The speciation of carbon monoxide in silicate melts and glasses

TAKAHIRO YOSHIOKA, CATHERINE McCAMMON, SVYATOSLAV SHCHEKA, AND HANS KEPPLER*

Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth, Germany

* E-mail: Hans.Keppler@uni-bayreuth.de

ABSTRACT

We have studied the speciation of carbon monoxide in both Fe-bearing and Fe-free basaltic glasses using Raman, FTIR, and Mössbauer spectroscopy. We show that a band at 2110 cm\(^{-1}\) in the Raman spectrum and another band at 2210 cm\(^{-1}\) in the FTIR spectrum occur both in the Fe-bearing and Fe-free samples, implying that they cannot be due to any Fe-bearing species. This observation is consistent with \(^{57}\)Fe Mössbauer spectra, which do not show any evidence for Fe species with zero isomer shift, as expected for carbonyls. Thermodynamic calculations show that iron carbonyl in basaltic melts under crustal and upper mantle conditions may only be a trace species. Rather than being due to distinct chemical species, the range of vibrational frequencies observed for carbon monoxide in silicate glasses appears to be due to rather subtle interactions of the CO molecule with the matrix. Similar effects are known from the extensive literature on carbon monoxide adsorption on oxides and other surfaces. In the melt at high temperature, there is likely little interaction of the CO molecule with the silicate matrix and solubility may be largely controlled by pressure, temperature, and the overall polymerization or ionic porosity of the melt.

Keywords. Silicate melt, carbon monoxide, iron, carbonyl, Raman, Mössbauer
INTRODUCTION

Carbon dioxide is an important component of volcanic gases, usually second in abundance only to water. Due to its low solubility in silicate melts at low pressure, CO₂ may drive bubble nucleation during eruptions and the melting point depression induced by CO₂ plays an important role in stabilizing low-degree partial melts in the mantle (e.g. Wyllie and Huang 1976). Accordingly, carbon dioxide solubility in silicate melts has been extensively studied (Ni and Keppel 2013 and references therein). In contrast to CO₂, the solubility of carbon monoxide (CO) in silicate melts has received relatively little attention, probably because it is only a trace component in volcanic gases (Symonds et al. 1994) and because thermodynamic calculations suggest that under the oxygen fugacities prevailing in the Earth today, its abundance in crustal and upper mantle fluids is low (e.g. Frost and McCammon 2008). However, carbon monoxide could be an important species of carbon during planetary degassing under reducing conditions, e.g. on the Moon, during core formation on Earth, or perhaps even today in the reduced, deep mantle (e.g. Wetzel et al. 2013; Hirschmann 2013).

Pawley et al. (1992) suggested that carbon monoxide is much less soluble than carbon dioxide in a basaltic melt at 1200 °C and 500 to 1500 bar. A similar conclusion was reached by Morizet et al. (2010). Brooker et al. (1999) detected dissolved CO in reduced glasses prepared along the NaAlO₂-SiO₂ join by FTIR and NMR spectroscopy. In the NMR spectrum, a peak at a chemical shift of 185 ppm was assigned to CO; FTIR spectra showed a band between about 2160 and 2180 cm⁻¹, depending on the composition of the glass matrix. Notably, this absorption frequency is significantly higher than for CO in the gas phase (2143 cm⁻¹). Wetzel et al. (2013) reported a band at 2110 cm⁻¹ in the Raman spectra of reduced, carbon-bearing basalt glasses and attributed it to iron pentacarbonyl Fe(CO)₅. They inferred that Fe(CO)₅ is the main species of reduced carbon in these glasses. Stanley et al. (2014) suggested that a band at 2205 cm⁻¹ in the infrared spectrum in a graphite-saturated basalt could also be due to a carbonyl species.

The stability of carbonyl species in silicate melts and glasses could have important implications for the behavior of carbon, since carbon solubility would then be strongly coupled to the availability of iron. Carbonyls are molecules containing carbon monoxide coordinated to a transition metal. Typical examples are Ni(CO)₅ and Fe(CO)₅. Stable carbonyls are only known from the central block of the transition metals in the periodic table, where iron is the only element sufficiently abundant to be relevant for discussing the potential stability of carbonyls in natural silicate melts. The metal atom in simple carbonyls has the formal oxidation state of zero, which is
related to an unusual mechanism of chemical bonding (e.g. Greenwood and Earnshaw 1984). An
electron pair from the carbon atom is donated to the metal atom to form a σ bond; this bond is
strengthened by a back-donation of d electrons from the metal atom into the anti-bonding orbitals
of the CO molecule. Populating the anti-bonding orbitals of CO weakens the bond between
carbon and oxygen and therefore usually causes the vibrational frequency of CO in a carbonyl to
be shifted downwards relative to the free CO molecule.

In this study, we combined Raman, FTIR, and Mössbauer spectroscopy on Fe-bearing and Fe-
free basaltic glasses containing reduced carbon in order to investigate the dissolution mechanism
of carbon monoxide in silicate melts and glasses.

EXPERIMENTAL AND ANALYTICAL METHODS

Two different synthetic glasses were used as starting materials. One was equivalent in
composition to the lunar green glass used by Wetzel et al. (2013). A second glass had the same
composition, with the exception that all FeO (total iron expressed as FeO) was replaced by an
equimolar mixture of CaO and MgO. The glasses were prepared from stoichiometric mixtures of
high-purity oxides and carbonates. The mixtures were homogenized and first decarbonated by
slowly heating them over 12 hours to 1100 °C. They were then re-melted for 1 hour at 1600 °C
and quenched in distilled water. Microprobe analyses of the clear, crystal-free glasses are given
in the footnote of Table 1. Before the actual high-pressure experiments, the Fe-bearing glass was
first wrapped in an iron foil and reduced in a CO-CO$_2$ gas mixture at 1300 °C for 3 hours and an
oxygen fugacity of one log unit below the iron-wustite buffer. This is the same oxygen fugacity
as expected to prevail in the following piston cylinder experiments in equilibrium with Fe metal
and graphite (Wetzel et al. 2013).

High-pressure experiments (Table 1) were carried out in an end-loaded piston-cylinder apparatus
at 10 kbar and 1450 – 1530 °C for 2 hours. Glass powder was loaded into graphite capsules inside
platinum rhodium (Pt$_5$Rh$_3$) capsules with 5 mm diameter, 10 mm length and 0.3 mm wall
thickness. Only in experiments with the Fe-bearing glass, some wire of metallic iron was also
added to the charge to buffer oxygen fugacity. No water was added in any of the experiments.
Some experiments were also carried out with a trace (0.5 wt.%) of 57Fe$_2$O$_3$ added to the Fe-free
glass. No iron metal was added in these runs. All experiments were quenched to room
temperature within a few seconds by turning off the power to the heater. Run products were
usually clear glasses, only in a few runs minor quench crystallization of olivine was observed. No
gas bubbles were observed in the glasses and we therefore assume that all volatiles dissolved
under run conditions are fully conserved in the glass.

FTIR spectra were measured with a Bruker IRscopel attached to a Bruker IFS 120HR
spectrometer. The optics of the spectrometer were kept under vacuum during the measurement,
while the microscope was permanently purged with purified air. Measurements were carried out
on doubly polished platelets of run product glasses of 248 to 254 μm thickness. For each
measurement, 200 scans were accumulated with 4 cm⁻¹ resolution, using a tungsten light source, a
CaF₂ beam splitter and a narrow-band MCT-detector. The spot size was limited to 120 μm by an
aperture in the rear focal plane of the 15 X Cassegrarian objective.

Raman spectra were measured on the same samples as used for FTIR spectroscopy using a
confocal Horiba Jobin-Yvon Labram 800HR UV spectrometer with the 514 nm line of an Ar
laser at 200 mW output power as excitation source. Spectra were measured with a 50X objective,
a 1800 mm⁻¹ grating, and a Peltier-cooled CCD detector, with an optical resolution of 2 cm⁻¹ and
an accumulation time of 20 times 10 seconds. A reference spectrum of pure Fe(CO)₅ (supplied by
Sigma-Aldrich) inside a glass cuvette was also measured with the same system, but with an
accumulation time of only 2 times 5 seconds and < 10 mW laser power, to avoid evaporating or
decomposing the liquid.

Mössbauer spectra were measured at room temperature in transmission mode on a constant
acceleration Mössbauer spectrometer with a nominal 370 MBq ⁵⁷Co high specific activity source
in a 12 μm thick Rh matrix. The velocity scale was calibrated relative to Fe foil. The
dimensionless thickness of the Fe-bearing and the ⁵⁷Fe₂O₃-doped sample was 2.9 and 4.9,
respectively. Spectra were collected for about 1 day. Spectra were fitted using the xVBF method
(e.g., Lagarec and Rancourt 1997) as implemented by MossA software (Prescher et al. 2012).

RESULTS AND DISCUSSION

Raman and infrared spectra

Raman and infrared spectra of both Fe-bearing and Fe-free glasses are shown in Figure 1. The
Raman spectra (Fig. 1 a) of the Fe-bearing glasses show a peak at 2110 cm⁻¹, very similar to the
peak assigned by Wetzel et al. (2013) to Fe(CO)₅. Additional peaks at 1350 cm⁻¹ and 1590 cm⁻¹
are due to traces of graphite, the band near 3600 cm⁻¹ is due to dissolved OH. Methane (CH₄, near
2917 cm\(^{-1}\)) is not detectable. However, essentially the same bands, including the one at 2110 cm\(^{-1}\) are also seen in the Raman spectrum of the Fe-free glass. This observation rules out any assignment of this band to a Fe-bearing species. Moreover, while a band near this frequency does indeed occur in the reference spectrum of pure Fe(CO)\(_5\) shown in Figure 1 b, a strong Fe(CO)\(_5\) band near 2014 cm\(^{-1}\) (e.g. Bigorgne 1970; Jones et al. 1972) is not seen in the spectra of the CO-bearing glasses.

The infrared spectra (Fig. 1 c) of the Fe-bearing glasses show a peak near 2210 cm\(^{-1}\), that is very similar to a band at 2205 cm\(^{-1}\) observed by Stanley et al. (2014), which was tentatively assigned by them to a Fe carbonyl anion. In addition, a band due to dissolved OH occurs near 3500 cm\(^{-1}\), corresponding to a water content of about 0.15 wt. %, using the extinction coefficient of Dixon et al. (1988). No clear evidence for carbonate is seen in the infrared spectra. Unlike in the study of Wetzel et al. (2013), no band can be detected near 2110 cm\(^{-1}\); however, this band is also very weak in the spectra reported by those authors. The 2210 cm\(^{-1}\) band also occurs in the spectrum of the Fe-free glass, again ruling out any assignment to a Fe-bearing species.

Mössbauer spectra

Mössbauer spectroscopy should readily allow the identification of any Fe-carbonyl species in a glass, because the formal oxidation state of Fe in carbonyls is zero. This causes the isomer shift of Fe-carbonyl species to be nearly zero (Kalvius et al. 1962; Herber et al. 1963), which is easily distinguishable from the normal isomer shift of Fe\(^{2+}\) or Fe\(^{3+}\) in glasses (e.g. Virgo and Mysen 1985). Figure 2a shows the Mössbauer spectrum of a graphite-saturated, Fe-bearing glass. Only the normal doublet of Fe\(^{2+}\) is seen, with an isomer shift of 1.04 mm/s and a quadrupolar splitting of 1.96 mm/s. However, from these data, one cannot conclude that iron carbonyl species are absent from the sample, since the Fe concentration (8.69 wt.% bulk FeO) is much higher than the concentration of dissolved CO. The latter cannot be directly inferred from spectroscopic data, as the infrared extinction coefficient of CO in glass is not known; however, it is likely that CO concentration is in the order of hundreds to a few thousand ppm for the conditions where the samples were synthesized (e.g. Wetzel et al. 2013; Stanley et al. 2014). Therefore, a glass was prepared with a much lower bulk iron content (0.5 wt. % FeO), where all iron was added as \(^{57}\)Fe\(_2\)O\(_3\). The Raman and infrared spectra of this glass showed the same bands at 2110 and 2210 cm\(^{-1}\) as the glass with higher Fe content. The Mössbauer spectrum (Fig. 2 b) is also virtually indistinguishable from the spectrum of the Fe-rich glass. If iron carbonyls were major CO species in this sample, they should represent a considerable fraction of the total iron, and therefore an enhancement of absorption near zero isomer shift should be seen. This is not observed.
Thermodynamic considerations

The thermodynamic properties of iron pentacarbonyl are known from a combination of calorimetric and spectroscopic data (Behrens 1977). By combining them with standard state thermodynamic data for carbon monoxide and iron metal (Robie and Hemingway 1995), the equilibrium constant K for the reaction

$$\text{Fe} + 5 \text{CO} = \text{Fe(CO)}_5$$

can readily be calculated. This yields \(\ln K = -66.71 + 20363/T \), where \(T \) is temperature in Kelvin.

The equilibrium constant is defined as

$$K = \frac{f_{\text{Fe(CO)}_5}}{a_\text{Fe} f_{\text{CO}}}$$

where \(f \) are fugacities and \(a_{\text{Fe}} \) is the activity of iron. Assuming equilibrium with metallic iron – as in some of our experiments – \(a_{\text{Fe}} \) becomes 1 and the fugacity of the pentacarbonyl can easily be calculated for a given CO fugacity. The results of these calculations are shown in Figure 3. For all plausible conditions of temperature and CO fugacity in the crust and upper mantle, the ratio of the pentacarbonyl fugacity to the CO fugacity is very low, implying that Fe(CO)$_5$ may only be a trace species in a gas phase at run conditions. The ratio of Fe(CO)$_5$ to CO in a coexisting silicate melt could potentially be higher, due to preferential partitioning of Fe(CO)$_5$ into the melt.

However, the fugacity ratios in the gas phase are so unfavorable for the formation of Fe(CO)$_5$ that this effect is unlikely to stabilize significant amount of iron carbonyl in the melt. The high volatility of Fe(CO)$_5$ (boiling point of 103 °C at 1 bar) also makes preferential partitioning into a silicate melt in equilibrium with a gas phase unlikely. For conditions where the melt is not in equilibrium with metallic iron, Fe(CO)$_5$ abundances will be even lower. For more complicated (polynuclear) Fe carbonyl species, thermodynamic data are lacking; however, the main reason for the low stability of Fe(CO)$_5$ at high temperatures is the strongly negative entropy of formation from Fe and CO (\(\Delta S^* = -574.3 \) J/mol K for Fe(CO)$_5$ gas). For larger, more complicated Fe carbonyl species, this number will be even more negative, making their stability at high temperatures very unlikely.
A comparison with carbon monoxide adsorbed on surfaces

The bands in the 2100 cm\(^{-1}\) to 2200 cm\(^{-1}\) range observed here and in previous studies (Brooker et al. 1999; Wetzel et al. 2013; Stanley et al. 2014) are very likely due to some kind of CO dissolved in the glass, as they occur in a frequency range where normally only triple-bonded light elements are observed. Vibrational frequencies of acetylene HCCCH, hydrogen cyanide HCN, and derived species may occur in a similar range. However, the C-H bands of acetylene are not observed and our samples do not contain measurable nitrogen, so assigning these bands to carbon monoxide is the only plausible possibility. This would imply that the vibrational frequencies of CO in glasses are much more strongly affected by the glass matrix than those of CO\(_2\). For molecular carbon dioxide in glasses, the infrared spectra always show a band very close to the antisymmetric stretching frequency of the free CO\(_2\) molecule (2349 cm\(^{-1}\); Ni and Keppler 2013). The stronger interaction of CO with the silicate matrix may be related to the fact that CO has a permanent dipole moment, which CO\(_2\) does not have. Moreover, the CO has antibonding molecular orbitals at relatively low energy (e.g. Greenwood and Earnshaw 1984), so that it can accept electron density, which reduces the bond strength and therefore the stretching frequency.

Some insights into possible interactions between the CO molecule with the glass matrix may be gained from the extensive literature on CO adsorption on surfaces. While the chemical bonding of CO on a surface may not be exactly the same as the interaction of the CO molecule with a surrounding glass matrix, the data provide a useful guide for understanding the relationship between chemical bonding and vibrational frequencies. Raman frequency shifts for CO adsorbed on surfaces have been reported, which are even larger than the shifts observed in glasses. Interestingly, both shifts to higher and to lower frequencies are observed and they also occur in systems without transition metals and systems where carbonyls are not stable. Bordiga et al. (1995) observed that the stretching frequency of CO adsorbed on a zeolite (mordenite) shifts from 2155 cm\(^{-1}\) to 2188 cm\(^{-1}\), depending on the alkali ion present. Similar shifts were observed for the adsorption on a titanosilicate (Zecchina et al. 1999). Several theoretical studies have investigated the adsorption of CO on the surface of MgO crystals (Neymann and Rösch 1992, 1993; Pacchioni et al. 1992). Interestingly, these models predict an increase of the CO stretching frequency, if the carbon atom docks to the surface, while a decrease in frequency is predicted, if CO is coordinated to the surface by the oxygen atom. Predicted frequency shifts range from \(-124\) cm\(^{-1}\) to \(+99\) cm\(^{-1}\) relative to the stretching frequency of the free CO molecule. The effect is mainly attributed to electrostatic fields acting on the CO dipole, rather than to direct chemical bonding to the surface. Adsorption experiments on silver surfaces also show some interesting effects. Note that no stable silver carbonyls are known and silver, being a noble metal, is not
expected to easily form chemical bonds. Yamamoto and Nanba (1988) observed that they could reduce the stretching frequency of CO adsorbed on a silver film by 29 or 23 cm\(^{-1}\), respectively, by co-adsorbing xenon and krypton. Mahoney et al. (1984) reported that they could induce large shifts in the stretching frequency of CO adsorbed on a silver electrode simply by changing the chemical potential on the electrode. This effect, sometimes called “Stark tuning” has also been observed for other electrode materials (Zhou and Weaver 1996). All of these observations suggest that the CO stretching frequency is extremely sensitive to very subtle changes in the environment of the molecule.

IMPLICATIONS

The experimental data presented here imply that bands observed in the 2100 – 2200 cm\(^{-1}\) range of the Raman and infrared spectra of reduced, carbon-bearing glasses are not due to several, distinct chemical species, but caused by CO molecules weakly interacting with the matrix. This conclusion is consistent with the extensive literature on CO adsorbed on surfaces. In silicate melt at high temperature, these weak interactions are small compared to thermal energy and therefore, the CO molecule probably dissolves in the melt with little interaction with the matrix. CO solubility is therefore likely a simple function of pressure, temperature and the bulk structure of the silicate melt, as expressed by the degree of polymerization or ionic porosity. However, theoretical studies of surface adsorbed CO suggest that CO molecules with different stretching frequencies may have very different infrared absorption coefficients (Neyman and Rösch, 1992), which may require matrix-specific calibrations for measuring CO in silicate glasses by infrared spectroscopy.

ACKNOWLEDGEMENTS

Constructive reviews by Jim Webster, Alexander Borisov, Fabrice Gaillard, and Ian Swainson helped to improve the manuscript.

REFERENCES CITED

Behrens, R.G. (1977) Thermodynamics of transition metal carbonyls I. Fe(CO)\(_5\), Ru(CO)\(_5\), Os(CO)\(_5\). Journal of the Less-common Metals, 56, 55-68.
Bigorgne, M. (1970) Étude spectroscopique Raman et infrarouge de Fe(CO)$_5$, Fe(CO)$_3$L et trans-
Fe(CO)$_3$L$_2$ (L=PM$_3$, AsMe$_3$, SbMe$_3$). I. Attribution des bandes de Fe(CO)$_5$. Journal of
Organometallic Chemistry, 24, 211-229.

study of CO adsorbed at 77 K on H-Mordenite and alkali-metal exchanged mordenites.
Langmuir, 11, 527-533

speciation and dissolution mechanism for CO$_2$ in melts on the NaAlO$_2$-SiO$_2$ join. Geochimica et
Cosmochimica Acta, 63, 3549-3565.

and H$_2$O in Juan de Fuca Ridge basaltic glasses. Earth and Planetary Science Letters, 90, 87-104.

pentacarbonyl and related carbonyls. Inorganic Chemistry, 2, 153-158.

Hirschmann, M.M. (2013) Fe-carbonyl is a key player in planetary magmas. Proceedings of the
National Academy of Sciences of the United States of America, 110, 7967-7968.

Jones, L.H., McDowell, R.S., Goldblatt, M., and Swanson, B.I. (1972) Potential constants of iron
pentacarbonyl from vibrational spectra of isotopic species. The Journal of Chemical Physics, 57,
2050-2064.

Kalvius, M., Zahn, U., Kienle, P., and Eichner, H. (1962) Hyperfeinstruktur des 14,5 keV-
Zustandes von Fe57, gebunden in verschiedenen Eisencarbonylen. Zeitschrift für Naturforschung,
A 17, 494-499.

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

Table 1. Synthesis conditions of glasses and a summary of the Raman and infrared bands observed in them.

<table>
<thead>
<tr>
<th>Run no.</th>
<th>Starting material</th>
<th>P (GPa)</th>
<th>T (°C)</th>
<th>Duration (hours)</th>
<th>Crystals$^\text{a}$</th>
<th>FTIR (cm$^{-1}$)</th>
<th>Raman spectroscopy (cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2025</td>
<td>2210 (\downarrow) 1350 (\uparrow) 1590 (\downarrow) 1725 (\downarrow) 2110 (\downarrow) 2710 (\downarrow) 2965 (\downarrow) 3075 (\downarrow) 3570 (\downarrow)</td>
</tr>
<tr>
<td>A717</td>
<td>Fe-bearing glass$^\text{a}$</td>
<td>1</td>
<td>1530</td>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow)</td>
</tr>
<tr>
<td>B809</td>
<td>Fe-bearing glass$^\text{a}$</td>
<td>1</td>
<td>1450</td>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow)</td>
</tr>
<tr>
<td>A726</td>
<td>Fe-free glass$^\text{a}$</td>
<td>1</td>
<td>1530</td>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow)</td>
</tr>
<tr>
<td>A727</td>
<td>Fe-free glass$^\text{a}$</td>
<td>1</td>
<td>1450</td>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow)</td>
</tr>
<tr>
<td>A732</td>
<td>Fe-free glass$^\text{a}$</td>
<td>1</td>
<td>1530</td>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow)</td>
</tr>
<tr>
<td>A751</td>
<td>57Fe-doped glass$^\text{a}$</td>
<td>1</td>
<td>1530</td>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow)</td>
</tr>
<tr>
<td>A752</td>
<td>57Fe-doped glass$^\text{a}$</td>
<td>1</td>
<td>1530</td>
<td>2</td>
<td>✓</td>
<td>✓</td>
<td>✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow) ✓ (\downarrow)</td>
</tr>
</tbody>
</table>

$^\text{a}$ 44.65 wt% SiO$_2$, 8.69 wt% Al$_2$O$_3$, 23.12 wt% MgO, 8.71 wt% CaO, 14.57 wt% FeO, 0.32 wt% TiO$_2$.

$^\text{b}$ 48.00 wt% SiO$_2$, 9.78 wt% Al$_2$O$_3$, 24.44 wt% MgO, 16.50 wt% CaO, 0.37 wt% TiO$_2$.

$^\text{c}$ Fe-free glass doped with 0.5 wt.% of 57Fe$_2$O$_3$

$^\text{d}$ Small amounts of quench crystals of olivine in some glasses.

All runs were saturated with graphite (the capsule material); runs A717 and B809 were also in equilibrium with iron metal.
Fig. 1. Raman and infrared spectra of graphite-saturated glasses and of iron pentacarbonyl Fe(CO)$_5$. a) Raman spectra of a Fe-bearing and Fe-free, graphite saturated glass; b) Raman spectrum of pure Fe(CO)$_5$, supplied by Sigma-Aldrich; c) infrared spectra of a Fe-bearing and Fe-free, graphite saturated glass.
Fig. 2. 57Fe Mössbauer spectra of two graphite-saturated glasses. a) Glass with 8.69 wt. % FeO, no isotopic enrichment, sample thickness 253 μm; b) glass with 0.5 wt. % 57FeO, sample thickness 252 μm.
Fig. 3. Calculated ratio of the fugacity of Fe(CO)$_5$ to the fugacity of CO for various temperatures and CO fugacities.