### **Revision 2**

## Partition of Al between Phase D and Phase H at high pressure: Results from a simultaneous structure refinement of the two phases coexisting in an unique grain

LUCA BINDI,<sup>1,2\*</sup> MASAYUKI NISHI,<sup>3,4</sup> TETSUO IRIFUNE<sup>3,4</sup>

<sup>1</sup> Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, I-50121 Firenze, Italy

<sup>2</sup> CNR - Istituto di Geoscienze e Georisorse, sezione di Firenze, Via La Pira 4, I-50121 Firenze, Italy

<sup>3</sup> Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan

<sup>4</sup> Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8550, Japan

#### ABSTRACT

The crystal structure of the two dense hydrous magnesium silicates Phase D, 16 MgSi<sub>2</sub>H<sub>2</sub>O<sub>6</sub>, and Phase H, MgSiH<sub>2</sub>O<sub>4</sub>, synthesized at 45 GPa and 1000 °C and coexisting in 17 the same micron-sized grain, was investigated by single-crystal X-ray diffraction to study the 18 preferential partition of Al between the two structures. In agreement with the literature, Phase 19 D was found to be trigonal, space group  $P\overline{3}1m$ , with lattice parameters a = 4.752(2), c =20 4.314(2) Å, V = 84.37(6) Å<sup>3</sup> ( $R_1 = 0.020$ ), and Phase H was found to be orthorhombic, space 21 group *Pnnm*, with lattice parameters a = 4.730(2), b = 4.324(2), c = 2.843(2) Å, V = 58.15(5)22 Å<sup>3</sup> ( $R_1 = 0.024$ ). The estimated proportion (vol.%) of the two phases from the refinement is 23  $27(2)_{PhD} - 73_{PhH}$ . The analysis of the geometric details of the two structures shows that Phase 24 D hosts almost all the Al available, whereas Phase H is nearly identical to pure MgSiH<sub>2</sub>O<sub>4</sub>. 25 Overexposed electron-microprobe X-ray maps of the same grain used for the X-ray 26 diffraction study together with WDS spots on the two phases confirmed the structural results. 27 Thus, our results suggest that when Phase D and Phase H coexist, Al is strongly partitioned 28 into Phase D at the expense of coexisting Phase H. At pressure above ~50 GPa, where Phase 29 D is no longer stable, Phase H is able to incorporate the high aluminum contents present in 30 hydrous peridotitic compositions in the deep lower mantle and be stabilized at the expense of 31 Phase D and magnesium silicate perovskite. 32

33

1

2

3

4

5 6

7 8

9

10

11

12 13 14

15

34 KEYWORDS: Phase D, Phase H, aluminum, dense hydrous magnesium silicates, lower
 35 mantle, crystal structure, synthesis

36

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5327

37

#### **INTRODUCTION**

Dense hydrous magnesium silicates (DHMS) play a crucial role in the delivery of a 38 significant amount of water to the lower mantle by the subduction of oceanic slabs thus 39 influencing the structure and dynamics of the deep Earth. Until recently, Phase D, 40  $MgSi_2H_2O_6$ , has been considered to be the highest-pressure phase among the DHMS (Frost 41 and Fei 1998; Shieh et al. 1998). However, Tsuchiya (2013) and Nishi et al. (2014) found that 42 at pressures above  $\sim 50$  GPa, Phase D transforms to a new dense hydrous silicate, MgSiH<sub>2</sub>O<sub>4</sub>, 43 labeled Phase H. The crystal structure of Phase H has been recently investigated by Bindi et 44 al. (2014) by means of single-crystal X-ray diffraction and its stability field, in relation to the 45 hydrous AlOOH component, has been studied in detail by Ohira et al. (2014) and Ohtani et al. 46 (2014). These Authors hypothesized the MgSiH<sub>2</sub>O<sub>4</sub> – AlAlH<sub>2</sub>O<sub>4</sub> (Al-Phase H) solid solution 47 as potentially the most important hydrous phase present under deep lower mantle conditions. 48

The key role of Al in expanding the stability of DHMSs at higher temperatures has been also demonstrated for Phase D independently by Ghosh and Schmidt (2014) and by Pamato et al. (2015). The incorporation of high amounts of Al in the structure of Phase D makes this phase stable at temperatures extending to over 2000 °C at 26 GPa (Pamato et al. 2015), implying that subducted oceanic crust could be a significant long-term water reservoir in the convecting lower mantle.

Both Phase D and Phase H have been proven to host Al replacing Mg in solid solution. However, no structural studies have been carried out on the two phases in coexistence to study the preference of Al for one at high pressure. Electron microprobe studies alone could be affected by large uncertainties in the identification of the phases given the very small size and the close chemical formulae.

Here we report the fortuitous recovery of a single micron-sized grain in a run product synthesized at 45 GPa and 1000 °C exhibiting an intergrowth of Phase D and Phase H. This grain gave us the chance to study the partition of Al in the two phases by simultaneous structure refinements of the two phases.

64

#### 65

#### EXPERIMENTAL

66 Synthesis

57 Synthesis experiments were conducted using a 1,500-t multi-anvil apparatus 58 (MADONNA-II) at Ehime University (Matsuyama, Japan). We used sintered diamond anvils 59 with a truncated edge length of 1.5 mm as the second-stage anvils. The sample was loaded 50 into a gold capsule. The sample assembly was composed of sintered (Mg,Cr)O and MgO

pressure media, with a cylindrical LaCrO<sub>3</sub> heater, and a molybdenum electrode. Temperature 71 was monitored by a W<sub>97</sub>Re<sub>3</sub>-W<sub>75</sub>Re<sub>25</sub> thermocouple. The pressure media and the heater were 72 dried at 1000 °C for 3 hours before assembling the high-pressure cell. Details of the sample 73 assembly are shown in the supplementary information of Nishi et al. (2014). The experiment 74 was performed in the Mg(OH)<sub>2</sub>-SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> system with Mg:Si:Al=1:1.5:0.5 molar ratios. 75 The sample was compressed to 45 GPa at room temperature. Then the temperature was 76 increased to 1000 °C and held constant for 6 h. Phase H prevailed in the run product, being 77 accompanied by minor proportions of Phase D (Fig. 1). 78

79

#### Data collection and crystal-structure refinement

A small crystal ( $28 \times 34 \times 52 \mu m$ ), hand-picked under a reflected light microscope from 80 the run product (Fig. 1), was examined with an Oxford Diffraction Xcalibur 3 diffractometer 81 (X-ray MoK $\alpha$  radiation,  $\lambda = 0.71073$  Å) fitted with a Sapphire 2 CCD detector (see Table 1 82 for details). The crystal was found to be composed of Phase H and Phase D in a proportion 83 (vol.%) roughly estimable to be 73(2)/27, respectively. The lattice parameters for the two 84 phases are: a = 4.730(2), b = 4.324(2), c = 2.843(2) Å, V = 58.15(5) Å<sup>3</sup>, and a = 4.752(2), c = 1.00085 4.314(2) Å, V = 84.37(6) Å<sup>3</sup>, respectively. The crystal did not show any sign of deterioration 86 under the X-ray beam. Intensity integration and standard Lorentz-polarization corrections 87 were done with the CrysAlis RED (Oxford Diffraction 2006) software package. The program 88 ABSPACK of the CrysAlis RED package (Oxford Diffraction 2006) was used for the 89 absorption correction. Particular care was devoted to the data collection and reduction of 90 reflections of the two phases given the close geometric relationships between (001)<sub>PhH</sub> and 91  $(2\overline{1}0)_{PhD}$ . The number of extracted, independent reflections was sufficient to identify the 92 correct space group and begin the structure refinement for both phases, which was carried out 93 using the program SHELXL-97 (Sheldrick 2008), starting from the atomic coordinates given 94 by Bindi et al. (2014) for Phase H (space group Pnnm) and by Yang et al. (1997) for Phase D 95 (space group  $P\bar{3}1m$ ). Site-scattering values for the two phases were refined using scattering 96 curves for neutral species (Ibers and Hamilton 1974) as follows: Si vs. at the metal sites and 97 at the anion sites. The O sites were found to be fully occupied, and the occupancy O vs. 98 factors were then fixed to 1.00. An isotropic model for both the phases led to  $R_1 = 0.024$  for 99 37 observed reflections  $[F_0 > 4\sigma(F_0)]$  and  $R_1 = 0.020$  for 35 observed reflections  $[F_0 >$ 100  $4\sigma(F_0)$ ], for Phase H and Phase D, respectively. No hydrogen atoms were located in the 101 difference Fourier maps ( $\Delta F$ ) for the two phases. Fractional atomic coordinates, atomic 102

displacement parameters, bond distances, and geometric parameters for the two phases are shown in Table 2. Table  $3^1$  lists the observed and calculated structure factors.

105 Chemical composition

Given the fact that only one crystal with coexisting Phase H and Phase D was available, it was considered too risky to embed and polish it. For this reason, the crystal was placed on a graphite disk on a stub.  $K\alpha$  X-ray intensity maps of Al, Mg, and Si (Fig. 2) were obtained using a JEOL JXA-8600 electron microprobe operating at an accelerating voltage of 15 kV and a beam current of 300 nA. Beam current variations during map acquisition were  $\leq 4$  nA. Acquisition times of 180 ms were used. Maps only show X-ray intensity (i.e., neither calibrations nor background corrections were applied).

WDS spots on the two phases were collected at 15 kV accelerating voltage and 20 nA 113 beam current (and a 1 um beam diameter), with 30 s as counting times. Matrix correction was 114 performed using the Bence and Albee (1968) program modified by Albee and Ray (1970). 115 The standards used were forsterite (Mg) and albite (Al, Si). The two phases were found to be 116 homogeneous within the analytical uncertainty. The average chemical composition is (wt%), 117  $SiO_2$  47.0(4); MgO 34.0(2); Al<sub>2</sub>O<sub>3</sub> 3.0(2); total 84.0(2) (four analyses on different spots) 118 corresponding, on the basis of  $\Sigma(Si+Mg+Al) = 2$ , to  $Mg_{1,00(3)}[Si_{0,93(5)}Al_{0,07}]O_4H_2$  (H<sub>2</sub>O 119 calculated by difference) for Phase H, and SiO<sub>2</sub> 50.50(48); MgO 22.58(32); Al<sub>2</sub>O<sub>3</sub> 14.27(28); 120 total 87.35(40) (three analyses on different spots) corresponding, on the basis of 121  $\Sigma$ (Si+Mg+Al) = 3, to Mg<sub>1.00(6)</sub>[Si<sub>1.50(7)</sub>Al<sub>0.50</sub>]O<sub>6</sub>H<sub>2</sub> (H<sub>2</sub>O calculated by difference), for Phase D. 122

- 123
- 124

#### **RESULTS AND DISCUSSION**

### 125 Crystal-chemical features of coexisting Phase H and Phase D

The structures of Phase H and Phase D were found to be nearly identical to those 126 reported by Bindi et al. (2014) and Yang et al. (1997). The electron density refined at the 127 metal sites for both the phases is in excellent agreement with the electron microprobe data. In 128 detail, the mean electron number at the octahedral site for Phase H is 13.02(8), well matching 129 the site population obtained at the microprobe (Mg<sub>0.500</sub>Si<sub>0.465</sub>Al<sub>0.035</sub>;  $e^{-}$  = 12.97). In Phase D, 130 the largest octahedron was considered to be filled by Mg only ( $e^{-1} = 12.03$ ), whereas the mean 131 electron number at the other octahedral site is 13.65(7), in good agreement with the site 132 population obtained at the microprobe (Si<sub>0.75</sub>Al<sub>0.25</sub>;  $e^{-} = 13.75$ ). Such a distribution reflects 133

<sup>&</sup>lt;sup>1</sup> For a copy of Table 3, document item ....., contact the Business Office of the Mineralogical Society of America.

well on the bond distances observed (Table 2). The mean octahedral metal-oxygen distance of 134 1.958 Å for Phase H is in good agreement with the calculated value for  $^{VI}$ [Mg-O]<sub>0.50</sub> +  $^{VI}$ [Si-135  $O_{0.465} + {}^{VI}$ [Al-O]<sub>0.035</sub> of 1.95 Å (taking into account the ionic radii; Shannon 1976) and nearly 136 identical to that observed in pure MgSiO<sub>4</sub>H<sub>2</sub> (1.957 Å; Bindi et al. 2014). The bond distance 137 observed at the Mg-site for Phase D of 2.055 Å is slightly shorter than that observed by Yang 138 et al. (1997) for pure MgSi<sub>2</sub>O<sub>6</sub>H<sub>2</sub> (i.e., 2.105 Å), whereas the (Si,Al)-O bond of 1.821 Å is 139 longer than that of pure Si-O (1.805 Å; Yang et al. 1997) because of the presence of Al 140 replacing Si at the site. 141

We did not observe an increase of the unit-cell volume in Al-bearing Phase D with respect to pure MgSi<sub>2</sub>O<sub>6</sub>H<sub>2</sub>. A similar behavior was also noticed by Boffa Ballaran et al. (2010) for super-aluminous Phase D and by Komatsu et al. (2011) for Al-bearing Phase H. These authors observed that the Tschermak Si<sup>4+</sup> + Mg<sup>2+</sup>  $\leftrightarrow$  2Al<sup>3+</sup> substitution does not induce either an enlargement of the unit cell or a lengthening of the octahedral bond distances.

147 Partition of Al between Phase H and Phase D

Ohira et al. (2014) have shown that the amount of Al in the compounds belonging to the 148  $\delta$ -AlOOH–MgSiO<sub>4</sub>H<sub>2</sub> solid solution series increases with increasing pressure. These authors 149 observed that perovskite and post-perovskite phases are depleted in Al<sub>2</sub>O<sub>3</sub>, whereas hydrous 150 δ-AlOOH contains at least 44 mol% of MgSiO<sub>4</sub>H<sub>2</sub> component at 68 GPa and 2010 K, and 151 23 mol% of this component at 128 GPa and 2190 K. Similar results were obtained by Nishi et 152 al. (2014) who observed a strong dependence of the Al-component by pressure in Phase H. 153 These authors noted that, although the Al contents in the starting material decrease with 154 pressure, the Al-component in Phase H is relatively low at 40-43 GPa compared to that at 155 about 50 GPa. Moreover, Al seems to be strongly partitioned into Phase H relative to MgSiO<sub>3</sub> 156 perovskite and Phase D (Nishi et al. 2014). 157

The structural study of a grain in which both phases coexist presented here suggests that 158 Al instead becomes strongly partitioned into Phase D relative to Phase H. As postulated by 159 Hirose et al. (2005), at the lower mantle conditions garnet converts to Al-bearing MgSiO<sub>3</sub>-160 perovskite, CaSiO<sub>3</sub>-perovskite, and other minor phases. The Al-bearing MgSiO<sub>3</sub>-perovskite in 161 dry oceanic crust contains 15-20 mol% Al<sub>2</sub>O<sub>3</sub> under these conditions (Litasov and Ohtani 162 2005). During the subduction of oceanic crust, a reaction between trapped water and Al-163 bearing MgSiO<sub>3</sub>-perovskite could form Al-deficient MgSiO<sub>3</sub>-perovskite and Al-rich Phase D. 164 Then, at pressures higher than ~50 GPa, a hydrous  $\delta$ -phase of the AlOOH–MgSiO<sub>4</sub>H<sub>2</sub> solid 165 solution (Phase H) should be stabilized. At that pressure, such a phase is able to incorporate 166 large amount of aluminum available in hydrous peridotitic compositions in the deep lower 167

mantle and play an important role as a water carrier in slabs descending into the lowermost 168 mantle and core-mantle boundary. 169 170 ACKNOWLEDGMENTS 171 The paper benefited by the official reviews made by two anonymous reviewers. Thanks 172 are also due to the Editor Ian Swainson for his efficient handling of the manuscript. The 173 research was supported by "progetto di Ateneo 2013, University of Firenze" to LB, by 174 C.N.R., Istituto di Geoscienze e Georisorse sezione di Firenze, Italy. 175 176 **REFERENCES CITED** 177 Albee, A.L., and Ray, L. (1970) Correction factors for electron probe analysis of silicate, 178 oxides, carbonates, phosphates, and sulfates. Analytical Chemistry, 48, 1408–1414. 179 Bence, A.E., and Albee, A.L. (1968) Empirical correction factors for the electron 180 microanalysis of silicate and oxides. Journal of Geology, 76, 382-403. 181 Bindi, L., Nishi, M., Tsuchiya, J., and Irifune, T. (2014) Crystal chemistry of dense hydrous 182 magnesium silicates: The structure of Phase H, MgSiH<sub>2</sub>O<sub>4</sub> synthesized at 45 GPa and 183 1000 °C. American Mineralogist, 99, 1802-1805. 184 Boffa Ballaran, T., Frost, D.J., Miyajima, N., and Heidelbach, F. (2010) The structure of a 185 super-aluminous version of the dense hydrous-magnesium silicate phase D. American 186 Mineralogist, 95, 1113–1116. 187 Frost, D.J., and Fei, Y. (1998) Stability of phase D at high pressure and high temperature. 188 Journal of Geophysical Research, 103, 7463–7474. 189 Ghosh, S., and Schmidt, M.W. (2014) Melting of phase D in the lower mantle and 190 implications for recycling and storage of  $H_2O$  in the deep mantle. Geochimica et 191 Cosmochimica Acta, 145, 72-88. 192 Hirose, K., Takafuji, N., Sata, N., and Ohishi, Y. (2005) Phase transition and density of 193 subducted MORB crust in the lower mantle. Earth and Planetary Science Letters, 237, 194 239-251. 195 Ibers, J.A., and Hamilton, W.C., Eds. (1974) International Tables for X-ray Crystallography, 196 vol. IV, 366p. Kynock, Dordrecht, The Netherlands. 197 Komatsu, K., Sano-Furukawa, A., and Kagi, H. (2011) Effects of Mg and Si ions on the 198 symmetry of  $\delta$ -AlOOH. Physics and Chemistry of Minerals, 38, 727–733. 199

| 200 | Litasov, K.D., and Ohtani, E. (2005) Phase relations in hydrous MORB at 18-28 GPa: im-                         |
|-----|----------------------------------------------------------------------------------------------------------------|
| 201 | plications for heterogeneity of the lower mantle. Physics of the Earth and Planetary                           |
| 202 | Interiors, 150, 239–263.                                                                                       |
| 203 | Nishi, M., Irifune, T., Tsuchiya, J., Tange, Y., Nishihara, Y., Fujino, K., and Higo, Y. (2014)                |
| 204 | Stability of hydrous silicate at high pressures and water transport to the deep lower                          |
| 205 | mantle. Nature Geoscience, 7, 224–227.                                                                         |
| 206 | Ohira, I., Ohtani, E., Sakai, T., Miyahara, M., Hirao, N., Ohishi, Y., and Nishijima, M. (2014)                |
| 207 | Stability of a hydrous $\delta$ -phase, AlOOH-MgSiO <sub>2</sub> (OH) <sub>2</sub> , and a mechanism for water |
| 208 | transport into the base of lower mantle. Earth and Planetary Science Letters, 401, 12-                         |
| 209 | 17.                                                                                                            |
| 210 | Ohtani, E., Amaike, Y., Kamada, S., Sakamaki, T., and Hirao, N. (2014) Stability of hydrous                    |
| 211 | phase H MgSiO <sub>4</sub> H <sub>2</sub> under lower mantle conditions. Geophysical Research Letters, 41,     |
| 212 | 8283–8287.                                                                                                     |
| 213 | Oxford Diffraction (2006) CrysAlis RED (Version 1.171.31.2) and ABSPACK in CrysAlis                            |
| 214 | RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.                                                   |
| 215 | Pamato, M.G., Myhill, R., Boffa Ballaran, T., Frost, D.J., Heidelbach, F., and Miyajima, N.                    |
| 216 | (2015) Lower-mantle water reservoir implied by the extreme stability of a hydrous                              |
| 217 | aluminosilicate. Nature Geoscience, 8, 75–79.                                                                  |
| 218 | Robinson, K., Gibbs, G.V., and Ribbe, P.H. (1971) Quadratic elongation: a quantitative                         |
| 219 | measure of distortion in coordination polyhedra. Science, 172, 567–570.                                        |
| 220 | Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic                       |
| 221 | distances in halides and chalcogenides. Acta Crystallographica, A32, 751-767.                                  |
| 222 | Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.                         |
| 223 | Shieh, S.R., Mao, H-K., Hemley, R.J., and Ming, L.C. (1998) Decomposition of phase D in                        |
| 224 | the lower mantle and the fate of dense hydrous silicates in subducting slabs. Earth and                        |
| 225 | Planetary Science Letters, 159, 13–23.                                                                         |
| 226 | Tsuchiya, J. (2013) First principles prediction of a new high-pressure phase of dense hydrous                  |
| 227 | magnesium silicates in the lower mantle. Geophysical Research Letters, 40, 4570-4573.                          |
| 228 | Yang, H., Prewitt, C.T., and Frost, D.J. (1997) Crystal structure of the dense hydrous                         |
| 229 | magnesium silicate, phase D. American Mineralogist, 82, 651-654.                                               |
| 230 |                                                                                                                |
| 231 |                                                                                                                |
| 232 |                                                                                                                |
| 233 |                                                                                                                |

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5327

| 234 |           | FIGURE CAPTIONS                                                                                  |
|-----|-----------|--------------------------------------------------------------------------------------------------|
| 235 | FIGURE 1. | Backscattered electron image of the run product synthesized at 45 GPa and 1000                   |
| 236 |           | $^{\circ}\text{C}.$ The different phases are labeled. White small dots are the gold derived from |
| 237 |           | capsule. Scale bar is indicated.                                                                 |
| 238 | FIGURE 2. | Electron microprobe X-ray elemental maps for the crystal used for the structural                 |
| 239 |           | study. At top left there is a backscattered electron image. The slightly shaded region           |
| 240 |           | above the grain is an analytical artifact due to the morphology of the crystal.                  |
| 241 |           |                                                                                                  |
| 242 |           |                                                                                                  |
| 243 |           |                                                                                                  |
|     |           |                                                                                                  |

|                                              | Phase H                                          | Phase D                                          |  |  |  |  |  |
|----------------------------------------------|--------------------------------------------------|--------------------------------------------------|--|--|--|--|--|
| Crystal data                                 |                                                  |                                                  |  |  |  |  |  |
| Formula                                      | MgSiO <sub>4</sub> H <sub>2</sub>                | MgSi <sub>2</sub> O <sub>6</sub> H <sub>2</sub>  |  |  |  |  |  |
| Crystal system                               | orthorhombic                                     | trigonal                                         |  |  |  |  |  |
| Space group                                  | Pnnm                                             | $P\overline{\overline{3}} 1m$                    |  |  |  |  |  |
| a (Å)                                        | 4.730(2)                                         | 4.752(2)                                         |  |  |  |  |  |
| b (Å)                                        | 4.324(2)                                         | 4.752(2)                                         |  |  |  |  |  |
| c (Å)                                        | 2.843(2)                                         | 4.314(2)                                         |  |  |  |  |  |
| V (Å <sup>3</sup> )                          | 58.15(5)                                         | 84.37(6)                                         |  |  |  |  |  |
| Ζ                                            | 1                                                | 1                                                |  |  |  |  |  |
| Data collection                              |                                                  |                                                  |  |  |  |  |  |
| Instrument                                   | Oxford Diffraction Xcalibur 3                    |                                                  |  |  |  |  |  |
| Radiation type                               | MoK $\alpha$ ( $\lambda$ =                       | 0.71073 Å)                                       |  |  |  |  |  |
| Temperature (K)                              | 293(2)                                           |                                                  |  |  |  |  |  |
| Det. to sample dist. (cm)                    | 6                                                |                                                  |  |  |  |  |  |
| Number of frames                             | 285                                              | 312                                              |  |  |  |  |  |
| Measuring time (s)                           | 20                                               | 00                                               |  |  |  |  |  |
| Maximum covered 2θ (°)                       | 52.86                                            | 49.78                                            |  |  |  |  |  |
| Absorption correction                        | multi-scan (ABSPACK; Oxford Diffraction 2006)    |                                                  |  |  |  |  |  |
| Collected reflections                        | 504                                              | 590                                              |  |  |  |  |  |
| Unique reflections                           | 73                                               | 64                                               |  |  |  |  |  |
| Reflections with $F_0 > 4 \sigma(F_0)$       | 37                                               | 35                                               |  |  |  |  |  |
| R <sub>int</sub>                             | 0.0318                                           | 0.0360                                           |  |  |  |  |  |
| R <sub>o</sub>                               | 0.0421                                           | 0.0451                                           |  |  |  |  |  |
| Range of $h, k, l$                           | $-5 \le h \le 5, -5 \le k \le 5, -3 \le l \le 3$ | $-5 \le h \le 5, -5 \le k \le 5, -5 \le l \le 5$ |  |  |  |  |  |
| Refinement                                   |                                                  | _                                                |  |  |  |  |  |
| Refinement                                   | Full-matrix least squares on $F^2$               |                                                  |  |  |  |  |  |
| Final $R_1 [F_o > 4\sigma(F_o)]$             | 0.0240                                           | 0.0203                                           |  |  |  |  |  |
| Final $R_1$ (all data)                       | 0.0250                                           | 0.0262                                           |  |  |  |  |  |
| No. ref. parameters                          | 6                                                | 7                                                |  |  |  |  |  |
| $\Delta \rho_{\rm max}$ (e Å <sup>-3</sup> ) | 0.47                                             | 0.24                                             |  |  |  |  |  |
| $\Delta \rho_{\rm min}$ (e Å <sup>-3</sup> ) | -0.59                                            | -0.29                                            |  |  |  |  |  |

TABLE 1 – Details pertaining to the single-crystal X-ray data collections and structure refinements of Phase H and Phase D.

TABLE 2. Fractional atomic coordinates, site-occupancy factors (s.o.f.) derived from electron microprobe, isotropic displacement parameters ( $Å^2$ ) and geometric parameters (Å,  $Å^3$ , °) for Phase H and Phase D.

| Phase H     |                                                             |            |           |           |              |  |  |  |  |
|-------------|-------------------------------------------------------------|------------|-----------|-----------|--------------|--|--|--|--|
|             | s.o.f.                                                      | x          | у         | Ζ.        | $U_{ m iso}$ |  |  |  |  |
| М           | Mg <sub>0.500</sub> Si <sub>0.465</sub> Al <sub>0.035</sub> | 0          | 0         | 0         | 0.018(5)     |  |  |  |  |
| 0           | $O_{1.00}$                                                  | 0.3481(6)  | 0.2297(9) | 0         | 0.017(1)     |  |  |  |  |
| M-O (×2)    | 1.923(3)                                                    |            |           |           |              |  |  |  |  |
| M-O (×4)    | 1.975(3)                                                    |            |           |           |              |  |  |  |  |
| <m-o></m-o> | 1.958                                                       |            |           |           |              |  |  |  |  |
| $\sigma^2$  | 1.58                                                        |            |           |           |              |  |  |  |  |
| V           | 10.00                                                       |            |           |           |              |  |  |  |  |
| Phase D     |                                                             |            |           |           |              |  |  |  |  |
|             | s.o.f.                                                      | x          | У         | Z,        | $U_{ m iso}$ |  |  |  |  |
| Mg          | Mg <sub>1.00</sub>                                          | 0          | 0         | 0         | 0.027(1)     |  |  |  |  |
| М           | Si <sub>0.75</sub> Al <sub>0.25</sub>                       | 1/3        | 2/3       | 1/2       | 0.0204(5)    |  |  |  |  |
| 0           | $O_{1.00}$                                                  | 0.6462(4)  | 0         | 0.2740(4) | 0.027(1)     |  |  |  |  |
| Mg-O (×6)   | 2.055(2)                                                    | M-O (×6)   | 1.821(2)  |           |              |  |  |  |  |
| $\sigma^2$  | 0.05                                                        | $\sigma^2$ | 25.25     |           |              |  |  |  |  |
| V           | 11.57                                                       | V          | 7.96      |           |              |  |  |  |  |

\* Angle variance ( $\sigma^2$ ) calculated according to Robinson et al. (1971).



# Phase D and phase H

SiO<sub>2</sub>

X1,000

 $10\,\mu$  m

WD 8.3mm

Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld

15.0kV

This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am-2015-5327

