planetary Science
Letters, 106, 103-115.

250	Grapes, R., and Müller-Sigmund, H., 2009. Lightning-strike fusion of gabbro and formation of
251	magnetite-bearing fulgurite, Cornone di Blumone, Adamello, Western Alps, Italy.
252	Mineralogy & Petrology, 99, 67-74.
253	Grieve, R.A.F., Langenhorst, F., and Stöffler, D., 1996. Shock metamorphism in quartz in nature
254	and experiment: II. Significance in geoscience. Meteoritics and Planetary Science, 31, 6-
255	35.
256	Langenhorst, F., and Deutsch, A., 2012. Shock metamorphism of minerals. Elements, 8, 31-36.
257	MacGorman, D.R., and Rust, W.D., 1998. The Electrical Nature of Storms. Oxford University
258	Press.
259	Martin Crespo, T., Lozano Fernandez, R.P., and Gonzalez Laguna, R., 2009. The fulgurite of
260	Torre de Moncorvo (Portugal): description and analysis of the glass. European Journal of
261	Mineralogy, 21, 783-794.
262	Middlemost, E.A.K., 1994. Naming materials in the magma/igneous rock system. Earth-Science
263	Reviews, 37, 215-224.
264	Müller-Sigmund, H., and Wimmenauer, W., 2002. Fulgurite im Schwarzwald (BRD) und im
265	Massif Central (F). Berichte der Deutschen Mineralogischen Gesellschaft, 1, 115.
266	Pasek, M.A., and Block, K., 2009. Lightning-induced reduction of phosphorus oxidation state.
267	Nature Geoscience, 2, 553-556.
268	Pasek, M.A., Block, K., and Pasek, V., 2012. Fulgurite morphology: a classification scheme and
269	clues to formation. Contributions to Mineralogy and Petrology, 164, 477-492.
270	Pouchou, J.L., and Pichoir, F., 1984. Un nouveau modèle de calcul pour la microanalyse
271	quantitative par spectrométrie de rayons X. Partie I: Application à l'analyse d'échantillons
272	homogènes. Recherches Aérospatiales, 1984-3, 167-192.

- 273 Rakov, V.A., and Uman, M.A., 2006. Lightning: Physics and Effects. Cambridge University
- 274 Press, Cambridge.
- 275 Stöffler, D., and Langenhorst, F., 1994. Shock metamorphism of quartz in nature and experiment:
- I. Basic observation and theory. Meteoritics, 29, 155-181.
- 277 Uman, M.A., Beasley, W. H., Tiller, J. A., Lin, Y., Krider, E. P., Weidmann, C. D., Krehbiel, P.
- 278 R., Brook, M., Few, A. A., Brohannon, J. L., Lennon, C. L., Poehler, H. A., Jafferis, W.,
- 279 Gulick, J. R. & Nicholson, J. R., 1978. An unusual lightning flash at Kennedy Space
- 280 Center. Science, 201, 9-16.
- 281 Vernon, R.H., 2000. Review of microstructural evidence of magmatic and solid-state flow.
- 282 Electronic Geosciences, 5, 1-23.
- 283 Wenk, H.-R., Janssen, C., Kenkmann, T., and Dresen, G., 2011. Mechanical twinning in quartz:
- Shock experiments, impact, pseudotachylites and fault breccias. Tectonophysics, 510, 6979.
- 286 Wimmenauer, W., 2003. Wirkungen des Blitzes (Sprengung und Fulguritbildung) an Felsen im
- 287 Schwarzwald. Berichte der Naturforschenden Gesellschaft zu Freiburg i. Br., 93, 1-32.
- 288 Wimmenauer, W., 2006. Vorkommen und Strukturen von Fulguriten im Schwarzwald. Der
- 289 Aufschluss, 57, 325-328.
- 290 Wimmenauer, W., and Wilmanns, O., 2004. Neue Funde von Blitzsprengung und Fulguritbildung
- 291 im Schwarzwald. Berichte der Naturforschenden Gesellschaft zu Freiburg i. Br., 94, 1-22.
- 292 Wirth, R., 2004. Focused ion beam (FIB): a novel technology for advanced application of micro-
- and nanoanalysis in geosciences and applied mineralogy. European Journal of
- 294 Mineralogy, 16, 863-876.
- 295
- 296

297	FIGURE CAPTIONS
298	Figure 1. Photographs taken at the studied fulgurite locality near Les Pradals, France. (a)
299	Photograph of the lightning-fractured outcrop. The surfaces facing the observer in upper
300	right are covered with black fulgurite. The block in the left foreground is approximately 2
301	meters high; (b) Detail of rock surface covered with the dark fulgurite coating. (c)
302	Fracture blackened by the lightning, which caused the black fulgurite coating. (d) Detail
303	of a feldspar surface, which is partially covered with dark, glassy fulgurite coatings in the
304	form of narrow decorations (left side of image) and small droplets (right side). The
305	pattern of black decorations seen in the upper left corner (photograph taken by P.
306	Rustemeyer) is reminiscent of a Lichtenberg figure.
307	Figure 2. Photomicrographs of the boundary between the fulgurite layer and its substrate.
308	(a) Thin section photograph, taken in plane-polarized light, showing the granitic rock
309	(lower left part of image) and the opaque to dark brown, thin fulgurite coating, which
310	traces the original rock surface. The granite is composed of clear quartz, turbid albite, and
311	bluish tourmaline (bottom left). Opaque areas within the rock are carbon-coating relics;
312	(b) BSE image of fulgurite rim (spongy texture) on quartz. It shows fractures crossing the
313	fulgurite layer, a crack separating it from the quartz substrate, and the two locations from
314	which focused ion beam foils were cut (#1, #2). Deformation bands were only seen in the
315	foil from position #1; (c) BSE image of foamy fulgurite layer mainly on quartz substrate.
316	Fulgurite contains inclusions of mineral fragments and micrometer-sized bright spheres
317	of variable composition, interpreted as captured fly ash particles. Abbreviations: Qtz =
318	quartz; $Ab = albite$.

319	Figure 3. Transmission electron microscope images of the granite/fulgurite interface. (a)
320	Bright-field image showing planar deformation lamellae in quartz (left), an iron-rich zone
321	at the interface within the fulgurite layer (dark, labeled as "Fe-rich"), and the amorphous
322	fulgurite with pores (bright lenticular features); (b) Dark-field image, obtained using
323	(01 $\overline{1}$ 0) of quartz, of the same area as that displayed in (a) showing the planar deformation
324	lamellae in quartz as set of bright, parallel bands crossing the image from upper right to
325	lower left; (c) Overview bright-field image showing undamaged quartz on the extreme
326	left, separated from lightning-damaged quartz by a sharp boundary, and the fulgurite
327	layer in the upper right. Dark shadow is an artifact due to the FIB sample preparation.
328	Image (a) shows detail from the upper right part of image (c), but it was taken first and
329	thus, does not show the electron beam damage to the lamellae seen in image (c).
330	Abbreviations: Qtz = quartz; F = fulgurite.
331	Figure 4. Transmission electron microscope image of a planar deformation lamella in
331 332	Figure 4. Transmission electron microscope image of a planar deformation lamella in quartz. (a) High-resolution image showing a planar deformation lamella in quartz from
332	quartz. (a) High-resolution image showing a planar deformation lamella in quartz from
332 333	quartz. (a) High-resolution image showing a planar deformation lamella in quartz from the area shown in Fig. 3a. The slightly brighter contrast of the deformation lamella shows
332 333 334	quartz. (a) High-resolution image showing a planar deformation lamella in quartz from the area shown in Fig. 3a. The slightly brighter contrast of the deformation lamella shows no lattice fringes thus indicating a non-crystalline state. The brighter contrast is due to
332333334335	quartz. (a) High-resolution image showing a planar deformation lamella in quartz from the area shown in Fig. 3a. The slightly brighter contrast of the deformation lamella shows no lattice fringes thus indicating a non-crystalline state. The brighter contrast is due to lower density of the non-crystalline material resulting in reduced mass absorption
 332 333 334 335 336 	quartz. (a) High-resolution image showing a planar deformation lamella in quartz from the area shown in Fig. 3a. The slightly brighter contrast of the deformation lamella shows no lattice fringes thus indicating a non-crystalline state. The brighter contrast is due to lower density of the non-crystalline material resulting in reduced mass absorption contrast; (b) Fast-Fourier transformation image of the planar deformation lamella shown

340

- 341 **Table 1.** Bulk chemical composition
- 342 of the glassy fulgurite matrix (in
- 343 wt%), as determined by EMP
- 344 analysis.345

Component	Average	σ_{n-1} $(n=4)$
SiO ₂	69	6
TiO ₂	0.1	0.1
Al_2O_3	9	2
FeO	2	2
MgO	0.8	0.4
CaO	1.3	0.5
Na ₂ O	0.2	0.1
K ₂ O	1.2	0.4
P_2O_5	0.2	0.1
SO_2	0.5	0.4
Total	84	

346 347

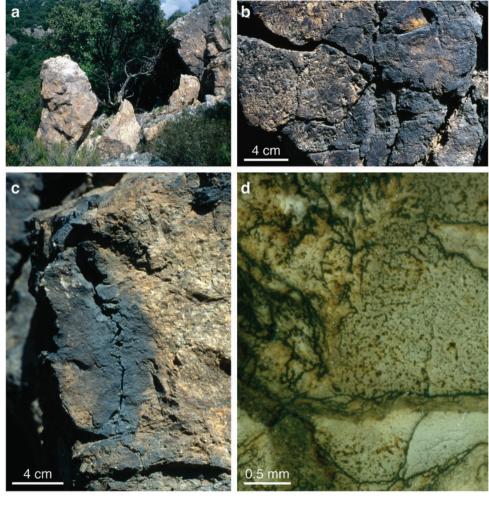


Fig. 1. Photographs taken at the studied fulgurite locality near Les Pradals, France.

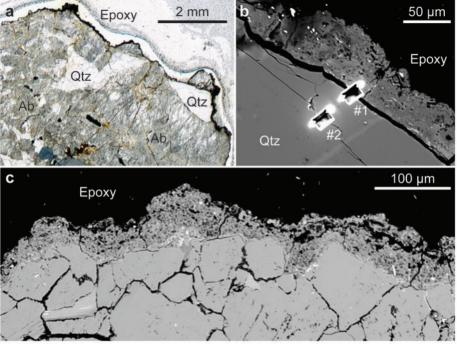


Fig. 2. Photomicrographs of the boundary between the fulgurite layer and its substrate.

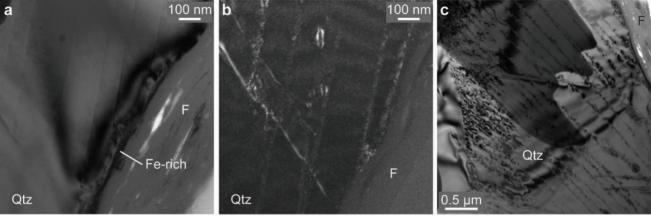


Fig. 3. Transmission electron microscope images of the granite/fulgurite interface.

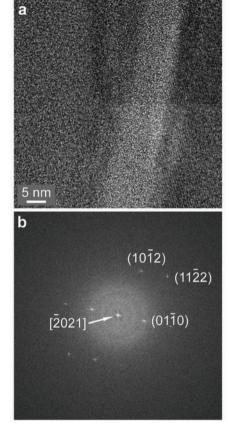


Fig. 4. Transmission electron microscope image of a planar deformation lamella in quartz.